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Abstract

Existing LMs struggle with proof-oriented pro-
gramming due to data scarcity, which mani-
fest in two key ways: (1) a lack of sufficient
corpora for proof-oriented programming lan-
guages such as F*, and (2) the absence of
large-scale, project-level proof-oriented imple-
mentations that can teach the model the intri-
cate reasoning process when performing proof-
oriented programming. We present the first on
synthetic data augmentation for project level
proof oriented programming for both genera-
tion and repair. Our method addresses data
scarcity by synthesizing basic proof-oriented
programming problems for proficiency in that
language; incorporating diverse coding data
for reasoning capability elicitation and creat-
ing new proofs and repair data within existing
repositories. This approach enables language
models to both synthesize and repair proofs for
function- and repository-level code. We show
that our fine-tuned 14B parameter model, PoPi-
lot, can exceed the performance of the models
that outperforms GPT-4o in project-level proof-
oriented programming by 64% relative mar-
gin, and can improve GPT-4o’s performance
by 54% by repairing its outputs over GPT-4o’s
self-repair.

1 Introduction

In an era where software vulnerabilities can risk
tremendous damages1 and compromise national
security 2, ensuring the correctness and safety has
become an urgent priority. Proof-oriented program-
ming integrates formal verification into software de-
velopment, enabling mathematically rigorous cor-
rectness guarantees. Proof-oriented programming

1On July 19, 2024, an abnormal update distributed by the
cybersecurity company CrowdStrike caused issues for a large
number of its global customers’ Windows operating systems,
resulting in blue screen errors.

2U.S. Cybersecurity and Infrastructure Security Agency
has urged the future software development to ensure memory
safety.

languages such as F*(Swamy et al., 2011) and
Dafny(Microsoft, 2024a) support this paradigm
by providing expressive type systems and precise
specification mechanisms. These capabilities en-
able static verification of program correctness with-
out the need for extensive test suites or runtime
execution. These languages like F* allow devel-
opers to write programs alongside formal proofs,
providing strong guarantees about functional cor-
rectness and security properties, and famous real-
world systems including Firefox, the Linux ker-
nel, Tezos blockchain, and Azure Cloud have em-
ployed formally verified components.However, de-
spite decades of research, the adoption of proof-
oriented programming remains limited due to the
high cost of proof construction and the steep learn-
ing curve of formal methods.

On the other hand, the rapid advancements in
large language models (LLMs) have transformed
many areas of software development(Austin et al.,
2021; Chen et al., 2023; Nijkamp et al., 2022; Xia
and Zhang, 2022; Xia et al., 2023; Jin et al., 2023;
Jimenez et al., 2024). Yet, applying LLMs to proof-
oriented programming presents fundamental chal-
lenges (Chakraborty et al., 2024). Proof-oriented
programming is highly distinct from conventional
coding paradigms, demanding complex formal rea-
soning of program semantics over long contexts,
which current models struggle with (Loughridge
et al., 2024). A major bottleneck is extreme data
scarcity, which manifests in two key ways: (1)
a lack of diverse, high-quality corpora in proof-
oriented programming languages such as F* to
teach the model the syntax and semantics of that
language (F* constitutes of only 0.002% in Stack-
v2 (Lozhkov et al., 2024)), and (2) an absence of
large-scale project-level verification data, which
involves highly complex and context-dependent
formal reasoning. As a result, even state-of-the-art
LMs fail to generalize effectively to proof construc-
tion and verification tasks (Loughridge et al., 2024;
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Microsoft, 2024b).
In this work, we introduce a data-centric post-

training recipe designed to bridge the gap between
general-purpose coding LLMs and repository-level
proof-oriented programming in F*. We system-
atically address data scarcity and adaptation chal-
lenges through three key strategies:

1. Enhancing General Programming Capa-
bilities with Diverse Code Data: inspired
by existing works showing the benefit of di-
versification (Zhang et al., 2024; Dong et al.,
2023; Chen et al., 2024), we train the model
beyond the immediate focus of formal verifica-
tion in F* but over diverse programming tasks
to enable its code-reasoning and instruction-
following capabilities.

2. Learning Basic Proof-Oriented Program-
ming via Synthetic Tasks: We synthe-
size function-level basic programming and
property-proving problems in F*, allowing
LLMs to learn fundamental verification pat-
terns in a controlled setting without introduc-
ing complex inter-dependencies.

3. Synthetic Augmentation for Proof Syn-
thesis and Repair: Beyond training basic
property-proving problems and existing repos-
itories, we curate novel synthetic repository-
level problem solving and proof repair data
to teach LLMs how to complete and correct
project-level proofs with more complex and
longer contextual dependencies.

Following the recipe above, we transform LLMs
into specialized verification assistants capable
of both synthesis and repair for Proof-oriented
Programming, which we call PoPilot. PoPilot is
the first project-level formal verification specialist
LLM trained on synthetic instruction-tuning data.
Notably, strategies 2 and 3 require generating prob-
lems using existing language models that has lim-
ited knowledge and low accuracy on F*. However,
we could leverage F* solver to obtain data with
correctness guarantee for generation tasks, and re-
trieve error messages to craft repair datasets3 Our
experiments demonstrate that PoPilot demonstrates
strong capacities to perform proof-oriented pro-
gramming on a project level, leading to a remark-
able margin of 64% over GPT-4o and can boost

3The correctness can be determined by running the solver
without test cases as in conventional programming languages.

GPT-4o’s performance to 54% by repairing a ran-
domly chosen failed attempt.

2 Background

Formal verification is a process of examining the
correctness of the operation of software programs
by mathematical proof (Grout, 2008). F* is an
SMT-solver based proof-oriented language that en-
ables convenient verification through execution
by F* compiler. However, F*, like many other
languages used for formal proofs (verified Rust,
Rocq(Coq), Lean etc.), are comparatively low re-
source. The popular open coding data corpus Stack-
v2 (Lozhkov et al., 2024) containing over 3B files
in 600+ programming and markup languages, F*
has only 29.6k entries (less than 0.002%), much
fewer than common programming languages like
Python (80.6M entries, 2.95%), Java (223M en-
tries, 8.17%). This scarcity implies both the lack of
knowledge of the off-the-shelf pre-trained check-
points and the insufficiency of existing resources
to further train the model.

Additionally, F* is a dependently-typed lan-
guage, where type definitions depend on values.
This allows for more precise specification of pro-
gram properties and invariants but also introduces
complexity due to the need for intricate computa-
tions to determine type equality and detailed type
reasoning (Chakraborty et al., 2024). Programmers
also often need to go back and forth while writ-
ing F* code. Therefore, enhancing the model’s
ability to repair code is crucial for both iterative im-
provement of automatic proof synthesis and better
assistance to human programmers.

In reality, the challenge of proof-oriented pro-
gramming is further exacerbated by the cross-
repository dependencies of the code. Proof-
oriented programming often spans multiple repos-
itories, especially in the large-scale formal veri-
fication of software systems, where the project
contains different components relying on verify-
ing properties from other repositories. This intro-
duces huge challenges in dependency and environ-
ment management, as the proofs account for resolv-
ing inter-repository specification and module open-
ings beyond the single repository (Chakraborty
et al., 2024). This property, together with the type-
dependent nature of the programming language,
makes the task difficult to learn for model and even
human expertise.
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Figure 1: Illustration of repository-level data generation pipeline.

3 Function-Level Dataset Collection

In this section, we describe how we synthesize
diverse function-level programming tasks from ex-
isting open-source code snippets. We focus on
three types of tasks: natural language to code tasks,
proof-oriented code completion tasks, and code
repair tasks. To evaluate the generated data, we
rely on F*’s feature to automatically verify code
correctness via execution. In addition, the dataset
is diversified by incorporating instruction-tuning
data from other languages.

3.1 Data Synthesis

In this section, we describe our method for synthe-
sizing high-quality F* training data. To generate
diverse programming tasks, we construct instruc-
tion data from existing open-source code snippets
inspired by OSS-Instruct (Wei et al., 2024b). We
select code models that outperform non-code mod-
els in terms of accuracy and quality for F* code
generation and prompt them to create high-quality
tasks from a variety of code examples.

3.1.1 Task generation

We included three types of tasks in our dataset:
natural language based tasks, proof-oriented code
completion tasks and code repair tasks. Below, we
describe each task in detail.

Natural Langugage To Code Tasks We use
code examples from the F* source code repository
and GitHub OCaml (Geng, 2022) as our seed cor-
pus.The code snippets extracted from these source
codes are diverse, correct and practical, inspiring
LLM to generate high-quality and varied instruc-
tions and responses. The response code generated
by the model is also required to be self-contained
to facilitate the verification of code correctness and
the generation of other types of tasks.

Proof-oriented code completion tasks In proof-
oriented code completion problems, we choose ver-
ified and self-contained code snippets from the re-
sponses models generated in all tasks. We then ask
the model to generate code completion problems
that require proving a specific property or function
related to the given snippet in order to obtain prob-
lems and corresponding responses related to proofs.
This part of data, with greater complexity, enhances
the model’s ability to write proofs in F* and per-
form reasoning. Verified response codes can also
be reused as snippets for future code completion
tasks.

Instruction: 
In the provided F* code snippet, we 
have a function `list_with_length` 
that takes a list of integers and 
returns a tuple containing the original 
list and its length. Your task is to 
write an F* program that proves the 
following property: 
**Property**: For any list of integers 
`l`, the length of the list returned by 
`list_with_length l` is equal to the 
length of the original list `l`.
Here is the code snippet for reference:

Response:

Code Snippet:
```fstar
module ListUtils
open FStar.List.Tot
let list_with_length (l: list int): 
(list int * int) =
let len = FStar.List.length l in

(l, len)
```

```fstar
module ListUtils
open FStar.List.Tot
let list_with_length (l: list 
int): (list int * int) =

let len = 
FStar.List.length l in

(l, len)
// Lemma to prove the property
val lemma_length_preserved: l: 
list int -> Lemma (requires 
True) (ensures snd 
(list_with_length l) = 
FStar.List.length l)
let lemma_length_preserved l =
    assert (snd 
(list_with_length l) = 
FStar.List.length l)
```

Figure 2: Function-level Proof-oriented programming
example.

Code repair tasks. It is difficult to generate cor-
rect code on the first try for many programming
tasks, even for human. Instead of discarding the
flawed code, they typically analyze the results and
modify it to fix any errors (Chen et al., 2023).
Therefore, It is crucial for LLMs to have the capa-
bility to repair code as well. Given the complex-
ity of writing F* programs, which often requires
iterative refinement, models trained on synthetic
datasets should be capable of repairing erroneous
code effectively. Code repair pairs in our dataset
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are generated by prompting the model to fix the
given incorrect code response, supplying both the
erroneous code and the execution log obtained after
verification.

The verified instruction-response pairs are added
to our dataset.

3.1.2 Execution-based data evaluation and
dataset filtering

As an SMT-guided language, F* can directly and
accurately receive correctness feedback from ex-
ecution, enabling the identification of discrepan-
cies between code behavior and formal specifica-
tions. Therefore, no extra effort such as test cases
and LLM judges is required for verifying F* data.
Specifically, to verify the response codes, we put
the code snippet within the F* environment and ex-
ecute them, sparing little effort. Data that success-
fully compile and run are retained, while incorrect
ones and their associated error messages are stored
for inclusion in the repair dataset. This verifiability
is a favorable property of F* that we could lever-
age to obtain data quality signals for free, whereas
in general domains, the instruction tuning data is
largely unverifiable or relies on heuristics (Wei
et al., 2024a).

3.2 Diversification
Diverse instructions can better enhance an LLM’s
ability to generalize to new tasks (Wei et al., 2021),
as well as improve its comprehension and adher-
ence to instructions (Chen et al., 2024; Zhang
et al., 2024; Dong et al., 2023). This is particu-
larly crucial in our case since the F* community is
smaller than common programming languages with
scarcer source codes and more sparse documenta-
tion. Therefore, we integrate diverse instruction-
tuning data pairs in other languages besides syn-
thetic F* data to supplement our dataset and en-
hance model’s capability. This general approach
is applicable beyond F*, as it can be extended to
other programming languages with limited avail-
able data, helping to improve model performance
in low-resource scenarios.

4 Project-Level Dataset Synthesis

In this section, we describe how we synthesize
more project-level proof generation problems from
existing repositories. Project-level verification in-
volves generating or repairing proofs for definitions
embedded within complete verification reposito-
ries, where correctness depends not only on local

function logic but also on broader module-level
context—including previously established lemmas,
type invariants, module imports, and shared as-
sumptions. Our goal is to generate new problem-
solution pairs based on existing programming con-
texts where the problem consists of a type declara-
tion, and the solution is the correct F* definition (a
proof) that satisfies the given type declaration (See
examples in B).

4.1 Generating New Problems

We start the problem-solution pairs generation from
a seed dataset, in which each instance has the fol-
lowing structure:

Definition An initial problem-solution pair of a
definition in the context.

Context Required context information from ex-
isting repositories, such as opened premises and
pre-defined definitions, and selected premises
which are likely to be used in the body of the defi-
nitions(Yang et al., 2023).

Examples A set of semantically similar problem-
solution pairs retrieved from the same context using
the similarity between types in their embedding
space(Chakraborty et al., 2024).

We prompt the language model to create new
definitions or prove new properties based on the
context in the seed dataset. The detail is listed as
follows:

Generation Prompt Curation: We structure the
prompt with relevant premises and pre-defined def-
initions, providing essential context for generating
new definitions and proofs. (Prompt see C.3). To
guide the model in following F* conventions, we
retrieve multiple example definitions with varied
structures from the same context while ensuring
diversity and discouraging direct copying.

Definition Generation: For each unique context
in the seed dataset, we apply the predefined prompt
template and sample multiple candidate problem-
solution pairs using two LLMs.

Data Filtering: To maintain quality and prevent
redundancy, we apply de-duplication by (1) com-
puting sequence similarity and filtering out overly
similar definitions, including those resembling ref-
erence examples, and (2) remove any generated
definitions that overlap with the test set to prevent
data leakage and ensure a fair evaluation.
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Figure 3: Length Comparison between Generated Defi-
nitions vs Existing Definitions.

These steps expand the dataset with diverse
problem-solution pairs while maintaining real-
world F* relevance and validation feasibility. Fig-
ure 3 shows that the problem-solution pair augmen-
tation is effective for simpler definitions but strug-
gles with longer and more complex ones, reflecting
the long-tailed distribution observed in both real-
world and synthesized datasets. This alignment
suggests that our synthetic data captures the diffi-
culty distribution in real F* development.

4.2 Creating Repair Data
In this section, we generate new problem-solution
pairs for the proof repair task. The problem con-
sists of a type declaration, an incorrect proof, and
the corresponding error message from the F* com-
piler, while the solution is the corrected proof. To
construct this dataset, we combine rule-based data
synthesis with LLM-generated repair data.

4.2.1 Synthetic Repair Data
We generate a synthetic mutation dataset from the
F* dataset by randomly modifying ground-truth
solutions at the abstract syntax tree level. If a mu-
tation causes type checking to fail, we treat it as
a synthetic error and use it to train a model to re-
cover the original solution. Mutations include omit-
ting parts, replacing arguments with underscores,
and modifying control structures (e.g., removing
branches or let-definitions). These errors mimic
those commonly made by human F* programmers,
but we avoid mutating identifiers.

4.2.2 Repair Data From The Model
Since Section 4.1 expands the problem set, we now
prompt the model to solve these problems within
their given contexts, collecting incorrect proofs
and their corresponding error messages. Correct
answers for the repair task are retrieved either from
the original correct proofs or by prompting LLMs
to generate new valid proofs.

Repair Problems Generation: We combine the
seed dataset problems with the generated ones and
prompt the LLM to solve them. Solutions are val-
idated (3.2), and incorrect proofs with error mes-
sages are collected from the compiler as repair
problems.

Obtaining Correct Repairs: (1) We prompt
LLMs to solve the repair problems directly, though
zero-shot performance is often limited. (2) Alter-
natively, we reuse the original correct proofs from
the definition generation task as repair solutions.

Data Filtering: (1) Duplicate repair problems
are removed by filtering identical incorrect proofs.
(2) Each definition generation problem contributes
at most three repair problems to prevent redun-
dancy. (3) Correct answers appearing in the test set
are removed to ensure fair evaluation.

We can see that the dominating model-generated
errors is identifier not found and syntax error.
While syntax errors reflect model’s limited under-
standing of F* grammar, identifier not found er-
rors indicate deeper semantic and type-related chal-
lenges that are characteristic of F* language.

5 Function-Level Experiments

We present our experiments on the function-level
synthetic data mixtures in this section.

5.1 Setup

Dataset Our dataset primarily comprises syn-
thetic F* data, along with selected data from
datasets of other programming languages (CodeAl-
paca, Evol-Instruct, Deepseek-Prover-V1, Runbu-
gRun, stack-exchange-preferences). CodeAlpaca
collects synthetic coding instructions from Chat-
GPT following self-instruct, including diverse pro-
gramming problems and languages (Chaudhary,
2023). Evol-Instruct also contains high-quality
synthetic natural language to code data (Wei et al.,
2024b). The Deepseek-Prover-V1 (Xin et al., 2024)
dataset includes extensive Lean 4 proof data to en-
hance theorem-proving capabilities in LLMs. Run-
bugRun provides an executable dataset for auto-
mated program repair on commonly used program-
ming languages (Prenner and Robbes, 2023). We
conduct experiments to test the impact of the com-
position of the data and different mixing ratios on
F* code.
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Model Pass@1 +Repair

QWEN-2.5-CODER-7B-INSTRUCT 0.25 0.30
QWEN-2.5-CODER-14B-INSTRUCT 0.50 0.55
QWEN-2.5-CODER-32B-INSTRUCT 0.48 0.58
QWEN-2-72B-INSTRUCT 0.34 0.43
DEEPSEEK-CODER-33B-INSTRUCT 0.29 0.38
DEEPSEEK-CODER-V2-LITE-INSTRUCT 0.43 0.53
DEEPSEEK-V3 0.66 0.78
LLAMA-3.1-70B 0.21 0.27
LLAMA-3.3-70B-INSTRUCT 0.17 0.26
GPT-4O 0.60 0.70

Fine-tune Data Mixture

54K F* Only 0.42 0.47
+ Evol 0.52 0.56
93K F* Only 0.48 0.52
+ DSP-V1 0.52 0.54
+ DSP-V1 + Evol + CodeAlpaca + RBR 0.58 0.62
+ DSP-V1 + Evol + CodeAlpaca + RBR (14B)† 0.74 0.77
- F* NL2Code 0.48 (-) 0.52(-)

Table 1: Performance comparison across different mod-
els and fine-tuning data mixtures. F* only: synthetic F*
data, Evol: 80K (54K F*) / 50K (93K F*) Magicoder-
Evol-Instruct data, DSP-V1: 20K Deepseek-Prover-V1
data, CodeAlpaca: 15K CodeAlpaca data, RBR: 15K
RunBugRun data.
†: Adopting Qwen2.5-Coder-14B as base model.

5.2 Synthetic Data Generation Setup

We select code LLMs demonstrating rela-
tively superior capability in generating F* code:
Qwen2.5-Coder-32B-Instruct, Qwen2.5-Coder-
14B-Instruct (Hui et al., 2024b), CodeLlama-13b-
Instruct-hf (Roziere et al., 2023), DeepSeek-Coder-
V2-Lite-Instruct (Liu et al., 2024), DeepSeek-R1-
Distill-Qwen-32B (Guo et al., 2025). Different
prompt templates are adopted in generating differ-
ent tasks of data. All promptings are done in zero
shot. We use a temperature of 0.7 to generate data.

Evaluation Dataset and Metrics We sample
2,000 instructions from synthesized F* dataset as
hold-out test set, equally covering all 3 problem
types described above. All evaluations are done
on the same test set. During evaluation, the model
first generates an initial response. If incorrect, we
prompt the same model again with the erroneous
code and the error message for repair. We record
both the initial code generation accuracy and the
overall accuracy after a single repair attempt. The
response codes are generated with T=0.1.

5.3 Results

Comparing Against Powerful LLMs Com-
pared with 6 popular open-source LLMs:
Qwen-2.5-coder-7B-instruct, Qwen-2.5-coder-

14B-instruct, Qwen-2.5-coder-32B-instruct (Hui
et al., 2024a), Qwen-2-72B-instruct (Hui et al.,
2024b), DeepSeek-Coder-V2-Lite-Instruct (Liu
et al., 2024), LLaMa-3.1-70B, our model achieves
the best performance in both generation and
repair within the F* framework. The results in
Table 1 demonstrate that in the initial generation,
our model significantly outperforms non-code
models such as LLaMA-3.1-70B and Qwen-2-72B
in terms of accuracy. At the same time, the
accuracy of the generation also surpasses that of
code models with larger parameter sizes such as
Qwen-2.5-coder-32B-instruct, indicating that our
instruction-tuning dataset is highly effective in
enhancing the model’s ability to generate F* data.
Our initial generation accuracy is also comparable
to GPT-4o, which is generally challenging given
the size of its base model parameters.

Benefits of data diversity and the effect of dif-
ferent data mixtures As shown in Table 1, data
diversity has a positive impact on the model’s per-
formance. When more diverse language data (e.g.
data from Evol-Instruct & Deepseek-Prover-V1)
is added to the F* synthetic dataset, the model’s
accuracy on the F* validation set significantly im-
proves, regardless of the amount of original F*
synthetic dat (2) Within a certain range, more di-
verse data leads to better model performance. (3)
More high-quality synthetic data indeed leads to
better model performance, which suggests that for
languages like F*, where the model’s knowledge is
still limited, increasing the amount of high-quality
language-specific fine-tuning data is beneficial for
improving the model’s performance.

6 Project-Level Proof Synthesis

In this section, we present the experiments on
project-level proof synthesis tasks.

6.1 Training

Training Dataset Both the definition generation
and repair datasets are formatted using predefined
prompt templates, which are listed in Appendix C.
The prompt settings for definition generation and
repair are listed in A.2.

Next we integrated the formatted existing and
repository-level definition generation data, model-
generated and synthetic proof repair data, and the
mixed synthetic Function-Level data, and prepared
different data mixtures to dine the model, allow-
ing us to explore the influence of each dataset and
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Figure 4: PoPilot repairing failed outputs for state-of-
the-art models.

develop a best training corpus.
We detail the training set-up for PoPilot in A.3.

6.2 Validation
After expanding the problem-solution pairs for
both definition proof and repair tasks, we apply
execution-based validation (detail in 3.1.2) to filter
out incorrect solutions and store error messages for
the repair dataset and enhance the diversity of the
data. Since our data generation process involves
multiple LLMs and stages, and diversity is limited
by the fixed number of seed contexts and reference
examples, we apply an additional de-duplication
step. Specifically, we limit each unique type decla-
ration to at most two instances in the repair dataset,
ensuring diversity while minimizing redundancy.

6.3 PoPilot Auto-pilots and Co-pilots
In this section, we evaluate the supervised fine-
tuned models using different training data mixtures
as well as baseline models on the task of proof
generation and proof repair. Our evaluation data
is a random-sampled, held-out test set with 1K
repository -level definition proof problems. The
validation process consists of the following three
stages:

Definition Generation and Self-Repair: The
model generates F* proofs given a type declaration
and context (see example prompt in C), sampling ei-
ther 5 times followed by 5 repair attempts (Sample-
5 + Repair-5) or 10 times directly (Sample-10). If
at least one proof compiles, the problem is solved.
Otherwise, for the Sample-5 group, failed attempts
and error messages are stored for repair, where
the model randomly selects an incorrect response
and generates 5 additional repair attempts to fix
the incorrect proofs. This setup allows us to com-
pare whether self-repairing incorrect generations

improves success rates over simply increasing the
sampling budget.

Repair Using Outputs from Other Models: To
further assess model performance, we use incorrect
proofs generated by a baseline model as input to
our fine-tuned model. This allows us to evaluate
whether fine-tuning enhances the model’s ability to
generalize and improve proof repair across differ-
ent model outputs.

6.4 Result

We evaluate fine-tuning performance using Gener-
ate@5 and Repair@5 metrics. Generate@5 repre-
sents the correctness rate when sampling the model
five times on the proof generation task, while Re-
pair@5 measures the number of additional ques-
tions correctly repaired after sampling five repair
attempts on incorrect solutions from the previous
stage. As shown in Table 2, fine-tuning QWEN2.5-
CODER-14B on our generated dataset outperforms
five larger state-of-the-art coding LLMs in both
repository-level proof generation and self-repair
tasks.

Proof Repairing Ability: We use the model fine-
tuned with the data mixture Existing Repository-
Level Definitions + Synthetic Project Proofs + All
Repair dataset (see Table 2) to repair incorrect out-
puts from the baseline models. The results in Fig-
ure 4 demonstrate its effectiveness in repairing out-
of-distribution incorrect proofs. Notably, our fine-
tuned model surpasses all baseline large models in
correcting their own incorrect answers, bringing
a significant improvement in the total number of
correct solutions. This suggests a possible applica-
tion where a fine-tuned, smaller model serves as a
debugging assistant for larger models, allowing for
potentially efficient co-serving of these powerful
models to efficiently adapt to the domain of proof
oriented programming.

Data Mixture Analysis: Table 2 shows how dif-
ferent fine-tuning data mixtures impact proof gen-
eration and repair. (1) Augmenting the existing
repository-level set with model-generated defini-
tions significantly improves Generate@5 and Re-
pair@5 accuracy, demonstrating the effectiveness
of our generated definitions. (2) Rule-based syn-
thetic repair data alone does not enhance repair
performance, suggesting that rule-based errors may
not accurately reflect the error situations the model
would have encountered. (3) Model-generated re-
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Baseline Models Generate@5 Repair@5 Gen+Rep (Total 10) Generate@10

QWEN2.5-CODER-7B-INSTRUCT 23.4 0.2 23.6 26.3
QWEN2.5-CODER-14B-INSTRUCT 24 0.4 24.4 26.9
QWEN2.5-CODER-32B-INSTRUCT 24.2 2.5 26.7 27.1
DEEPSEEK-CODER-V2-LITE-INSTRUCT 24.4 0.7 25.1 25.1
DEEPSEEK-V3 18.7 3.6 22.3 28.6
DEEPSEEK-CODER-33B-INSTRUCT 22.3 4.6 26.9 28.8
GPT-4O 22.2 1.7 23.9 23.8
QWEN2.5-72B-INSTRUCT 23.4 3.0 26.4 25.8
LLAMA-3.3-70B-INSTRUCT-TURBO 19.6 3.9 23.5 21.6
LLAMA-3.1-70B 19.3 2.3 21.6 22.4

Data Mixture

Existing Repos 30.7 1.0 31.7 35.3
+ Syn. Project Proof 32.2 2.2 34.4 36.2
+ Func + Syn. Project Proof 32.8 2.7 35.5 37.8
+ Syn. Project Proof + Syn. Repair 32.7 0.7 33.4 37.5
+ Syn. Project Proof + Model Repair 33.1 4.2 37.3 37.2
+ Syn. Project Proof + All Repair 34.0 4.7 38.7 38.0
POPILOT 33.0 6.4 39.4 38.5

Table 2: Performance comparison of baseline models and fine-tuning data configurations. Existing Repos: 30K
existing repository level definition + proofs from the seed dataset; Syn. Project Proof : 30K model generated
new definitions + proofs as described in 4.1; Func: synthetic simple questions mixed with other datasets in 5.2;
Syn. Repair: 30K synthetic repair data in 4.2.1, Model Repair: 30K model-generarted repair data in 4.2.2; All
Repair: Syn. Repair + Model Repair; PoPilot: Existing Repos + Syn. Project Proof + All Repair + 180K mixed
function-level coding data used to finetune the best performance in Table 1

pair data improves both repair accuracy (from 32.2
to 33.1) and generation accuracy (from 2.7 to 4.2),
indicating that language-model-produced errors
and repairs can better capture real-world failure
patterns than the synthetic ones, that are largely syn-
thetic, generated by mutating ASTs of the program.
(4) PoPilot trained with Existing Repos + Syn.
Project Proof + All Repair + Mixed Function-
Level Data – our most diverse mixture of data
points – gives the highest Gen+Rep (39.4) and Gen-
erate@10 (38.5) across the board, confirming that
diverse data improves both proof generation and
repair. The function-level synthetic data for F* and
mixture from other languages well complement the
repository-level F* verification and repair data, and
boosts the model’s performance.

7 Related Work

Language Models For Code Large language
models (LLMs) have advanced in code generation
(Chen et al., 2021; Austin et al., 2021), program
repair (Xia and Zhang, 2022; Xia et al., 2023; Jin
et al., 2023), and software engineering tasks like is-
sue fixing (Jimenez et al., 2023) and testing (Deng
et al., 2023). Open-source models (e.g., Qwen2.5-
Coder (Hui et al., 2024b), Deepseek-Coder (Guo
et al., 2024)) and closed-source models (e.g., GPT-
4o (Hurst et al., 2024)) undergo pre-training on

large-scale code datasets (Radford, 2018; Nijkamp
et al., 2022), followed by post-training via instruc-
tion fine-tuning (Muennighoff et al., 2023; Roziere
et al., 2023; Luo et al., 2023; Chaudhary, 2023) or
reinforcement learning (Ouyang et al., 2022b; Bai
et al., 2022). While these models excel in common
languages like Python and C++, proof-oriented lan-
guages such as F* (Swamy et al., 2011) remain
underrepresented, limiting their effectiveness in
proof synthesis.

Language Models For Formal Proof Formal
theorem proving and proof repair offer an appeal-
ing domain for unlocking the reasoning potential
of LLMs, with proofs being easier to verify rig-
orously without hallucination(Yang et al., 2023),
in both mathematical theorem proving and formal
program verification. Currently, Language models
have shown capability in formal languages such as
Isabelle(Jiang et al., 2022; Wang et al., 2023a; Zhao
et al., 2023) and Lean (Polu et al., 2022; Han et al.,
2021; Yang et al., 2023). Researchers have also ex-
plored various approaches to optimize automated
theorem proving using large language models: em-
ploying retrieval-augmented assistance(Yang et al.,
2023), improving search efficiency by dynamically
allocating computational resources (Wang et al.,
2023b), predicting the progress of proofs(Huang
et al., 2025), employing LLMs as copilots that as-
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sist humans in proving theorems(Song et al., 2024;
Kozyrev et al., 2024), and introducing synthetic
data during training(Wang and Deng, 2020; Xin
et al., 2024; Lin et al., 2025; Wu et al., 2024). How-
ever, most of these efforts focus on mathematical
domains rather than repository-level software veri-
fication, which is addressed by PoPilot.

Synthetic Data for Instruction Tuning Instruc-
tion fine-tuning improves LLMs’ ability to fol-
low instructions and relies on high-quality datasets
(Zhou et al., 2024; Wang et al., 2022). Since
human-annotated datasets are costly (Ouyang et al.,
2022a; Köpf et al., 2024; Zheng et al., 2024), re-
cent methods focus on LLM-generated instruction
data (Wang et al., 2022; Gunasekar et al., 2023;
Wang et al., 2024; Xu et al., 2024). Self-Instruct
(Wang et al., 2022) pioneered this approach, later
extended by Alpaca (Taori et al., 2023) and Code
Alpaca (Chaudhary, 2023). Evol-Instruct (Xu et al.,
2023; Ahn et al., 2024) and Code Evol-Instruct
(Luo et al., 2023) introduced multi-stage genera-
tion for better instruction diversity, though risks of
reinforcing biases remain (Yu et al., 2024). OSS-
INSTRUCT (Wei et al., 2024b) and SelfCodeAlign
(Wei et al., 2024a) mitigate this by leveraging open-
source data, while MultiPL-T (Cassano et al., 2024)
enables cross-lingual instruction transfer.

8 Conclusion

In this work, we propose a synthetic data recipe for
instruction-tuning code language models to become
proficient proof-oriented programmers in F* under
extreme data scarcity. By synthesizing function-
level F*, diversifying with other programming lan-
guages and tasks and generating new verification
tasks on a repository level, we build a powerful
PoPilot that outperforms powerful language mod-
els, even GPT-4o with only 14B parameter. We
further show that PoPilot can work together with
existing code LMs to improve their proof-oriented
programming capabilities by large margins. More
broadly, we present a variable path for low-resource
programming languages and verification tools, low-
ering the barrier to adopting formal verification in
real-world software development.

Limitations This work focuses on the program-
ming language of F*, but did not experiment
with other languages due to their lack of well-
established evaluation suite.
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Miłoś, Yuhuai Wu, and Mateja Jamnik. 2022. Thor:
Wielding hammers to integrate language models and
automated theorem provers. Advances in Neural In-
formation Processing Systems, 35:8360–8373.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin
Shi, Shuai Lu, Neel Sundaresan, and Alexey Svy-
atkovskiy. 2023. Inferfix: End-to-end program repair
with llms. In Proceedings of the 31st ACM Joint Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 1646–1656.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richárd Nagyfi, et al. 2024. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Process-
ing Systems, 36.

Andrei Kozyrev, Gleb Solovev, Nikita Khramov, and
Anton Podkopaev. 2024. Coqpilot, a plugin for llm-
based generation of proofs. In Proceedings of the
39th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 2382–2385.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu,
Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. 2025. Goedel-
prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

Chloe Loughridge, Qinyi Sun, Seth Ahrenbach, Fed-
erico Cassano, Chuyue Sun, Ying Sheng, Anish Mu-
dide, Md Rakib Hossain Misu, Nada Amin, and
Max Tegmark. 2024. Dafnybench: A benchmark
for formal software verification. arXiv preprint
arXiv:2406.08467.

23110

https://huggingface.co/datasets/AllenGeng/ocamlgithub
https://huggingface.co/datasets/AllenGeng/ocamlgithub
https://huggingface.co/datasets/AllenGeng/ocamlgithub
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770


Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Microsoft. 2024a. The dafny programming and verifica-
tion language. https://dafny.org.

Microsoft. 2024b. F*: A proof-oriented programming
language. https://fstar-lang.org.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro Von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022a.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022b. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2022. Formal mathematics statement curriculum
learning. arXiv preprint arXiv:2202.01344.

Julian Aron Prenner and Romain Robbes. 2023.
Runbugrun–an executable dataset for automated pro-
gram repair. arXiv preprint arXiv:2304.01102.

Alec Radford. 2018. Improving language understanding
by generative pre-training.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar.
2024. Towards large language models as copi-
lots for theorem proving in lean. arXiv preprint
arXiv:2404.12534.

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-
Yves Strub, Karthikeyan Bhargavan, and Jean Yang.
2011. Secure distributed programming with value-
dependent types. ACM SIGPLAN Notices, 46(9):266–
278.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin
Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. 2023a. Lego-
prover: Neural theorem proving with growing li-
braries. arXiv preprint arXiv:2310.00656.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen,
Yichun Yin, Jing Xiong, Enze Xie, Han Shi, Yujun
Li, Lin Li, et al. 2023b. Dt-solver: Automated theo-
rem proving with dynamic-tree sampling guided by
proof-level value function. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12632–12646.

Mingzhe Wang and Jia Deng. 2020. Learning to prove
theorems by learning to generate theorems. Advances
in Neural Information Processing Systems, 33:18146–
18157.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T
Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, and
Tomas Pfister. 2024. Codeclm: Aligning language
models with tailored synthetic data. arXiv preprint
arXiv:2404.05875.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng
Ding, Naman Jain, Zachary Mueller, Harm de Vries,
Leandro Von Werra, Arjun Guha, and Lingming
Zhang. 2024a. Selfcodealign: Self-alignment for
code generation. arXiv preprint arXiv:2410.24198.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024b. Magicoder: Empowering
code generation with oss-instruct. In Forty-first Inter-
national Conference on Machine Learning.

23111

https://dafny.org
https://fstar-lang.org
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.
Internlm2. 5-stepprover: Advancing automated theo-
rem proving via expert iteration on large-scale lean
problems. arXiv preprint arXiv:2410.15700.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the
era of large pre-trained language models. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 1482–1494. IEEE.

Chunqiu Steven Xia and Lingming Zhang. 2022. Less
training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceed-
ings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Founda-
tions of Software Engineering, pages 959–971.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024. Magpie: Alignment data
synthesis from scratch by prompting aligned llms
with nothing. arXiv preprint arXiv:2406.08464.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. 2023. Le-
andojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information
Processing Systems, 36:21573–21612.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander J Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2024. Large language model as
attributed training data generator: A tale of diversity
and bias. Advances in Neural Information Processing
Systems, 36.

Dylan Zhang, Justin Wang, and Francois Charton. 2024.
Only-if: Revealing the decisive effect of instruc-
tion diversity on generalization. arXiv preprint
arXiv:2410.04717.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. 2023.
Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. arXiv
preprint arXiv:2305.16366.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric P. Xing, Joseph E. Gonza-
lez, Ion Stoica, and Hao Zhang. 2024. Lmsys-chat-
1m: A large-scale real-world llm conversation dataset.
Preprint, arXiv:2309.11998.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

A Experiment Setting

A.1 Function-level Data Experiment Setting

We finetune Qwen2.5-Coder-7B on our dataset for
one epoch using one NVIDIA A100-40GB GPU.
The initial learning rate is set at 5e-6 while the
batch size is set at 256. During finetuning, we
adopt the OpenRLHF (Hu et al., 2024) library and
modules, applying LoRA (Hu et al., 2021) with a
rank of 32 and an alpha of 32.

A.2 Prompt Setting

For definition generation prompt, we will provide
the type declaration, set the max prompt length to
4096 tokens, and use all the opened modules and
premises, 15 selected premises the model may use,
and 10 retrieved related examples. For the repair
prompt. the problem also includes the incorrect
solution and its corresponding error message to
guide the model in learning error correction, but
excludes the selected premises since (Chakraborty
et al., 2024) discovers that the premises has limited
effect on proof repairing. We also use fewer related
examples in repair prompts to limit the prompt
length

A.3 Model-generate Data Experiment Setting

We train Qwen2.5-Coder-14B using supervised
fine-tuning for one epoch using 4507 × NVIDIA
A100-40GB GPU, with learning rate508 1e-5 and
batch size 64. We adopt OpenRLHF (Hu509 et al.,
2024), applying LoRA (Hu et al., 2021) with510 a
rank of 32 and an alpha of 32.

B Problem-Solution Pair Examples

Example 1

val clientCertTypeExtension_serializer:
LP.serializer
c lientCertTypeExtension_parse

let clientCertTypeExtension_serializer =
LP.serialize_vlarray
1 255 certificateType_serializer
1 255 ()
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Example 2

val
clens_uncompressedPointRepresentation32_x:
LL.clens
uncompressedPointRepresentation32
uncompressedPointRepresentation32_X

let clens_uncompressedPointRepresentation32
_x
: LL.clens
uncompressedPointRepresentation32
uncompressedPointRepresentation32_X = {
LL.clens_cond = (fun _ -> True);
LL.clens_get = (fun x -> x.x);

}

C Prompt Templates

C.1 Definition Generation Prompt Example

You are tasked with F* code generation.
You will be given a type declaration,
and you need to write a definition for
it.
## Type declaration:
val tau: Prims.unit -> Tac unit

1. Write the definition that satisfies the
above type.

2. Start the definition with ``` let tau ``` .
3. Only write in F* code.
4. Add END token after completing the

definition.

## Possibly useful premises:

FStar.Tactics.Effect.raise
FStar.Pervasives.reveal_opaque
FStar.Tactics.Effect.get
FStar.Tactics.Effect.tactic
FStar.Pervasives.Native.snd
FStar.Pervasives.Native.fst
FStar.Monotonic.Pure.

elim_pure_wp_monotonicity
FStar.Tactics.Types.issues
FStar.Pervasives.dfst
FStar.Pervasives.dsnd
FStar.Tactics.Effect.tac_return
FStar.Monotonic.Pure.

elim_pure_wp_monotonicity_forall
FStar.Tactics.Effect.tac

FStar.Monotonic.Pure.
intro_pure_wp_monotonicity

Prims.l_True

## Already opened files and delared modules

open FStar
open FStar.Pervasives
open Prims
open FStar.Tactics.V2

## Related types and definitions

val tau: Prims.unit -> Tac unit
let tau () : Tac unit =

apply_lemma (`refl)
val tau: Prims.unit -> Tac unit
let tau () : Tac unit =

let * = implies*intro () in
let * = implies*intro () in
let * = implies*intro () in
let b = implies_intro () in
var_retype b; // call retype,
get a goal `p == ?u`
let pp = `p in
let rr = `r in
grewrite pp rr; // rewrite p to q,
get `q == ?u`
trefl (); // unify
apply_lemma (`l); //prove (p == q),
asked by grewrite
let e = cur_env () in
match vars_of_env e with
| [_;_;_;b] ->

let t = type_of_binding b in
let t = norm_term [] t in
// contains uvar redexes.
if FStar.Order.ne
(compare_term t rr)

then fail "binder was not retyped?"
else ();
apply_lemma (`l2);
assumption' ();
qed ()

| _ ->
fail "should be impossible"

Write your response below.
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C.2 Repair Prompt Example

You are tasked with F* code generation.
You will be given a type declaration,
and an incorrect student solution.
You need to produce a correct solution.

## Type declaration:

val clientHelloExtension_e_session
_ticket_clens:

LL.clens clientHelloExtension_
e_session_ticket

sessionTicket

1. Write the definition
that satisfies the above type.

2. Start the definition
with
```

let clientHelloExtension
_e_session_ticket_clens

``` .
3. Only write in F* code.
4. Add END token after completing

the definition.

## Already opened files and delared modules

open MiTLS.Parsers.SessionTicket
open Prims
open FStar.Bytes
open MiTLS.Parsers
open FStar.Pervasives
open FStar

## Related types and definitions

val newSessionTicketExtension_clens'
_session_ticket:
LL.clens newSessionTicketExtension
newSessionTicketExtension_e_default

let
newSessionTicketExtension_clens'
_session_ticket
: LL.clens newSessionTicketExtension
newSessionTicketExtension_e_default =
LL.clens_dsum_payload
newSessionTicketExtension_sum

(LL.Known
(known_extensionType_as_enum_key
Session_ticket))

val newSessionTicketExtension_clens'
_client_certificate_type:
LL.clens newSessionTicketExtension
newSessionTicketExtension_e_default

let newSessionTicketExtension_clens'
_client_certificate_type :
LL.clens newSessionTicketExtension
newSessionTicketExtension_e_default
= LL.clens_dsum_payload
newSessionTicketExtension_sum
(LL.Known (known_extension
Type_as_enum_key
Client_certificate_type))

## Student Solution

@@ Student F* Code
```fstar
open FStar
open Prims
open FStar.Pervasives
open MiTLS.Parsers
open MiTLS.Parsers
open FStar.Bytes
module U8=FStar.UInt8
module U16=FStar.UInt16
module U32=FStar.UInt32
module U64=FStar.UInt64
module LP=LowParse.Spec.Base
module LS=LowParse.SLow.Base
module LSZ=LowParse.SLow.Base
module LPI=LowParse.Spec.AllIntegers
module LL=LowParse.Low.Base
module L=FStar.List.Tot
module B=LowStar.Buffer
module BY=FStar.Bytes
module HS=FStar.HyperStack
module HST=FStar.HyperStack.ST
open MiTLS.Parsers.SessionTicket
open MiTLS.Parsers.
ClientHelloExtension_e_session_ticket
#push-options "--initial_fuel 2 -
-max_fuel 8 --initial_ifuel 1
--max_ifuel 2 --smtencoding.elim_box false
--smtencoding.nl_arith_repr boxwrap
--smtencoding.l_arith_repr boxwrap
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--smtencoding.valid_intro true
--smtencoding.valid_elim false
--z3rlimit 5 --z3rlimit_factor
1 --z3seed 0"

#restart-solver
val
clientHelloExtension_e
_session_ticket_clens
:LL.clens
clientHelloExtension_e_session_ticket
// Error Range Start - Line 27
sessionTicket

// Error Range End - Line 27
let
clientHelloExtension_e
_session_ticket_clens
:LL.clens sessionTicket =
{
LL.clens_cond = (fun _ -> True);
LL.clens_get
=
(fun (x:

clientHelloExtension_e_session_ticket)
-> (x <: sessionTicket))

}

@@ Error Message
- Expected type "Type"; but
"LL.clens sessionTicket"
has type "t2: Type -> Type"

- Expected type "Type";
but "LL.clens sessionTicket"
has type "t2: Type0 -> Type"

- Expected type
"LL.clens sessionTicket";
but "LL.Mkclens (fun _ -> l_True)
(fun x -> x <: sessionTicket)" has type
"LL.clens
clientHelloExtension_e_session_ticket
sessionTicket"

- Expected type
"LL.clens
clientHelloExtension_e_session_ticket
sessionTicket";
but "LL.Mkclens (fun _ -> l_True)

(fun x -> x <: sessionTicket)
<: LL.clens sessionTicket"
has type "LL.clens
sessionTicket"

Write your response below.

C.3 New Definition Prompt Example

You are tasked with generating F* code.
You will be given some premises,
opened modules and some example type
declarations and definitions. Your
goal is to write a different type
declaration and a corresponding
definition that satisfies the
type declaration.

You can use the information
provided in the following sections
to help you construct the new
type declaration and definition.
Here's how you can use each section:

Possibly useful premises:

This section lists modules, types,
or functions that might be helpful.
Consider incorporating them into
your definition if appropriate.

Already opened files and declared
modules:

The modules listed here
are already opened in the context.
You can use definitions from these
modules directly without needing
to prefix them with the module name.

Example type declarations and
definitions:

This shows some examples
of how a definition satisfying a
similar type declaration can be
written. Each example is delimited
using "```". Use this as a reference
for the structure and style,
but do not use the examples
definitions in your answer.
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Use the information provided to
write one new type declaration
and a definition that satisfies
this new type declaration.
Only write in F* code, you don't
need to provide any explanation or
example.
Start your new type declaration
and definition with "val" and "let"
respectively, and add END after
completing the definition.
You should only use the premises
from "Possibly useful premises".

## Possibly useful premises:

FStar.Tactics.Effect.raise
FStar.Pervasives.Native.fst
FStar.Pervasives.Native.snd
FStar.Tactics.Types.issues
FStar.Tactics.Effect.get
FStar.Pervasives.dfst
FStar.Pervasives.dsnd
GradedMonad.monoid_nat_plus
GradedMonad.st
FStar.Pervasives.st_post_h
FStar.Pervasives.reveal_opaque
FStar.Issue.mk_issue
FStar.Pervasives.st_post_h'
FStar.Pervasives.st_pre_h
FStar.Monotonic.
Pure.elim_pure_wp_monotonicity

## Already opened files
and declared modules

open FStar.Pervasives
open FStar
open Prims

## Example definitions

```
val st_monad (s: _)
: monad (st s)
instance st_monad s
: monad (st s) =

{
return = (fun
#a (x:a) ->
(fun s -> x, s));
bind =
(fun #a #b (f: st s a)
(g: a -> st s b) (s0:s) ->

let x, s1 = f s0 in
g x s1);

}
```

```
val monad_functor (#m: _)
(d: monad m) : functor m
instance monad_functor #m
(d : monad m) : functor m =
{ fmap = (fun #_ #_ f x
-> bind #m x (fun xx
-> return #m (f xx))); }

```

```
val FStar.DM4F.MonadLaws.st
= s: Type -> a: Type -> Type
let st (s:Type) (a:Type)
= s -> Tot (a * s)
```

```
[@@ FStar.Tactics.
Typeclasses.tcinstance]
val opt_monad:monad option
instance opt_monad :
monad option =
{

return = (fun #a
(x:a) -> Some x);
bind = (fun #a
#b (x:option a)
(y: a -> option b) ->

match x with
| None -> None
| Some a -> y a)

}
```

Write your response below.
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Figure 5: Distribution of Top 10 Error Types of Model-
Generated Repair Data.

Model Gen@5 sample1-on-5 sample5-on-1

OUR BEST MODEL 34 +1.7 +4.7
QWEN2.5-CODER-32B 23.5 +0.8 +7.8

DS-CODER-33B 22.3 +4.6 +9.8

Table 3: Comparison of repair sampling strategies:
sample1-on-5 repairs each incorrect solution once,
while sample5-on-1 repairs the same incorrect solu-
tion multiple times.

D Ablation Study

D.1 Repair Sampling Strategy Ablation study
In the self-repair experiment, we tested an alterna-
tive strategy: sampling 5 incorrect solutions and
attempting to repair each once (totaling 5 repair
attempts). However, this approach performed sig-
nificantly worse than the Sample 1 & Repair 5
strategy, so we chose the latter in the following
experiments. The comparison of both strategies on
three models is shown in Table 3.

We hypothesize that proof repair remains a chal-
lenging task, even for our fine-tuned model. Allow-
ing multiple repair attempts on the same problem
increases the chances of success, leading to better
overall accuracy.

D.2 Fine-tune on smaller model
We used the same data of PoPilot to fine-tune
a Qwen/Qwen2.5-Coder-7B model, the result is
shown in table 4 with comparison to PoPilot and
the baseline models.

Given the small size of PoPilot, the performance
is reasonably good. However, the repair capability
is still minor, so we will just report PoPilot in our
main part.
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Baseline Models Generate@5 Repair@5 Gen+Rep (Total 10) Generate@10

QWEN2.5-CODER-32B-INSTRUCT 23.5 0.8 24.3 27.1
DEEPSEEK-CODER-33B-INSTRUCT 22.3 4.6 26.9 28.8
GPT-4O 22.2 1.7 23.9 23.8
QWEN2.5-72B-INSTRUCT 23.4 3.0 26.4 25.8
LLAMA-3.3-70B-INSTRUCT-TURBO 19.6 3.9 23.5 21.6

Data Mixtures (Qwen/Qwen2.5-Coder-7B)

Existing Repos 12.9 3.6 16.5 18.5
+ Syn. Project Proof 14.2 3 17.2 19.8
+ Func + Syn. Project Proof 14 3.7 17.7 18.7

+ Syn. Project Proof + Syn. Repair 13.9 3.8 17.7 18.7
+ Syn. Project Proof + Model Repair 15.2 4.4 19.6 20.8
+ Syn. Project Proof + All Repair 15 4.7 19.7 21.2

POPILOT-SMALL 21.9 3.9 25.8 29.2
POPILOT 33.0 6.4 39.4 38.5

Table 4: Performance comparison of the small model
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