
Findings of the Association for Computational Linguistics: ACL 2025, pages 23036–23052
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Your Language Model May Think Too Rigidly: Achieving Reasoning
Consistency with Symmetry-Enhanced Training

Yihang Yao1, Zhepeng Cen1, Miao Li1, William Han1, Yuyou Zhang1, Emerson Liu2,
Zuxin Liu3, Chuang Gan4, Ding Zhao1

1Carnegie Mellon University, 2AHN, 3Salesforce AI Research, 4UMass Amherst
{yihangya, zcen}@andrew.cmu.edu

Abstract

Large Language Models (LLMs) have demon-
strated strong reasoning capabilities across
various tasks. However, even minor varia-
tions in query phrasing, despite preserving
the underlying semantic meaning, can signif-
icantly affect their performance. To address
this, we focus on enhancing LLMs’ awareness
of symmetry in query variations and propose
syMmetry-ENhanceD (MEND) Data Augmen-
tation, a data-centric approach that improves
the model’s ability to extract useful information
from context. Unlike existing methods that em-
phasize reasoning chain augmentation, our ap-
proach improves model robustness at the knowl-
edge extraction stage through query augmenta-
tion, enabling more data-efficient training and
stronger generalization to Out-of-Distribution
(OOD) settings. Extensive experiments on both
logical and arithmetic reasoning tasks show that
MEND enhances reasoning performance across
diverse query variations, providing new in-
sights into improving LLM robustness through
structured dataset curation.

1 Introduction

Large Language Models (LLMs) have demon-
strated superior performance across various reason-
ing tasks, including mathematical reasoning (Ye
et al., 2024a; Qu et al., 2024; Lin et al., 2024a; Gou
et al., 2023; Shen et al., 2025; Cen et al., 2025),
code generation (Chen et al., 2021; Zhang et al.,
2024, 2023; Dainese et al., 2024), and autonomous
system decision-making (Yang et al., 2024b; Sima
et al., 2024; Li et al., 2025). Despite their abil-
ity to handle complex reasoning tasks, LLMs ex-
hibit naive failure modes. For instance, they suf-
fer from premise order sensitivity (Chen et al.,
2024; Zhu et al., 2024a), the reverse-curse phe-
nomenon (Berglund et al., 2023; Golovneva et al.,
2024), and distractibility (Shi et al., 2023a; Zhu
et al., 2024b), making them vulnerable to varia-
tions in the natural language description of a query,

even when the underlying semantic meaning re-
mains unchanged.

A reasoning problem can be structurally decom-
posed into two layers (Zhu et al., 2023; Zhou et al.,
2024): the underlying layer represents the semantic
meaning, which includes the structure of reason-
ing chains and the knowledge required for logical
deduction, while the upper layer consists of the
surface form, referring to the natural language de-
scription of the problem (Zhou et al., 2024). The
inability of LLMs to maintain consistent perfor-
mance across different surface forms highlights the
need for reasoning consistency, which we define
as the model’s ability to generate consistent and
correct answers from different query transforma-
tions of a problem with the same semantic meaning.
In this work, we explore the question: how to im-
prove LLMs’ reasoning consistency across varying
surface forms.

Our key insight is that LLM reasoning prob-
lems maintain certain underlying structures, such
as description symmetry, which describes transfor-
mations of the query description that preserve its
semantic meaning. Existing LLM post-training
methods typically focus on improving the quality
of training data for reasoning chains, such as using
bootstrapping to enhance reasoning diversity (Yu
et al., 2023). However, these methods overlook
the description symmetry in reasoning tasks, which
naturally exists in surface form variations. As a
result, they often suffer from overfitting and incon-
sistent reasoning with respect to different surface
forms as shown in Figure 1. To address this is-
sue, we propose syMmetry-ENhanceD (MEND)
Data Augmentation for LLM post-training. Our
method augments the dataset with the symmetry
information, enforcing the model’s capability to
better capture semantic meanings in different query
variations, thereby improving post-training data ef-
ficiency and enhancing OOD generalization. The
main contributions of this work are:

23036

GPT-4

In the first 30 seconds, 20 kernels popped.
In the next 30 seconds … 20 * 3 = 60 kernels popped.
In the next 30 seconds … so 20 * 3 = 60 kernels popped.
In the next 30 seconds … so 20 * 4 = 80 kernels popped.
In the final 30 seconds … so 80 / 2 = 40 kernels popped.
After … off the heat … so 40 / 4 = 10kernels popped.
He believes that five kernels would not… so he has 20 +
60 + 80 + 40 + 10 + 5 = 215 pieces of popcorn to eat.

Q2: Redundancy Addition
Garrett is popping popcorn for a snack... Twenty pop in the first
30 seconds of cooking, then three ... The kernels increase to four
times the initial popping … but in the final 30 seconds … After
Garrett takes the pan off the heat, a quarter of the number of
kernels that popped in the final 30 seconds of cooking also pop
from the residual heat. He stays happy all night, believing that
five kernels would not have popped if he had not shaken them to
the center of the pan, as the center of the pan retains much more
residual heat than the surrounding area. How many pieces of
popcorn does Garrett have to eat?

Gary is popping popcorn for a snack. As the pan heats up, the
kernels start popping faster. Twenty pop in the first 30 seconds
of cooking, then three times that amount in the next 30 seconds.
After Gary finishes cooking and takes the pan off the heat, a
quarter of the number of kernels that popped in the past 30
seconds of cooking also pop from the residual heat. While the
pan on the heat, the popping rate increases by 20 again after
sixty seconds, but in the final 30 seconds, the popping slows
down to half the rate as the past 30 seconds. How many pieces
of popcorn does Gary have to eat?

Q1: Order Permutation
Garrett is popping popcorn for a snack. As the pan of kernels
heats up, the kernels start popping faster. Twenty pop in the first
30 seconds of cooking, then three times that amount in the next
30 seconds. The kernels increase to four times the initial popping
rate in the next thirty seconds, but in the final 30 seconds, the
popping slows down to half the rate as the past 30 seconds. After
Garrett takes the pan off the heat, a quarter of the number of
kernels that popped in the final 30 seconds of cooking also pop
from the residual heat. How many pieces of popcorn does Garrett
have to eat?

Original Question
Q2Q1

GPT-4

GPT-4o

GPT-o1

DS-V3

DS-R1

Gemini

Claude

DeepSeek-V3
Let's break down the problem step by step …
Total popped kernels: 20 + 60 + 80 + 40 + 10 = 210
Final Answer: 210

DeepSeek-V3

Let‘s break down the problem step by step …
First 30 Seconds: … 20
Next 30 Seconds: … 3 * 20 = 60
After Removing from Heat (60 to 90 second): … !

"
* 60 =15

While on Heat (60 to 90 second): … 60 + 20 = 80 kernels …
Final 30 Seconds (90 to 120 seconds): … 80 / 2 = 40 kernels …
Total Popped Kernels: … 20 + 60 + 15 + 80 + 40 = 215
Therefore, Gary has a total of 215.

GPT-4
Let's solve this step-by-step: …
Total Popcorn: 20+60+80+40+10=210
Garrett ends up with 210 pieces of popcorn to eat.

Figure 1: Failure examples of LLMs under surface form variations. Queries are modified from R-GSM (Chen et al.,
2024). Table: The correctness for 10 evaluations across different LLMs. : all correct; : all wrong; : error
occurs. Full incorrect answers are provided in Appendix A.5.

1. Formal analysis of the reasoning consis-
tency problem. We associate reasoning consis-
tency in terms of an LLM’s ability to extract invari-
ant knowledge, providing a formal framework for
improving reasoning consistency.

2. Introduction of MEND to address the con-
sistency of reasoning through post-training. To
our knowledge, this is the first systematic work that
investigates post-training techniques to mitigate
issues of consistency of reasoning.

3. Extensive evaluation of MEND in LLM
reasoning tasks. Our experimental results on
PromptBench (Zhu et al., 2023) and iGSM (Ye
et al., 2024b) show that MEND achieves superior
sampling efficiency and generalizability in reason-
ing consistency with a significantly enhanced in-
context knowledge extraction capability.

2 Related Works

LLM Reasoning: Recent studies highlight the re-
markable reasoning capabilities of LLMs, explor-
ing in-context learning (Wei et al., 2022; Yao et al.,
2022), pre-training (Ye et al., 2024a,c; Shao et al.,
2024; Lightman et al., 2023; Lin et al., 2024b), and
post-training (Ni et al., 2024). A key focus in train-
ing LLMs is the curation of high-quality datasets
for instruction tuning (Yue et al., 2023; Liu et al.,
2024; Ni et al., 2024). Another approach involves
leveraging LLM-generated datasets (Wang et al.,
2024a; Cen et al., 2024), often with reinforcement
learning (Ouyang et al., 2022; Kumar et al., 2024).
Both strategies highlight the essential role of high-
quality data in enhancing LLM reasoning perfor-
mance.
LLM Failure Modes: Despite their advanced rea-
soning capabilities, LLMs exhibit surprising brit-
tleness to variations in question descriptions with

the same semantical meaning (Chen et al., 2024).
For example, the Reversal Curse (Berglund et al.,
2023) refers to LLMs failing to generalize from
statements like “A is B” to “B is A.” Premise Order-
ing describes the performance degradation when
the order of premises in a query differs from the
order in their reasoning chains (Chen et al., 2024).
Distractibility is another failure mode in which
LLMs’ reasoning performance declines when irrel-
evant context is included in the query (Shi et al.,
2023b). To mitigate these issues, researchers have
explored inference-time scaling methods that para-
phrase queries (Zhou et al., 2024) and post-training
techniques (Golovneva et al., 2024) that reverses
the order of tokens in training. However, a system-
atic analysis and solution to address these robust-
ness challenges still remain an open problem.
Symmetry and Equivariant Learning: Symme-
try has been widely used to indicate rotationally
symmetric problems, such as image-input machine
learning tasks (Weiler and Cesa, 2019). The defi-
nition of symmetry can also be extended to groups
that preserve structured information while perform-
ing transformations (Muglich et al., 2022). Encod-
ing data symmetries in the model training pipeline
can improve both generalization and sample effi-
ciency (Wang et al., 2022), an idea first proposed
in G-Convolution (Cohen and Welling, 2016). Re-
cent works also incorporate equivariant learning
in reinforcement learning (Liu et al., 2023; Wang
et al., 2022) and robotics (Yang et al., 2024a). The
symmetry in the training corpus of LLMs remains
a widely unexplored area.

3 Preliminary for LLM Reasoning

DAG Representation. Following previous
works (Zhu et al., 2023, 2024a; Ye et al., 2024b),

23037

we formulate the reasoning task as a problem de-
fined over a directed acyclic graph (DAG) represen-
tation: G = (V,E), where V = {v1, v2, . . . , vn}
represents the set of nodes, and E ⊆ V × V rep-
resents the set of directed edges indicating depen-
dencies or relationships between nodes. The root
node vr ∈ V corresponds to the target variable
we aim to compute or reason about, leaf nodes
vl ∈ L ⊆ V denote the variables with known val-
ues, and the other nodes vi ∈ I = V \ (L ∪ {vr})
represent intermediate nodes that need to be com-
puted by their parent nodes, which are denoted as
Pa(vi) = {vj | (vj , vi) ∈ E}. Each directed edge
(vj , vi) ∈ E indicates that the value of xi depends
on xj and their quantitative relationship.
Ground Truth of Reasoning Chain: The ground
truth reasoning path for the reasoning chain is rep-
resented as a sequence of intermediate reasoning
steps {y1, y2, . . . , yT , y} to the final result y, where
yt corresponds to the result of the t-th intermedi-
ate computation. This process is grounded in the
structure of the directed acyclic graph G = (V,E).
The reasoning process follows a topological sorting
of G, which is a linear ordering of its nodes such
that for every directed edge (vi, vj) ∈ E, node vi
appears before vj in the ordering.

4 MEND Data Augmentation

In this section, we first analyze the surface form
and its transformations and reveal the symmetry
in description queries. We then discuss LLMs’
capability for reasoning consistency. Lastly, we in-
troduce the data augmentation method to improve
reasoning consistency and a probing tool for capa-
bility verification.

4.1 Surface Form and Description Symmetry

A reasoning problem consists of both a semantic
meaning and a surface form (Zhou et al., 2024).
The semantic meaning is determined by the struc-
ture of the DAG and the values of its leaf nodes,
capturing the core reasoning chain of the prob-
lem (Pearl, 2009; Velickovic and et al., 2021). The
surface form is the natural language description of
the semantic meaning (Zhou et al., 2024). There
exists a mapping f : Q → S from the query space
Q to the semantic space S , which translates a natu-
ral language description into its underlying struc-
tured representation. This abstracts away linguistic
or surface-level variations to focus on the task’s
core logical or mathematical structure (Russell and

D 4E 3 C 1 2

1 2 C D 4E 3

D

1

E

B C

A
2

3 4

G

F5

G C 1 25 …

… …

𝒬𝒮
…

…

…

…
…

Reasoning chains

Reasoning Chain EnhancedSymmetry-Enhanced

𝑓

Figure 2: Overview of Symmetry-Enhanced Data Aug-
mentation and its Comparison with Reasoning Chain
Data Augmentation.

Norvig, 2021).
The symmetry relationship ∼ on Q is defined

as:
q1 ∼ q2 ⇐⇒ f(q1) = f(q2), (1)

where q1, q2 ∈ Q. That is, two query descriptions
are symmetric if they correspond to the same se-
mantics in S . We categorize symmetry relations in
Q into three types: (1) Permutation: reordering
the provided information, (2) Redundancy addi-
tion: introducing irrelevant information as a dis-
traction, and (3) Surface-level variations: para-
phrasing questions at the linguistic level. Given the
complexity of linguistic paraphrasing, this work
primarily focuses on the first two types, leaving the
third for future research.

4.2 LLM Reasoning Consistency
Given a query q, the reasoning process to find its
ground-truth final answer y of an auto-regressive
LLM can be formulated as a conditioned generation
process (Xiang et al., 2025):

P(y|q) =
∫

z

T∏

t=1

P(yt|y<t, z, q)P(z|q)dz, (2)

where P(y|q) means the probability of generat-
ing right final answer and P(z|q) represents in-
context knowledge extraction, which extracts rel-
evant knowledge z from q. P(yt|y<t, z, q) repre-
sents the conditioned generation to the final results
step by step.

We define the reasoning consistency as the abil-
ity of an LLM to maintain similar reasoning per-
formance despite variations in the phrasing or de-
scription of a query q, as long as its underlying
semantics remains unchanged, i.e.,

P(y | q1) ≈ P(y | q2), q1 ∼ q2 (3)

Equation 2 demonstrates that extracting high-
quality representations z from queries is crucial for

23038

ensuring reasoning consistency. In this work, we
focus on invariant knowledge extraction: improv-
ing the LLMs’ capability to consistently extract
useful z despite the surface form changes.

4.3 Symmetry-Enhanced Data Augmentation

To improve representation extraction capability, we
can adopt either model-centric approaches, which
focus on modifying model architectures, or data-
centric approaches, which aim to improve data
quality. Given the complexity of modifying the ar-
chitecture of pre-trained LLMs without compromis-
ing overall performance, we focus on a data-centric
approach that encodes symmetry information in the
post-training dataset and is compatible with most
general LLM architectures. We propose syMmetry-
ENhanceD (MEND) Data Augmentationas shown
in Figure 2. Compared to previous methods that en-
hance the training chains in the training dataset (Yu
et al., 2023), we focus on query augmentation to
impose a better understanding of symmetric struc-
tured information. Our method contains two parts:

Step 1: Order Permutation. We begin by split-
ting the original query q into a list of partitions,
using the newline character ("\n") as the delimiter.
Next, we shuffle the order of these partitions while
preserving the semantic meaning, resulting in a
reordered list of sentences.

Step 2: Redundancy Addition. To add re-
dundant information to the original question, we
first randomly sample some new nodes and edges,
which are not connected to the original DAG so
that they will not contribute to the computation of
the target node, and then generate the new premises
accordingly following the previous template. After
this, we add the partition to a random position of
the list, and then combine them together forming a
query q′ in the augmented dataset Daug.

More details are presented in Alg. 1. After
the data augmentation, we finetune the language
model using supervised fine-tuning (SFT) on the
augmented dataset Daug.

4.4 Knowledge Extraction Verification Tool

In the previous subsections, we proposed MEND
to enhance knowledge extraction capability and
address reasoning consistency requirements. How-
ever, it remains unclear whether MEND fundamen-
tally improves reasoning capability or merely relies
on memorization. In this section, we introduce the
probing tool we use to evaluate the representation

Algorithm 1 MEND
Input: QA pair (q, a) from the original dataset,
augmentation times K redundant information
number R, separation delimiter SEP.
Output: Augmented dataset Daug for this QA pair

1: Initialize Daug ← {(q, a)}
2: for i = 1, . . . ,K do
3: # Step 1: Order Permutation
4: Divide the query into a segmentation list L

by SEP;
5: random.shuffle(L)
6: # Step 2: Redundancy Addition
7: for j = 1, . . . , R do
8: Randomly sample redundant nodes with

random values and edges;
9: Construct a redundant partition lr by

applying template to the new nodes;
10: L.append(lr);
11: end for
12: random.shuffle(L);
13: q′ ← SEP.join(L)
14: Daug ← Daug ∪ {(q′, a)}
15: end for
16: Return: Daug

extraction capability, providing an explanation for
the performance enhancement brought by MEND.

Recent literature has revealed that in transformer-
based LLMs, attention patterns are good indicators
of whether LLMs can effectively retrieve useful
information from queries (Wang et al., 2024b; Hou
et al., 2023). Based on these findings, we utilize
the attention of LLMs to analyze the knowledge
extraction capability.

The core component of the attention-based prob-
ing is a binary classification task to determine
whether a statement q[i] in question query q con-
tains any useful information (Hou et al., 2023):

P(q[i]|A)→ {0, 1}, (4)

where A = {A(l, h) | 1 ≤ l ≤ L; 1 ≤ h ≤ H}
is the combination of attention weights across L
layers and H heads after processing the question
query q. The prediction result 1 indicates q[i] is
useful in reasoning, and 0 indicates q[i] only con-
tains irrelevant information. Following the previ-
ous work (Hou et al., 2023), we segment all tokens
in a query into multiple groups and construct sim-
plified attention Asimp by pooling in each group
as the conditions to reduce the dimension of the

23039

attention weights:

P(q[i]|q,A) ≈ P(q[i]|q,Asimp), (5)

The previous attention-based probing method (Hou
et al., 2023) employs non-parametric algorithms,
such as KNN, for query information retrieval. How-
ever, it struggles to accurately identify relevant
premises, particularly in complex tasks or larger
networks. This limitation arises because KNN
treats all attention entries equally, overlooking the
fact that the information at each position is inher-
ently influenced by preceding content. As input
length and network depth increase, this aggrega-
tion effect becomes more pronounced, further un-
dermining the probing method’s effectiveness. To
address this issue, we adopt a linear probing ap-
proach based on logistic regression:

P(q[i]|Asimp) = σ(w⊤Asimp + b), (6)

where w and b are trainable variables. See more
discussions on comparison between KNN-based
and our probing methods in Appendix A.4.

5 Experiments

In the experiments, we are going to answer the fol-
lowing research questions. (RQ-1) How do current
LLMs perform in terms of reasoning consistency?
(RQ-2) How does MEND benefit reasoning con-
sistency? (RQ-3) Why does MEND improve rea-
soning consistency? To answer these questions, we
make the following experiment setup.

5.1 Experiment setup

Tasks: We evaluate our approach on two bench-
marks, PromptBench (Zhu et al., 2023) and
iGSM (Ye et al., 2024b). For PromptBench (Zhu
et al., 2023), we use two categories of tasks, logi-
cal reasoning and arithmetic reasoning. The iGSM
assesses LLMs’ math and common-sense reason-
ing capabilities. The questions from PromptBench
can be represented as tree structures, where each
non-leaf node has up to two parent nodes. The
objective is to compute the value of the root node
given the values of the leaf nodes and the com-
putational rules from parent nodes to child nodes.
The iGSM tasks can be represented as the more gen-
eral Graph structure. Two example QA pairs are
provided in Appendix B.3.

In logical reasoning tasks, each node takes a
boolean value, and the computational rules are

Order permutation Redundancy addition

Figure 3: Accuracy evaluation of the DeepSeek-math-
7B-base model on the arithmetic reasoning task with
different surface forms. Left: results with different
DAG depth; Right: results with different redundant
information addition.

sampled from {∧(AND),∨(OR),¬(NOT)}. In arith-
metic reasoning tasks, each node takes an inte-
ger value, with leaf node values sampled from
0 ∼ 10. The computational rules are drawn from
{+,−,×,□2}. Given an underlying tree represen-
tation, PromptBench first assigns a random name
to each node and then generates a natural language
query using a fixed template, as shown in Ap-
pendix B.2.1.

For the evaluation dataset, we create variations
of surface forms with both order permutation and
redundancy addition. For order permutation, we
choose Topological: the topological sorting of
the underlying DAG, which aligns with the rea-
soning chain (Zhu et al., 2023), Random: random
permutation of sentences in the question queries,
and Reversed: the inversed order of Topological.
We utilize the templates in the benchmark (Zhu
et al., 2023) to ensure that the overall semantical
meaning does not change with the order permuta-
tion. For redundancy addition, we add irrelevant
descriptions in the query and set the number of re-
dundant dependencies ranging from 0 to 40. We
report the zero-shot and pass@1 accuracy unless
specified otherwise.

Models: For all experiments, we utilize the
Llama-3.2 1B and 3B models (Dubey et al., 2024)
as our base models unless specified otherwise.

Baselines: We compare our method with three
types of baselines: (1) Post-training: Vanilla:
trains base models on the vanilla dataset using
SFT; and RC-Aug: utilizes the reasoning chain
(RC) augmented dataset for SFT (Yu et al., 2023).
Specifically, we augment the answers with differ-
ent topological orderings while keeping the query
unchanged; (2) Inference scaling: SCoP-k (Zhou
et al., 2024), first paraphrases the question prompts

23040

Table 1: Accuracy (%) evaluation on arithmetic reason-
ing datasets with different permutation order and base
model as Llama-3.2-3B. The difficulty level is defined
by the number of reasoning steps for ground-truth rea-
soning chains. The number in the parentheses indicates
the performance comparison with the Vanilla method.
Bold: the method with the best performance.

Order Method
Difficulty Level

Avg.1 2 3 4

To
po

lo
gi

ca
l

Vanilla 100.0 99.0 79.5 32.0 77.6
RC-Aug 100.0 98.5 87.0 33.0 79.6 (+2.0)
SCoP-2 100.0 82.5 16.0 1.5 50.0 (-27.6)
SCoP-4 100.0 94.5 28.5 3.5 56.6 (-21.0)
SCoP-8 100.0 100.0 49.5 9.0 64.6 (-13.0)
MEND 97.5 99.5 88.5 37.5 80.8 (+3.2)

R
an

do
m

Vanilla 99.0 65.5 10.5 0.0 43.8
RC-Aug 100.0 62.5 13.0 1.0 44.1 (+0.3)
SCoP-2 99.0 77.5 15.0 3.0 48.6 (+4.8)
SCoP-4 100.0 96.5 26.0 4.5 56.8 (+13.0)
SCoP-8 100.0 99.5 38.5 12.5 62.6 (+18.8)
MEND 97.5 99.5 85.5 37.5 80.0 (+36.2)

R
ev

er
se

d

Vanilla 99.5 45.0 5.5 1.0 37.8
RC-Aug 100.0 30.5 0.5 0.5 32.9 (-4.9)
SCoP-2 99.5 85.0 20.5 2.5 51.9 (+14.1)
SCoP-4 100.0 97.0 30.0 4.5 57.9 (+20.1)
SCoP-8 100.0 100.0 42.5 8.0 62.6 (+24.8)
MEND 97.5 98.5 86.0 41.0 80.8 (+43.0)

k times, then performs reasoning based on these
paraphrases, and obtains the final answer via ma-
jority voting. It is combined with vanilla models
unless specified otherwise. (3) Ablation: In addi-
tion to these baselines, we also create a variant of
our method called MEND-RC that uses MEND to trans-
form the queries, while augmenting the dataset with
more reasoning chains. We evaluate the models
with greedy generation (temperature=0) and report
the averaged accuracy on 200 testing samples on
every evaluation dataset unless specified otherwise.

5.2 Reasoning-Consistency Evaluation
To answer RQ1, we evaluate several LLMs with
query variations and present the reasoning accuracy
in Figure 3. Due to space limitations, we defer the
additional results to Appendix A.1. We observe two
key findings: (1) The topological order improves
the accuracy of generation, while adversarial per-
mutations, including random and reversed orders,
degrade performance. Furthermore, the harder the
reasoning task (i.e., greater DAG depth), the more
pronounced the performance drop, consistent with
previous findings for closed-source LLMs (Chen
et al., 2024). (2) Redundant information in the
question query negatively affects reasoning perfor-
mance. As the amount of irrelevant information in-

Table 2: Accuracy (%) evaluation on iGSM datasets
with different permutation order and base model as
Llama-3.2-1B. The difficulty level is defined by the
number of reasoning steps for ground-truth reasoning
chains. The number in the parentheses indicates the per-
formance comparison with the Vanilla method. Bold:
the method with the best performance.

operation 5 10 15 20 Avg.

R
an

do
m

Vanilla 97.5 85.0 58.5 43.0 71.0
SCoP-2 97.0 84.5 63.5 47.5 73.1 (+1.9)
SCoP-4 96.5 90.0 67.5 52.5 76.6 (+5.6)
MEND 100.0 94.5 77.5 59.0 82.8 (+11.8)

R
ev

er
se

d Vanilla 95.0 85.0 55.5 53.0 72.1
SCoP-2 96.5 87.0 57.5 55.0 74.0 (+1.9)
SCoP-4 97.5 88.5 68.0 64.5 79.6 (+7.5)
MEND 98.0 94.0 76.0 69.5 84.4 (+12.3)

To
po

lo
gi

ca
l Vanilla 96.0 84.5 59.5 52.0 73.0

SCoP-2 97.0 85.5 63.0 54.5 75.0 (+2.0)
SCoP-4 97.5 89.5 68.0 60.5 78.9 (+6.9)
MEND 98.5 94.0 79.0 65.0 84.1 (+11.1)

creases, the model’s reasoning accuracy decreases.
Both observations indicate that open-source

models still suffer from overfitting to topologi-
cal order and redundancy-free queries, leading
to poor performance in reasoning consistency tasks.
This issue further motivates the development of
techniques to enhance reasoning-consistency ro-
bustness in LLMs.

5.3 Reasoning-Consistency Enhancement

To answer RQ2, we present the main experiments
with two main parts: reasoning consistency on or-
der permutation and redundancy addition.

Order permutation: For the PromptBench task,
we train the LLM on arithmetic questions with diffi-
culty level 2 and 3 while testing its performance on
difficulty level 1 ∼ 4 with three different permuta-
tion orders: Topological, Random and Reversed.
The evaluation results on Llama-3.2-3B are listed in
Table 1. For the iGSM task, we fine-tune a LLaMA-
3.2-3B model on the iGSM training set, which in-
cludes samples with operation numbers from 10
to 12. For evaluation, we use a test set covering a
broader range of operation numbers (from 10 to 20,
larger operation number indicates higher difficulty)
and three distinct permutation orders: Topological,
Random, and Reversed. The results are presented
in Table 2. More results with different base models
are available in the Appendix A.2.

Table 1 shows that training solely on the topolog-
ical order corpus results in overfitting - it achieves

23041

In-dist. Out-of-dist.

In-dist. Out-of-dist.

(a) Logical Reasoning with Llama-3.2-1B as the base model

(b) Arithmetic Reasoning with Llama-3.2-3B as the base model

Figure 4: Evaluations with respect to different query variations. Each figure refers to one permutation order type,
the x-axis represents the number of redundancies of the test set, and the y-axis represents the accuracy of final
answers. For each dataset, we report the accuracy value over a dataset with a size of 200.

superior performance on the Topological test set
but suffers significant degradation on the Random
and Reversed sets. RC-Aug provides only minor
improvements in overall performance. SCoP-k, the
inference-time scaling baseline, improves perfor-
mances on the Reversed and Random sets but de-
grades on the Topological set. In contrast, our
method demonstrates consistently strong perfor-
mances on all evaluation datasets, effectively miti-
gating overfitting issues.

Redundancy Addition: To evaluate the robust-
ness of LLMs against redundancy, we add 0 to
4 redundant premises to each query in the SFT
dataset and test the LLMs’ performance on ques-
tions with up to 40 redundant premises, with useful
information provided in three permutation orders.
The evaluation results are presented in Figure 4.
Additional results with different model sizes are
provided in Appendix A.3.

Figure 4 shows the Vanilla method per-
forms well only on in-distribution samples with
Topological order. As redundancy increases in
the OOD setting, prediction accuracy declines
sharply, indicating overfitting. When SFT with
the RC-Aug dataset, the model shows noticeable

performance improvements under in-distribution
conditions, likely due to an enhanced capability
for reasoning chain generation, as it learns from
more reasoning chain data during post-training.
Despite this improvement, RC-Aug still struggles
to generalize well as the level of redundancy in-
creases. The inference-time scaling method, SCoP-
k, results in more consistent performance across
surface variations. We observe its significant im-
provements in OOD settings, including Random and
Reversed permutation orders and increased redun-
dancy. However, the improvement is still limited,
especially for more challenging arithmetic reason-
ing task. Additionally, it even shows performance
degradation on the Topological dataset, where
information is originally provided in order and dis-
turbed in paraphrases.

Results from Figure 4 also shows MEND, consis-
tently outperforms all baselines across different per-
mutation orders and levels of redundancy. These re-
sults demonstrate that diversifying question queries
for SFT sufficiently enhances the ability of mod-
els to capture symmetry information across vari-
ous surface forms. Consequently, our method not
only performs well on in-distribution evaluation

23042

75

80

85

90

95

Ac
c

(%
)

Topological - In-dist (R=0)

40

60

80

Topological - OOD (R=40)

20

40

60

80

Ac
c

(%
)

Random - In-dist (R=0)

20

40

60

80

Random - OOD (R=40)

1 2 3 4 5
Size of dataset

0

20

40

60

80

Ac
c

(%
)

Reversed - In-dist (R=0)

1 2 3 4 5
Size of dataset

0

20

40

60

80

Reversed - OOD (R=40)

RC-Aug MEND

Figure 5: Data efficiency evaluation. R in figure titles
indicates the number of redundancy in the query. The
size of dataset = 1 indicates using the original dataset
for SFT. All plots are averaged among 3 random seeds
with temperature= 1. The solid line is the mean value,
and the light shade represents the first standard devia-
tion.

samples but also shows strong generalizability to
OOD cases with unseen redundancy. We also con-
duct an ablation study with MEND-RC, where we
observe a performance degradation when replac-
ing the data augmentation direction from queries
to reasoning chains, highlighting the necessity of
enhancing query symmetry information for SFT.

Table 3: VoV evaluation for arithmetic tasks with Llama-
3.2-3B model. (↓): The lower, the better for reasoning
consistency. We normalize the scale with respect to
the variance of Vanilla method. The VoV values for
Vanilla are 195.55, and 966.22.

Vanilla RC-Aug SCoP-8 MEND-RC MEND

VoVo (↓) 1.00 3.70E+00 3.28E-01 2.03E-01 4.47E-02
VoVr (↓) 1.00 1.55E+00 3.81E-03 3.53E-03 2.23E-03

Reasoning consistency: We adopt the Variance
of Variations (VoV) (Zhou et al., 2024) to quantita-
tively evaluate the reasoning consistency:

VoVf = Varf (acc(p)), f ∈ {o, r}, (7)

where VoVo and VoVr are the variance of predic-
tion accuracy with respect to different permutation

orders and different levels of redundancy. Smaller
VoV values indicate better reasoning consistency.

Table 3 shows the VoV values for the arith-
metic reasoning task in Figure 4. The Vanilla and
RC-Aug method show very large VoV values, indi-
cating poor reasoning consistency and poor capabil-
ity to capture the symmetry information. The SCoP
method successfully reduces the variance since the
final results are obtained through majority voting
from diverse query paraphrases. Our method also
demonstrates strong performance in reducing vari-
ance, indicating that we effectively mitigate reason-
ing consistency issues during post-training without
sacrificing inference-time efficiency.

CoT Consistency. To assess the CoT consis-
tency of our method, we use the CoT-consistency
score (Wei et al., 2022), defined as the fraction of
CoT results that match the majority-vote answer,
which is the higher, the better. In our experiments,
we fine-tune the models using CoT supervision,
and the models also generate CoT reasoning dur-
ing evaluation before producing the final answer.
We report the consistency scores for the Logical
Reasoning task using the LLaMA-3.2-1B model
in Table 4. We observe that MEND significantly
improves reasoning consistency compared to the
baselines, showing that MEND can also signifi-
cantly improve the CoT consistency.

Data Efficiency: We use different amounts of
data for SFT and present the results of the arith-
metic reasoning task with Llama-3.2-1B model in
Figure 5. For the RC-Aug baseline, we observe that
increasing the size of the augmented dataset leads
to a rapid accuracy improvement in in-distribution
conditions but a much slower improvement in OOD
settings. This indicates that while RC-Aug can im-
prove performance, it is not efficient in OOD sce-
narios. In contrast, MEND consistently outper-
forms the baselines across different amounts of
SFT data in OOD settings, demonstrating superior
data efficiency and generalizability.

5.4 Reasoning-Consistency Verification
In this subsection, we aim to answer RQ3 by veri-
fying whether MEND captures the structured infor-
mation in question queries. We utilize the probing
method described in Section 4.4 and report the F1-
Macro scores of prediction (4) as the evaluation
metric (Hou et al., 2023). A higher score means a
better ability to retrieve relevant information from
the input queries.

The results are presented in Figure 6. We

23043

Redundant dependency

Figure 6: F1-macro score of linear probing on
the logical reasoning task with the base model as
Llama-3.2-1B. Method-n indicates the dataset size is
n times the original one after augmentation.

Table 4: CoT consistency experiment on the Logical
reasoning task with base model as Llama-3.2-1B. We
compare the performance with different redundancy
numbers in the question prompt. Bold: the method with
the best performance.

Redundancy 0 10 20 30 40 Avg

R
an

d Vanilla 0.972 0.776 0.794 0.721 0.714 0.795
RC-Aug 0.995 0.963 0.904 0.841 0.816 0.904
MEND 0.988 0.981 0.979 0.984 0.988 0.984

R
ev

e Vanilla 0.771 0.758 0.742 0.722 0.724 0.743
RC-Aug 0.994 0.966 0.915 0.834 0.819 0.906
MEND 0.986 0.982 0.988 0.989 0.988 0.987

To
po

Vanilla 0.767 0.783 0.734 0.725 0.715 0.745
RC-Aug 0.995 0.961 0.909 0.857 0.818 0.908
MEND 0.987 0.983 0.979 0.986 0.991 0.985

observe that the baseline methods RC-Aug and
MEND-RC do not show significant improvement
in detecting useful information compared to the
Vanilla model. In contrast, the proposed method
MEND achieves a much higher score than the base-
lines. This confirms that by enhancing query sym-
metry, MEND captures more structured informa-
tion and significantly improves LLMs’ in-context
knowledge extraction capability for reasoning tasks.
The probing results also explain the OOD gener-
alizability improvement of MEND, as it enhances
the LLMs’ ability to understand OOD queries. A
comparison between our linear probing and KNN
probing is provided in Appendix A.4.

6 Conclusion

In this work, we addressed the problem of rea-
soning equivalence in LLMs with respect to di-

verse surface form variations corresponding to the
same semantic meaning. We proposed syMmetry-
ENhanceD (MEND) Data Augmentation, enhanc-
ing reasoning equivalence by applying structured
query-level transformations. Our method improves
reasoning robustness at the knowledge extraction
stage by enforcing the query symmetry in the SFT
dataset. Experiments demonstrate that MEND
achieves superior sampling efficiency and general-
izability in reasoning tasks. Although one potential
risk is that the misuse of this work in real-world
scenarios can cause unexpected damage, we hope
our findings can provide a foundation for future
research on improving LLM reasoning consistency
through structured dataset curation.

Limitations

While MEND demonstrates improved performance
of reasoning consistency under query variations,
we primarily evaluate it on arithmetic and logical
reasoning tasks. As a result, its potential and effec-
tiveness on more complex tasks or domains such
as specialized scientific reasoning and code genera-
tion remain underexplored.

Acknowledgment

The authors would like to thank the collaboration
with the Mario Lemieux Center for Heart Rhythm
Care at Allegheny General Hospital for supporting
this paper.

References
Lukas Berglund, Meg Tong, Max Kaufmann, Mikita

Balesni, Asa Cooper Stickland, Tomasz Korbak, and
Owain Evans. 2023. The reversal curse: Llms trained
on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288.

Zhepeng Cen, Yao Liu, Siliang Zeng, Pratik Chaud-
hari, Huzefa Rangwala, George Karypis, and Rasool
Fakoor. 2024. Bridging the training-inference gap
in llms by leveraging self-generated tokens. arXiv
preprint arXiv:2410.14655.

Zhepeng Cen, Yihang Yao, William Han, Zuxin Liu,
and Ding Zhao. 2025. Behavior injection: Preparing
language models for reinforcement learning. arXiv
preprint arXiv:2505.18917.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

23044

https://arxiv.org/abs/2505.18917
https://arxiv.org/abs/2505.18917

Xinyun Chen, Ryan A Chi, Xuezhi Wang, and Denny
Zhou. 2024. Premise order matters in reason-
ing with large language models. arXiv preprint
arXiv:2402.08939.

Taco Cohen and Max Welling. 2016. Group equivariant
convolutional networks. In International conference
on machine learning, pages 2990–2999. PMLR.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and
Pekka Marttinen. 2024. Generating code world mod-
els with large language models guided by monte carlo
tree search. arXiv preprint arXiv:2405.15383.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Olga Golovneva, Zeyuan Allen-Zhu, Jason Weston,
and Sainbayar Sukhbaatar. 2024. Reverse train-
ing to nurse the reversal curse. arXiv preprint
arXiv:2403.13799.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo,
Wangchunshu Zhou, Guangtao Zeng, Antoine Bosse-
lut, and Mrinmaya Sachan. 2023. Towards a
mechanistic interpretation of multi-step reasoning
capabilities of language models. arXiv preprint
arXiv:2310.14491.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal,
Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs,
et al. 2024. Training language models to self-
correct via reinforcement learning. arXiv preprint
arXiv:2409.12917.

Miao Li, Wenhao Ding, Haohong Lin, Yiqi Lyu, Yihang
Yao, Yuyou Zhang, and Ding Zhao. 2025. Crasha-
gent: Crash scenario generation via multi-modal rea-
soning. arXiv preprint arXiv:2505.18341.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ye-
long Shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian
Jiao, Nan Duan, et al. 2024a. Rho-1: Not all tokens
are what you need. arXiv preprint arXiv:2404.07965.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu,
Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao, Nan
Duan, Weizhu Chen, et al. 2024b. Not all tokens
are what you need for pretraining. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew
Chi-Chih Yao. 2024. Augmenting math word prob-
lems via iterative question composing. arXiv preprint
arXiv:2401.09003.

Shiqi Liu, Mengdi Xu, Peide Huang, Xilun Zhang,
Yongkang Liu, Kentaro Oguchi, and Ding Zhao. 2023.
Continual vision-based reinforcement learning with
group symmetries. In Conference on Robot Learning,
pages 222–240. PMLR.

Darius Muglich, Christian Schroeder de Witt, Elise
van der Pol, Shimon Whiteson, and Jakob Foerster.
2022. Equivariant networks for zero-shot coordina-
tion. Advances in Neural Information Processing
Systems, 35:6410–6423.

Xinzhe Ni, Yeyun Gong, Zhibin Gou, Yelong Shen, Yu-
jiu Yang, Nan Duan, and Weizhu Chen. 2024. Explor-
ing the mystery of influential data for mathematical
reasoning. arXiv preprint arXiv:2404.01067.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Judea Pearl. 2009. Causality: Models, Reasoning, and
Inference. Cambridge University Press.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2024. Recursive introspection: Teaching
language model agents how to self-improve. arXiv
preprint arXiv:2407.18219.

Stuart Russell and Peter Norvig. 2021. Artificial Intelli-
gence: A Modern Approach. Pearson.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei
Hong, Zhenfang Chen, Wei Lu, Gregory Wornell,
Subhro Das, David Cox, and Chuang Gan. 2025.
Satori: Reinforcement learning with chain-of-action-
thought enhances llm reasoning via autoregressive
search. arXiv preprint arXiv:2502.02508.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. 2023a. Large language models
can be easily distracted by irrelevant context. In
Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 31210–31227.
PMLR.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023b. Large language models

23045

https://arxiv.org/abs/2505.18341
https://arxiv.org/abs/2505.18341
https://arxiv.org/abs/2505.18341
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html

can be easily distracted by irrelevant context. In In-
ternational Conference on Machine Learning, pages
31210–31227. PMLR.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen,
Hanxue Zhang, Chengen Xie, Jens Beißwenger, Ping
Luo, Andreas Geiger, and Hongyang Li. 2024. Driv-
elm: Driving with graph visual question answering.
In European Conference on Computer Vision, pages
256–274. Springer.

Petar Velickovic and et al. 2021. Geometric deep learn-
ing: Grids, graphs, groups, geodesics, and gauges.
arXiv preprint arXiv:2104.13478.

Dian Wang, Robin Walters, and Robert Platt. 2022.
So(2)-equivariant reinforcement learning. arXiv
preprint arXiv:2203.04439.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024a. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439.

Zhiwei Wang, Yunji Wang, Zhongwang Zhang,
Zhangchen Zhou, Hui Jin, Tianyang Hu, Jiacheng
Sun, Zhenguo Li, Yaoyu Zhang, and Zhi-Qin John
Xu. 2024b. Towards understanding how transformer
perform multi-step reasoning with matching opera-
tion. arXiv preprint arXiv:2405.15302.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Maurice Weiler and Gabriele Cesa. 2019. General e
(2)-equivariant steerable cnns. Advances in neural
information processing systems, 32.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Al-
balak, Anikait Singh, Chase Blagden, Duy Phung,
Rafael Rafailov, Nathan Lile, Dakota Mahan, et al.
2025. Towards system 2 reasoning in llms: Learn-
ing how to think with meta chain-of-though. arXiv
preprint arXiv:2501.04682.

Jingyun Yang, Zi-ang Cao, Congyue Deng, Rika
Antonova, Shuran Song, and Jeannette Bohg. 2024a.
Equibot: Sim (3)-equivariant diffusion policy for gen-
eralizable and data efficient learning. arXiv preprint
arXiv:2407.01479.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor,
Pratik Chaudhari, George Karypis, and Huzefa Rang-
wala. 2024b. Agentoccam: A simple yet strong
baseline for llm-based web agents. arXiv preprint
arXiv:2410.13825.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-
Zhu. 2024a. Physics of Language Models: Part 2.1,
Grade-School Math and the Hidden Reasoning Pro-
cess. ArXiv e-prints, abs/2407.20311. Full version
available at http://arxiv.org/abs/2407.20311.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-
Zhu. 2024b. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process.
arXiv preprint arXiv:2407.20311.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-
Zhu. 2024c. Physics of Language Models: Part 2.1,
Grade-School Math and the Hidden Reasoning Pro-
cess. ArXiv e-prints, abs/2408.16293. Full version
available at http://arxiv.org/abs/2408.16293.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhi-
wei Liu, Rithesh Murthy, Tian Lan, Lei Li, Renze
Lou, Jiacheng Xu, et al. 2024. Diversity empowers
intelligence: Integrating expertise of software engi-
neering agents. arXiv preprint arXiv:2408.07060.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Yue Zhou, Yada Zhu, Diego Antognini, Yoon Kim, and
Yang Zhang. 2024. Paraphrase and solve: Exploring
and exploiting the impact of surface form on math-
ematical reasoning in large language models. arXiv
preprint arXiv:2404.11500.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang
Gong, Diyi Yang, and Xing Xie. 2023. Dyval: Dy-
namic evaluation of large language models for reason-
ing tasks. In The Twelfth International Conference
on Learning Representations.

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu,
and Xing Xie. 2024a. Dynamic evaluation of large
language models by meta probing agents. In Forty-
first International Conference on Machine Learning.

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu,
and Xing Xie. 2024b. Dyval 2: Dynamic evaluation
of large language models by meta probing agents.
arXiv preprint arXiv:2402.14865.

23046

http://arxiv.org/abs/2407.20311
http://arxiv.org/abs/2408.16293

A Supplementary Experiments

In this section, we provide some supplementary
experiments that are omitted in the main context
due to the space limit.

(b) Rho-7B model evaluation

(a) Mathstral-7B model evaluation

Figure 7: Evaluation of the mathstral-7B and rho-math-
7b-v0.1 model.

A.1 Supplementary evaluation of open-source
models

In addition to the evaluation of DeepSeek model
we presented in section 5.2, we also pro-
vide the evaluation results of Mathstral-7B and
Rho-math-7b-v0.1. The results of the 8-shot ac-
curacy evaluation are presented in Figure 7. The
findings are consistent with those in section 5.2
that LLMs are vulnerable to order permutation and
redundancy addition.

A.2 Supplementary results about permutation
order experiments

The supplementary experiment results about arith-
metic reasoning tasks using Llama-3.2-1B model
are shown in Table 5. The observations are basi-
cally the same as those in Section 5.3: the proposed
MEND achieves the best performance in OOD sce-
narios against all the baseline methods.

A.3 Supplementary results about redundancy
addition experiments

The results for logical reasoning with the base
model Llama-3.2-3B and arithmetic reasoning with

Table 5: Accuracy (%) evaluation on datasets with differ-
ent permutation order and base model as Llama-3.2-1B.
The difficulty level is defined by the number of reason-
ing steps for ground-truth reasoning chains. The number
in the parentheses indicates the performance comparison
with the vanilla method. Green: performance improve-
ment; Red: performance degradation. Bold: the method
with best performance.

Order Method
Difficulty Level

Avg.1 2 3 4

To
po

lo
gi

ca
l

Vanilla 99.0 99.0 75.5 23.0 74.1
RC-Aug 100.0 100.0 84.5 24.5 77.3 (+3.2)
SCoP-2 100.0 82.5 19.0 2.0 50.9 (-23.2)
SCoP-4 100.0 92.5 29.0 4.5 56.5 (-17.6)
SCoP-8 100.0 99.0 40.5 9.0 62.1 (-12.0)
MEND 100.0 100.0 81.0 11.5 73.1 (-1.0)

R
an

do
m

Vanilla 99.5 57.0 12.0 1.0 42.4
RC-Aug 100.0 65.0 12.0 0.5 44.4 (+2.0)
SCoP-2 100.0 76.5 14.0 2.5 48.3 (+5.9)
SCoP-4 100.0 94.0 27.5 4.0 56.4 (+14.0)
SCoP-8 100.0 98.5 38.0 7.5 61.0 (+18.6)
MEND 100.0 100.0 80.5 7.5 72.0 (+29.6)

R
ev

er
se

d

Vanilla 98.5 8.5 0.0 0.5 26.9
RC-Aug 100.0 29.0 0.5 0.0 32.4 (+5.5)
SCoP-2 100.0 79.0 22.5 3.5 51.3 (+24.4)
SCoP-4 100.0 95.5 30.0 4.5 57.5 (+30.6)
SCoP-8 100.0 98.5 41.0 3.0 60.6 (+33.7)
MEND 100.0 100.0 81.0 4.5 71.4 (+44.5)

the base model Llama-3.2-1B are presented in Fig-
ure 8. The findings are mostly consistent with
those presented in Section 5.3, showing that MEND
achieves the best performance. One exception is
that the inference-time scaling baseline, SCoP, per-
forms better in the logical reasoning tasks. This
may be because the Llama-3.2-3B model is strong
enough for this relatively easy task, allowing the
inference-time scaling method to achieve good re-
sults through majority voting.

A.4 Supplementary experiments about model
probing

In Section 4.4, we discuss that the KNN classifi-
cation method used in (Hou et al., 2023) makes
ideal assumptions and faces information aggrega-
tion issues. Here, we provide a comparison be-
tween KNN classification and the linear probing
technique used in this paper. The comparison is
presented in Figure 9, where we observe that al-
though KNN probing can reveal differences be-
tween tasks with varying levels of redundancy, the
F1-Macro score remains relatively low, reducing
the confidence of the claims. Additionally, for
harder tasks with more redundant information, the
performance gap between different methods be-

23047

In-dist. Out-of-dist.

In-dist. Out-of-dist.

(a) Logical Reasoning with Llama-3.2-3B as the base model

(b) Arithmetic Reasoning with Llama-3.2-1B as the base model

Figure 8: Evaluations with respect to different query variations. Each figure refers to one permutation order type,
the x-axis represents the number of redundancies of the test set, and the y-axis represents the accuracy of final
answers. For each dataset, we report the accuracy value over a dataset with a size of 200.

Redundant dependency # Redundant dependency

Figure 9: Comparison between linear probing and KNN-
based probing used in (Hou et al., 2023). Left: linear
probing; Right: KNN-based probing.

comes minor. This is because information tends to
aggregate on the beginning tokens, making it dif-
ficult to assign appropriate weights to all attention
entries for information retrieval probing. Based
on this experiment, we reconfirm that our linear
probing technique is more suitable for revealing
the model’s capability.

23048

A.5 Supplementary evaluation of
closed-source models

The Full QA pairs presented in Figure 1 are pro-
vided the following code blocks.

Incorrect answer of DeepSeek-V3 to Q1.

Let's break down the problem step by step to
determine how many pieces of popcorn Gary
has to eat.
1. **First 30 Seconds:**

- **Popped Kernels:** 20
2. **Next 30 Seconds (30 to 60 seconds):**

- The number of kernels that pop
is **three times** the amount that
popped in the first 30 seconds.
- **Calculation:** \(3 \times 20 = 60 \)
- **Total Popped So Far:
** \(20 + 60 = 80 \)

3. **After Removing from Heat (Residual Heat):
**

- A **quarter** of the kernels that popped
in the last 30 seconds of cooking also pop
due to residual heat.
- **Calculation:** \(\frac{1}{4}
\times 60 = 15 \)

- **Total Popped So Far:** \(80 + 15 = 95 \)
4. **Next 30 Seconds (60 to 90 seconds):**

- The popping rate **increases by 20**
from the previous rate.
- **Previous Rate:** 60 kernels per 30
seconds
- **New Rate:** \(60 + 20 = 80 \) kernels
per 30 seconds

- **Total Popped So Far:** \(95 + 80 = 175 \)
5. **Final 30 Seconds (90 to 120 seconds):**

- The popping rate **slows down to half**
the rate of the past 30 seconds.
- **Previous Rate:** 80 kernels per
30 seconds
- **New Rate:** \(\frac{80}{2} = 40 \)
kernels per 30 seconds

- **Total Popped So Far:** \(175 + 40 = 215 \)
Final Calculation:
- **Total Popcorn Popped:** 215
However, let's verify the steps to
ensure accuracy:
- **First 30 Seconds:**
20 kernels
- **Next 30 Seconds:** \(3 \times 20 = 60 \)
kernels
- **Residual Heat:**
\(\frac{1}{4} \times 60 = 15 \) kernels
- **Next 30 Seconds:** \(60 + 20 = 80 \) kernels
- **Final 30 Seconds:**
\(\frac{80}{2} = 40 \) kernels
Adding them up:
\[20 + 60 + 15 + 80 + 40 = 215 \]
Therefore, Gary has **215** pieces
of popcorn to eat.
\[\boxed{215}\]

Incorrect answer of GPT-4 to Q2.

"In the first 30 seconds, 20 kernels popped. In the
next 30 seconds, three times that amount popped,
so 20 * 3 = «20*3=60»60 kernels popped. In the
next 30 seconds, four times the initial popping rate
popped, so 20 * 4 = «20*4=80»80 kernels popped.
In the final 30 seconds, the popping slowed down
to half the rate as the past 30 seconds, so 80 / 2 =
«80/2=40»40 kernels popped. After Garrett takes the
pan off the heat, a quarter of the number of kernels
that popped in the final 30 seconds of cooking also
pop from the residual heat, so 40 / 4 = «40/4=10»10
kernels popped. He believes that five kernels would
not have popped if he had not shaken them to the
center of the pan, so he has 20 + 60 + 80 + 40 +
10 + 5 = «20+60+80+40+10+5=215»215 pieces of
popcorn to eat."

23049

B Implementation Details

In this section, we provide additional implementa-
tion details about the experiments.

B.1 Simplified Attention
The Simplified Attention (5) was proposed in
MechanisticProbe (Hou et al., 2023). To make
this paper self-contained, we introduce some nec-
essary details here.

Given a causal language model (LM) with L
layers and H attention heads, the attention matrix
A is represented as A = {A(l, h) | 1 ≤ l ≤ L, 1 ≤
h ≤ H}, where A(l, h) ∈ R|T |×|T |. To reduce the
size and complexity of A while retaining relevant
information for reasoning analysis, we simplify it
into Asimp using the following steps:

Focus on the Last Token: For causal LMs,
attention values directed at the last input token
are retained, reducing the size of A to Asimp ∈
RL×H×|T |. This reduction focuses on information
most relevant to the final prediction.

Attention Head Pooling: We apply mean pool-
ing across all attention heads to reduce dimension-
ality further, resulting in Asimp ∈ RL×|T |.

Hypernode Simplification (Cross-Statement
Attention): For tasks involving multi-token state-
ments, each statement is treated as a hypernode.
We apply mean pooling across tokens within each
statement and max pooling across question tokens,
yielding Across_simp ∈ RL×(|S|+1), where |S| repre-
sents the number of statements in the query.

These simplification steps ensure that Asimp pre-
serves the key information needed for probing rea-
soning behavior while significantly reducing com-
putational overhead and noise. Full details are in
their paper (Hou et al., 2023).

B.2 Experiment Setup Details
The experiments are mainly conducted on
the PromptBench benchmark (Zhu et al., 2023).
To make the paper self-contained, we explain the
data generation process for queries and responses
in the experiments. Full details are provided in the
documentation of PromptBench.

B.2.1 Query data generation
The promptbench generates the data in two stages:
(1) DAG construction; and (2) Natural Language
Description of the DAG. An illustration of the DAG
is shown in FIgure 10.

DAG construction: We generate the DAG with
a specified depth and number of redundancy. Based

A

B C

D E F

G J

H I K
Leaf node

Root node

Intermediate step

Dependency
Provided in query

Redundant node

Figure 10: Illustration of the DAG structure: An exam-
ple DAG with depth=3 and the number of redundant
dependency to be 2.

on these, we generate the DAG from top to bottom:
Firstly generate the root node, and then sample the
dependency between itself and its parent node(s).
If the dependency contains a 2-variable operator
(e.g. {+,−, ∧ (AND)}), then it has two parent nodes
to generate, otherwise, if it contains a 1-variable
operator (e.g. {□2, ¬ (NOT)}), it only has one par-
ent node. After the generation of the root node,
we then go to the parent generation of its parent
node(s), and do this recursively until reach the ex-
pected depth. Along with the DAG generation, we
also obtain the names of all the generated nodes
from a random string generator. After obtaining the
DAG, we sample the values for all the leaf nodes
from the pre-defined set, and calculate the value of
their child nodes from bottom to top.

Natural Language Description After obtain-
ing the DAG and all the node information, we use
natural language to describe the question with pre-
defined templates. If it is the leaf node, we describe
its name and value as:

"The value of node.name is node.value."

If it is an intermediate node or root node, we
describe the dependency with its parent nodes as:

"node.name gets its value by template-
func(node.operator, node.parent)."

where template-func is a template function to
generate strings based on the operator. For example,
if the operator is “−”, then the generated string
from template-func is:

"subtracting the value of node.parent1.name from
the value of node.parent2.name."

If all the information is described in the
topological sorting order, then it forms the
topological order dataset. If the sentences are
shuffled, it forms the random dataset. If the sen-

23050

C

F G

L M N

B

D

H I

E

J K

A O

P Q
aap=12348

aao=-42 aaf=-294

aae=49aac=-6aan=48aai=6

aag=8 aah=2 aai=6 aak=8 aau=1 aab=7 aad=7

aav

aat aau

B

D

H I

E

J K

A R

P QC

F

L M

G

N O
aan=0 aak=1 aai=1 aah=1 aab=1 aaa=0 aad=1 aae=1

aao=1 aaj=1 aac=1 aaf=1

aap=1 aag=1

aaq=1

aax aay

aaz

(a) DAG example in the arithmetic reasoning task

(b) DAG example in the logical reasoning task

Figure 11: DAG Example in the arithmetic reasoning
task and the logical reasoning task.

tences are reversed permutated, then it forms the
reversed dataset. From the templates above, we
can observe that permutating the sentence order in
the question prompts does not change the overall
semantic meaning of this query.

For the redundancy generation, we describe the
redundant nodes and their corresponding depen-
dency based on the process and templates describe
above. Since the redundant information is not re-
lated to the root node, and their names are not
overlapped, describing the redundant information
also does not change the semantic meaning of the
useful information.

At the end of the problem description, we add
one sentence to conclude the question:

"What is the value of root.name?"

We provide example QA pairs for the arithmetic
reasoning and logic reasoning tasks and their cor-
responding DAG structure in this part.

B.2.2 Response generation
In addition to the query mentioned above, SFT data
also contains the description of the reasoning chain.
As mentioned in section 3, the ground-truth reason-
ing chain is a topological sorting of this DAG. Simi-
lar to the process in query generation, the reasoning
chain generation also utilizes some templates. The

difference is that, it contains the answer after every
intermediate and final reasoning step. For example:

"node.name gets its value by template-
func(node.operator, node.parent), so the
value of node.name is node.value ."

B.3 Example QA Pairs

For the DAG example shown in Figure 11, the
corresponding QA pairs are shown in the following
text blocks:

Arithmetic reasoning:

Question:
"The value of aag is 8.
The value of aah is 2.
aai gets its value by subtracting the value of aah from
the value of aag.
aav gets its value by multiplying together the value of
aat and aau.
The value of aaj is 6.
The value of aat is 9.
The value of aak is 8.
aan gets its value by multiplying together the value of
aaj and aak.
aao gets its value by subtracting the value of aan from
the value of aai.
The value of aau is 1.
The value of aab is 7.
The value of aad is 7.
The value of aaa is 1.
aac gets its value by subtracting the value of aaa from
the value of aab.
aae gets its value by squaring the value that aad has.
aaf gets its value by multiplying together the value of
aac and aae.
aap gets its value by multiplying together the value of
aaf and aao.
What is the value of aap?"

Response:
"aag is 8.0
aah is 2.0
aai = aag - aah = 8.0 - 2.0 = 6.0
aaj is 6.0
aak is 8.0
aan = aaj * aak = 6.0 * 8.0 = 48.0
aao = aai - aan = 6.0 - 48.0 = -42.0
aab is 7.0
aad is 7.0
aaa is 1.0
aac = aab - aaa = 7.0 - 1.0 = -6.0
aae = aad2 = (7.0)2 = 49.0
aaf = aac ∗ aae = -6.0 ∗ 49.0 = -294.0
aap = aao ∗ aaf = -42.0 ∗ -294.0 = 12348.0
Thus, the answer is 12348.0"

Logical reasoning:

23051

Question:
"The value 1 means True, and the value 0 means
False.
aak is 1.
aai is 1.
aah is 1.
The value of aaj equals to (aai AND aah).
aan is 0.
aax is 1.
The value of aao equals to (aak OR aan).
The value of aap equals to (aaj OR aao).
aab is 1.
aaa is 0.
The value of aac equals to (aab OR aaa).
aad is 1.
aae is 1.
The value of aaz equals to (aax AND aay).
The value of aaf equals to (aad AND aae).
The value of aag equals to (aaf AND aac).
The value of aaq equals to (aap AND aag).
aay is 1.
What is the value of aaq?"

Response:
"aak is 1.
aan is 0.
aao = (aak OR aan) = (1 OR 0) = 1.
aah is 1.
aai is 1.
aaj = (aah AND aai) = (1 AND 1) = 1.
aap = (aao OR aaj) = (1 OR 1) = 1.
aab is 1.
aaa is 0.
aac = (aab OR aaa) = (1 OR 0) = 1.
aad is 1.
aae is 1.
aaf = (aad AND aae) = (1 AND 1) = 1.
aag = (aaf AND aac) = (1 AND 1) = 1.
aaq = (aag AND aap) = (1 AND 1) = 1.
Thus, the answer is 1"

B.4 Baseline Implementation Details
• SCoP-k. First, it paraphrases the question

prompts k times, then performs reasoning
based on these paraphrases, and obtains the
final answer through majority voting. Unlike
the closed-source LLMs used in (Zhou et al.,
2024), our LLMs after SFT lose some of their
paraphrasing capability. Additionally, in our
experiment, sentence order permutation does
not alter the overall semantic meaning, which
is a good way for paraphrase. Therefore, we
permute the sentences to achieve paraphras-
ing, resulting in better final performance.

• RC-Aug utilizes the reasoning chain (RC) aug-
mented dataset for SFT, as used in previous
work (Yu et al., 2023). Specifically, we aug-
ment the answers with different topological
orderings while keeping the query unchanged.
For a DAG with more than two levels, the

topological ordering is not unique. For ex-
ample, in the DAG shown in Figure 10, the
topological ordering can start by solving ei-
ther node B first or node C first. When solving
node B, it can begin with either node D or
node E. Consequently, a fixed DAG can have
multiple valid topological orderings, resulting
in different reasoning chains that lead to the
same correct answer. In RC-Aug, we incorpo-
rate these additional reasoning chains from
different topological orderings to augment the
SFT dataset.

• MEND-RC is an ablation variant that applies
MEND to transform the original question
queries without introducing new queries into
the dataset, while augmenting the dataset with
additional reasoning paths.

All the methods include the baselines and
MEND utilize full-parameter fine-tuning. We re-
port the accuracy as Pass@1 if not indicated other-
wise.

B.5 Computing Resources.
The experiments are run on a server with 2×AMD
EPYC 7542 32-Core Processor CPU, 2×NVIDIA
RTX A6000 graphics, and 252 GB memory. For
the arithmetic reasoning tasks with 3B model, it
takes about 20 GPU hours for SFT and evaluation.
For Logical reasoning tasks with 1B model, it takes
about 4 GPU hours for SFT and evaluation.

23052

