
Findings of the Association for Computational Linguistics: ACL 2025, pages 23067–23086
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Just KIDDIN’ : Knowledge Infusion and Distillation for Detection of
INdecent Memes

Warning: This paper contains content that may be potentially offensive or upsetting.

Rahul Garg∗

IIIT Hyderabad
Hyderabad, India

rahul.garg@research.iiit.ac.in

Trilok Padhi∗
Georgia State University

Atlanta, GA, USA
tpadhi1@student.gsu.edu

Hemang Jain
IIIT Hyderabad

Hyderabad, India
hemang.jain@students.iiit.ac.in

Ugur Kursuncu
Georgia State University

Atlanta, GA, USA
ugur@gsu.edu

Ponnurangam Kumaraguru
IIIT Hyderabad

Hyderabad, India
pk.guru@iiit.ac.in

Abstract

Detecting toxicity in online multimodal envi-
ronments, such as memes, remains a challeng-
ing task due to the complex contextual connec-
tions across modalities (e.g., text and visual),
which demand both common-sense reasoning
and contextual awareness. To bridge this gap,
we propose a hybrid neurosymbolic framework
that unifies (1) distillation of implicit contextual
knowledge (e.g., sarcasm, cultural references)
from Large Vision-Language Models (LVLMs)
and (2) infusion of explicit relational semantics
through sub-graphs from Knowledge Graphs
(KGs). Experimental results on two benchmark
datasets show the superior performance of our
approach, Knowledge-Infused Distilled Vision-
Language Model (KID-VLM), over the state-of-
the-art baselines across AUC and F1, with im-
provements of 0.5%, and 10.6%, respectively,
in HatefulMemes Benchmark across variants.
Further, KID-VLM demonstrates better gener-
alizability and achieves the best performance
across all baselines in the HarMeme Dataset
with a 6.3% and 3.2% in F1 and AUC. Given
the contextual complexity of the toxicity detec-
tion, KID-VLM showcases the significance of
learning compact models (~500M parameters)
from both explicit (i.e., KG) and implicit (i.e.,
LVLMs) contextual cues incorporated through
a hybrid neurosymbolic approach. Our codes
and pretrained models are publicly available1.

1 Introduction

Online platforms have been increasingly prominent
in disseminating harmful content, challenging the
creation of safe digital spaces (Alatawi et al., 2021;
Kursuncu et al., 2019b). According to the PEW

∗Equal contribution.
1https://github.com/SWAN-AI/

Knowledge-Infused-Distilled-VLMs

Figure 1: Given a meme, we aim to derive the answer by
joint reasoning over the knowledge from LVLM, the KG
(green box), and reason over toxicity (red box).

Research Center, 41% of Americans report experi-
encing online harassment (Vogels, 2021), and re-
cent research highlights a surge in religious hate
speech during the COVID-19 pandemic (Chandra
et al., 2021). Detecting toxic content, especially
nuanced and context-dependent multimodal forms,
such as memes, remains a complex task (Kiela
et al., 2020b; Sheth et al., 2022). Pavlopoulos et al.
(2020) noted that context availability alters the per-
ceived toxicity in 5.2% of posts. Memes that appear
harmless can convey harmful messages through
sarcasm, irony, or cultural references, thus poten-
tially reinforcing negative stereotypes or societal
norms (Waseem and Hovy, 2018; Gonzalez and
Smith, 2020). Hence, accurate toxicity assessment
requires a thorough understanding of context, as
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implicit evaluations can misinterpret tone or intent
(Kursuncu et al., 2021; Sheth et al., 2022).

Although online multimodal toxicity detection
has witnessed improvements, current methods,
such as PromptHate (Cao et al., 2022a) and Hate-
CLIPper (Kumar and Nandakumar, 2022a), rely
solely on training data and pre-trained models,
which limits their ability to capture complex contex-
tual cues and nuances of toxicity. Moreover, while
larger models, such as Flamingo (Alayrac et al.,
2022) and LENS (Berrios et al., 2023), achieve
comparable performance, they require substan-
tial computational resources to deploy in limited-
resource settings. These models often struggle to
effectively address nuanced or context-dependent
toxicity due to their reliance on pattern recognition
without incorporating broader contextual knowl-
edge (Pavlopoulos et al., 2022).

Our approach, Knowledge-Infused Distilled
Vision-Language Model (KID-VLM), addresses
these limitations by leveraging ConceptNet (Speer
et al., 2017), a common sense knowledge graph
(KG) that enhances the comprehension of contex-
tual nuances. In this study, the following research
questions guide our investigation:
RQ1: How can we incorporate Knowledge Dis-
tillation (KD) from LVLMs and common sense
knowledge from KGs into compact models, enhanc-
ing their effectiveness in detecting toxicity within
memes?
RQ2: How does the generalizability of KID-VLM
compare to baseline methods in detecting toxic-
ity across datasets? HatefulMemes (Kiela et al.,
2020b) and HarMeme (Pramanick et al., 2021a)?
We present a novel approach that enhances com-

pact VLMs by combining KD from LVLMs with
knowledge infusion from KGs, enriching them with
both implicit and explicit contextual knowledge
(see Figure 1). Utilizing CLIP (Radford et al.,
2021) as the backbone, we extract visual and tex-
tual features from memes, supplemented with cap-
tions generated by the LLaVA 1.6-NeXT model
(Liu et al., 2024b) for additional contextual fea-
tures. These features are then fused using Align
Fusion (Kumar and Nandakumar, 2022b) to create
a multimodal representation, refined with knowl-
edge distilled from the teacher model’s caption rep-
resentations through consistency loss. This process
enables the student model to learn implicit contex-
tual cues. Using graph-based reasoning, we fur-
ther incorporate external knowledge from Concept-

Net, constructing a joint graph that combines the
meme context with KG entities. This knowledge-
enhanced multimodal representation is then opti-
mized using cross-entropy loss for final toxicity
predictions (see Figure 2).

Our findings demonstrate the effectiveness of the
KID-VLM framework, which outperforms the base-
lines. Error analysis and ablation studies further
highlight the significance of explicit and implicit
context incorporated through KD and infusion, pro-
viding improvements of 10.6% and 0.5% in F1 and
AUC, respectively. Further, our approach demon-
strates better generalizability compared to base-
lines, as seen in our performance on the HarMeme
Dataset, where KID-VLM outperforms all base-
lines with an AUC of 92.98.

2 Related Work

2.1 Online Toxicity Detection

Early approaches to online toxicity detection pri-
marily focused on textual content, employing tra-
ditional machine learning techniques (Leo et al.,
2023; Saha et al., 2023). These techniques have
evolved to utilize deep learning in addressing its
nuanced, context-dependent nature (Jonathan and
Setiawan, 2023; Karim et al., 2022). Kursuncu
et al. (2019a) incorporated multiple dimensions of
online content, utilizing domain-specific corpora
in detecting malicious actors. Multimodal Models
emerged (Kumar and Nandakumar, 2022a),(Cao
et al., 2022a), leveraging pre-trained VLMs and
prompt tuning to improve performance. However,
these methods lack mechanisms to integrate ex-
plicit, structured reasoning, such as socio-cultural
norms, necessary for identifying subtle forms of
hate in memes. Large multimodal systems, includ-
ing Flamingo-80B (Alayrac et al., 2022) and LENS
(Berrios et al., 2023), demand high computational
costs, challenging deployment (Erol et al., 2025).
Recent work, such as Pro-Cap (Cao et al., 2023a),
has attempted to address this by freezing VLMs
and aligning textual-visual features for efficient in-
ference. However, it still solely relies on training
data and retains dependence on monolithic models
without external knowledge. Efforts to improve
interpretability included (Lin et al., 2023a), which
distilled reasoning from LLMs into smaller archi-
tectures and a multimodal debate framework (Lin
et al., 2024a) that enhances transparency in meme
analysis.
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2.2 Knowledge Enhanced Learning

Knowledge Enhanced Learning can be broadly cat-
egorized into two complementary approaches: (i)
Knowledge Infusion (KI), which integrates struc-
tured external knowledge, such as KGs and ontolo-
gies, into models, and (ii) Knowledge Distillation
(KD), where a large teacher model guides the train-
ing of a compact student model, helping to achieve
similar performance with lower computational cost.

KI from KGs. KI enhances the model’s represen-
tations by incorporating external structured knowl-
edge from KGs and ontologies to capture explicit
context across modalities (Zhang et al., 2022; Kur-
suncu et al., 2020; Khandelwal et al., 2024). Xu
et al. (2024) have improved synthetic clinical data
generation by combining KGs with LLMs, enhanc-
ing performance, and addressing privacy and fair-
ness concerns. Lymperaiou et al. (2022) demon-
strated how KI can improve common sense and
temporal reasoning in multimodal contexts. Fur-
ther, Agrawal et al. (2023) investigated how KGs
can reduce hallucinations in LLMs, while Padhi
et al. (2024) enhanced cross-modal contextual con-
gruence for crowdfunding campaigns.

KD from Large Models. KD is a process in
which knowledge is transferred from a larger
teacher model to a smaller, more efficient student
model. Wang et al. (2020) demonstrated that KD
can effectively address incomplete modalities by
distilling information from a fully equipped mul-
timodal system. Building on this idea, Padhi et al.
(2025) demonstrated that external knowledge feed-
back enhances grounding, thereby improving cali-
bration of multimodal LLMs. This highlights how
incorporating cross-modal signals enhances model
confidence and robustness. Similarly, Hong and
Zhen (2023) applied KD to Graph Neural Networks
(GNNs) to enhance the capturing of community
structures. Setiawan (2024) introduced an n-best
reranking method to refine sequence-level KD for
neural machine translation. In contrast, Gholami
et al. (2024) proposed an out-of-distribution-guided
framework that enhances distilled models through
targeted data generation. Further, Wei et al. (2024)
compared sentence-level and token-level distilla-
tion under optimal conditions for each approach.

In contrast to prior work, our approach unifies
KD with KI via a neurosymbolic framework that
infuses explicit relational semantics from common-
sense KGs and distills implicit knowledge from

LVLMs. This approach aims to equip compact
models with the ability to learn from both knowl-
edge bases and large pre-trained models, thereby
boosting their multimodal reasoning capabilities.

3 Methodology

Our approach, KID-VLM, illustrated in Figure 2,
utilizes a frozen Vision-Language (VL) Encoder
as the student model S, ConceptNet as the KG K,
and an LVLM as teacher model T , serving as non-
parametric knowledge sources to query explicit
and implicit knowledge, respectively. For each
data point, a meme with an image Ii and over-
laid text Ti, a joint multimodal feature representa-
tion si is generated using the pre-trained student
model, si = S(Ii, Ti). To get the joint represen-
tation, we use the Align Fusion for it’s low com-
putational resource conditions (Kumar and Nan-
dakumar, 2022b). Concurrently, the teacher model
T produces a caption Ci capturing the meme’s
implicit context, which is used for two purposes:
(i) aid in teaching the student model through KD
loss LKD, and (ii) query ConceptNet to extract
relevant sub-KGs Gsub for each data point. The
distilled representation hdistilled from the student
model is then fused with the pooled representation
hgraph from sub-KGs obtained through a GNN G,
hgraph = G(Gsub). This fused representation is
optimized through Cross Entropy loss LCE , en-
abling the model to synthesize outputs from both
the teacher’s latent reasoning and the explicit rela-
tional knowledge from the KG.

3.1 Knowledge Distillation

We utilize HateCLIPper (Kumar and Nandakumar,
2022b) as our frozen VL Encoder for stable fea-
ture extraction from each meme, while the teacher
model, LLaVA-NeXT (Liu et al., 2024b), gener-
ates captions that capture the implicit context of
the memes (See Appendix Table 12) KD is em-
ployed only during the training stage to optimize
the student model’s multimodal representation, si,
by minimizing the consistency loss LKD, defined
as the Euclidean distance between the student’s si
and the representations of the captions obtained
from the teacher model. wLLaV a

i :

LKD = ∥si −wLLaV a
i ∥22 (1)

This KD process, which does not extend to the
testing stage, aligns the internal features of the
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Figure 2: KID-VLM framework: The framework unifies KD from an LVLM with KI from external KGs such as
ConceptNet. The input image and text are processed through the CLIP encoders to generate embeddings, which are
fused using different fusion mechanisms. 1⃝ Knowledge Extraction from Teacher Model. 2⃝ Multimodal Learning
Framework. 3⃝ Knowledge Extraction from KG. 4⃝ Joint Reasoning Space: reasoning using the implicit knowledge
from teacher model and explicit knowledge from KG for toxicity prediction.

student model with those of the teacher model, en-
abling the student to emulate the teacher’s latent
reasoning and recognize subtle implicit contextual
cues in the memes. Note that LLaVA is not used at
inference time. It is solely used in preprocessing
to create captions that guide knowledge retrieval,
ensuring our compact student model maintains a
lightweight inference footprint and enabling de-
ployment in low-resource settings.

3.2 Graph-Based Reasoning

To enrich the distilled multimodal representation
with explicit relational knowledge, we employ a
joint reasoning approach, which constructs joint
working graphs Gworking for each data point, pro-
viding a reasoning space for the meme’s overlaid
text Ti, sub-KG, and the generated caption Ci.
Then, this process generates a knowledge repre-
sentation for working graphs through GNNs (Ya-
sunaga et al., 2021).

3.2.1 Working Graph Construction
To construct the working graph Gworking, we first
extract a sub-KG Gsub from ConceptNet (See Fig-

ure 2) incorporating concepts from the meme’s text
and the teacher-generated caption. We explicitly
connect this sub-KG in a joint graph with a new
context node z, which represents the meme context
and connects to each entity from the meme’s text
and teacher-generated text. The heuristic retrieval
of Gsub from a KG can introduce irrelevant nodes,
potentially adding noise and complicating reason-
ing, especially with large sub-KGs (Yasunaga et al.,
2021).

To assess the semantic alignment between the
context node z and each candidate node v ∈ Gsub,
we apply two relevance scoring methods. The first
approach uses the RoBERTa language model (Liu
et al., 2019), where the perplexity score of the con-
catenated textual inputs [z; v] is used to evaluate
relevance. The second utilizes MiniLM (Wang
et al., 2021) in conjunction with Sentence Trans-
formers to compute the cosine similarity between
the contextual and entity embeddings. For all main
experiments and benchmark evaluations, we use
MiniLM-based scoring due to its computational
efficiency and strong performance. However, to
evaluate robustness, we additionally report results
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using RoBERTa-based scoring in a separate abla-
tion study (see Table 3).

The nodes within this sub-KG are ranked by rel-
evance scoring to minimize noise and focus on the
most relevant KG entities. This scoring involves
evaluating the relationship of each node v ∈ Vsub,
where Vsub represents the nodes of Gsub, with the
overall meme context, encapsulated by the con-
text node z. The relevance score ρv is calculated
through the Roberta model (Liu et al., 2019) by
passing the concatenated text representations of z
and v. The relevance score is determined using the
perplexity score:

ρv = fhead(fenc([text(z); text(v)])) (2)

where fenc represents the encoder (Roberta) and
fhead is the scoring head. A lower perplexity score
indicates higher semantic relevance, helping pri-
oritize nodes that align closely with the meme’s
context. For additional validation, we compute the
cosine similarity between the concatenated text rep-
resentation of z and KG entities v using MiniLM
(Wang et al., 2021) (Sentence-Transformer) as the
relevance score ρv = cosine(z, v) to help iden-
tify the contextually significant nodes. We sepa-
rately assess the relevance using scores from both
Roberta and MiniLM in our experiments, selecting
the top k = 750 most relevant entities to include
in the working graph GW (referred to as Gworking
in Figure 2). After constructing GW , context node
z is added to bridge knowledge from the teacher
model with that from KG. This node is then linked
to the entities Vsub in the working graph with a
new relationship r′, finalizing GW for subsequent
knowledge representation learning.

3.2.2 Knowledge Representation Learning
To process and learn the representation of the
joint working graph GW , we employ the Rela-
tional Graph Convolutional Network (R-GCN)
(Schlichtkrull et al., 2017), which enhances node
representations by applying relation-specific trans-
formations to aggregate information from neigh-
boring nodes through structured interactions:

h(l+1)
v = σ


∑

r∈R

∑

u∈Nr(v)

W (l)
r h(l)u


 (3)

where h
(l+1)
v is the updated representation of node

v at layer l+1, σ is the activation function, W (l)
r is

the relation-specific transformation matrix, Nr(v)
represents the set of neighbors connected to v by

relation r, and h
(l)
u is the representation of a neigh-

boring node u at layer l. In addition, we learn a
pooled representation of the graph to generate a
single vector representing the entire working graph
using Mean Pooling (Appendix A).

Fusion Mechanism: The pooled graph represen-
tation hgraph is then fused with the distilled mul-
timodal representation hdistilled through Gated Fu-
sion (Xiong et al., 2024) mechanism:

Fmultimodal = G⊙ hgraph + (1−G)⊙ hdistilled
(4)

where Fmultimodal is fused multimodal representa-
tion and G is the gating mechanism given by:

G = σ
(
Wg

(
hgraph ∥ hdistilled

))
(5)

Wg is a learnable weight matrix, and σ is the
sigmoid activation function.

Loss Function: The model is trained using a
joint loss function:

Ltotal = λ1LBCE + λ2LKD (6)

where LBCE is the Binary Cross-Entropy Loss
for meme classification, and LKD is the Consis-
tency Loss for distillation, ensuring alignment be-
tween the multimodal fusion and captions from the
teacher model. The losses are weighted using hy-
perparameters, and the overall loss is minimized
using the AdamW optimizer.

3.3 Experimentation and Evaluation
We conducted experiments on two benchmark
datasets: HatefulMemes (Kiela et al., 2020b) and
HarMeme (Pramanick et al., 2021b). Detailed
statistics are provided in Appendix B. For eval-
uation consistency with prior research (Kumar and
Nandakumar, 2022a; Cao et al., 2022a), we used
AUC, F1 score, Precision, Recall, and Accuracy.
The HatefulMemes dataset provided two distinct
‘Seen’ and ‘Unseen’ data splits to assess the gen-
eralization ability and robustness of each model.
The datasets include text annotations for memes,
utilized as the text modality, avoiding any influence
from LVLM’s OCR limitations.
KI: We employed ConceptNet for explicit contex-
tual information. We leveraged multi-hop traversal
to expand the model’s contextual understanding,
specifically experimenting with Hop 1 and Hop
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Framework Accuracy F1 Precision Recall AUC

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

MMBT 68.80 70.85 67.61 64.73 71.25 70.55 68.44 64.47 77.84 77.12
CLIP* 59.50 70.85 53.88 65.67 76.40 69.75 25.10 65.21 72.14 76.25
CLIP 60.30 62.80 57.10 55.50 69.62 58.45 33.67 56.19 68.30 57.78

LLaVa+ 54.30 63.55 29.58 19.60 60.38 53.85 19.59 28.74 - -
PromptHate 76.10 75.75 75.76 72.94 77.30 74.66 76.10 72.20 84.21 80.43
ExplainHM + LLM Debate 69.40 68.05 65.23 55.72 73.59 58.01 58.57 53.50 74.61 71.82
Pro-Cap + Targeted Captions 75.50 74.35 75.30 73.46 76.02 73.21 75.35 74.41 83.65 81.34
HateClipper 76.07 76.65 73.00 64.21 78.00 75.50 56.00 55.87 85.14 83.70
RGCL 78.30 77.65 76.23 67.20 82.27 74.71 71.02 61.07 86.72 84.46

KID-VLM + Hop 1 & MiniLM 78.70 77.00 78.63 73.87 80.57 76.69 74.49 72.91 86.11 84.86
KID-VLM + Hop 2 & MiniLM 76.30 76.85 75.95 74.29 82.52 75.84 65.51 73.56 85.48 83.99

Table 1: Performance Comparison of various models on the HatefulMemes Dataset (seen & unseen splits). Top
values for each metric are expressed in (bold). * represents Frozen CLIP encoders, + represents zeroshot evaluation.

2 expansions. We also varied the topk most rele-
vant nodes, where k ranged from 250 to 750. This
range was chosen because higher values exceeded
resource limitations, while fewer than 250 nodes
compromised the depth of contextual information.
Fusion: For integrating multimodal and graph
representations, we explored several fusion mecha-
nisms, including Gated Fusion, Multiplicative Fu-
sion, Bilinear Fusion, and Hierarchical Attention
Fusion (Appendix C). To process the Gw, we uti-
lized RGCN for all our experiments based on our
ablation study results.

3.4 Baselines
To evaluate the performance of our KID-VLM ap-
proach, we benchmarked against several compact
VLMs from prior research, which include HateClip-
per (Kumar and Nandakumar, 2022b), RGCL (Mei
et al., 2023), Pro-Cap (Cao et al., 2023b), Explain-
HM (Lin et al., 2024b), Mr. Harm (Lin et al.,
2023b), and PromptHate (Cao et al., 2022b). We
also incorporated the Multimodal Bitransformers
(MMBT) (Kiela et al., 2020a) and various imple-
mentations of CLIP-based models (Radford et al.,
2021) to facilitate a broad comparative analysis. In
addition, we fine-tuned only the projection layers
of CLIP, designated as CLIP*. The LLaVA-NeXT
(Liu et al., 2024b) was used in a zero-shot setting to
compare with a Large VLM. Our primary baseline
reference for all reported values is RGCL.

3.5 Implementation Details
We utilized Optuna to optimize the model’s hyper-
parameters. Our parameter sweep included GNN

hidden dimensions, number of layers, learning rate,
fusion methods, and dropout rates. GNN hidden
and output dimensions ranged from 2 to 512 and
2 to 1024, respectively. Mapping layer dimen-
sions were set between 2 and 2048. Learning rates
ranged from 1e− 10 to 1e− 2, and dropout proba-
bilities from 0.0 to 0.9. We also tuned the number
of mapping and pre-output layers (1 to 5), weight
decay (1e− 8 to 1e− 1), and the loss alpha (0 to
1). The model was trained for 30 epochs via the
AdamW optimizer, with learning rate warm-up and
linear decay. We used a batch size of 4 on RTX
5000 and L40 GPUs with 32 and 40 GB of VRAM,
respectively. Model performance was monitored
on the validation set, and the best model was se-
lected based on validation AUC. The total trainable
parameter count in KID-VLM remains well under
1B, including the CLIP encoders, the graph reason-
ing modules (R-GCN), and fusion layers, aligning
with the compact model threshold from prior work
(Izsak et al., 2019; Houlsby et al., 2019), which
positions KID-VLM as performant and efficient.

4 Results & Discussion

Our analysis shows that KID-VLM, which inte-
grates external knowledge from ConceptNet and
distills information from the LLaVA model, outper-
forms the competitive baseline models from prior
research (Mei et al., 2023; Cao et al., 2023b; Lin
et al., 2024a; Cao et al., 2022b) across both the
HatefulMemes and HarMeme datasets (see Tables
1 and 2). On the HatefulMemes dataset across vari-
ants, our approach outperforms by 3.2% in F1 score
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Framework Accuracy F1 Precision Recall AUC

CLIP* 70.62 58.01 73.79 59.55 90.80
CLIP 66.67 55.04 62.21 56.51 80.82

LLaVa+ 80.23 67.59 79.35 58.87 -
PromptHate 78.53 78.28 80.02 82.73 90.72
Pro-Cap+Target-based Captions 83.90 83.18 82.62 85.38 90.97
ExplainHM+LLM Debate 84.75 77.50 80.17 75.00 92.05
Mr.Harm+Label Rationale 74.29 62.76 85.83 63.31 -
HateClipper 83.33 79.29 70.19 91.13 91.90
RGCL 84.75 79.39 75.36 83.87 90.10

KID-VLM+Hop 1 & MiniLM 84.46 83.85 83.38 86.37 92.77
KID-VLM+Hop 2 & MiniLM 85.03 84.40 83.86 86.81 92.98

Table 2: Performance Comparison of various models on HarMeme Dataset across multiple metrics. The top values
for each metric are expressed in (bold). * represents Frozen CLIP encoders, + represents zeroshot evaluation.

for the seen split and 10.6% for the unseen split. It
also improves AUC by 0.5% on the unseen split.
For the HarMeme dataset, it shows improvements
of 6.3% and 3.2% in F1 and AUC, respectively.
The KID-VLM with MiniLM and Hop 2 traversal
demonstrate overall higher performance on both
datasets. KID-VLM with Hop 1 models also per-
form competitively, often matching or outperform-
ing other models. We observe that baseline models
often exhibit a trade-off between precision and re-
call, whereas KID-VLM models show a notable
balance, reflected in higher F1 and AUC scores.
This robust performance across metrics suggests
the ability to capture the underlying patterns of tox-
icity. Further, our models’ performance on the un-
seen split of the HatefulMemes dataset highlights
better generalization capabilities, suggesting that
the broader contextual understanding afforded by
Hop 2 allows the model to generalize beyond the
training data.

4.1 Performance on HatefulMemes Dataset

Our framework, utilizing both Hop 1 and Hop 2
traversals, demonstrates consistent robust perfor-
mance on both seen and unseen splits of the Hate-
fulMemes dataset, outperforming baseline models.
Specifically, the KID-VLM with Hop 1 and Gated
Fusion achieved an F1 score of 78.63, an AUC of
86.11, and an accuracy of 78.70. Notably, the Hop
2 variant achieved the highest recall at 76.14 while
maintaining robust accuracy and AUC, highlight-
ing its capability to detect contextual nuances of
toxicity. The KID-VLM models showcase a well-
balanced trade-off between precision and recall.
The integration of MiniLM for relevancy scoring
in the creation of a working graph improved per-

formance, which can be attributed to MiniLM’s
ability to refine entity selection, leading to a more
semantically coherent working graph, enhancing
graph-based reasoning by reducing sparsity, and im-
proving relational inference. While MMBT, CLIP,
and LLaVA show varied results, CLIP-based mod-
els underperform on the unseen split, particularly
in precision and recall. HateClipper and RGCL pro-
vide competitive baselines, with RGCL displaying
an AUC of 86.72 on the seen split.

4.2 Performance on HarMeme Dataset

On the HarMeme dataset, KID-VLM with Hop 2
achieved the highest overall performance with an
F1 score of 84.40 and an AUC of 92.98, which rep-
resents the state-of-the-art for this dataset. The Hop
1 model also outperforms the baselines, demon-
strating the efficacy of the KID-VLM framework
integrating external knowledge for meme classifi-
cation. The improvement between Hop 2 and Hop
1 indicates the capturing of broader contextual cues
enhancing performance. Mr.Harm and HateClip-
per outperform in precision and recall, respectively,
while both fall short in recall and precision, show-
casing a trade-off. Pro-Cap and ExplainHM ex-
hibit more balanced results, albeit not matching the
overall performance of KID-VLM. RGCL notably
underperforms on this dataset, in contrast to its
performance on the seen split of the HatefulMeme
dataset (see Table 1).

4.3 Impact of Node Count

The ablation study, summarized in Table 4, illus-
trates the impact of increasing node count from KG
on the model performance in AUC. With a node
count of 250, the model achieves an AUC of 84.91,
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KID-VLM Variant (RoBERTa) Accuracy F1 Precision Recall AUC

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

KID-VLM + Hop 1 & RoBERTa 78.20 76.85 78.12 74.16 80.36 75.96 73.47 73.37 86.02 83.50
KID-VLM + Hop 2 & RoBERTa 76.30 77.00 76.07 73.58 76.94 77.16 76.14 72.53 86.11 84.72

Table 3: Performance of KID-VLM variants using RoBERTa-based relevance scoring on the HatefulMemes
Dataset (seen & unseen splits). These results complement the MiniLM-based variants in Table 1.

which improves to 85.76 with 500 nodes. When
the node count is raised to 750, the model yields
the highest AUC of 86.11. This trend indicates that
incorporating more knowledge in the model from
ConceptNet enhances its ability to discern and uti-
lize contextual relationships within memes, thereby
improving its reasoning capabilities and overall per-
formance. On the other hand, it is crucial to ensure
the relevance of the nodes to maintain performance
quality and avoid introducing noise.

# Nodes AUC # Fusion AUC

1 250 84.91 1 Gated 86.11
2 500 85.76 2 Multiplicative 80.64
3 750 86.11 3 Bilinear 85.26
- - - 4 Hierarchical Att. 85.39

Table 4: Ablation studies on KID-VLM for the Hateful-
Memes Dataset analyze node count and fusion methods.
The left section shows that increasing nodes (250, 500,
750) with Hop-1, RGCN, and Gated Fusion improves
performance. The right section evaluates fusion mech-
anisms with Hop-2, 750 nodes, and CLIP, identifying
Gated Fusion as the most effective based on AUC.

4.4 Fusion & GNN Architecture

Our ablation study (Table 4) demonstrates the ef-
fectiveness of Gated Fusion, balancing multimodal
and graph-based features to prevent any modality
from biasing the fusion process. Gated Fusion uti-
lizes a dynamic gating mechanism that adaptively
weighs the information from multimodal and graph-
based representations using a sigmoid-activated
gate. This allows for minimizing noise from exter-
nal knowledge and preserving contextually relevant
information, essential for toxicity detection. Gated
fusion outperforms others, such as multiplicative
fusion, which may diminish key signals in sparse
feature space, and bilinear fusion, which may intro-
duce complexity and increase the risk of overfitting.
Hierarchical Attention may risk overlooking criti-
cal subtle cues necessary for identifying nuanced
toxicity. Further, our experiments with GCN and
GAT suggest that GCN, with an AUC of 86.11,
provides better performance through uniform fea-

ture aggregation. In contrast, GAT, with an AUC
of 85.75, may be more prone to noise due to its
attention mechanism (Refer Appendix A).

Framework Acc. F1 Pre. Rec. AUC

No Knowledge 76.07 73.00 78.00 56.00 85.14
KI-VLM 78.10 77.63 78.09 77.55 85.35
KD-VLM 73.70 73.12 75.33 73.44 85.53
KID-VLM 78.70 78.63 80.57 74.49 86.11

Table 5: Ablation study on the impact of KI and KD
on HatefulMemes Dataset using Hop-1 (750 nodes) and
MiniLM for Relevancy Scoring.

4.5 Impact of KI and KD
The ablation study shown in Table 5 demonstrates
the complementary benefits of KI and KD in en-
hancing toxicity detection. KI-VLM leverages
external commonsense knowledge from Concept-
Net, improving Recall by 38.48%, F1 score by
6.34, and AUC by 0.25% over the baseline VLM
with no knowledge, highlighting the value of ex-
plicit contextual reasoning. Similarly, KD-VLM
enhances Recall by 31.14% and AUC by 0.46%,
suggesting that distilled knowledge from LVLMs
improves implicit contextual understanding. The
KID-VLM framework, which combines both KI
and KD, achieves the best overall performance
with improvements in AUC of 1.14%, F1 score
of 7.71%, and accuracy of 3.46%, showcasing the
effectiveness of fusing explicit and implicit knowl-
edge for robust multimodal toxicity detection. In
addition to MiniLM-based relevance scoring (Ta-
ble 1), we included results using RoBERTa-based
scoring in Table 3, showing comparable perfor-
mance across splits, with the Hop 2 variant demon-
strating higher recall (76.14) on seen data and AUC
of 84.72 on unseen data.

4.6 Discussion
Better Separation: Toxic vs. Non-Toxic. En-
hancing representations by KI leads to a more dis-
tinct separation between toxic and non-toxic con-
tent as shown in Figure 3. Without knowledge-
enhanced representations, the separation between
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Figure 3: Baseline (without KI/KD) vs. KID-VLM
(with KI/KD) t-SNE plots illustrating the reduced 3D
representation of the dataset after dimensionality reduc-
tion. The colors represent the ground truth labels of
the data points. KID-VLM’s plot shows a much clearer
separation between the labeled data points.

these two classes tends to be ambiguous, and the
data points are more scattered in the latent space.
In contrast, with knowledge, there is a clearer sepa-
ration through distinct regions with denser clusters.
This improved separation reduces the likelihood of
misclassifications, which is often caused by ambi-
guity and unclear separation, especially in border-
line cases where the context is crucial for detecting
toxicity in a meme. This clearer separation is likely
to stem from both explicit and implicit contextual
cues learned during the training.
Efficient Training and Deployment. KID-VLM
minimizes training overhead by using LVLMs only
during inference, avoiding large-scale multimodal
model training in prior works (Lin et al., 2024a; Liu
et al., 2024a). By distilling crucial knowledge into
a compact model with ~500M parameters, rather
than fine-tuning a large model, our approach sub-
stantially lowers computational costs. This facil-
itates efficient deployment in real-world settings
where compute resources are limited, making KID-
VLM scalable for toxicity detection applications.

Multi-Hop and Enhanced Generalization.
Leveraging multi-hop traversal helps our model to
capture extended contextual cues, improving the
overall performance on both the HarMeme and
HatefulMemes datasets. It achieves particularly
high scores in F1 score and AUC for unseen data,
indicating a robust ability to handle new and
diverse content. This enhanced generalization
likely stems from the broader contextual under-
standing that Hop 2 provides, which is essential
for navigating complex, nuanced content.

5 Conclusion

The results demonstrate that the KID-VLM archi-
tecture, through its combination of KGs and KD,

provides superior performance for detecting hate
speech in memes compared to baseline methods.
By integrating explicit relational knowledge with
implicit contextual cues, KID-VLM better captures
sarcasm, cultural references, and multimodal nu-
ances that often obscure toxicity. The use of Con-
ceptNet subgraphs and distilled multimodal repre-
sentations allows the model to understand the com-
plex semantics of multimodal content better, result-
ing in improved accuracy, F1, and AUC scores. By
distilling knowledge into a compact model (~500M
parameters), KID-VLM achieves these gains with-
out the computational burden of large-scale models,
making it scalable for real-world deployment.

6 Limitations

While KID-VLM demonstrates strong performance
on the HatefulMemes and HarMeme datasets, it
has several limitations. The model’s reliance on
ConceptNet may limit its generalizability to other
datasets beyond the two that have been extensively
examined in this study. Additionally, incorporating
graph-based methods may increase computational
complexity, which can affect scalability for larger
datasets. The quality of KD from larger models
could degrade when using smaller student models,
and there remains a potential risk of bias from pre-
trained models and KGs. Additionally, KID-VLM
may inherit hallucination issues from its use of
LLaVA. We have presented and discussed a few
failure cases in Appendix E. Future work could
address these concerns by exploring more diverse
datasets, improving scalability, and investigating
bias mitigation strategies.

7 Ethical Considerations

Toxicity detection systems can mislabel content or
users, particularly when processing complex inputs
such as memes that involve irony or satire. The
cultural and social context may not be fully under-
stood by the model, so continuous refinement is
essential to mitigate biases. The study utilizes pub-
licly available, anonymized datasets; however, the
potential misuse of such systems in surveillance or
censorship remains a concern. Responsible usage,
with clear guidelines to protect free expression, is
critical. Additionally, the potential for LVLMs to
propagate biases from their training data must be
addressed through ongoing evaluation and the use
of diverse data sources.
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Appendix

A Methodology

Graph Attention Networks (GAT)
GAT employs an attention mechanism to dynami-
cally weigh neighbor contributions, computing at-
tention coefficients αvu between nodes, focusing
on the most important neighbor interactions for
node updates:

αvu = softmax
(

LeakyReLU
(
a⊤[Whv ∥ Whu]

))

(7)
where αvu is the attention coefficient between node
v and neighbor u, a is a learnable attention vector,
W is the weight matrix applied to node features,
[Whv ∥ Whu] denotes the concatenation of trans-
formed features of nodes v and u, and LeakyReLU
is the non-linear activation function.

GNN Architecture AUC Acc. F1

GAT 85.76 76.80 74.45
R-GCN 86.11 76.30 76.14

Table 6: Ablation study on the GNN Architecture used
to create for the Graph embedding. Results are reported
for the seen split of the HatefulMemes Dataset on the
best performing KID-VLM variant (RoberTa , Hop 2 ,
750 nodes and Gated Fusion mechanism)

Graph Pooling: Once the node representations
hv for all nodes v ∈ GW are updated through graph
encoding (e.g., R-GCN, GAT), we learn a pooled
representation of the graph to generate a single
vector representing the entire working graph using
Mean Pooling:

hgraph =
1

|VW|
∑

v∈VW

hv (8)

where hgraph is the aggregated graph representation,
VW represents the nodes in the graph, |VW| is the
total number of nodes, and hv is the feature rep-
resentation of node v. This pooled representation
condenses the graph’s information into a single
vector.

B Datasets

Hateful Memes Dataset
The primary dataset used in our experiments is
the Hateful Memes Challenge Dataset (Kiela et al.,
2020b), consisting of 10K meme images accompa-
nied by their respective text overlays. Each meme

is labeled as either "Hateful" or "Non-hateful." The
dataset is divided into training, testing, and valida-
tion subsets, as detailed in Table 7. Representative
examples of memes from the dataset are presented
in Figure 4.

Labels Train Val Test Seen Test Unseen

Non-Hateful (0) 5481 253 510 1250
Hateful (1) 3019 247 490 750
Total 8500 500 1000 2000

Table 7: Train, Test and Validation Seen splits for the
Hateful Memes Dataset

HarMeme Dataset

We also conducted a series of experiments on the
HarMeme Dataset (Pramanick et al., 2021b), a
benchmark dataset for hateful meme classification.
This dataset comprises 3,544 memes related to
COVID-19, collected from the Internet, with each
meme annotated with both [Intensity, Target] la-
bels. The dataset is split into training, testing, and
validation sets for the Intensity and Target labels,
as detailed in Tables 9 and 11, respectively. Figure
5 presents several example memes from the dataset.
As all the baselines studied use the 2-class ver-
sion of the Intensity variable i.e. they combine the
Somewhat Harmful and Very Harmful classes into
a single Harmful class (Refer Table 8) as the Very
Harmful class is under-represented in the dataset
(~6 %)

Labels Train Set Val Set Test Set

Not Harmful (0) 1949 116 230
Harmful (1) 1062 61 124
Total 3013 177 354

Table 8: Train, Test and Validation splits for the
HarMeme Dataset Intensity Variable for 2 label

Labels Train Set Val Set Test Set

Not Harmful (0) 1949 116 230
Somewhat Harmful (1) 882 51 103
Very Harmful (2) 182 10 21
Total 3013 177 354

Table 9: Train, Test and Validation splits for the
HarMeme Dataset Intensity Variable for 3 labels (Refer
Table 10 )
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Framework Target Metrics Intensity Metrics
Acc. F1 Precision Recall Acc. F1 Precision Recall

CLIP 57.26 35.67 50.29 39.24 80.23 53.60 51.55 57.06
CLIP* 62.10 36.88 39.86 38.88 77.12 50.59 49.03 52.26
PromptHate 73.73 72.74 75.32 73.73 74.58 74.50 78.97 74.58
HateClipper 75.00 73.42 75.83 79.66 79.66 78.76 75.83 79.66

KID-VLM (Hop 2) 77.42(+2.42) 75.88(+2.46) 78.51(+2.68) 77.42(-2.22) 81.07 (+1.41) 79.08 (+0.32) 77.73(+1.90) 81.07 (+1.41)

KID-VLM (Hop 1) 77.42(+2.42) 75.88(+2.46) 78.51 (+2.68) 77.42(-2.22) 80.51 (+0.85) 78.73 (-0.03) 78.10 (+2.27) 80.51 (+0.85)

Table 10: Performance Comparison of models on HarMeme Dataset across multiple metrics. The KID-VLM
framework, using LLaVA for caption generation and MiniLM for relevancy scoring, outperforms other models
(bold). * represents Frozen CLIP encoders. The deltas are reported with respect to the HateClipper baseline.

Labels Train Set Val Set Test Set

Individual 493 30 59
Organisation 65 3 7
Community 279 16 32
Society 226 13 26
Total 1063 62 124

Table 11: Train, Test and Validation splits for the
HarMeme Dataset Target Variable (Refer Table 10 )

C Fusion Mechanisms

Let Eg ∈ Rdg and Em ∈ Rdm denote the graph
pooled representation and the distilled multimodal
representation, respectively, where dg and dm rep-
resent the dimensions of the graph and multimodal
embeddings. Several fusion mechanisms are evalu-
ated for combining these embeddings from differ-
ent modalities:

Gated Fusion Gated Fusion applies a gating
mechanism to combine the graph and multimodal
embeddings. The fusion is computed as:

Fgated =
σ(Wg[Eg∥Em])⊙Eg

+ (1− σ(Wg[Eg∥Em]))⊙Em
(9)

where Wg ∈ R(dg+dm)×dg represents learnable
weights, σ(·) is the sigmoid activation function, ⊙
denotes element-wise multiplication, and ∥ repre-
sents concatenation of the embeddings.

Bilinear Pooling Fusion Bilinear Pooling Fusion
computes the bilinear interaction between the graph
and multimodal embeddings:

Fbilinear = ET
g WbEm (10)

where Wb ∈ Rdg×dm is a bilinear transforma-
tion matrix that models interactions between the
modalities.

HAN Fusion Hierarchical Attention Network
(HAN) Fusion applies attention weights at multiple
levels to the graph and multimodal embeddings:

FHAN =
L∑

l=1

αl(Wl[Eg∥Em]) (11)

where αl is the attention weight at level l, Wl ∈
R(dg+dm)×d is the learnable weight matrix, and L
is the total number of hierarchical levels.

Multiplicative Fusion Multiplicative Fusion
combines the embeddings multiplicatively after
non-linear transformation:

Fmult = tanh(WmEg)⊙ tanh(WmEm) (12)

where tanh(·) is the hyperbolic tangent activa-
tion function, and Wm ∈ Rdg×dm is a weight ma-
trix that transforms the embeddings before interac-
tion.

D Interpretability Examples

By incorporating ConceptNet,the model’s inter-
pretability is enhanced, enabling it to reason more
effectively about the relationships between textual
and visual elements in memes. The extracted
nodes from ConceptNet offer semantic context that
aids in understanding both literal and metaphorical
meanings, improving the model’s ability to explain
its reasoning.

As illustrated in Figure 6 , the LLaVA caption in-
terprets the meme as contrasting the perceived ease
of entering Islam, depicted as a joyful experience,
with the challenges of leaving Islam, which are por-
trayed as distressing or dangerous. The top panel
shows a celebratory embrace, while the bottom
panel illustrates chaos and urgency surrounding an
individual in distress. The knowledge sub-graph,
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containing nodes such as Islamophobia, Muslim,
and Islam, underscores the religious context. When
combined, the LLaVA explanation and the knowl-
edge graph reveal how the meme perpetuates harm-
ful stereotypes and fosters negative sentiments to-
wards Islam, reinforcing its toxicity.

Similarly, in Figure 7, the LLaVA caption in-
terprets the meme as addressing issues of racial
discrimination and violence. The meme features a
close-up image of a person with a bruised eye, im-
plying a physical altercation. The individual, who
has blonde hair, stares directly at the camera with
a serious expression. The text on the image reads,
"overheard my daughter telling her friend she was
curious what it would be like to date a black guy
so... I showed her!" The meme uses satire to com-
ment on societal issues, specifically the harmful
stereotypes and prejudices surrounding interracial
relationships, particularly those involving Black in-
dividuals.The knowledge sub-graph includes nodes
such as racial discrimination, racism, and domestic
violence, underscoring the meme’s connection to
racial issues and violence. The meme critiques
how prejudice and discrimination can manifest,
especially when parents perpetuate such harmful
views in response to their children’s actions. While
the meme employs dark humor and satire, it ulti-
mately reflects on the damaging effects of racism
and discrimination. It is important to note that the
meme does not endorse violence but rather uses
the image as a metaphor to highlight the harmful
consequences of racial bias, addressing a broader
societal issue.

The model’s ability to visualize and compre-
hend the reasoning behind toxicity classification
represents a significant advancement in develop-
ing more explainable AI systems for multimodal
content analysis.

E Failure Cases

Our model utilizes caption embeddings for knowl-
edge distillation, which has led to a few misclassi-
fications due to subtle nuances in image-text rela-
tionships. Below, we highlight three cases where
the model’s predictions differed from the ground
truth.

E.1 Case 1: Misclassification Due to
Unexpected Context

The image in Figure 8 shows a woman with curly
hair, wearing a light-colored collared top, and re-

acting with surprise. The caption reads: "i hear a
funny joke about dish washers."

The model incorrectly classified this image as
toxic. This misclassification likely occurred be-
cause jokes about dishwashers are uncommon, and
in some cases, household appliances—especially
dishwashers—have been used in derogatory jokes
about women. Since the meme presents a reaction
of surprise to such a joke, the model may have
inferred that the joke carried a sexist connotation,
even though there is no direct implication of that in
the image or text. This suggests the model was in-
fluenced by prior associations rather than the actual
content of the meme.

E.2 Case 2: Failure to Recognize the
Referenced Individual

Figure 9 is a split-image meme. On the top, a
middle-aged Black man in a dark suit has a serious
expression. On the bottom, a noose made of blue
rope is shown against a black background. The
caption reads: "it’s what everyone’s been waiting
for."

The model incorrectly classified this image as
non-toxic. The likely reason is that the caption did
not explicitly mention the man’s identity (Barack
Obama), which prevented the model from associat-
ing the image with its full context. Without recog-
nizing the specific political or racial implications
of the noose imagery, the model misinterpreted
the meme’s intent. This highlights a challenge in
entity recognition—when crucial details are miss-
ing from the caption, the model struggles to infer
context accurately.

E.3 Case 3: Confusion Due to Facial Features
and Expression

The meme in Figure 10 shows a woman with a
headband and red nail polish, pressing her hands
against her face with a distressed expression. The
caption reads: "don’t think this cream is working...
maybe this will work??... nothing’s happening."

The model incorrectly classified this image as
toxic. This may have been due to the woman’s fa-
cial features—specifically, her relatively thin eyes
while being in distress—which led the model to in-
correctly associate the image with offensive stereo-
types. This suggests that certain facial expressions
and features in training data may have been dis-
proportionately linked to harmful content, causing
unintended biases in classification. However, the
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Figure 4: Examples from the Hateful Memes Dataset

Figure 5: Examples from the HarMeme Dataset. The labels are given in the format [ Intensity , Target ] (Target
label is not defined for not harmful memes)

image itself is entirely benign, merely depicting
frustration with a skincare product.
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Figure 6: a⃝ Example meme image from the Hateful Meme Dataset. b⃝ Portion of extracted subgraph after
Relevancy Scoring and Pruning. c⃝ Generated LLaVA caption for the meme

Figure 7: a⃝ Example meme image from the Hateful Meme Dataset. b⃝ Portion of extracted subgraph after
Relevancy Scoring and Pruning. c⃝ Generated LLaVA caption for the meme
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Prompts for Dataset Prompt for Teacher LVLM
Prompts for Captioning
HateMeme

You are given a meme. Write a detailed caption which captures the context,
emotions and the theme of the meme. Identify and elaborate on the primary
subject or target of the meme, which could include specific groups or
individuals such as Muslims, Jews, transgender individuals, gays, Black people,
Asians, etc.

Prompts for Captioning
HarMEME

You are given a meme. Write a detailed caption that captures the context,
emotions, and theme of the meme. Describe all visible elements in the image,
including the ethnicity, gender, and other characteristics of individuals. Do
not omit or censor any details.

Table 12: Prompts used to generate captions and analyze meme content using the LLaVA model.
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Figure 8: Meme with surprised woman.
LLaVA caption: The meme features a woman with
curly hair, who appears to be in a state of surprise or
shock. She is wearing a light-colored top with a collar,
and her mouth is open as if she is in the middle of
speaking or reacting to something. The background
is a neutral, muted gray, which puts the focus on her
expression. The text on the meme reads, "i hear a funny
joke about dish washers." The humor in the meme seems
to be derived from the juxtaposition of the woman’s
surprised expression with the mundane and unexpected
subject of the joke. The meme is likely intended to be
humorous by playing on the idea that a joke about dish
washers is not a typical topic for a joke, and the woman’s
reaction suggests that she is surprised by the subject
matter. The meme does not target any specific group or
individual, and there are no visible characteristics that
would indicate the ethnicity or gender of the woman.
The meme is focused on the reaction to the joke, rather
than the identity of the person reacting. The primary
subject or target of the meme is the unexpected and
possibly absurd nature of the joke itself.

Figure 9: Meme with noose juxtaposition.
LLaVA caption: The meme features a split image with
two distinct parts. On the left side, there is a photograph
of a man with a serious expression. He appears to be
middle-aged, with dark skin and short hair. The man
is wearing a dark suit and has a slight frown on his
face. On the right side of the meme, there is a graphic
illustration of a noose with a blue rope. The noose is
hanging against a black background, and the phrase "it’s
what everyone’s been waiting for" is written above it.
The meme seems to be a form of satire or dark humor,
using the juxtaposition of the man’s serious expression
with the noose to create a shocking or ironic effect. The
phrase "it’s what everyone’s been waiting for" suggests
that the noose represents a long-awaited or anticipated
event, which is likely meant to be a commentary on a
specific political or social issue. The primary subject
or target of the meme is not explicitly stated, but it
appears to be directed towards a group of people who are
perceived to be waiting for or advocating for a particular
outcome. The meme’s use of a noose as a symbol may
be intended to provoke a strong emotional response,
possibly to criticize or satirize the views of the targeted
group. It is important to note that the meme contains
potentially offensive content, and its use of a noose
as a symbol may be insensitive or inappropriate. The
meme’s message and intent are open to interpretation,
and it is not appropriate to use such imagery in a public
or professional setting.
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Figure 10: Meme with woman applying cream.
LLaVA caption: The meme features a close-up of a
person with their eyes closed, hands placed on their
face, and a pained or distressed expression. The person
appears to be a woman with dark hair, wearing a head-
band with a patterned design. She has red nail polish
on her nails. The background is a plain, light-colored
wall. The meme is captioned with a text that reads,
"don’t think this cream is working... maybe this will
work??... nothing’s happening." The text is in a casual,
conversational font, suggesting a humorous or sarcastic
tone. The primary subject of the meme seems to be the
process of applying or using a product, such as a cream
or lotion, with the implication that the product is not
working as expected. The person in the image is likely
the target of the meme, as they are shown in a state
of frustration or disappointment with the product. The
meme does not explicitly identify the ethnicity, gender,
or other characteristics of the individual, but it is clear
that the person is a woman. The meme does not target
any specific group or individual based on their ethnicity,
gender, or other characteristics. Instead, it focuses on a
relatable experience of product use and the potential for
disappointment or frustration when a product does not
meet expectations. The meme is likely intended to be
humorous or relatable to a wide audience, rather than
targeting a specific group.
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