Diversification Catalyzes
Language Models’ Instruction Generalization To Unseen Semantics

Dylan Zhang

shizhuo2@illinois.edu

Abstract

Instruction-tuned language models excel in knowl-
edge, reasoning, and instruction-following. While
knowledge and reasoning are well-explored, the
factors enabling generalization to unseen instruc-
tions remains underexplored due to challenges
in isolating instruction-following dynamics.

In this work, we model instruction-following as
a computational process and design controlled
experiments inspired by the Turing-complete
Markov algorithm to disentangle its dynamics.
Our findings reveal that the ability to generalize
to instructions with unseen semantics emerges
only when training data is strategically diversified
across rich semantics. This finding gives us the
hammer that breaks down the wall separating
training instructions from unseen ones encoun-
tered in the wild. For specialist models, a balanced
mix of in-domain and diverse out-of-domain tasks
enhances performance more effectively than sim-
ply increasing in-domain data. For generalist mod-
els, domain diversification consistently outweighs
the costs of reduced task-specific data, regardless
of data budgets. Furthermore, we show that
proper diversification with a lower data budget can
outperform simply scaling up data volume. These
findings highlight strategic data diversification
as key to optimizing instruction-following and im-
proving model performance across applications.

1 Introduction

The rapid advancements in large language models
(LLMs) have revolutionized a wide range of tasks,
including language comprehension (Wang et al.,
2020), generation (Brown et al., 2020), knowledge-
based question answering (Hendrycks et al., 2021a),
and solving complex reasoning problems in fields
such as mathematics (Cobbe et al., 2021; Hendrycks
et al., 2021b) and programming (Chen et al., 2021a;
Austin et al., 2021; Chen et al., 2021b; Li et al., 2022).
Instruction-tuning plays an important role in making
language models performing these tasks.
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The current research landscape regarding instruc-
tion tuning data has yielded varied and sometimes
contradictory findings on composition (Zhou
et al., 2023a) and scaling (Zeng et al., 2024; Zhang
et al., 2024a) of instruction tuning data. These
inconsistencies suggest that the best practices
to craft an instruction tuning dataset is not fully
understood (Dong et al., 2024; Zhang et al., 2024b).
A key limitation is the absence of controlled studies
that systematically examine different aspects of LLM
capabilities, where the effects of instruction tuning
data may follow different patterns. While reasoning
(multi-step deduction, like math problem-solving)
and knowledge retrieval (accessing information
stored in the parameters) have been extensively
studied, instruction following—essential for practical
interaction with users (Zhou et al., 2023b; Liu et al.,
2024a)—remains poorly understood. The role of
instruction-tuning (Ouyang et al., 2022; Taori et al.,
2023; Wei et al., 2022; Sanh et al.,, 2022a) data
composition and diversity in enabling LLMs to
generalize to unseen tasks is particularly unclear.

Our work addresses this gap by focusing explicitly
on instruction following capabilities of LLMs. To
address this gap, our work presents a systematic
investigation into instruction-following capabilities,
leveraging controlled experiments inspired by
the Turing-complete Markov algorithm (Markov,
1954).By isolating instruction-following, we reveal
that diverse cross-domain instruction data is decisive
for enabling LL.Ms to generalize effectively to unseen
semantic tasks. Our findings reveal that robust
generalization emerges only when instructions span
diverse, cross-domain semantics. Limited domain
diversification, in contrast, fails to achieve this goal,
underscoring the necessity of training strategies that
prioritize broader instruction diversity. Our findings
reveal that diversification confined to limited domains
does not guarantee robust generalization. In contrast,
cross-domain diversification significantly enhances
the model’s adaptability to new instructions, highlight-
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Figure 1: A mindmap of our study and key takeaways.

ing the importance of a more diverse training strategy.

Our research offers actionable insights into dataset
collation for both specialist and generalist LLMs.
For specialist models (e.g., code language models),
expanding data diversity beyond core domains
enhances instruction-following performance, but
requires balancing specialization and diversification.
For generalist models, cross-domain data mixtures im-
prove generalization to unseen instruction semantics.
We identify two key principles: (1) increasing dataset
diversity, even without adding volume, outperforms
reliance on established datasets, and (2) diversifying
instruction semantics is more effective than scaling
within the same distribution.

Our study establishes that instruction-following
capabilities in LLMs hinge on strategic cross-domain
diversification, suggesting best practices for crafting
instruction-tuning datasets to unlock robust and
adaptable generalization.

2 Abstracting Instruction-Following
As String-Replacement

2.1 Markov-Step:
Conditional Sub-string Replacement Task

We aim to first simplify instruction-following to its
core components, allowing us to systematically study
the role of data diversity in isolation.

We model such tasks as string-replacement
operations, a foundational concept in theoretical
computer science. Our string replacement set-up
underpins Markov Algorithms (Markov, 1954), a
Turing-complete framework where sequences are iter-
atively transformed using ordered rewrite rules. These
algorithms follow a structured, rule-driven process:
the first applicable rule replaces the leftmost matching
sub-string, and the process continues until no further
matches are found. This stepwise transformation
reflects the sequential, instruction-driven behavior

that we aim to study. Appendix A includes illustrative
examples demonstrating Markov algorithms.

In our study, we focus on a simplified form of
this process, which we call Markov-Step. The
replacement rule R—a pair like aa — bac—is applied
to an input string ¢ (e.g., caaba), yielding an output
string 7 (e.g., cbacba). The rule is applied to the
leftmost occurrence of a match, and if no match
exists, the original input remains unchanged.

This task, though simple, serves as a powerful
proxy for instruction tuning by teaching models to
handle structured, rule-based transformations. A
generalization of this task will be introduced in Sec-
tion 3, where x and y represent abstract patterns (e.g.,
x=a? matching all squared terms). This task is a step
towards our ultimate goal of studying effects of data
on pre-trained models’ ability to follow instructions.

2.2 Experiment Set-Up

We start from a very simple scenario where the
model applies a rule ¢ : * — y to an input string
&, replacing the leftmost occurrence of = with y,
if x C & (x is present in &). If z is not present,
the input remains unchanged. This subsumes the
essence of instruction-following for models: learn
from input-instruction-output tuples, given a pair of
input and instruction, whether and how to correctly
perform the desired transformation.

We train decoder-only transformer models from
scratch for the controlled experiments in this section,
avoiding biases from pre-training. The training
dataset consists of S x I sequences, where S is
the number of input strings and I the number of
replacement rules. Models are tested on 10° unseen
examples to assess generalization. Full training
details are in Appendix B.
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Figure 2: Generalization versus the number of instructions
during training.

2.3 Results

Instruction Diversity Is Decisive To Generalization
Figure 2a presents the generalization accuracy for
models trained on a fixed budget of I x S = 106
examples with varying I and S where all sequences
contains pattern to find. We observe a sharp step-
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Figure 3: Effect of long-tail task distributions on model’s
generalization ability.

shaped transition: models trained on fewer than 1,,,;,,
(where I,;,, = 300) unique instructions consistently
fail to generalize, regardless of example count per
instruction. Conversely, models exposed to over I,,,4,
(where 1,4, =1,000) distinct instructions generalize
effectively to unseen instructions, even with very few
examples per instruction, since the budget S x I is
fixed. This clear phase-transition proves that within a
constant data budget, large enough number of distinct
instructions () is a key driver for generalization

underpinning the necessity of cross-domain diversi-
fication for robust instruction-following for unseen
instructions (which will be shown in later sections).
A slightly more complex situation involves dealing
with no-ops. Figure 2b presents the generalization
accuracies of trained models, as a function of the
number of instructions and the frequency of No-Ops.
Interestingly, despite No-Ops dominating the dataset!,
the model generalizes well to unseen instructions after
training on around 400 distinct cases. The proportion
of No-Ops does not significantly affect generalization
beyond that point - the model learns whether a
transformation is needed at all only if the instruction
semantics is diversified beyond the threshold.

Imbalanced Distribution Is Still Effective In Driv-
ing Generalization In earlier experiments, training
sets evenly distributed instructions across examples:
a set of 1 million examples with 500 instructions
featured each instruction 2000 times. However,
real-world datasets are rarely uniform; certain tasks
dominate due to data availability and task nature.

To study how instruction distribution affects
generalization to unseen tasks, we created datasets
with 1,000, 10,000, and 100,000 unique instructions.
Examples per instruction followed a power law
distribution defined by f(z)=cax®"! where « is the
shape parameter. By varying the shape parameter
of the power law, we can generate a distribution
of examples that range from close to uniform, to
extremely peaked as shown in Fig. 8.

Figure 3 shows model generalization as a function
of the power law’s shape parameter for training sets of
N =1 million examples with I; =1,000, 1> =10,000,
and I3 =100,000 instructions. Models trained on I
or more instructions are robust to the distribution of
examples per instruction. For models trained on I,
generalization accuracy drops sharply when the shape
parameter exceeds «=0.2. In such cases, instructions
with a probability lower than p;,,, =0.1% are barely
represented, and the model effectively trains on
fewer than I,,,;,, = 500 instructions, the minimum for
generalizing to unseen instructions.

These results suggest that sufficient semantic cov-
erage—not uniform distribution—is key for general-
ization. Broad coverage across tasks, even with imbal-
anced data, can enable effective model generalization.

Semantic Diversification Boosts Task Performance
In practical instruction-tuning, uniform sampling
!Consider a dataset containing 100,000 data points, 10%

No-Ops, and 100 rules. No-Ops takes up 10,000 in total, ~11x
of any has-Ops.
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across all possible instruction semantics is infeasible.
To emulate real-world constraints, we trained
models on semantically restricted patterns: repeated
characters (aaabbbcce for k = 3 - each character
repeated 3 times), periodic patterns (abcabc for
k =2 a sub-string repeated 2 times), and mirrored
structures (abccbaabe for k = 3 mirroring the sub-
string for 3 times), and measure their generalization
across different levels of k, where k is a parameter
controlling the constrained-ness of rule semantics.
Our findings show that models trained on a single
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Figure 4: Model’s performance on k < 3 when trained on
the three classes of restricted semantics as in 2.3. Models
trained on 500 or less instructions never generalize to
smaller k.

constrained sub-domain with high constraints (large
k) fail to generalize to less constrained tasks (low k).
Training on mixtures of constrained sets improved
generalization only when the instruction space was
sufficiently diverse. Larger instruction sets (e.g.,
5000 examples) boost generalization, while highly
restricted semantic domains (larger &) make it harder.

Our findings highlight the importance of spanning
semantically diverse subspaces to foster robust
generalization, rather than relying on large datasets
within narrowly defined domains.

3 Rewriting with Abstraction

Real-world instruction-following often requires
abstracting high-level concepts and grounding them
in specific contexts. To simulate this, we extend the
string-rewriting experiment by introducing abstraction:
abstract rules describes the general patterns

We design a mathematical deduction task as a
context-sensitive generalization of the Markov string
replacement task (Section 2). The task involves
simplifying algebraic expressions using specified de-
duction rules, mimicking instruction-following across
semantic domains. We ensure it remains challenging
for pre-trained models (see ZS and FS performances
in Figure 5a) to eliminate confounding factors.

In this experiment, we present the model with a

randomly generated mathematical expression / and an
abstract mathematical deduction rule g5 : (X =Y)
where X and Y are math expressions (e.g. an exam-
ple abstract rule would be a® —b? = (a-+b) x (a—b),
to assess the model’s ability to identify the relevant
sub-expression in & (e.g. in (22+5)2— (3y—6)2, here
a=2x+5,b=3y—6) and correctly apply the trans-
formation (get (2z+5+3y—6) x (2z+5—(3y—6))).
We observe how well the model generalizes when

trained on datasets of varying rule diversity.
A full example will be:

Rule: a®—b°= (a+b) X (a-b)

Input: ((2z+5)° —(3y—6)2) + (log(5t) —cosdk)

Output: ( (2x+5+3y-6) X (2x+5-Q3y-6)) )°+ (log(5t) —cosdk)

3.1 Data Generation

We collate a set of distinct equational algebraic
deduction rules of the form LHS =RHS.

Random Tree Generation We randomly construct
mathematical expression trees of a specified depth d.
Non-leaf nodes were systematically assigned opera-
tors (e.g., +, —, *, /), while leaf nodes were populated
with variables, constants, or unary operations.

Producing Pattern-Carrying Sub-Expressions
To generate expressions, a pattern-carrying sub-tree
was generated with a depth of d,,, denoting the depth
of expression tree for each entry in the rule. e.g. we
may replace a with (y+2z+5) with d,, =2. We then
randomly choose a leaf node and swap it with the
concrete sub-expression.

3.2 Simulating Specialist and Generalist

We examine two common settings for instruction-
tuning: generalist, and specialist training via the set
of simulated experiments. We fine-tune all models
from a pre-trained Mistral-7B-v0.3 (Jiang et al., 2023)
checkpoint.

Diversifying Instruction Semantics Empowers
Better Generalist LMs We control the number
of training instances (50K), and vary the number of
abstract deduction rules & the instantiated rules per
abstract rule. We test the models on unseen sequences
and unseen abstract rules. We train the model on
triples of (&,.qps,7) pairs where 7 is the result of ap-
plying ¢qps to €. The result is shown in Figure 5a.Our
findings demonstrate a clear advantage of increased
rule diversity, consistent with previous string rewriting
experiments. Holding the number of training instances
constant, we observed that expanding the diversity of
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rules (¢) in the training data significantly enhances the
model’s ability to generalize to unseen abstract rules
during testing. This improvement is achieved despite
the model encountering fewer groundings per rule and
expression. This extends our results from Markov-step
experiments to pre-trained language models with rules
that require abstraction and grounding of commands,
a closer resemblance of actual use-case scenarios.

Sweet Point Between Specialization and Diver-
sification For Optimal Specialist Performance
In this experiment, we simulate a scenario where
a model is trained as a specialist and tested on
out-of-distribution queries that still belong to the same
overall instruction type. To achieve this, we divide the
set of rules R into two categories: specialized rules
Rispec and diversification rules River = R \ Rispec-
The training data is constructed as a mixture of
instances generated from these two sets of rules.
Specifically, the instances based on the specialized
rules use patterns with depth dgai“ <dy* to simulate
out-of-distribution test instances, while the instances
from the diversification rules add variety to the
training. This setup allows us to examine the trade-off
between specialization and diversification for better
instruction following in this specialized task.

As shwon in Figure 5c, the results exhibit a
clearly peaked structure as we incorporate more
out-of-domain data for diversification. This reflects
a sweet-point between specialization and enhanced
instruction-following via training on a more diverse
set of instructions. Figure 5b shows the trend when
we diversify across an increasingly rich semantics.
We notice the benefit of a more diverse R 4;yer, Which
suggests that even when diversifying for specialists,

one should be mindful to curate a dataset that spans
over wider domains.

4 Specialist Instruction Follower
- Case Study Of Code Generation

In this section, we investigate the specialist training
scenario, where the objective is to train a language
model to adapt to a certain task domain. Specifically,
we consider code generation task as an example
since it features instruction following aspect -
requiring conversion of natural language prompts into
executable code, demanding precise interpretation
and faithful execution of input instructions over
complex reasoning or knowledge.

4.1 Experiments

We evaluate on two widely-used code generation
benchmarks: HumanEval (Chen et al., 2021a) and
MBPP (Austin et al., 2021), alongside the augmented
EvalPlus (Liu et al., 2023) for evaluation. These
benchmarks present a diverse collection of coding
problems that test the model’s ability to interpret and
execute novel instructions. The training instances
come from OSS-Instruct (Wei et al., 2023), a synthetic
coding dataset, which has been sanitized to avoid data
contamination.

We utilize two state-of-the-art pre-trained code
language models as base models: DeepSeek-Coder-
6.7B-Base (Guo et al., 2024) and CodeQwen-1.5-7B-
Base (Bai et al., 2023).

4.2 Proper Diversification Yields Better Coders

The Role of Semantic Diversity in Generalization
Our results in Tables 2 and 1 reveal a critical insight:
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Ba%’;‘é‘)ig"t +0OSS  +Alpaca +CoT | HE HE+ MBPP MBPP+ (}‘}‘:sge) ‘(‘Iig Avg g:lln
15K 5K 0 0 [ 622 567 757 624 689 595 642 -
15 4 1 0 | 671 598 757 62.2 714 61 662 3.1
15 3 2 0 | 683 6L6 754 632 719 624 671 46
15 2 3 0 | 646 604 764 634 705 619 662 3.1
15 1 4 0 | 652 585 767 637 71 611 66 28
15 0 5 0 | 646 579 739 61.4 693 597 645 05
60 5 0 0 | 665 616 754 61.9 7T 618 664 -
60 0 15 0 | 671 598 77 64.8 721 623 672 12
60 0 75 75 | 646 591 762 63.8 704 615 659 06
60 75 75 0 | 689 6L6 762 63.8 76 67 616 19
60 75 325 325 | 665 622 762 64.3 714 633 673 14
60 125 25 0 | 683 6l 76.2 64.3 73 627 615 16
60 125 125 125 | 683 622 718 65.1 731 637 684 3
60 14 1 0 | 695 622 762 64.3 729 633 681 25
60 14 05 05 | 665 6l 76.5 632 715 621 668 07

Table 1: Results on DeepSeek-Coder-6.7B and comparison With MagiCoder-DS-6.7B (Wei et al., 2023). Plum-colored
row surpasses the performance of full-data training. Best configurations corresponding to each setting are highlighted.
We demonstrated that one could achieve higher performances by means of diversification.

increasing the size of coding datasets alone is not
always the most effective strategy for improving
performance on coding tasks. Instead, diversifying
instruction domains yields superior results. For
instance, incorporating data from general-purpose
QA (Alpaca) and reasoning tasks (CoT) delivers sig-
nificantly better outcomes than adding an equivalent
volume of coding data. Crucially, the Plum-colored
configuration in Table 1, which uses just 20,000 diver-
sified data instances, achieves performance levels that
surpass models trained on 75,000 OSS-Instruct data.
This demonstrates that a carefully curated, diverse
dataset can drive substantial improvements over
merely scaling dataset size within a single domain.

This pattern is consistent with our findings across
multiple experiments. In Section 3.2, we demon-
strated that diverse instructions improve generalization
by enabling the model to handle out-of-distribution
tasks derived from seen abstract instructions. Simi-
larly, in Section 2.3, even basic string-replacement
tasks highlighted the value of diverse instructions.
Crucially, these improvements occurred despite the
lower quantity of diverse instructions relative to
the main task, as shown in the long-tail distribution
scenario in Section 2.3. These results collectively
underscore the importance of instruction diversity in
achieving robust performance across both abstract and
practical tasks, even in data-imbalanced scenarios.

The Power of Cross-Domain Diversification
By incorporating datasets like Alpaca, which is
designed for human language interaction, and the
CoT-Collection (Kim et al., 2023), which challenges
the model with complex reasoning tasks, we extend
the model’s exposure to diverse semantic spaces.
This further improves the model’s generalization

—— Avg. (Base) —+— Avg. (EvalPlus) Avg.
DeepSeek CodeQwen
~—.
0.72 / \

Figure 6: Sweet spots of Pass@1 with data mixture.
Baseline is marked with dotted lines.

capabilities across domains. Results from CodeQwen,
presented in Table 2 support this conclusion. Models
trained on a balanced mixture of coding, general QA,
and reasoning data outperform those trained solely
on a mix of coding data and Alpaca, reinforcing
the importance of cross-domain diversification for
handling complex and varied instructions.

Balancing Generalization and Specialization
While diversifying instruction data offers substantial
benefits, there are limits. As shown in Figure 6,
incorporating general-domain instructions initially
boosts the model’s ability to follow natural language
specifications, leading to improved Pass@1 scores for
code generation. However, as more non-coding data
is added, the model’s capacity to handle the nuanced
requirements of coding tasks diminishes.

This trade-off echoes our findings from the syn-
thetic experiments in Section 3.2: achieving optimal
performance requires balancing general instruction-
following capabilities with specialized domain knowl-
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edge (Ling et al., 2024). Figure 6 illustrates the plateau
and eventual decline in performance, underscoring the
importance of calibrating the mixture of coding and
non-coding data to achieve the best overall results.

Guided by the findings of our earlier synthetic
experiments, to improve specialists, we recommend
strategic diversification beyond the current domain,
while carefully balancing composition between in-
and out-of task domain data.

5 Fine-tuning Generalist LLLMs

In this section, we evaluate the impact of cross-domain
instruction diversification on general reasoning tasks
and investigate the optimal high-level strategy to
improve the quality of a dataset.

5.1 Experimental Setup

In this study, we evaluate the impact of cross-domain
instruction diversification on large language models
(LLMSs) by comparing our approach with a baseline
model trained exclusively on Ultralnteract-SFT
dataset (Yuan et al., 2024). Ultralnteract-SFT
is a collection of complex, multi-step reasoning
problems emphasizing on math problem-solving,
code generation, and logical reasoning, promoting
robust reasoning and planning capabilities in LLMs.

While Ultralnteract-SFT primarily focuses on
math and coding problems and contains a rich
collection of those problems, its scope is limited to
these domains. OpenOrca (Lian et al., 2023) and
Alpaca, though sparse and varied, introduce broader
instruction-following tasks.

We begin with varying initial data budgets from
the Ultralnteract-SFT dataset and systematically
measure the performance improvements achieved by
incrementally incorporating additional data points.

We gauged the model’s overall capabilities
using the same set of benchmarks consisting of
coding (Austin et al., 2021; Chen et al., 2021a),
math (Hendrycks et al., 2021b; Cobbe et al., 2021;
Chen et al., 2023), knowledge (MMLU (Hendrycks
et al.,, 2021a)), instruction following (Zhou et al.,
2023b) and chain-of-thought reasoning (Suzgun et al.,
2022) as Yuan et al. (2024) and computed average
performance. To reflect on its precision in instruction
following, we adopted IF-Eval (Zhou et al., 2023b)
benchmark, comprising over 500 prompts for rigorous
instruction-following tests. We followed a core-set
selection approach when curating datasets of various
budgets. We finetune from a pre-trained Mistral-
7B-v0.3 checkpoint for all results in table 3. In the

experiments, we study the effect of adding controlled
quantities of different types of data to various pre-
defined base budgets, and compare the performances
across budgets to exhibit the advantage of dataset
expansion along the dimension of improving diversity.

5.2 Data Diversity Matters
More Than Quantity For Generalists

Table 3 provides compelling evidence for the critical
role of diverse training data in enhancing model
performance, as opposed to relying solely on volume.

Within-Budget Level. By simulating the incremen-
tal composition of training data from a base budget
up to a predefined total budget, we systematically
examine the impact of incorporating diverse datasets
beyond UI's domain. Our results show that the
model consistently benefits more from this diversified
composition than from simply expanding the Ul
dataset size.

Across Budget Levels. Performance comparison
across different Total data budget levels reveals that
models trained with diverse datasets even on lower
budgets achieve superior generalization and task
performance compared to those trained solely with
additional data from the same distribution.

The results show that adding diverse datasets
incrementally fosters generalization and robustness,
even for reasoning tasks like math that typically rely
on data volume (Yu et al., 2024). This reinforces the
benefits of diversification highlighted in Section 3.2.

This analysis underscores a key insight: prioritizing
diverse training datasets is crucial for building
adaptable, high-performing models. Exposure to
varied domains enhances generalization to unseen
instructions, demonstrating that data diversity
outweighs sheer volume in impact. Diversity is thus
a foundational requirement for models to excel across
complex and varied tasks.

6 Related works

Datasets for instruction-tuning. Many datasets
for instruction-tuning have been proposed. The
best quality is achieved for sets collated by human
annotators (Khashabi et al., 2020; Ye et al., 2021;
Sanh et al., 2022b; Wang et al., 2022; Longpre et al.,
2023; Conover et al., 2023; Kopf et al., 2023), but
their size is constrained by the cost of annotation.
Alternative methods, which use large language
models to generate instruction sets, have been
proposed (Wang et al., 2023b; Honovich et al., 2022;
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Base + + Avg Avg Rel.Gain  Rel.. Gain
Budget HE HE+ MBPP MBPP+ Ay, Intra wrt.
(©0ss) 0SS Alpaca  CoT (Base)  (+) g Budget  No Diver.
19K K 0 0 | 659 398 737 622 698 610 654 = 5
19 0 1 0 | 617 616 759 63.4 718 625 672 28 28
18 0 2 0 | 695 634 764 63.2 730 633 681 = 4.1
18 0 1 1 689 634 774 64.2 732 638 685 0.6 4.7
16 0 4 0 | 652 585 767 63.7 710 611 660 = 09
16 0 2 2 | 683 616 772 63.7 728 67 617 26 35
Table 2: Pass@1 with CodeQwen-7B.
Base Rel. Gain Rel. Gain
Data  +UI +00 +AL Total Opl ppayg Ol Overl 50k pata Diver
Budget & Budget  w./In Budget
0K 0 0 39.07 2532 4727 4494 E 2
10K 0 10 0 20K 4493 43.85 49.03 48.77 - 15.00
0 0 10 4478 3643 51.51 50.05 - 14.64
20 0 0 4101 23.99 5027 4897 497 B
0 20 0 46.87 46.25 50.96 49.38 19.99 14.31
20K 0 0 20 40K 4441 37.13 50.86 4921 13.68 831
10 10 0 47.59 46.58 51.64 50.44 21.81 16.05
10 0 10 4347 30.84 51.50 4951 11.27 6.01
20 0 0 40.39 22.01 5043 4634 150 B
0 20 0 45.64 46.69 49.75 5245 11.31 13.00
40K 0 0 20 60K 4064 3193 47.86 48.62 -0.90 0.61
10 10 0 4579 40.10 51.89 51.08 11.66 13.37
10 0 10 4273 31.30 50.63 4845 421 579
20 0 0 4171 2467 51.62 4797 327 2
0 20 0 45.86 4234 51.19 50.50 13.54 9.95
60K 0 0 20 80K 4327 33.02 50.83 48.39 7.14 375
10 10 0 46.07 40.82 51.93 51.17 14.06 10.45
10 0 10 42.66 30.58 50.49 47.36 5.63 229

Table 3: The table shows the performance of generalist models trained with different data mixtures. UI refers to
Ultralnteract, OO refers to OpenOrca, and AL refers to Alpaca. The column labeled Rel. Gain + 20K Data indicates
the relative performance gain of the model in the current row compared to the UI-only baseline that uses 20K fewer
data points. For example, the performance of a model trained on 40K data will be compared to the baseline model
trained on 20K UI data, as indicated by the blue row above the current data quantity.Rel. Gain Diver. denotes the gain
of diversification compared to the baseline with the same data budget.

Taori et al., 2023; Peng et al., 2023; Chiang et al.,
2023; Xu et al., 2023a; Koksal et al., 2023; Kim et al.,
2023). They provide larger instruction sets, at the cost
of reduced annotation quality.

Data curation for instruction-tuning. It is widely
recognized that the quality of instruction-tuning
datasets has a massive impact on the performance of
fine-tuned models. Previous works acknowledged the
contributions of several key factors. Most research
on the subject insist on the importance of the size and
quality of the instruction sets (Chung et al., 2022; Iyer
et al., 2022; Wang et al., 2023a). Liang et al. (Liang
et al., 2024) point out the importance of consistent
formats. Several recent works (Zhou et al., 2023a;
Cao et al., 2023) suggest that models fine-tuned
on carefully selected examples can achieve high
performance with small datasets. Various strategies
for data curation have been proposed, focusing on
instruction diversity, and the quality of answers
(Zhou et al., 2023a; Cao et al., 2023; Xu et al., 2023b;
Li et al., 2024; Liu et al., 2024b). Several authors
discuss the benefit of mixing tasks from different

categories (Longpre et al., 2023; Iyer et al., 2022;
Bukharin and Zhao, 2024). Closest to our work, Dong
et al. (Dong et al., 2024) discuss the impact of mixing
general and domain-specific instructions, in order to
achieve the best results with the smallest dataset.

7 Conclusion

This work systematically studies instruction-following
of language models by modeling it as a computation
process and careful controlled experiments. We
isolate and study models’ instruction-following abil-
ities, offering a new perspective on this fundamental
capability. Our experiments further demonstrate that
instruction diversity, even within a fixed data budget,
plays a critical role in improving model generalization.
This finding underscores the value of diverse instruc-
tion semantics over large dataset size, in enhancing
performance across both specialized and generalized
LLM applications. Finally, we offer practical insights
into dataset collation strategies, highlighting that
proper diversification can significantly outperform
dataset expansion.
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8 Limitations

This study highlights the impact of dataset diversity
on generalization but leaves room for exploring its ap-
plicability to broader domains and tasks. While the dy-
namic data addition process shows promise, refining
strategies for balancing domain-specific and general-
purpose data could further enhance performance. Fu-
ture work may also validate these findings across
evolving model architectures and real-world settings.
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A Complement on Markov algorithms

Markov algorithms (Markov, 1954) are ordered sets
of rewrite rules, operating on sequences of symbols
in a fixed alphabet {/. A sequence S is processed
by applying the first rewrite applicable to .S, at the
leftmost position if several exist: i.e. the rewrite rule
ss—tr transforms the sequence S =mississipi into
S’ =mitrissipi. The algorithm is then applied to .S,
and the process is repeated until either no rules apply,
and the algorithm is said to be blocked, or a special
rule, called a stop rule is invoked, and the algorithm
terminates and returns the final rewritten sequence.

Specifically, the algorithm uses and alphabet A,
which includes the alphabet I/ used buy the sequences
to be processed (henceforth, small case latin letters),
a set of additional symbols (henceforth, the small
case greek letters {«,[3... }, and a special symbol -
indicating a stop rule.

For instance, we could define the following
algorithm, with / ={a,b}, and A={a,b,a,5, }, and
the rules

ar — zafx ¢))
pry — ypx ()
afr — za 3
a — 4)

- « o)

where x and y stand for any letter a or b. This will
transform any sequence of a and b into a concatenation
of the sequence and its reverse. Applied on abb, the
algorithm will perform the following rewrites:

abb— ccabb (by 5)
aabb— acSabb (by 1)
acSabb— aabfab (by 2)
aabBab— abaSbBab (by 1)
ababBbBab— abaSbbSa (by 2)
abaBbbBa— ababBbBa (by 2)
ababBbBa— abbaSbBbBa (by 1)
abbaSbBbBa— abbbaSbBa (by 3)
abbbaBbBa— abbbbafa (by 3)
abbbba,Sa— abbbbac (by 3)
abbbbac— abbbba (by 4)

Since rule 4 is a stop rule, the algorithm terminates
and returns abbbba. Judicious introduction of addi-

tional (greek) letters allows one to compose Markov al-
gorithms, effectively writing complex programs. Any
effective process (i.e. finite computation) can be repre-
sented as a Markov algorithm (this is Markov’s thesis).

B Experimental set-up

B.1 Model and Training

In rewrite experiments, we train GPT-2 models (Rad-
ford et al., 2019), a decoder-only transformer-based
architecture, with 6 layers, 256 dimensions and
4 attention heads from scratch, on a generated
instruction-tuning dataset using standard supervised
fine-tuning approach. We use the AdamW optimizer,
a learning rate of 1073, and linear scheduling.
All models are trained for 50 epochs. For the
encrypted-rewriting task, we LoRA fine-tuned
Llama-2 models with a learning rate of le-5, batch
size 64, gradient accumulation step 1, and 8-bit
quantization. The model takes about 2000 steps to
converge. For coding experiments, we trained the
model with a learning rate of 1e-5, batch size 4, and
gradient accumulation step 1, 8-bit quantization for
3 epochs with a maximum length of 768. The models
are trained and inferenced on 1 Nvidia A40 GPU. We
used greedy decoding for all experiments.

B.2 Data Generation

Synthetic Experiment Except for the diversity of
semantics experiment, the results we reported in the
main paper are obtained from an input length of 50
and a pattern length of 20. To validate the generality
of our findings, we conducted experiments on various
input sizes {50, 100, 200} and, correspondingly,
pattern lengths {20,40,50}.

In the diversity of semantics experiment, we used
an input length of 500 and a pattern length of 60. We
strictly restricted the sub-strings to look for and to
replace them with both to be unseen during testing.

Real World Data We downloaded the datasets
(OSS-INSTRUCT, ALPACA, COT, ULTRAINTER-
ACT, OPENORCA) from the official Huggingface
Datasets Repos.

Demonstration of dataset sizes for long-tail rule
distribution experiments. We included the plot of
percentage against rank index with different o’s.

C More Details On Evaluation

For coding task, we evaluated the performance follow-
ing the standard settings in EvalPlus (Liu et al., 2023).
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(b) OSS-Alpaca mixture and test

instructions.

Figure 7: Visualization of embedded instructions.
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Rank Index

Figure 8: The sorted percentage of each instruction following
power-law distribution with different shape parameters. The
y-axis is the percentage of the rules in the training mixture.
The x-axis is the ranked index (by proportion of examples) of
instructions.

In Section 5, we evaluated a on variety of tasks. We
used the evaluation suite (prompt, score computation
script) provided by Yuan et al. (Yuan et al., 2024).
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