Enhance Multimodal Consistency and Coherence
for Text-Image Plan Generation

Xiaoxin Lu Ranran Haoran Zhang Yusen Zhang Rui Zhang
The Pennsylvania State University, State College, PA, USA
{xz15514, haoranz6, yfz5488, rmz5227}@psu.edu

Abstract

People get informed of a daily task plan
through diverse media involving both texts and
images. However, most prior research only fo-
cuses on LLM’s capability of textual plan gen-
eration. The potential of large-scale models in
providing text-image plans remains understud-
ied. Generating high-quality text-image plans
faces two main challenges: ensuring consistent
alignment between two modalities and keeping
coherence among visual steps. To address these
challenges, we propose a novel framework that
generates and refines text-image plans step-
by-step. At each iteration, our framework (1)
drafts the next textual step based on the pre-
diction history; (2) edits the last visual step
to obtain the next one; (3) extracts PDDL-like
visual information; and (4) refines the draft
with the extracted visual information. The tex-
tual and visual step produced in stage (4) and
(2) will then serve as inputs for the next itera-
tion. Our approach offers a plug-and-play im-
provement to various backbone models, such
as Mistral-7B, Gemini-1.5, and GPT-40. To
evaluate the effectiveness of our approach, we
collect a new benchmark consisting of 1,100
tasks and their text-image pair solutions cover-
ing 11 daily topics. We also design and vali-
date a new set of metrics to evaluate the multi-
modal consistency and coherence in text-image
plans. Extensive experiment results show the
effectiveness of our approach on a range of
backbone models against competitive baselines.
Our code and data are available at https:
//github.com/psunlpgroup/MPlanner.

1 Introduction

Recently, there has been growing attention on em-
ploying LLMs for planning, the task of decom-
posing a high-level goal into a sequence of exe-
cutable steps (Valmeekam et al., 2022; Hao et al.,
2023). LLMs have demonstrated strong capabil-
ities in generating textual plans, enabling appli-
cations in robotics, virtual assistants, and instruc-

How to grow bulb
onions in water?

Step 1: Prepare the onion
bulbs. Trim the roots if they
are too long.

~Rudimentary Plan:

i/

Step 1: Fill the container
with fresh water. Gently
nion bulbs in it.

Step 2: Position the onion
bulbs in the glass or jar with
the root end facing down.

Step 2: Place the container
in a bright location with
indirect sunlight.

Step 3: Position the glass or
jar with the onion bulbs in a
sunny windowsill.

_________________t_’_________________‘___________________________

Step 4: Change the water in
the glass or jar every few
days to prevent stagnation
and the growth of bacteria.

Step 3: Replace the water
every 2-3 days to prevent
bacteria growth and keep
the roots healthy.

Figure 1: Plans generated by GPT-40 (left) and our
framework (right). Our framework maintains higher
consistency between images and texts, and achieves
higher coherence among images across different steps.

tional content generation (Huang et al., 2022; Liu
et al., 2023; Silver et al., 2024). However, textual
plans alone can be insufficient, as many real-world

23392

Findings of the Association for Computational Linguistics: ACL 2025, pages 23392-23409
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/psunlpgroup/MPlanner
https://github.com/psunlpgroup/MPlanner

tasks require both textual instructions and visual
demonstrations for clarity. Multimodal task plan-
ning, which can be formulated as a paired text-
image sequence generation problem conditioned
on the task goal (Lu et al., 2024), enhances compre-
hensibility and usability by leveraging the comple-
mentary strengths of language and vision. Despite
its potential, multimodal planning remains an un-
derexplored problem, with prior approaches strug-
gling to maintain consistency between modalities
and coherence across visual steps.

Multimodal task planning faces two main chal-
lenges: ensuring coherence through visual steps
and alignment between two modalities. Figure 1 il-
lustrates these challenges through a comparative ex-
ample of generating plans for the input goal “grow-
ing bulb onions in water”. The left-hand side shows
the plan generated by GPT-40, and the right-hand
side presents the corresponding plan generated by
our framework. The baseline plan, although gen-
erally reasonable, exhibits critical issues in both
visual coherence and text-image alignment. First,
it fails to maintain visual consistency between step
1 and step 2, as highlighted in red. The container
depicted in step 1 is a transparent glass, but in step
2, it becomes an opaque white planter, disrupting
coherence. Second, as highlighted in purple, step
2’s image shows a location with direct sunlight,
contradicting the textual instruction that specifies
“indirect sunlight”. Furthermore, step 3 entirely
diverges from the intended goal of growing onions
in water, as it depicts bulbs planted in soil.

On the other hand, our framework effectively
improves visual coherence and text-image consis-
tency. As shown on the right-hand side of Figure 1,
our approach maintains a uniform depiction of the
onion bulbs and their container throughout the pro-
cess. The glass or jar remains consistent in shape
and size from step 2 to step 4, avoiding abrupt
visual changes. Moreover, the visual steps accu-
rately reflect the textual descriptions through all
steps. For instance, step 3 correctly depicts a sunny
windowsill, aligning with the text’s instruction to
position the jar in such a location.

These improvements stem from our novel au-
toregressive framework. At each iteration, the text
generator drafts the current step based on the task
goal and previous steps. The image generator then
produces a corresponding visual representation con-
ditioned on the last visual step. An image inter-
preter subsequently extracts structured information
from the generated image, which the text generator

uses to refine the step draft. This iterative process
enhances visual coherence with a text-image-to-
image model and ensures text-image consistency
through cross-modality prompting. Compared to
vanilla approaches that simply concatenate an LLM
with a text-to-image model, our framework effec-
tively mitigates the challenges of multimodal task
planning, leading to more coherent and consistent
instructional sequences.

To evaluate our framework, we collect a dataset
from two popular websites: Instructables and wiki-
How. Our dataset consisting of 1100 examples in
11 categories, providing rich multimodal informa-
tion of procedural solutions to a variety of daily
tasks. We adopt a set of metrics including conven-
tional automatic measurements, LLM evaluations,
and human evaluations to comprehensively evalu-
ate planning performance in three aspects: textual
plan quality, visual plan quality, and textual-visual
plan alignment. To demonstrate the generalizabil-
ity of our approach, we evaluate our framework
with 3 different backbones: Mistral-7B (Jiang et al.,
2023), Gemini-1.5-flash (Team et al., 2024), and
GPT-40 (Hurst et al., 2024). For every backbone,
we compare our framework with various baselines.
Extensive experiment results show our framework
outperforms all baselines, especially in terms of the
two concerns we aim to address.

In summary, our contributions are three-fold:

* We propose a novel framework to address both
visual coherence challenge and text-image
alignment challenge of multimodal planning
problem;

* We collect a dataset of daily tasks covering
diverse domains and complexity levels to eval-
uate the text-image planning performance.

* We empirically show the effectiveness of our
framework with extensive experimental re-
sults and visualization examples.

2 Related Work

Task Planning Task planning is broadly studied
in various scenarios of virtual environment (Zhao
et al., 2023; Gao et al., 2023; Hu et al., 2024), em-
bodied environment (Huang et al., 2022; Song et al.,
2023; Zhang et al., 2024), and daily life (Oswald
et al., 2024; Wu et al., 2022). Despite classical
planning algorithms (Hoffmann and Nebel, 2001;
Alarnaouti et al., 2023), they are primarily appli-
cable with restrictions such as fully observable en-
vironments with pre-defined actions and objects.
It prohibits their usage in open-domain daily sce-

23393

narios, igniting research interest in solutions from
LLM advancements (Kambhampati et al., 2024).
LLMs, possessing a rich amount of common-
sense knowledge and impressive reasoning capa-
bility, are competent in such contexts. Huang et al.
(2022) studies LLMs as zero-shot planners and
shows their great planning potential in a virtual
environment. Liu et al. (2023) combines the LLM
with classical planners to get reliable solutions to
robotic tasks in an embodied environment. Arora
and Kambhampati (2023) tries to add an external
verifier to improve the planning capabilities of a
finetuned LLM. Wang et al. (2023) seeks to study
textual plan generation provided visual states as
supplements. Despite these, only rare efforts con-
tribute to studying multimodal planning. Lu et al.
(2024) first explores the potential of LLMs and
text-to-image models to generate image-text paired
plans. However, their approach is limited by the
single-shot generation framework and reliance on
image captions that inadequately capture object in-
teractions, leading to information loss and visual
incoherence in planning sequences.
Vision and Language Diffusion models (Ho
et al., 2020; Ramesh et al., 2021; Rombach et al.,
2022) have revolutionized image generation condi-
tioned on texts. However, in specific circumstances
where the models are expected to output coherent
images, they exhibit poor performance because of
the lack of visual context knowledge (Lu et al.,
2024). This leads to the introduction of advanced
image editing models (Kawar et al., 2023). Build-
ing upon the success of image generation models,
they are capable of generating images conditioned
on both reference images and text instructions. For
example, Brooks et al. (2023) achieves image edit-
ing by fine-tuning the stable diffusion model on
(original image, instruction, edited image) triplets.
Zhang et al. (2023) enables precise spatial condi-
tioning controls including edges, depth maps, pose
information, etc. Soucek et al. (2024) infuses video
data into a diffusion model to generate images de-
picting how actions lead to object state transfor-
mations. However, they all tend to maintain the
outline of objects in the original image while only
editing the color, texture, or style. Thus, they are
still inadequate in generating coherent images for
planning, which typically involves scenario change
and object transformation.
3 Dataset
Despite existing datasets in the daily task planning
area, they either lack image modality (Koupaee and

Categories
Home & Garden
Health
Personal Care & Style
Hobbies & Crafts
Cooking
Food & Entertaining
Cars & Other Vehicles
Sports & Fitness
Education & Communications
Arts & Entertainment

Figure 2: The distribution of our dataset.

Wang, 2018; Valmeekam et al., 2023a), task do-
main diversity (Yagcioglu et al., 2018; Valmeekam
et al., 2023b), or are not intended for plan genera-
tion (Yang et al., 2021). Therefore, to benchmark
text-image plan generation, we collect a dataset of
daily task plans covering various topics.

Inspired by previous work, we consider two pop-
ular websites affording procedural daily task in-
structions: Instructables' and wikiHow?. Both
data sources provide various modalities and cover
diverse daily task categories. The overall cate-
gory distribution of our dataset is shown in Figure
2. Compared with previous public datasets, our
dataset is rich in task categories and plan modali-
ties. Furthermore, we ensure high data quality by
manually filtering out malicious content and cu-
rating the collected plans to remove noises such
as the authors’ information and personal stories.
Please see Appendix A for more dataset statistics
and demonstrations.

Instructables To study how our framework per-
forms on simple daily tasks, we randomly col-
lect 100 plans from Instructable. Specifically, we
choose “Cooking” category as it is a common plan-
ning scenario. Plans from Instructables are pub-
lished by users who would like to share their expe-
rience in achieving a specific goal. Therefore, their
plans are more brief and more casual.

wikiHow We randomly sample 1,000 plans from
wikiHow expert articles. In 19 categories, we se-
lect 10 that best fit into the multimodal planning
context. The remaining categories, such as family
life, relationships, philosophy and religion, etc, of-
ten involve sensitive information. Moreover, they
are not suitable for our planning problem since
the provided “plans” are more like “advice” with-

1ht’cps: //www.instructables.com/
2https: //www.wikihow. com/

23394

https://www.instructables.com/
https://www.wikihow.com/

Stage 1: Textual Plan Generation

|
| taskgoal G

: | Grow Bulb Onions in WaterJ
|

|

textual steps ty.x_1

textual draft d;

Stage 4: Textual Plan Refinement

textual step ¢

Step 3: Position the glass or

Draft
Generation

Step 2: Position the onion

: Step 1: Prepare the onion |
—|b
A bulbs in the glass or jar

sunlight.

Place the glass or jar in a
sunny location.
they receive plenty of

Ensure

(jar with the onion bulbs in a
Text sunny windowsill. Onions
LReﬁnement need plenty of light to grow,

so ensure they receive at least

7

with the root end facing
down...

visual steps iy.x_1
/AR

Image
Generation

—
|
|
|
|
|
|

Stage 2: Visual Plan Generation

visual step i

6-8 hours of sunlight.

visual info vy,

Tool: Glass

Object: Plants

Action: Placing

Goal: Provide plants with
access to sunlight for optimal
growth

Visual Info
Extraction

Stage 3: Visual Info Extraction

Figure 3: Overview of our autoregressive framework at time step k. Stage 1: the text plan generator takes the input
task goal G and output textual steps ¢1.;_1 from previous time steps to predict dj. Stage 2: the image generator
outputs the visual step ¢, conditioned on dj, and the last visual step i;_1. Stage 3: the text generator extracts
formatted visual information from the generated iy, as vy. Stage 4: the text generator refines dy with vy, to generate
ti. Dotted Arrow: The output ¢; and i then serve as the input for the next time step k£ + 1.

out explicit temporal consistency and dependency
through the “steps”. Our collected wikiHow arti-
cles are reviewed, edited, or authored by domain
experts verified by the platform. Therefore, these
plans are longer, more detailed, and more formal.

4 Approach

Task Formulation Given a task goal G as the
input, the output of multimodal planning is a se-
quence of steps S = {s1, S2, ..., Sp}. Each step
consists of an instructional text ¢, and its corre-
sponding image i, so we have sy = (t, i), k €
{1,2,...,n}. At every step k, t; and i) should
be semantically consistent. Both textual plan
St = {t1,....tn} and visual plan S; = {i1, ..., in}
should be coherent through steps.

Framework Overview As shown in Figure 3,
our framework generates plan steps iteratively. At
each step, 4 cross-modality stages collaboratively
contribute to the multimodal plan generation. In
the first stage, the textual plan drafter takes the in-
put task goal G and the previous textual steps t1.,_1
to draft the current textual step dy. In stage two,
the image generator edits the last visual step ¢;_1
conditioned on dj, to get the current visual step 7.
In stage three, an image interpreter extracts format-
ted visual information v; from the generated i.
Last, the textual plan refiner collects vy, and uses it
to refine the original textual step draft dj, to be tj,.
After the current iteration is complete, both t; and

1, are added to history steps for the next iteration.
The overall design ensures the coherence of visual
steps by prompting the image generation module
to predict the next image based on both textual
instruction and the previous visual state. Combin-
ing text-to-image and converse image-to-text in a
loop guarantees consistency between the generated
textual plan and its visual counterpart. Detailed
prompts for each module are in Appendix B.

4.1 Textual Plan Drafting

As LLMs embed a rich amount of commonsense
knowledge, we prompt them with the task goal G
at the first iteration to get the textual step draft d;.
At later iterations, we concatenate G with previous
textual steps t1.5_1 to draft dj:

k=1

ks1

di = Gt(g)a
kT G¢(G,Concat(t1,t2,...,tk—1)),

where (; denotes the text generation model.

4.2 Visual Plan Generation

To maintain coherence through visual steps, we
employ InstructPix2Pix (Brooks et al., 2023), a
prevailing image editing model. Different from
image generation models, InstructPix2Pix is condi-
tioned on both the text prompt and the input image.
In our framework, it ensures the generation of the
current visual step i is always aware of the last

23395

visual state i 1. This helps improve the coherence
through the visual plan S; = {i1, 49, ..., 7n }.

i = Gi(dg, ig—1) ()

where G; denotes the image generation model.

4.3 Textual Plan Refinement

We further employ a textual plan refinement mecha-
nism for two reasons: 1) to improve the consistency
between textual step and visual step; 2) to comple-
ment the textual step draft with implicit knowledge
embedded in the image.

Visual Information Extraction First, we adopt
a visual information-infused model as the image in-
terpreter to extract visual information. Specifically,
we adopt the idea of planning domain definition
language (PDDL) from the classical planning field
(Fox and Long, 2003). We design a pseudo-PDDL
(pPDDL) with structured representations that are
applicable in our planning scenario. As displayed
in Figure 3, we specify this pPDDL as 4 different
types of information embedded in a single image:
involved objects, tools, the action, and the goal.

Vi = E(Zk) (3)

E is a language model to generate pPDDL.
Visual Information Incorporation Last, we
feed the extracted visual information into the plan
generator to revise the textual step draft.

te = Gy(dk, vk) “)

S Experiment Settings

5.1 Baselines

To demonstrate the effectiveness of our model, we
compare with three types of strong multimodal
planning baselines based on state-of-the-art LLMs
and diffusion models:

* Vanilla LLLM baselines including GEMINI-
1.5-FLASH, GPT-40, and LLaVa with instruc-
tion finetuning using Mistral (M&L). The
backbone LLM generates textual plan in one
turn, and Stable Diffusion model generates the
visual plan according to parsed textual steps.

¢ SD: Stable Diffusion (Rombach et al., 2022)
generates one visual step at each turn given the
task goal G, and the backbone LLM describes
each visual step to form a textual plan.

* We also compare with a state-of-the-art mul-
timodal planning framework TIP (Lu et al.,
2024). Compared with the first type baseline,

it leverages cross-modality prompting with a
T2I-Bridge and an I12T-Bridge to further im-
prove the performance. For fair comparison,
we use TTP on top of the same backbone lan-
guage model choices as ours.

5.2 Evaluation Metrics

Textual Plan Evaluation We conventionally
choose BertScore (Zhang et al., 2020) and ROUGE
(R-1, R-2, R-L) (Lin, 2004) to automatically mea-
sure the semantic similarity between generated tex-
tual plans and reference textual plans. Considering
the open-ended attribute of the daily task planning
problem, automatic metrics do not suffice to eval-
uate plan quality. Therefore, we also include four
qualitative metrics: correctness, executability, co-
herence, and informativeness. We use Claude-3.5-
Sonnet as the LLM judge to score generated plans
with awareness of reference plans and have three
human annotators verify the LLM evaluation’s re-
liance. Please see Appendix B for more details.

Text-Image Evaluation Following the common
practice, we use CLIP score to examine the seman-
tic alignment between textual steps and their visual
counterparts. Like textual plan evaluation and vi-
sual plan evaluation, we use an LLM judge and
human annotators to perform evaluations as well.

Visual Plan Evaluation Evaluating visual plans
is nontrivial due to four cases through the plan:
scenario coherence/change when actions are con-
ducted in the same workplace/different workplaces;
object coherence/change when involved objects
are unchanged/changed in their states by some ac-
tions. Therefore, conventional image similarity
measurements like FID (Heusel et al., 2017) do not
fit into this context. To this end, we first convert
every image to a textual description of the back-
ground, salient objects, and the involved action (if
any). Then, we employ the perplexity score (PPL)
to check if consecutive descriptions are coherent
given the action corresponding to the later step.
In addition, we also conduct LLM evaluations and
human evaluations.

5.3 Implementation Details

Backbone LLLMs To examine the effectiveness
of our approach on both open-source and closed-
source LLMs, we choose 3 different models as the
backbone: MISTRAL-7B, GEMINI-1.5-FLASH, and
GPT-40. In all experiments, the backbone LL.M

23396

Backbone Automatic Evaluation LLM Evaluation
& Method

Dataset BertScoret R-17 R-21 R-Lt CLIPT PPL| Corr.tT Exec.t Coh.T Info.tT TIfT I-I7T
o GEMINI 0.835 263 7.00 247 1784 598 4.81 4.84 496 485 159 233
Gez"“ SD 0.807 207 520 197 8.59 4.85 1.17 0.74 0.85 233 1.04 129
Instructables TIP 0.812 222 500 205 18.66 6.11 3.15 3.10 3.54 357 173 215
OURS 0.842 306 920 282 2638 549 4.85 4.89 491 494 264 241
o GEMINI 0.847 26.1 730 244 1561 592 483 4.84 4.97 482 1.69 232
G"g‘m SD 0.806 144 200 137 9.03 4.94 0.79 0.70 0.81 194 128 1.13
wikiHow TIP 0.812 215 540 204 1458 6.01 3.32 3.47 3.51 3.82 158 231
OURS 0.850 290 9.0 270 2023 513 4.89 4.88 4.89 491 242 240
GPT 0.827 278 740 260 1232 575 4.90 4.87 4.97 483 153 247
G‘gT SD 0.805 194 430 184 965 509 133 092 079 204 110 124
Tip 0.840 29.8 820 280 1319 627 3.78 3.25 3.63 361 1.68 230

Instructables

27.14 5.21 4.93 4.90 4.93 4.93 247 276

11.29 5.83 4.84 4.86 4.97 4.87 1.56 235
10.37 5.17 1.19 0.80 0.84 2.12 1.08 1.13
11.81 5.97 3.50 3.71 3.88 3.68 173 221
24.62 5.30 4.88 491 4.90 4.94 2.58 2.68

1936 603 479 458 480 467 151 226
1121 531 083 0.75 0.71 196 106 125
2007 599 4.02 3.85 407 373 182 218
2639 547 481 474 466 474 258 270

OURS 0.849 337 103 315
GpT 0.850 300 900 281
GSP;T SD 0811 203 480 192
wikHow TIP 0.843 2099 870 279
OURS 0.856 332 105 309
Mé&L 0.829 308 910 288
Mg"“ SD 0.807 207 520 197
Instructables TP 0.842 305 950 293
OURS 0.848 325 101 301
M&L 0.836 300 900 28.1
Mg‘L SD 0.809 200 440 193
wikiHow TIP 0.839 301 890 278
OURS 0.851 317 100 296

15.82 6.19 4.75 4.62 4.77 4.60 1.53 229
10.19 5.20 0.78 0.77 0.80 2.03 1.10 1.19
15.47 6.16 3.84 3.68 3.92 3.70 1.84 2.07
19.60 5.27 4.83 4.75 4.71 4.78 245 253

Table 1: Main results. The best results are in bold, and the second best results are underlined. Textual Plan Evalua-
tion: BertScore, R-1, R-2, R-L, Corr.(correctness), Exec.(executability), Coh.(coherence), Info.(informativeness).
Text-Image Evaluation: CLIP, T-I (text-image). Visual Plan Evaluation: PPL, I-I (image-image).

works both as the draft generator and the text re-
finement editor. Since GEMINI-1.5-FLASH and
GPT-40 can also interpret images, we use them
as the visual information extractor in our frame-
work. For experiments with MISTRAL-7B back-
bone, we choose INSTRUCTBLIP-VICUNA-7B, a
general-purpose MLLM tuned on diverse tasks, to
extract visual information in the framework.

InstructPix2Pix Finetuning To make the im-
age generator better align with our context, we
fine-tune INSTRUCTPIX2PIX on a re-purposed
dataset collected from wikiHow (Yang et al., 2021).
The original dataset includes more than 60,000
tasks covering all categories in wikiHow. We
sample 20,000 of them in the scope of our se-
lected categories as shown in Figure 2. Further-
more, we transform each plan into a series of
{ix—1,tk, i1} triplets, where i,_; and i) are two
consecutive images, and t; the text corresponding
to the later image. The fine-tuning aims to pro-
mote INSTRUCTPIX2PIX’s capability to generate
coherent 75 given 71 and ¢ as input. We split the
re-purposed dataset by tasks in 0.9/0.05/0.05 for
training/validation/test. We follow most training
hyperparameters in the original work but change

the maximum number of epochs to 50. At the end
of training, we achieve training loss of 0.100 and
validation loss of 0.105.

6 Results and Analysis
6.1 Main Results

Table 1 shows automatic measurements and LLM
evaluation results with three different backbone
models. Despite value differences across three sets
of experiments, they exhibit the same trends in all
three aspects. OURS approach obtains consistently
higher scores on all automatic measurements of
textual plans. In LLM evaluation, the coherence of
textual plans generated by OURS approach ranks
second to the vanilla baselines GEMINI, GPT, and
M&L. The potential cause is that generating the
whole plan in one shot prevents semantic conflicts
and temporal inconsistency. It is also noteworthy
that all baselines and OURS approach obtain bet-
ter scores in terms of textual plan evaluation, but
obtain worse scores in terms of visual plan and
text-image pair evaluation on wikiHow tasks. The
observation is accountable provided different plan
lengths and language styles of two data sources as
we discussed in Section 3 and Appendix A.

23397

) { How to make oxtail soup?]

TIP

I e PO -
Step 1: Prepare the
Ingredients

Collect all necessary
ingredients including
oxtail, onions, carrots,

celery, and seasonings.

Orxer ota Souje

Step 1: A bowl of
brown broth placed
on a dark surface.

Step 1: Prepare the
Ingredients

Collect all necessary
ingredients including
oxtail, onions, carrots,
celery, and seasonings.

The image features

vegetables.

Step 1: Prepare the
Ingredients

Chop the onions,
carrots, and celery
into small, uniform
pieces. Trim any
excess fat from the
oxtail piece.

Step 2: Brown the
Oxtail

Heat oil in a pot. Add
the oxtail pieces.
Brown the oxtail on

all sides.

Step 2:

cooked vegetables and
beef.

Step 2: Brown the
Oxtail

Heat oil in a pot. Add
the oxtail pieces.
Brown the oxtail on
all sides.

oy 4
Step 2: Brown the
Oxtail Pieces

Heat oil in a pot until
it is hot. Add oxtail
pieces and brown
them on all sides.
Remove them from
the pot.

A pot of

Vegetables

Sauté chopped onions,
and celery.
Add beef broth and

carrots,

salt to the pot.

Step 3: The process
of making beef.

Step 3: Sauté the
Vegetables

Sauté chopped onions,
carrots, and celery. Add
beef broth and salt to
the pot. The image
showcases the process
of cooking a dish in a

Step : Sauté the

Vegetables

Add the chopped
onions, carrots, and
celery to the pot.

Sauté the vegetables
until they begin to
soften.

Step
Soup
Add chopped tomatoes, Taste the soup and
thyme, and oxtail to the adjust the seasoning.
pot. Bring the mixture Serve and enjoy your
to a boil, then let it soup.

simmer for 2-3 hours.

Step 3: Sauté the

NG
€]

3 A
4: Simmer the Step 5: Serve the

) X
Step 4: A pot of beef
stew placed on a
white countertop.

Step 4: Simmer the
Soup
Add vegetables and

oxtail to the pot.
Bring the mixture to a
boil, then let it

simmer for 2-3 hours.

Step 4: Simmer
Return oxtail pieces to
the pot. Add chopped
tomatoes, beef broth,
thyme, and salt.
Bring the mixture to a
boil, then allow it to
simmer for 2-3 hours.

Soup

Step 5: A pot of beef
soup.

4

Step 5: Serve the
Soup

Taste the soup and
adjust the seasoning.
Serve and enjoy your
soup. The image
shows a pot of soup
with a clear broth.

Step 5: Serve
After the oxtail

is
tender, taste the soup

and adjust the
seasoning as needed.
Serve hot and enjoy!

Figure 4: A qualitative comparison of plans output by all three baselines and our approach.

23398

6.2 Visual Coherence Analyses

From Table 1, OURS approach obtains consistent
improvement in terms of PPL score and I-I score
by LLM judge. Although SD baseline achieves the
best PPL score in all cases, the underlying reason
is that the image generation model is incapable of
actual “task planning”. When the planning instruc-
tions and task goal G are fed into it, it concentrates
on the project or action mentioned in G and out-
puts images about the topic. As shown in Figure
4, the visual plan generated by SD fails to show-
case expected object transitions in temporal logic.
Therefore, the translated textual “steps” are seman-
tically similar, further leading to lower PPL score.

For other baselines, we observe that they tend to
involve sharp transitions in the visual plan. Figure
4 intensively shows such failures in maintaining
visual coherence. For example, the visual plan gen-
erated by GPT presents a cooking course where
consecutive steps appear irrelevant. It is due to the
ignorance of its image generation module about the
last visual step. In contrast, the OURS approach ad-
dresses this challenge by predicting the next image
conditioned on both the textual instruction and the
last visual step. Consequently, the cooking course
is smooth with natural object transitions.

6.3 Text-Image Consistency Analyses

OURS approach outperforms all baselines in terms
of CLIP score and T-I score by LLM judge. OURS
approach ensures high consistency between two
modalities with two passes that first use the textual
draft to instruct image generation and then refine
the draft with extracted information from the gen-
erated image. As presented in Figure 4, the visual
step in TIP’s plan digresses from the task goal and
its corresponding textual instruction. It is hard to
observe “oxtail” from step 3 on. The cause is that
without awareness of the previous steps, the image
generation module is easily attracted by the most
mentioned objects in the text. On the other hand,
OURS approach counteracts the textual noise with
visual information from the last step.

6.4 Human Evaluation

To complement our automatic and LLM evalua-
tion, we conduct a human evaluation by recruiting
3 annotators. We randomly select 50 tasks as a val-
idation dataset. Its category distribution is consis-
tent with the overall dataset. We choose the strong
baseline GPT as one candidate and OURS with the
same backbone as the other. We show the plans
generated by these two models in random order,

OURS v.s. GPT-40
Eval. K

Win / Tie / Lose

Text 34% 53% 13% 0.521
Image 77% 15% 8% 0.604
T-1 81% 15% 4% 0.699

Table 2: Human evaluation results. The x scores demon-
strate moderate to substantial inter-annotator agreement.

and the annotators are asked to make comparative
annotations (win/tie/lose) between the generated
plans in three aspects: textual plan quality, visual
plan coherence, and text-image alignment. Please
check Appendix C.2 for more evaluation details.

Table 2 shows the human evaluation results. It
verifies the effectiveness of OURS approach in all 3
dimensions and is generally in line with automatic
and LLM evaluations. Compared with the baseline
GPT, OURS approach obtains slight improvements
in textual plan quality. Regarding visual plan co-
herence and text-image alignment, OURS approach
exhibits significant superiority.

6.5 Ablation Studies

To further examine the effects of our formatted
visual information design, we implement three ab-
lation studies with backbone GPT-40 including
(1) w DES which replaces the formatted visual
information vy, in our framework with general im-
age descriptions; (2) W IMG which directly feeds
the generated image ¢ and the draft dj into the
multimodal text refinement module and obtains
the output textual step t;; and (3) PPDDL-TO-NL
which conversely asks the draft generator to pro-
vide formatted draft as image generation guidance
and translates it into natural language afterward.
The experiment results are shown in Table 3.

Formatted v.s. General Visual Information
Aiming to study pPDDL’s necessity, we edit the
prompt in stage 3 to make the visual information
extractor describe 7y, in natural language (NL). The
results in Table 3 indicate a performance drop in-
duced by this modification. From its intermediate
outputs, we find that without a pre-defined format
restriction, the image-to-text model tends to gener-
ate lengthy, unstructured descriptions with much
attention on minutia. They introduce noise to text
refinement in stage 4. As our framework is autore-
gressive, the noise accumulates with time steps,
harming both the textual and visual plans.

23399

Automatic Evaluation

LLM Evaluation

Dataset Method
BertScoret R-17 R-21 R-L1T CLIPtT PPL] Corr.T Exec.tT Coh.t Info.t TIfT LI
w DES 0.841 0.295 0.083 0.279 14.71 5.92 4.63 4.17 4.34 4.58 176 239
Instructables w IMG 0.836 0.257 0.069 0.245 16.48 5.90 4.40 4.24 4.19 4.47 1.72 226
PPDDL-TO-NL 0.837 0.261 0.079 0.243 12.04 6.25 4.18 4.20 3.93 4.02 1.58 2.09
OURS 0.849 0.337 0.103 0315 27.14 5.21 4.93 4.90 4.93 4.93 247 276
w DES 0.847 0.309 0.092 0.290 12.04 5.89 4.60 4.28 4.40 4.84 1.85 234
wikiHow w IMG 0.849 0.298 0.090 0.278 11.97 5.76 4.36 4.31 4.48 4.77 1.79 2.18
pPPDDL-TO-NL 0.840 0.279 0.081 0.255 11.35 6.38 4.14 4.02 3.95 433 145 197
OURS 0.856 0.332 0.105 0309 14.62 5.30 4.88 491 4.90 4.94 2.58 2.68

Table 3: Ablation study using GPT-40 backbone.

Formatted v.s. Raw Visual Information Given
that GEMINI-1.5-FLASH and GPT-40 are infused
with visual knowledge, we seek to explore whether
these models can directly use raw image i, to re-
fine the draft d. In this case, stage 3 is skipped.
Table 3 demonstrates the failure of depending on
their image interpretation capability to refine tex-
tual plans. Without an external visual information
extractor, they are likely to roughly append their
image interpretations to the input drafts, leading to
worse plan coherence.

NL-to-pPDDL v.s. pPDDL-to-NL To determine
whether the pPDDL functions better than NL for
image generation, we exchange the order of gener-
ating texts in two formats. In this ablation study,
the draft generation module is prompted to gener-
ate a pPDDL step dj, in stage 1. In stage 3, we ask
the visual information extractor to describe 7; in
NL vg. In stage 4, the text refinement is still based
on both dj, and vy,.

From Table 3, OURS approach outperforms the
pPDDL-to-NL method. Inspecting the concrete
generation results, we observe that the pPDDL-
first design can not yield sufficient information for
the image generation module in stage 2. The highly
compact drafts make it difficult to generate visual
counterparts that align with textual instructions.
It further disables the visual information extrac-
tor from generating accurate image descriptions.
The refined textual steps are often accordingly am-
biguous. Therefore, the overall evaluation of this
method is poor in all aspects.

6.6 Sensitivity to Task Complexity

We observe that diverse task categories introduce
different task complexities. For instance, “Home
& Garden” tasks are moderately challenging, and
both textual and visual plans provide similar infor-
mation. “Hobbies & Craft” tasks are often complex
and require delicate actions. In this case, the vi-
sual plan is more informative than the textual plan.
“Education & Communications” tasks are relatively

1.10

Task Complexity
= High
1.05- ™ Medium
Low

=)
S)

Relative Value
©

PPL TI
Vision-related Metrics

Figure 5: Visual step coherence and text-image align-
ment across different task complexity levels. All val-
ues are normalized relative to the results from medium-
complexity tasks. For PPL score, the lower, the better.

abstract. The textual plan is better for such tasks
since the visual plan always depicts concrete ac-
tions or scenarios. To study the effectiveness of
our framework over varying task complexities, we
sample 100 tasks and manually annotate them with
complexity high, medium, or low.

Figure 5 demonstrates our approach yields bet-
ter visual plans when challenged with medium-
complexity tasks. Involved actions in such plans
are often concrete while not elaborate, enabling
the image generation model to visualize them pre-
cisely. However, it struggles with high- and low-
complexity tasks. Depicting abstract or delicate
actions still exceeds the capacity of current models.

7 Conclusion

Our work studies an underexplored problem of text-
image plan generation. We identify two main chal-
lenges: ensuring visual coherence and text-image
alignment, and propose a novel framework to ad-
dress them accordingly. For evaluation, we collect
a dataset of daily tasks covering diverse domains
and task complexities. Substantial experiment re-
sults demonstrate the effectiveness of our approach
on a range of various backbone models, especially
in terms of the two challenges we aim to address.

23400

Limitations

While our approach exhibits promising results in
improving text-image plan generation, it is note-
worthy that our work has several limitations.

First, given that LLMs are trained on vast
amounts of data, data leakage is inevitable. This
inherent characteristic potentially contributes to
their strong performance in textual plan generation,
as similar patterns may exist in their training data.
Second, the quality of visual plans generated by
fine-tuned InstructPix2Pix suggests room for im-
provement. Although it is capable of maintaining
visual coherence when the scenario and object have
minor transitions, we still observe unexpected inco-
herence when the textual instructions indicate sig-
nificant workspace change. Last, the measurement
of visual coherence through text-based metrics is
indirect. The textual descriptions converted from
images may not fully capture the nuanced visual re-
lationships and coherence patterns that exist in the
original images, potentially affecting the validity
of our evaluation.

These limitations shed light on potential direc-
tions for future work, including the exploration of
image editing models that better fit into the plan-
ning context, the development of visual coherence
metrics that function in the image space, etc.

Ethics Statement

Instructables and wikiHow are two public online
platforms licensed under CC BY-NC-SA 3.0 and
CC BY-NC-SA 4.0, respectively. Our data collec-
tion process complies with their licensing terms,
as both licenses permit academic use with proper
attribution. Our work primarily focuses on generat-
ing text-image plans for daily tasks. Therefore, we
exclude potentially inappropriate content in the pro-
cess of data collection and manually inspect data
quality. To prevent privacy leakage, we anonymize
any personal information of the plan authors. Our
human evaluation is conducted by three graduate
students who are co-authors of this paper. They par-
ticipate in the evaluation process as part of their re-
search contribution and are acknowledged through
co-authorship.

Last, our approach relies on LLMs, which may
produce inconsistent or biased results. While de-
signed for daily task planning, this approach could
potentially be misused for malicious intents. Future
work should investigate these risks and develop ad-
ditional safeguards.

Acknowledgments

This work was supported by NSF CAREER Award
11S-2338418.

References

Diaeddin Alarnaouti, George Baryannis, and Mauro
Vallati. 2023. Reformulation techniques for auto-
mated planning: A systematic review. Preprint,
arXiv:2301.10079.

Daman Arora and Subbarao Kambhampati. 2023.
Learning and leveraging verifiers to improve plan-
ning capabilities of pre-trained language models.
Preprint, arXiv:2305.17077.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros.
2023. Instructpix2pix: Learning to follow image
editing instructions. Preprint, arXiv:2211.09800.

M. Fox and D. Long. 2003. Pddl2.1: An extension to
pddl for expressing temporal planning domains. Jour-
nal of Artificial Intelligence Research, 20:61-124.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2023.
Large language models empowered agent-based mod-
eling and simulation: A survey and perspectives.
Preprint, arXiv:2312.11970.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to a
local nash equilibrium. Advances in neural informa-
tion processing systems, 30.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Preprint,
arXiv:2006.11239.

J. Hoffmann and B. Nebel. 2001. The ff planning
system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research,
14:253-302.

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song,
Wai Lam, and Yue Zhang. 2024. Chain-of-symbol
prompting elicits planning in large langauge models.
Preprint, arXiv:2305.10276.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. Preprint, arXiv:2201.07207.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

23401

https://arxiv.org/abs/2301.10079
https://arxiv.org/abs/2301.10079
https://arxiv.org/abs/2305.17077
https://arxiv.org/abs/2305.17077
https://arxiv.org/abs/2211.09800
https://arxiv.org/abs/2211.09800
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://arxiv.org/abs/2312.11970
https://arxiv.org/abs/2312.11970
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://doi.org/10.1613/jair.855
https://doi.org/10.1613/jair.855
https://doi.org/10.1613/jair.855
https://arxiv.org/abs/2305.10276
https://arxiv.org/abs/2305.10276
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t
plan, but can help planning in llm-modulo frame-
works. Preprint, arXiv:2402.01817.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Hui-
wen Chang, Tali Dekel, Inbar Mosseri, and Michal
Irani. 2023. Imagic: Text-based real image editing
with diffusion models. Preprint, arXiv:2210.09276.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ithow: A large scale text summarization dataset.
Preprint, arXiv:1810.09305.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+p: Empowering large language mod-
els with optimal planning proficiency. Preprint,
arXiv:2304.11477.

Yujie Lu, Pan Lu, Zhiyu Chen, Wanrong Zhu, Xin Eric
Wang, and William Yang Wang. 2024. Multimodal
procedural planning via dual text-image prompting.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 10931-10954, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu
Lee, Michael Katz, and Shirin Sohrabi. 2024. Large
language models as planning domain generators.
Preprint, arXiv:2405.06650.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-shot text-to-image gener-
ation. Preprint, arXiv:2102.12092.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. Preprint, arXiv:2112.10752.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B
Tenenbaum, Leslie Kaelbling, and Michael Katz.
2024. Generalized planning in pddl domains with
pretrained large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 20256-20264.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M. Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. Preprint,
arXiv:2212.04088.

Tomas Soucek, Dima Damen, Michael Wray, Ivan
Laptev, and Josef Sivic. 2024. Genhowto: Learning
to generate actions and state transformations from in-
structional videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 6561-6571.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023a. Planbench: An extensible benchmark for
evaluating large language models on planning and
reasoning about change. Advances in Neural Infor-
mation Processing Systems, 36:38975-38987.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023b. On the
planning abilities of large language models-a criti-
cal investigation. Advances in Neural Information
Processing Systems, 36:75993-76005.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for 1lms on plan-
ning and reasoning about change). In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Qingyun Wang, Manling Li, Hou Pong Chan, Lifu
Huang, Julia Hockenmaier, Girish Chowdhary, and
Heng Ji. 2023. Multimedia generative script learn-
ing for task planning. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
986-1008, Toronto, Canada. Association for Compu-
tational Linguistics.

Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi,
Marjorie Freedman, Ralph Weischedel, and Nanyun
Peng. 2022. Understanding multimodal procedural
knowledge by sequencing multimodal instructional
manuals. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4525-4542, Dublin,
Ireland. Association for Computational Linguistics.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Nazli
Ikizler-Cinbis. 2018. Recipeqa: A challenge dataset
for multimodal comprehension of cooking recipes.
Preprint, arXiv:1809.00812.

Yue Yang, Artemis Panagopoulou, Qing Lyu, Li Zhang,
Mark Yatskar, and Chris Callison-Burch. 2021. Vi-
sual goal-step inference using wikihow. Preprint,
arXiv:2104.05845.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023.
Adding conditional control to text-to-image diffusion
models. Preprint, arXiv:2302.05543.

Ruijun Zhang, Xianda Guo, Wenzhao Zheng, Chenming
Zhang, Kurt Keutzer, and Long Chen. 2024. Instruct

23402

https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2210.09276
https://arxiv.org/abs/2210.09276
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1810.09305
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2304.11477
https://arxiv.org/abs/2304.11477
https://doi.org/10.18653/v1/2024.findings-emnlp.641
https://doi.org/10.18653/v1/2024.findings-emnlp.641
https://arxiv.org/abs/2405.06650
https://arxiv.org/abs/2405.06650
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2212.04088
https://arxiv.org/abs/2212.04088
https://doi.org/10.18653/v1/2023.findings-acl.63
https://doi.org/10.18653/v1/2023.findings-acl.63
https://doi.org/10.18653/v1/2022.acl-long.310
https://doi.org/10.18653/v1/2022.acl-long.310
https://doi.org/10.18653/v1/2022.acl-long.310
https://arxiv.org/abs/1809.00812
https://arxiv.org/abs/1809.00812
https://arxiv.org/abs/2104.05845
https://arxiv.org/abs/2104.05845
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2406.07296

large language models to drive like humans. Preprint,
arXiv:2406.07296.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023.
Large language models as commonsense knowl-

edge for large-scale task planning. Preprint,
arXiv:2305.14078.
A Dataset
A.1 Data Sources
| Instructables wikiHow
of tasks 100 1,000
of task categories 1 10
Avg. # of steps per task 7.20 33.30
Avg. # of words per step 9.76 45.84

Table 4: Statistics of data collected from two sources.

To provide more insight into the two sources of
our dataset, we further present both quantitative
and qualitative comparisons between their plans.
As discussed in Section 3, they exhibit differences
in plan lengths and language styles. As Table 4 re-
ports, the average length of wikiHow plans exceeds
Instructable plans in both the number of steps per
plan and the number of words per step.

Figure 6 demonstrates an intuitive distinction
between two data sources. The left-hand side plan
from Instructables is brief in textual descriptions
while the right-hand side plan from wikiHow is
elaborate with details including execution tips and
potential outcomes. The accompanying images are
also different in style.

A.2 Task Complexity Classification

Our task complexity classification is based on the
relative informativeness of textual versus visual
planning modalities, reflecting the inherent chal-
lenges of different procedural domains.

High complexity tasks This type of task typ-
ically involves intricate procedures that require
delicate actions, precise object transitions, or spa-
tial reasoning. For such tasks, visual plans sig-
nificantly outperform textual descriptions in con-
veying critical procedural information. Figure 7
shows a task“make an origami pinwheel”, where
visual demonstration of folding sequences and spa-
tial relationships is essential for successful exe-

cution. In this case, OURS approach faces con-
straints imposed by current text-image-to-image
model capabilities. Despite the fine-tuning, these
models struggle to accurately depict subtle hand
movements, precise folding sequences, and fine-
grained spatial transformations essential for such a
complex crafting task.

Medium complexity tasks This type of task of-
ten involves moderately challenging procedures
where textual and visual plans provide comparable
information. Figure 8 shows a task “make simple
muffins with pancake mix”, where both modali-
ties effectively convey the sequential steps and key
procedural elements. OURS framework achieves
optimal performance in such tasks where the pro-
cedural knowledge does not demand extreme pre-
cision or highly abstract concepts.

Low complexity tasks This type of task encom-
passes relatively abstract or conceptual procedures
where textual plans are more informative than vi-
sual representations. Figure 9 shows a task “ask
about application status following an interview”,
where the procedural knowledge is primarily com-
municative and contextual rather than visually
demonstrable. In this case, the underlying textual
instructions are inherently abstract and focus on
communicative strategies, timing, and contextual
considerations. Therefore, the visual plan gener-
ated by OURS approach becomes less descriptive
and struggles to represent non-concrete actions, re-
sulting in generic and superficial representations.

B Experiment Settings
B.1 Prompt Design

In this section, we present our prompt design as a
reference. Table 5 shows the prompts we use in
all four stages of our framework with backbone
Gemini-1.5-flash. We make only trivial adjust-
ments for the other two backbone models and omit
them for brevity and clarity.

B.2 Computational Costs

Our framework incurs computational costs from
two primary sources: LLM inference during test-
ing and one-time InstructPix2Pix fine-tuning. Dur-
ing inference, each task requires approximately
21 LLM calls distributed across plan drafting (~7
calls), visual information extraction (~7 calls),
and iterative plan refinement (~7 calls), plus in-
ference from our fine-tuned InstructPix2Pix model

23403

https://arxiv.org/abs/2406.07296
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2305.14078
https://arxiv.org/abs/2305.14078

(H;_) { How to make cranberry walnut bread pudding?]

ﬂ User Plan from Instructables:

Step 1: Melt and Cut

Melt your butter in the microwave
Cube your bread slices

preheat oven to 350 degrees F

=
~:a
Step 2: Mix
Poor the coconut milk into a large bowl
Add the apple sauce, sugar and vanilla paste,
mix well
CTN

Step 3: Stir in Butter
Stir in the melted butter

[

. Step 4: Coat the Cubes
Add all the bread cubes to the milk mixture, stir
| to coat evenly

f Step 5: Prepare Baking Dish
~ Pour the coated bread cubes into your baking
dish

Step 6: Bake

Bake for 45 minutes, until the top in golden
N brown

8 It's best when served warm and topped with ice
¥ cream

ﬂ Expert Plan from wikiHow:

Step 1: Cut off a portion of the rhizome with 2-3
growth buds wusing a gardening knife.
Cut off a portion of rhizome with 2-3 growth buds using a
gardening knife. Carefully remove the dirt away from the

_ root system of your bamboo plant. Find a portion of the

rhizome that has 2 or 3 growth buds, or the areas where

_ stalks grow from. You may have to trim the stalks down to

collect the rhizome. Use a sharp knife to remove the portion.

Step 2: Lay the rhizome horizontally in a pot with

<+ the buds facing up.

Have a layer of potting soil in the pot. Place the side where
the stalks of bamboo grow face-up. If you left some of the
stalk attached to the rhizome, keep those ends out of the soil.

Step 3: Cover the rhizome with 3 inches (7.6 cm) of
. potting soil.

Bury the rhizome so it can start to develop and grow. Press
on the soil firmly so it has complete contact with the
rhizome.

Step 4: Water the soil with a watering can.

The soil should be deeply moist, but there should not be any
muddy water on the surface. Stick your finger into the soil
down to the second knuckle to make sure that the soil is
damp.

Step 5: Keep the pots in the shade for 4-6 weeks.

Keep the pot out of direct sunlight. The best place to keep it
is next to a shady exterior wall or under the cover of a large
tree. It will take 4 to 6 weeks before your bamboo sprouts
and grows through the soil again.

Figure 6: Two example plans sampled from Instructables data (left) and wikiHow data (right) respectively.

23404

QE—) { How to make an origami pinwheel?]

ﬂ Expert Plan from wikiHow:
N Step 1: Find a square piece of
I i paper
‘ ﬂ If it's origami paper, start with the
white side up. Fold it in half diagonally
both ways. Then, unfold.
" Step 2: Fold all four corners to the
~ center, in the same manner as

~ making a fortune teller
This is called a blintz fold.

Step 1: Gather Materials
Collect all the necessary materials for
making an origami pinwheel. You will need
a square piece of origami paper, a pencil, a
ruler, a pair of scissors, a pushpin, and a
small wooden stick or straw.

| Step 3: Unfold

Step 2: Create Diagonal Folds

Take your square piece of origami paper
and fold it in half diagonally to form a
triangle. Make sure to crease the fold well.
Then, unfold the paper and fold it
diagonally in the opposite direction to form
another triangle. Crease this fold well too.

' Step 4: Fold it in half
This is called a book or greeting card
fold. Then, unfold.

. Step 5: Fold each side to the
~ center so that it looks like
opening French doors

This is called a cupboard fold.
Do not unfold this.

~ Step 6: Look at the diagonal

1
1
1
1
1
[}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
: Step 3: Cut Along the Diagonal Folds
1
1
1

_ creases at the very top H
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1

Using a pair of scissors, carefully cut along
each of the diagonal folds starting from the
corners of the paper towards the center.
Stop cutting about 1 inch (2.5 cm) away
from the center point where the diagonal
folds intersect.

Then pull them down to the middle so that the

Pull them up and pinch them so they stick up.
g shape appears as in the image.

- Step 7: Turn the origami around
| so that the unfolded end is facing
b2 away from you and the folded end

,(\\ is facing you
Repeat step six on the unfolded side.

' Step 8: Take the left flap on the
; op and fold it up, as shown in the
image

Step 4: Fold and Secure the Flaps
Take one corner of each triangular flap and
fold it towards the center of the paper.
Make sure to fold the same corner of each
flap (e.g., always fold the right corner).
Once all four corners are folded towards
the center, use a pushpin to secure them in
place by piercing through all the layers at
the center point.

g | Step 9: On the bottom portion,
iy'“/ f ' fold the right flap down
(- It's finished!

Step 5: Attach the Pinwheel to the
Stick

Remove the pushpin from the center of the
pinwheel while keeping the folded flaps in
place. Then, use it to attach the pinwheel to
the wooden stick or straw. Make sure to
leave a small gap between the pinwheel and
the stick so that the pinwheel can spin
freely. Once attached, your origami
pinwheel is complete and ready to spin!

) ‘ Step 10: Make use of your origami
\ ./‘ inwheel
— s |

Figure 7: Expert plan from wikiHow vs. plan generated by OURS approach for a high-complexity task How to make
an origami pinwheel.

23405

\?;D { How to make simple muffins with pancake mix?]

Step 1: Preheat the oven to
180°C/350°F

Prepare a muffin pan with
nonstick spray or cupcake
cases.

JZ Step 2: Add the pancake
. mix to a mixing bowl

“ Pour in the milk, eggs and
maple syrup. Mix to combine.

Step 3: Transfer the batter
to the muffin pan

Using a spoon or scoop, fill the
muffin holes about two thirds
each.

Step 4: Place in the oven
Bake for 13 to 15 minutes. The
muffins are ready when a
toothpick inserted comes out
clean.

* Step 1: Gather Ingredients and Supplies
Description: You will need pancake mix, milk,
eggs, vegetable oil, and any optional add-ins
like blueberries or chocolate chips.
Additionally, ensure you have a mixing bowl, a
)’ whisk or spoon for mixing, a muffin tin, and
muffin liners or non-stick spray.
Step 2: Preheat the Oven
Preheat your oven to 375°F (190°C) to ensure

i| Step 3: Prepare the Muffin Tin

Line the muffin tin with muffin liners or lightly
spray it with non-stick spray to prevent the
' muffins from sticking. Ensure each cup is
“N evenly coated to make it easier to remove the
muffins once they are baked.

Step 4: Mix the Ingredients

In a mixing bowl, combine 2 cups of pancake
mix, 1 cup of milk, 2 eggs, and 1/4 cup of
vegetable oil. Stir until the batter is smooth
and well combined. If you are using any
optional add-ins like blueberries or chocolate
chips, gently fold them into the batter.

Step 5: Fill the Muffin Tin

8 Spoon the batter into the prepared muffin tin,
. filling each cup about 2/3 full to allow room
| for the mulffins to rise. Make sure to distribute
the batter evenly to ensure uniform baking.

WY Place the muffin tin in the preheated oven and
bake for 15-20 minutes. Once done, allow the
muffins to cool in the tin for a few minutes
before transferring them to a wire rack to cool
. completely.

Step 7: Cool the Muffins
Remove the muffin tin from the oven and let
the muffins cool in the tin for about 5 minutes.
() (% % Enjoy your muffins once they have cooled
down to a comfortable temperature.

Figure 8: Expert plan from Instructables vs. plan generated by OURS approach for a medium-complexity task How

to make simple muffins with pancake mix.

23406

\?;D { How to ask about application status following an interview?]

ﬂ Expert Plan from wikiHow:

Hu

| many interviews you've had. If you've

| go. If you just interviewed once, a

Step 1: Follow the interviewer’s
provided timeline before placing a
call

Did you ask the interviewer to give you
a specific timeline of when they’d get
back to you? If so, let that entire time
period pass before attempting to call
them. If you don’t have a set timeline to
follow, wait at least 1 week before
touching base. Don’t call an interviewer
earlier than this. If you call really early
on, they might not have any updates—
plus, you'll likely come off as pushy.

Step 2: Think about what you
want to say before calling

Jot down a list of topics you'd like to
discuss during your call so you aren’t
fumbling for things to chat about.
Your script might include: a polite
greeting; a brief intro; your main
inquiry; any questions. Leave a
voicemail where you mention your
name, the position you applied for,
and when you interviewed...

Step 3: Politely request an
update

How you phrase your question can
depend on different factors, like how

passed the final stage of interviews, a
question like “Have you decided on
[this position]?” can be a good way to

more vague question like “Is my
application still being considered for
[this position]?” could be a better
option...

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
il
H |

1

1

1

1

1

Step 4: Highlight your :

qualifications for the position |

A phone call can be a good opportunity 1

to give a short run-down of why you're :

a good option for the position in |

question. You might highlight: Your !

experiences that directly apply to the :

company/job you applied for What 1

you can offer to the company Why this :

opportunity is important to you |
1
Step 5: Thank them for their time
The interviewer is taking time out of'

their day to follow-up and chat w1th
you, so it’s important to thank them |
for their continued time and :
consideration.

& plan generated by Our approach:

Step 1: Gather Necessary
Information

Ensure you have all relevant details at
hand, including the interviewer's name,
the position you applied for, the date of
the interview, and the contact number.
Additionally, be prepared to describe the
tool, object, action, and goal related to
your application process. This
preparation will help you make a
professional and informed inquiry.

Step 2: Choose an Appropriate
Time to Call

Select a time during regular business
hours, ideally mid-morning or mid-
afternoon, to ensure the interviewer is
likely to be available and not too busy.
Avoid calling during lunch hours or late
in the day. If you are unsure about the
best time, consider asking the
interviewer at the end of your interview
when they would prefer to be contacted
for follow-up inquiries.

Step 3: Prepare a Polite and
Professional Script

Draft a brief and courteous script to
guide your conversation. This will help
you stay focused and ensure you cover all
necessary points. Having a script will
help you communicate clearly and
professionally.

Step 4: Make the Call

Dial the interviewer's contact number
during the chosen appropriate time.
Ensure you are in a quiet environment to

; avoid any background noise. When the

interviewer answers, use your prepared
script to inquire about the status of your
application. Be polite, concise, and
professional throughout the
conversation. If the interviewer asks for
any additional information or
clarification, be ready to provide it
promptly and accurately.

Figure 9: Expert plan from wikiHow vs. plan generated by OURS approach for a low-complexity task How fo ask
about application status following an interview.

23407

Stage Prompt

You are a helpful planning assistant. Let’s break down how to achieve the following goal step by step:

GOAL: G

PREVIOUS STEPS: ¢1.. k-1
Draft Generation

Please format your response as:

STEP [k]: [Step Title] [step descriptions]

What is the next specific, actionable step toward achieving this goal?

After providing the step, indicate if the goal is achieved [YES/NO].

Image Generation

A clear, detailed photograph showing dy, high quality, realistic with natural lighting

The provided image shows a step to G. Please analyze it and extract the following information:
1. Objects: List salient objects in the image

2. Tools: Identify any tools, equipment, or instruments being used

3. Actions: Describe the specific actions being performed

Visual Info
Extraction Please format your response as:
OBJECTS: [object list]
TOOLS: [tool list]

ACTIONS: [action list]

GOAL: [state the apparent goal]

4. Goal: Based on the visible actions and context, what appears to be the intended goal?

You are a helpful planning assistant. Let’s improve a step to G with visual information.

Original Step: dj
Visual Information Extracted: vy

Text Refinement The improved step should:

1. Be more specific about the objects and tools involved

2. Provide clearer action descriptions

3. Maintain alignment with the overall goal
Please format your response as: [improved step descriptions]

Table 5: Prompt templates we use in experiments with backbone model Gemini-1.5-flash.

for generating images at each planning step. The
InstructPix2Pix fine-tuning represents a one-time
computational investment, requiring 4 hours on
4x NVIDIA A100 80GB GPUs using 7,500 text-
image-to-image pairs.

C Evaluation

Our comprehensive evaluation strategy employs
three complementary assessment dimensions. This
multi-faceted approach provides a complete picture
of our framework’s performance, addressing the in-
herent limitations of individual evaluation methods
while leveraging their respective strengths. The
convergent evidence across all three dimensions
strengthens the validity of our findings.

C.1 LLM Evaluation

Table 6 presents prompts we use for LLM evalua-
tion. Regarding textual plan evaluation, we define
four aspects with inspirations from Huang et al.
(2022)’s metrics design: correctness, executability,
coherence, and informativeness. Their definitions
are shown in Table 6. For visual plan evaluation,
the evaluator Claude-3.5-Sonnet receives two im-
ages (ix_1,1) in addition to the textual prompt.
We prompt the MLLM to measure if i; logically

follows ij_1 considering the potential effect ren-
dered by the step description ¢;. For text-image
alignment evaluation, the evaluator receives an im-
age 1. We prompt the MLLM to measure if 7y is
semantically aligned with ;. The grading criteria
are elaborated in Table 6.

C.2 Human Evaluation

To facilitate human evaluation, we design an anno-
tation tool as shown in Figure 10. In addition to
two candidate plans, we also provide the reference
article from the original data source (Instructables
and wikiHow) in case annotators are unfamiliar
with the task field. For every evaluation aspect, we
provide three options: Candidate 1 better, Tie, and
Candidate 2 better. To align with LLM evaluation,
we list potential reasons annotators do not choose
“Tie” for “Textual Quality”. For example, if the
annotator chooses “Candidate 1 better” when they
evaluate textual plans, and they find its superiority
over Candidate 2 is mainly in “coherence” and “in-
formativeness”, they are required to tick these two
reasons. Furthermore, there is a text field for anno-
tators to mark down their observations regarding
any plan quality issues.

23408

Evaluation

Prompt

Textual Plan

You are a helpful evaluation assistant. Please assess the following plan to G against the provided reference plan using these four criteria:

1. Correctness: Does the plan contain all necessary steps that align with the reference? This involves checking if the steps are complete.

2. Executability: How practical and actionable are the steps? This involves checking if they can be implemented in a real-world setting.

3. Coherence: Are all steps logically connected to each other? This involves checking if there are temporal conflicts or redundancy.

4. Informativeness: Does the plan provide sufficient detail? This involves checking if it provides enough information to understand the plan.
Grading scale: 1-Poor 2-Fair 3-Good 4-Very Good 5-Excellent

Reference Plan: [reference plan R]

Plan to Evaluate: [evaluated plan P]

Please provide a numeric score and a brief justification for each criterion.

Visual Plan

You are a helpful evaluation assistant. Please assess how well Image 2 continues from Image 1 considering the provided step description.
Step description: ¢

Grading Scale:

1-Poor: images appear unrelated or contradictory

2-Fair: slight logical connection but major inconsistencies

3-Good: clear connection but some inconsistencies

4-Very good: strong connection with minor inconsistencies

5-Excellent: perfect logical progression

Please provide a numeric score and a brief justification.

Text-Image Alignment

You are a helpful evaluation assistant. Please evaluate how well the provided image aligns with the given step description.
Step description: t

Grading Scale:

1-Poor: image appears unrelated to the step

2-Fair: image partially reflects the step but has major mismatches

3-Good: image mostly reflects the step with some mismatches

4-Very good-mage clearly reflects the step with minor mismatches

5-Excellent: image perfectly represents the step

Please provide a numeric score and a brief justification.

Table 6: Prompt templates we use for LLM evaluation.

How to make crispy air fryer onion rings

Previous Task ~ Task 0 of 49 Next Task Export CSV

Comment
Textual Quality Reason
)
Cand 1 better correctness
Tie .
Cand 2 better exeCUtab”"y
e coherence
informativeness
Text-Image Alignment others
Select... A
Reference Candidate 1 Candidate 2
Step 1: Egg Wash Step 1: Gather Ingredients and Equipment 1
Start by making the egg wash. Whisk 3 eggs in a small Step Description: Collect all the necessary ingredients **Gather Ingredients and Equipment**: Collect all
bowl along with 1 tbsp of milk or water. The milk or and equipment for making crispy air fryer onion rings. necessary ingredients: large onions, flour, eggs,
water will help thin out the eggwash just a little bit. This includes onions, flour, eggs, breadcrumbs, breadcrumbs, salt, pepper, and any additional
I —_— Ty seasoning (such as salt, pepper, and paprika), and seasonings you prefer. Ensure you have an air fryer,
) cooking spray. Ensure you have an air fryer, mixing mixing bowls, a whisk, and a baking sheet. Preheat
bowls, a knife, a cutting board, and measuring your air fryer to 375°F (190°C).

cups/spoons ready for use. Additionally, make sure to
have a whisk for beating the eggs and a shallow dish
for dredging the onion rings in the flour mixture.

#

Figure 10: User interface of our designed annotation tool.

23409

