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Abstract

Large Language Models (LLMs) fine-tuning
technologies have achieved remarkable re-
sults. However, traditional LLM fine-tuning
approaches face significant challenges: they
require large Floating Point (FP) computation,
raising privacy concerns when handling sen-
sitive data, and are impractical for resource-
constrained edge devices. While Parameter-
Efficient Fine-Tuning (PEFT) techniques re-
duce trainable parameters, their reliance on
floating-point arithmetic creates fundamental
incompatibilities with edge hardware. In this
work, we introduce a novel framework for on-
device LLM fine-tuning that eliminates the
need for floating-point operations in both infer-
ence and training, named GSQ-Tuning. At its
core is the Group-Shared Exponents Integer for-
mat, which efficiently represents model param-
eters in integer format using shared exponents
among parameter groups. When combined
with LoRA-like adapters, this enables fully
integer-based fine-tuning that is both memory
and compute efficient. We demonstrate that
our approach achieves accuracy comparable
to FP16-based fine-tuning while significantly
reducing memory usage (∼ 50%). Moreover,
compared to FP8, our method can reduce ∼ 5 ×
power consumption and ∼ 11 × chip area with
same performance, making large-scale model
adaptation feasible on edge devices.

1 Introduction

Recent advances in Large Language Models
(LLMs) have delivered impressive results in a va-
riety of natural language tasks (Touvron et al.,
2023a,b; Liu et al., 2023). LLMs are typically
trained in several stages, including large-scale
pretraining followed by one or more fine-tuning
phases (Dubey et al., 2024; Liu et al., 2024a). LLM
fine-tuning approaches like supervised fine-tuning
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(SFT) (Zhang et al., 2023), usually employ curated,
high-quality corpora for refining the model with a
standard language modeling (Chiang et al., 2023).

Despite their effectiveness, most LLM fine-
tuning approaches require powerful cloud servers
or GPUs equipped with large memory capaci-
ties. This poses two significant challenges in
real-world settings: (1) uploading sensitive data
to remote servers poses a fundamental privacy
risk, and (2) in many practical scenarios, models
must be deployed on resource-constrained edge de-
vices—such as mobile processors or embedded AI
accelerators—where memory and power budgets
are tightly limited. Such constraints become criti-
cal in LLM’s personalized applications, where data
cannot be shared with the cloud and model updates
must remain local to ensure privacy. Meeting these
challenges thus necessitates on-device adaptation
methods capable of preserving data privacy and
functioning within the limited memory and compute
budgets of edge hardware.

Parameter-Efficient Fine-Tuning (PEFT) (Han
et al., 2024) techniques such as LoRA (Hu et al.,
2021) and QLoRA (Dettmers et al., 2023) alleviate
part of this burden by reducing trainable parameters
to around 1% of the original model. Unfortunately,
they remain reliant on floating-point operations for
both forward and backward passes, which clashes
with edge-device constraints in three ways. First,
during fine-tuning, weights, activation and gradi-
ents must be stored and updated in high-precision
floating-point. It introduces additional overhead
or even makes the LLM fine-tuning impractical
on edge devices. Second, floating-point represen-
tations incur high memory overhead (e.g., FP16
doubles the memory cost compared to INT8; for a
7B-parameter model, this can surpass 20GB mem-
ory during fine-tuning process, presenting substan-
tial challenges for mobile processors). Last but not
least, commercial edge AI accelerators (e.g., Qual-
comm Hexagon (QUALCOMM, 2024)) typically
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get peak throughput only on integers, leaving up to
84% of compute units idle under FP16 training.

Therefore, eliminating floating-point arithmetic
for fine-tuning would have a substantial impact on
software, hardware, and application design for effi-
cient on-device LLM adaptation (ARM, 2020; Kim
et al., 2021). While previous studies on integer
quantization (Jacob et al., 2018a; Kim et al., 2021;
Xiao et al., 2022; Yuan et al., 2023) verify the fea-
sibility of inference, they do not extend to gradient
quantization, which is required for effective fine-
tuning of LLMs at the edge.

In this paper, we propose a new framework
for resource-efficient on-device LLM fine-tuning,
termed GSQ-Tuning. Central to our method is the
Group-Shared Exponents Integer format, a novel
quantization strategy that replaces floating-point
with a specialized integer-based representation. We
integrate this with parameter-efficient LoRA-like
modules to enable fully on-device fine-tuning with-
out incurring large memory and computation costs.
We further examine this design through a Pareto
frontier analysis, which demonstrates how vari-
ous bits-rank settings impact the trade-off between
fine-tuning memory costs and accuracy. Extensive
experiments across models of varying scales, dif-
ferent fine-tuning datasets, and diverse tasks have
demonstrated the effectiveness and generalizability.
We highlight our main contributions as follows:

• Group-Shared Exponents Integer Quanti-
zation: We introduce a quantization strategy
that shares exponents among groups, thereby
reducing the storage and computation over-
head while still representing model parame-
ters in integer format. Combined with LoRA-
like adapters, our method supports fine-tuning
under tight memory constraints.

• Integer Forward and Backward Compu-
tations: By extending integer quantization
pipelines beyond inference to include gradi-
ents, both forward and backward passes re-
main hardware-friendly and efficiently utilize
integer-focused edge accelerators.

• Pareto Frontier for Quantization Bits and
Low-rank: We demonstrates how various
bits-rank settings impact the trade-off be-
tween fine-tuning memory costs and accuracy
through a Pareto frontier analysis. We empir-
ically show that our approach achieves accu-
racy on par with FP16-based fine-tuning while

dramatically lowering both ∼ 50% memory
usage. Furthermore, compared with FP8, at
comparable performance levels, our method
(GSE-INT5) reduces the power consumption
of MAC unit by ∼ 5 × and decreases chip
area by ∼ 11 × comparing to the origin.

2 Method

In this section, we present GSQ-Tuning, a fully
quantized training method for on-device LLM
fine-tuning. We begin by reviewing the funda-
mentals of LLM PEFT, highlighting the bottle-
necks of implementing existing PEFT methods
on device, and then review relevant neural net-
work quantization literature (Sec.2.1). Building
on these insights, we propose a new LLM fine-
tuning framework—Group-Shared Exponents In-
teger in Fully Quantized Training—for on-device
scenarios. To enable this framework, we design
two key components: (1) A Group-Shared Expo-
nents Integer data format to replace floating-point
representations (Sec.2.2). (2) A Fully Quantized
Fine-tuning Framework that leverages our new
data format (Sec.2.3). Finally, we explore the per-
formance–efficiency trade-off in GSQ-Tuning via
Pareto frontier analysis (Sec.2.4) , providing practi-
cal guidance for its use.

2.1 Preliminaries

Low-rank Adaptation. LoRA (Hu et al., 2021)
is a milestone method that injects trainable low-
rank adapters into linear layers, allowing efficient
fine-tuning while keeping the original parameters
unchanged. Specifically, a LoRA linear layer is
parameterized by a non-trainable weight matrix
W ∈ Roc×ic, along with trainable components
A ∈ Rr×ic and B ∈ Roc×r, where r is a small in-
teger. The input X ∈ Rb×ic and output Y ∈ Rb×oc

correspond to a linear layer with oc × ic process-
ing a batch of size b. Building on LoRA, QLoRA
integrates it with 4-bit NormalFloat (NF4) quanti-
zation and Double Quantization (DQ)techniques,
enabling the fine-tuning of a 65B parameter model
on a single 48GB GPU with minimal performance
loss. In this paper, due to the memory constraint of
on-device PEFT, we adopt QLoRA to quantize the
weights of LLMs. The formulation is:

Y = XDQ(WNF4)T +XATBT

where we omit the transpose for similarity, NF4
means the 4 bit NormalFloat (NF) data type and
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and DQ is Double Quantization operation to map
weights from NF4 to BF16 in QLoRA. The low-
rank components A and B and input X remain
in BF16 during fine-tuning process. However,
QLoRA still does not suit on-device PEFT scenar-
ios because the low-rank term XATBT remains in
BF16, whereas most on-device hardware only sup-
ports integer operations. This limitation motivates
our development of a new LoRA method that relies
exclusively on integer operations.
Quantization. Quantization (Jacob et al., 2018b) is
a crucial technique that maps a floating-point num-
ber to a discrete interval using integer values. Given
a floating-point (FP) tensor x (such as weights, ac-
tivations or gradients), the b-bits formulation is:

xint = Q(x) = clamp
(⌊x

s

⌉
+ z, 0, 2b − 1

)

where s = max(|x|)
2b−1−1

is the scaling factor, z denotes
zero points, ⌊·⌉ refers to the round-to-nearest, and
the function clamp(·) clips values outside the inte-
ger range [qmin, qmax] respectively. [qmin, qmax] is
the quantization range determined by the bit width
b, where qmin = −sz and qmax = −s(2b − 1− z).
Fully Quantized Training (FQT). FQT involves
quantizing all tensors—weights, activations, and
gradients—needed for computation-intensive op-
erations (like matrix multiplication) during both
forward and backward propagation (Wang et al.,
2018; Yang et al., 2020; Zhu et al., 2020). When
the network’s weights, activations, and gradients
are each quantized to 8 bits, this is referred to as
W8A8G8 quantization. Notably, FQT is different
from Quantization-Aware Training (QAT), we also
discuss the difference in Sec. A.1.

2.2 Group-Shared Exponents Integer
Low-bitwidth Floating Point (FP). Floating-
point numbers are a commonly used data repre-
sentation in deep learning. For instance, FP16
represents each number using 16 bits. Recently,
lower-bit floating-point representations, such as
FP8, have been introduced into the training pro-
cesses of deep learning models (Micikevicius et al.,
2022; Baalen et al., 2023). FP8 operates in two
modes: the E4M3 and E5M2 formats. In these
formats, E represents the number of exponent bits
and M denotes that of mantissa bits.

Similar to quantization methods, low-bitwidth
FP formats can effectively reduce memory stor-
age requirements and decrease the hardware area
and energy consumption of computational units.

0 5 10 15 20 25 30
2 3
2 2
2 1
20
21

M
ag

ni
tu

de

0 5 10 15 20 25 30
Layer Index

2 4
2 3
2 2

St
d

Figure 1: In each layer, the weights’ magnitudes are
similar. The standard deviations of weights across lay-
ers are less than 2−2 by 3-σ (about probability 99.7%).
The weights are from Vicuna-7B-v1.5.

FP8 GSE-INT8

N ×1 ×

sign bit (S) exponent (E) mantissa (M)
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Figure 2: The GSE format is memory efficient
through group-shared exponent bits. Comparison
between FP8 and GSE-Int8.

However, we observe that low-bitwidth FP may
not be the optimal solution for LoRA fine-tuning
in large-scale models, primarily due to the follow-
ing 3 reasons: (1) Neural network tensors exhibit
spatial locality, meaning that adjacent elements
within a tensor tend to have similar magnitudes,
leading to redundancy in the exponent bits of FP
representations. As illustrated in Fig. 1, the stan-
dard deviation of the values in the weight tensor
is considerably lower than the magnitude of the
values, indicating a small local variation; (2) The
limited number of mantissa bits in low-bitwidth FP
formats constrains precision, potentially impairing
model performance. For instance, the E5M2 for-
mat, which has only two mantissa bits, is incapable
of representing certain integers below ten, such
as 5, 7, and 9; (3) FP computation demonstrates
less efficiency in memory, chip area, and power
consumption compared to GSE-INT computation,
making it less suitable for resource-constrained en-
vironments. As shown in Table 7, FP formats incur
considerably higher costs in power and chip area
compared to integer-based computation, making
them less suitable for edge environments.

Due to the inherent characteristics of FP repre-
sentations and the requirement for relatively high
precision in training, it is crucial to explore other
data format to reduce both hardware area and en-
ergy consumption in resource-constrained cases.
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Group-Shared Exponents Integer (GSE-INT).
Inspired with block FP (Zhang et al., 2022), we pro-
pose the Group-Shared Exponents Integer (GSE)
format as an alternative to FP formats for matrix
multiplication in both forward-propagation and
back-propagation. This format is also used for stor-
ing activations required by back-propagation to re-
duce memory consumption. As illustrated in Fig. 2,
GSE introduces the following key modifications
compared to traditional floating-point formats: (1)
To leverage the locality of tensor values, we share
the exponent across a group of N numbers. That
is, all N numbers within the group use the same ex-
ponent. (2) The number of bits used for the shared
exponent is fixed at 5. (3) The implicit leading 1
in floating-point representations is removed and re-
placed with a standard integer representation. The
numerical representation in GSE is:

x = (−1)s · 2e ·m
where s is sign, e is the exponent value (For
simplicity, we omit the exponent bias), m is the
mantissa value. The GSE format is memory effi-
cient through sharing exponent bits. Memory for
FP is N(E + M + 1) and memory for GSE is
N(M + 1) + E. As the group size N increases,
the memory savings grow proportionally, while the
overhead of the shared exponent is negligible.

Matrix Multiplication using GSE. Consider
two vectors, A and B, both represented using the
GSE format and having a length of N . The dot
product of the two vectors can be computed as:

y = 2eA+eB

N∑

i=1

(−1)sA⊕sBmA,imB,i

︸ ︷︷ ︸
standard integer multiply-accumulate

,

where mA,i and mB,i are the integer mantissas of
the i-th elements of the vectors. The computation
involves a standard integer multiply-accumulate
(MAC) operation, followed by scaling with the
combined exponent 2eA+eB .

The dot product operation can be extended to
large-scale matrix multiplication. For two matrices
X and Y, we partition the data into groups of size
N . Specifically, rows of X are grouped along their
elements, with each group sharing a single expo-
nent, and columns of Y are grouped similarly. This
grouping strategy simplifies hardware implemen-
tation and makes the GSE format a practical and
efficient choice for large-scale matrix operations.

Transform from FP to GSE. The transformation
from FP representation to GSE format is efficient
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Figure 3: Dataflow of GSQ-Tuning. The weight is NF4
in full-rank branch and is FP32 in low-rank branch.

due to the design of GSE. First, within a group of
N FP numbers, identify the largest exponent emax
among them. Then, using emax as the shared expo-
nent for the group. For each FP value in the group,
its mantissa is adjusted by adding the implicit lead-
ing bit (if applicable) and then right-shifting the
value based on the difference between its original
exponent and emax. This process ensures that all
values are aligned to the shared exponent, lead-
ing the storage and computation efficiency while
preserving precision.

2.3 Fully Quantized Fine-tuning
As illustrated in Fig. 3, our GSQ-Tuning frame-
work introduces a hardware-efficient quantization
pipeline. Compared to QLoRA, we fully quan-
tize weights, activations, and gradients to low-
bit integers. While QLoRA primarily focuses on
4-bit quantization of frozen base model weights
(NF4) while keeping adapters in high precision
(BF16), our approach achieves superior compu-
tational and memory efficiency. Building on
the quantize-compute-dequantize (QCD) paradigm
for low-precision matrix multiplication (MM) (Xi
et al., 2024), the QCD approach operates in three
stages: (1) Quantization: Convert high-precision
inputs matrices (e.g., BF16) to low-precision (e.g.,
GSE-INT6) using a quantizer Q(·); (2) Computa-
tion in low-precision MM: Perform low-precision
MM to produce an intermediate output (e.g., GSE-
INT6); and (3) Dequantization: Convert output
back to high-precision using a dequantizer Q−1(·).
Forward Propagation. The forward propagation
for a linear layer is calculated as follows:

YBF16 = Q−1

(
Q(XBF16)Q

(
DQ(WNF4)

)T
)

︸ ︷︷ ︸
frozen base model

+Q−1
(
Q(XBF16)Q(ABF16)TQ(BBF16)T

)

︸ ︷︷ ︸
trainable adapter
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Backward Propagation. Gradients are com-
puted directly on quantized tensors using back prop-
agation and chain rule:

∂L
∂A

= Q−1(Q(B)TQ

(
∂L
∂Y

)T

Q(X))

∂L
∂B

= Q−1(Q

(
∂L
∂Y

)T

Q(X)Q(A)T )

∂L
∂X

= Q−1(Q

(
∂L
∂Y

)
(Q(W) +Q(B)Q(A)))

2.4 Pareto Frontier for Quantization Bits and
Low-rank.

Co-optimization Principle for Model Bits and
Rank. The memory footprint and FLOPs dur-
ing fine-tuning exhibit strong dependence on both
quantization bit-width and LoRA rank O(b · r)
scaling. Excessive values in either dimension im-
pose prohibitive computational burdens: (1) Mem-
ory:Mem ∝ b · r (adapter parameter storage); (2)
Compute: Flops ∝ r · d2 (for hidden dimension
d). This necessitates joint optimization of (b, r) to
guide the accuracy-efficiency trade-off space effec-
tively. Pure bit-width reduction sacrifices model
capacity, while unrestrained rank scaling inflates
computation costs disproportionately.

The effectiveness of GSQ-Tuning hinges on how
quantization bit-width interacts with the dimen-
sions of low-rank adapters. To inform real-world
deployments, we systematically analyze this inter-
play by constructing a Pareto frontier that illustrates
the balance between model memory consumption
during fine-tuning and accuracy across various bits-
rank settings. We hope our findings not only high-
light optimal configurations, but also offer practical
guidelines for practitioners to tailor solutions to
specific hardware constraints.

Pareto Frontier Analysis. Based on our GSQ-
Tuning, we construct a Pareto frontier by plotting
model memory during fine-tuning against valida-
tion accuracy across different bits-rank configu-
ration. As shown in Fig. 4, the frontier reveals
three distinct optimization regimes (1) High-Bit
Low-Rank Regime (8-bit, r=64): Reaches 65.60
Acc with suboptimal efficiency. 0.50 Acc gain
from r = 16 to 64 indicates high-bit quantization
inherently limits error magnitude, requiring less
rank compensation. (2) Mid-Bit Balanced Regime
(6-bit, r=128): Delivers 65.58 Acc with moder-
ate resources. 0.71 Acc gain from r = 16 to 128
shows diminishing returns beyond this point (only

Reduce ~50% mem

(r=16)

(r=32)

(r=64)

(r=128)

(r=256)

(r=512)

w/o fine-tuning

Figure 4: Pareto curve of accuracy-memory trade-offs.
Compared to FP16, our GSQ-Tuning can reduce ∼ 50%
memory usage while having the comparable accuracy.
Detailed results are in Tab.10

0.32 Acc gain from r = 128 to 512). (3) Low-
Bit High-Rank Regime (5-bit, r=512): Achieves
64.88 Acc with minimal memory footprint. 0.91
Acc gain from r = 16 to 512 demonstrates that
aggressive rank scaling can compensate for severe
quantization errors. Besides, Compared to FP8,
GSQ-Tuning offers higher finetuning performance
at similar or lower memory (Table 2) and reduces
chip area (∼11×) and power (∼5×, Table 7). We
also provide the Pareto frontier and detailed results
for other models in appendix. Extra extensive re-
sults yield similar guidance.

3 Experiments

Foundation Models and Evaluation Metrics.
We apply our method to the entire LLaMA fam-
ily, including LLaMA-2 (7B/13B/70B)(Touvron
et al., 2023b), and LLaMA-3 (3B-8B). We eval-
uate the fine-tuning models on up to 9 zero-
shot commonsense question-answering (CSQA)
tasks using the lm-evaluation-harness (version
0.4.7)(Gao et al., 2024), including BoolQ(Clark
et al., 2019), HellaSwag (Zellers et al., 2019),
LAMBADA (OpenAI)(Radford et al., 2019), Open-
BookQA(Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), Wino-
Grande (Sakaguchi et al., 2019), ARC-Easy, and
ARC-Challenge (Clark et al., 2018). The fine-
tuning dataset follows Alpaca (Taori et al., 2023),
with 52K instruction data from text-davinci-003.
Besides, we also report the memory cost (Mem.(G))
during the model fine-tuning process.
Training Details. We employ the whole fine-
tuning process based on LLaMA-Factory (Zheng
et al., 2024). We implement GSQ-Tuning in
PyTorch using models from Hugging Face. We
freeze the parameters of the linear modules and
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Table 1: 0-shot CSQA accuracy comparison with respect to different quantization bits in 64 rank setting. ’4-8-8’
means quantize weights, activation and gradients to 4-bit, 8-bit and 8-bit. GSQ-Tuning is built on Qlora, where all
weights are quantized as NF4 firstly.Notably, the memory usage for LLaMA series model is for the model weights
alone. Since these models are not fine-tuned, no fine-tuning phase (no gradient computation or updates) is involved.
Denoted as 16-16-None for weights-activation-gradients.

Method LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem.(G)

LLaMA2-7B 16-16-None w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.20
w/ QLoRA 4-16-16 16-16-16 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 10.73

w/ GSQ-Tuning
4-8-8 8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 7.28
4-6-6 6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 5.97
4-5-5 5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 5.81

LLaMA2-13B 16-16-None w/o 66.65 48.81 76.47 82.45 79.67 44.80 80.36 48.31 72.38 25.7
w/ QLoRA 4-16-16 16-16-16 67.61 49.66 77.23 83.30 78.95 45.40 80.74 51.59 73.24 17.42

w/ GSQ-Tuning
4-8-8 8-8-8 67.48 49.57 77.40 82.87 78.88 46.20 80.90 50.72 73.32 11.99
4-6-6 6-6-6 67.35 49.66 77.27 82.75 78.66 79.05 80.90 50.97 73.16 10.89
4-5-5 5-5-5 66.97 49.91 76.60 81.87 78.15 46.20 80.41 49.54 73.09 10.33

LLaMA2-70B 16-16-None w/o 70.68 56.91 80.05 85.78 83.59 48.60 82.48 48.67 79.40 137.42
w/ QLoRA 4-16-16 16-16-16 72.22 59.81 82.20 86.51 83.89 50.40 83.13 51.48 80.35 66.82

w/ GSQ-Tuning
4-8-8 8-8-8 72.20 59.90 82.32 86.51 83.90 50.20 83.08 51.59 80.11 52.17
4-6-6 6-6-6 72.10 59.39 82.15 86.51 83.94 50.00 83.30 50.92 80.58 48.71
4-5-5 5-5-5 71.70 58.87 81.48 85.90 83.91 49.60 82.81 50.67 80.43 46.98

LLaMA3-3B 16-16-None w/o 62.64 45.90 71.68 73.00 73.64 43.20 77.42 47.08 69.22 6.42
w/ QLoRA 4-16-16 16-16-16 64.11 48.63 74.07 77.22 73.12 41.60 78.51 49.33 70.40 6.78

w/ GSQ-Tuning
4-8-8 8-8-8 64.02 47.30 74.44 77.26 72.51 42.40 78.60 49.80 69.86 3.93
4-6-6 6-6-6 63.71 47.07 73.59 76.64 72.23 41.80 78.20 48.76 71.36 3.47
4-5-5 5-5-5 62.74 48.04 73.44 73.36 71.96 40.40 78.13 47.65 68.98 3.24

LLaMA3-8B 16-16-None w/o 67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 4-16-16 16-16-16 68.45 55.63 80.13 83.67 78.78 44.80 81.28 50.41 72.93 11.64

w/ GSQ-Tuning
4-8-8 8-8-8 68.61 55.97 80.22 83.61 78.68 45.20 81.50 50.41 73.32 7.63
4-6-6 6-6-6 68.22 55.55 79.29 83.67 78.47 44.80 80.90 50.05 73.09 6.86
4-5-5 5-5-5 66.69 54.10 77.99 81.65 77.12 43.80 79.54 47.90 71.43 6.47

update a smaller (low-rank) set of parameters dur-
ing the fine-tuning. The group size of our GSQ-
Tuning is 32. We fine-tune models using the 8-bits
AdamW optimizer (Dettmers et al.) in bfloat16
precision. We choose the constant learning rate
schedule and set the learning rate to be 1 × 10−5

for all models. In all cases, we tune the hyper-
parameters on the base BF16 tasks, and re-use the
same values for low-precision training. We always
perform single-epoch experiments using a linear
learning rate warm-up of 100 steps. The batch size
and sequence length are fixed at 16 and 2048. The
number of fine-tuning steps is 3.24K for Alpaca.
Hardware Synthesis. We implemented the hard-
ware in Verilog RTL and synthesized it using Syn-
opsys Design Compiler with a 7nm technology
library to estimate the process engine’s area, la-
tency, and power consumption (Clark et al., 2016).
The hardware operates at 1 GHz and has a capa-
bility of 50 TOPS. The memory subsystem is not
considered in our settings and analyses.

3.1 Overall Results
GSQ-Tuning Results on LLaMA Family. Here,
we compare the fine-tuning performance across
LLaMA family (3B 70B) against QLoRA. As

shown in Tab. 1, GSQ-Tuning achieves compa-
rable or better zero-shot accuracy across differ-
ent LLaMA model scales (7B-70B) under a fully
low-bit quantization fine-tuing setting. With 8-bit
quantization precision (W8A8G8), GSQ-Tuning
matches or exceeds QLoRA’s performance on 83%
of tasks, despite using 50% fewer bits for acti-
vations and gradients. Even at aggressive 5-bit
quantization (W5A5G5), the GSQ-Tuning main-
tains 98.6% of QLoRA’s average accuracy while
reducing memory footprint by 2.67×. These results
confirm GSQ-Tuning’s effectiveness for resource-
constrained edge deployment.

Comparison with FP8. Here, we compare the
designed GSE data format with FP8 in fully quan-
tized fine-tuning framework. As shown in Tab. 2,
the results demonstrate that the designed GSE im-
plemented in our GSQ-Tuning method achieves
superior fine-tuning performance compared to FP8
while significantly reducing computation efficiency.
Even under 5-bit settings, GSQ-Tuning maintains
fine-tuning performance on par with FP8, further
validating its effectiveness. Additionally, to miti-
gate the impact of rank variations, we report the
fine-tuning results using 64-rank setting in Tab. 15
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Table 2: 0-shot CSQA accuracy comparison with FP8 in different quantization bits in 32 rank setting.

Method LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem.(G)
LLaMA2-7B 16-16-None w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.2
w/ QLoRA 4-16-16 16-16-16 65.24 47.27 75.04 78.87 76.11 44.60 79.76 49.95 70.32 9.37
w/ FP8 4-8-8 8-8-8 64.09 45.90 73.27 77.86 75.83 45.40 78.45 46.98 69.06 6.52

w/ GSQ-Tuning
4-8-8 8-8-8 65.45 48.12 74.71 78.38 76.14 46.00 79.71 49.64 70.96 6.52
4-5-5 5-5-5 64.00 44.97 73.32 75.29 74.95 44.60 79.27 48.93 70.24 5.45

LLaMA3-8B 16-16-None w/o 67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 4-16-16 16-16-16 68.31 55.55 80.39 83.36 78.65 44.60 81.28 50.05 72.61 11.02
w/ FP8 4-8-8 8-8-8 66.62 50.77 76.43 81.59 78.17 43.80 80.20 47.44 74.59 7.23

w/ GSQ-Tuning
4-8-8 8-8-8 68.45 55.72 80.22 83.43 78.60 45.00 81.18 50.20 73.32 7.23
4-5-5 5-5-5 66.48 51.71 77.69 82.11 76.91 44.20 79.43 48.16 71.67 6.07

Table 3: Cross-modal task evaluation on LLaVA-v1.5-7B: the default setting is QLoRA on 4-bits/64-rank without
finetuning. Shared exponents shows robustness to LLM’s finetuning, referring to the comparison with BF16.

Settings LLMs branch low-rank branch
POPE-random POPE-adversarial

TextVQA MMBench
accuracy precision F1-score accuracy precision F1-score

LLaVA-v1.5-7B 16-16-None w/o 84.19 84.08 84.80 74.40 69.96 76.96 6.51 55.45
w/ QLoRA 4-16-16 16-16-16 87.47 92.51 86.68 83.87 85.52 83.48 47.68 67.08

w/ GSQ-Tuning
4-8-8 4-8-8 87.84 96.21 87.08 84.03 87.40 83.28 45.19 69.75
4-6-6 4-6-6 88.08 96.08 87.39 83.43 85.80 82.87 49.13 70.19

Table 4: 0-shot CSQA accuracy on CS170K dataset in 64 rank setting.

Method LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG.
LLaMA2-7B 16-16-None w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06
w/ QLoRA 4-16-16 16-16-16 67.78 51.79 78.86 81.28 75.77 46.00 79.98 53.89 75.37

w/ GSQ-Tuning 4-8-8 8-8-8 67.73 51.79 78.37 82.32 75.74 46.20 79.27 53.12 75.06
4-6-6 6-6-6 67.56 50.77 77.74 82.23 75.07 47.40 79.60 53.58 74.11

of the appendix. Extensive experiments consis-
tently support the advantages of our approach.

Table 5: Fine-tuning time comparison with full-
finetuning and low-rank adapter on alpaca-52K dataset
in LLaMA2-7B model.

Method LLMs branch low-rank branch Avg. Ft-Time.(h) Mem.(G)

LLaMA2-7B 16-16-None w/o 64.13 0.0 13.20
w/ Full-finetuing 16-16-16 16-16-16 65.88 2.4 58.56
w/ QLoRA 4-16-16 16-16-16 65.69 3.2 10.73
w/ GSQ-Tuning 4-6-6 6-6-6 65.39 3.4 5.97

Fine-tuning Time Comparison. Here, we com-
pare the fine-tuning time with QLoRA, full-
finetune, and our proposed GSQ-Tuning on the
LLaMA2-7B model. As shown in Tab. 5, the
results demonstrate that full fine-tuning achieves
65.88 accuracy in 2.4 hours but requires up to a typ-
ically infeasible 58.56GB memory 10× our GSQ-
Tuning’s 5.97GB and 5× QLoRA’s 10.73GB. GSQ-
Tuning (GSE-INT6) and QLoRA (BF16+NF4)
both converge in 3.2 3.4 hours with matching ac-
curacy (65.39% vs 65.69%), yet GSQ-Tuning uses
nearly half QLoRA’s memory. It verifies that GSQ-
Tuning matches QLoRA’s training time while of-
fering superior memory efficiency, in resource-
constrained edge scenarios where our primary fo-
cus. Although PEFT methods like ours inherently

require longer convergence times, our primary fo-
cus lies in striking a balance between memory effi-
ciency and computational feasibility.

Table 6: Fine-tuning training memory (GB) cost with
different fine-tuning settings in the LLaMA family.

Setting LLaMA2-7B LLaMA2-13B LLaMA2-70B LLaMA3-3B LLaMA3-8B

Full-finetuing 58.56 112.80 597.74 28.12 65.86
w/ QLoRA 10.73 17.42 66.82 6.78 11.64
w/ GSQ-Tuning 5.97 10.89 48.71 3.47 6.86

Fine-tuning Memory Comparison. Here, as
shown in Table 6, we reported the training mem-
ory cost for these baselines when training/full fine-
tuning (batch size = 1, sequence length=2048), no
activation checkpointing and memory offloading
as shown in table R1. However, their huge train-
ing memory costs (>10x more than GSQ-Tuning)
outside our edge-focused fine-tuning scope, where
full finetuing/training is typically infeasible due to
resource constraints.

Hardware Efficiency Analysis. Table 7 com-
pares the chip area and power consumption of dif-
ferent formats through hardware synthesis. GSE-
INT format demonstrates significant advantages
over FP: (1) Area Efficiency: GSE-INT6 process
engine requires only 0.47mm2, 10.7× smaller than
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Table 7: Comparison of hardware overhead between FP
process engine and GSE-INT process engine (7nm).

Format Area (mm2)↓ Power (W) ↓
FP8 (E5M2) 4.36 2.53
FP8 (E4M3) 5.06 3.23
FP7 (E3M3) 5.05 2.75
FP6 (E3M2) 3.40 2.09
GSE-INT8 0.85 1.24
GSE-INT7 0.61 1.00
GSE-INT6 0.47 0.76
GSE-INT5 0.39 0.53

FP8(E4M3). This stems from simplified integer
arithmetic logic and group-wise exponent sharing
that eliminates complex alignment. (2) Power Su-
periority: At comparable bit-widths, GSE-INT6
consumes 0.76W (the 23.52% of FP8’s 3.23W).
3.2 Generalization Experiments
Generalization of GSQ-Tuning for Vision-
Language Model (LLaVA). Model used is
LLaVA-v1.5-7B (Liu et al., 2024b) with Vicuna-
7B-v1.5 (Zheng et al., 2023) as language model
and CLIP ViT-L-336px (Radford et al., 2021) as vi-
sion tower, connected by a 2-layer MLP. Instruction
dataset and other settings for finetuning follow the
LLaVA official repository, LLaVA-Instruction (Liu
et al., 2024c) and the improved one (Liu et al.,
2024b). Tab. 3 shows performance drop of the
vanilla quantization of 4-bits/64-rank QLoRA, es-
pecially, referring to the TextVQA evaluation. Fine-
tuning with GSE shows comparable performance
compared to that with BF16. BF16 is of E8M7
while GSE is of E5M7, demonstrating the redun-
dancy of the dynamic range w.r.t. exponents is at
least 3-bits much. Moreover, the memory cost of
GSE is about a half of BF16.

Generalization of GSQ-Tuning on Other Fine-
tune Dataset. Here, we also select Common-
sense170K (CS170K) (Hu et al., 2023) to evaluate
the generalization ability of GSQ-Tuning across
different fine-tuing dataset. CS170K is a dataset
constructed from the training sets of BoolQ, PIQA,
SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c,
and OBQA with pre-defined templates, comprising
170K commonsense reasoning samples. As shown
in Tab. 4, on larger fine-tuning datasets, our GSQ-
Tuning also demonstrates comparable or even su-
perior accuracy compared to QLoRA, while being
more computationally efficient.
3.3 Ablation Study
Group Size Analysis. As shown in Tab. 8, our
GSQ-Tuning with 32 groups achieves optimal

Table 8: The effect of the number of shared group on
fine-tuning performance in 64 rank setting.

Method LLMs branch low-rank branch Group Avg. Mem. (G)

LLaMA2-7B 16-16-None w/o - 64.13 13.2

w/ GSQ-Tuning 5-6-6 6-6-6
32 65.39 6.17
64 64.72 6.32

128 64.27 6.56

accuracy-efficiency balance in 6-bit configurations
(W6A6G6). The 32-group setting yields signifi-
cantly higher average accuracy (65.39) compared
to 64-group (64.72) and 128-group (64.27) variants,
while maintaining comparable memory efficiency
(70.96 vs 69.22/69.53). This sweet spot emerges
from the tension between quantization bit width
and hardware deployment - smaller groups better
capture value distributions but increase computa-
tion overhead, while larger groups sacrifice adapta-
tion granularity. We therefore adopt group=32 as
the default configuration.

Table 9: The ablation of the exponent bit width (E) and
the number of shared group (N) on fine-tuning perfor-
mance in 64 rank setting.

Method LLMs branch low-rank branch Group Avg. Mem. (G)

LLaMA2-7B 16-16-None w/o - 64.13 13.2

w/ GSQ-Tuning

4-6-6 6-6-6
32 62.85 6.29
64 62.66 6.16

5-6-6 6-6-6
32 65.39 6.32
64 64.72 6.17

6-6-6 6-6-6
32 65.41 6.35
64 64.99 6.18

Exponenet Bits Analysis. As shown in Tab. 9,
experiments demonstrate that fixing exponent bits
E=5 achieves the optimal trade-off between accu-
racy and memory overhead. Adopting a smaller
exponent (for example, E = 4) leads to significant
performance degradation, while increasing E=6
yields marginal performance gains. This ablation
study validates the effectiveness of our fixed shared
exponent design E = 5.

4 Related Work

Parameter-Efficient Fine-Tuning (PEFT).
PEFT reduces memory and computational
costs by introducing a small set of trainable
parameters while keeping the pretrained model
frozen. Approaches including soft prompt tuning
(Wang et al., 2023), partial fine-tuning (Fu et al.,
2023), and low-rank adaptation (Hu et al., 2021).
Among these, LoRA stands out as a seminal
work, injecting trainable low-rank matrices into
linear layers to enable efficient fine-tuning without
modifying the base model weights. QLoRA
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extends this with 4-bit NF4 quantization and
Double Quantization, supporting 65B model
fine-tuning on a single 48GB GPU with minimal
performance degradation. Recent work further
improves quantization-aware fine-tuning (Xu et al.,
2023; Li et al.) and extends LoRA for better
efficiency, stability, and performance (Hu et al.,
2023; Liu et al., 2024d; Zhao et al., 2024; Hayou
et al., 2024; Meng et al., 2024).

Quantization. Much works (Yuan et al., 2023;
Yuan et al.; Hu et al., 2024, 2025b,a) make efforts
to accelerate the LLMs. For instance, GPTQ (Fran-
tar et al., 2022) quantizes weights to 3-4 bit
with slight accuracy drop based on approximate
second-order information. AWQ (Lin et al., 2024)
and SmoothQuant (Xiao et al., 2022) explore the
scheme of smoothing by detecting the importance
of different activation channels. Recent works (e.g.,
Quarot (Ashkboos et al., 2024), SpinQuant (Liu
et al., 2024e)) further suppress outliers by utiliz-
ing computation-invariant rotation transformation.
However, above methods focus on the inference
optimization. Leveraging the key benefits of FQT,
several studies (Banner et al., 2018; Wu et al., 2018;
Langroudi et al., 2019; Yang et al., 2020; Zhu et al.,
2020; Xi et al., 2023) have explored its implemen-
tation and optimization. However, challenges re-
main, especially during the backward pass due to
the wide dynamic range of gradients. For exam-
ple, LM-FP8 (Peng et al., 2023) trains LLMs from
scratch using FP8, achieving performance compara-
ble to BF16. Some studies have also explored full
integer quantization, utilizing efficient hardware
implementations. SwitchBack (Wortsman et al.,
2023) quantizes partial matrix multiplications with
INT8, but it is limited to vision models with up to
1B parameters. Jetfire (Xi et al., 2024) proposes
a 2D block-wise quantization approach that main-
tains accuracy and achieves significant memory
savings (1.4-1.5x) when training in INT8. How-
ever, these methods have not yet been explored to
fine-tuning tasks, and using FQT to lower-bit (<
INT8) poses considerable challenges.

5 Conclusion

In this paper, we propose GSQ-Tuning, a resource-
efficient framework that addresses the critical chal-
lenges of floating-point dependency, privacy risks,
and hardware incompatibility in on-device LLM
fine-tuning. By integrating Group-Shared Expo-
nents Integer (GSE) quantization with parameter-

efficient adaptation, our method achieves three key
advancements:(1) Full Integer Pipeline: Eliminates
floating-point operations across both forward and
backward passes, reducing memory usage by 50%
compared to FP16 while maintaining comparable
accuracy. (2) Hardware-Optimized Design: The
GSE format reduces metadata overhead via group-
wise exponent sharing, enabling 5-8bit integer rep-
resentations. Combined with LoRA-like adapters,
this achieves 5 × lower power consumption and
11× smaller chip area compared to FP8 at equiv-
alent accuracy levels. (3) Practical Deployment
Guidance: A Pareto frontier analysis guides opti-
mal bit-rank configurations for diverse edge con-
straints. These innovations establish GSQ-Tuning
as a foundational step toward democratizing LLM
adaptation for resource-constrained environments.
This breakthrough makes private, on-device LLM
adaptation practical for sensitive applications. Fu-
ture work will explore sub-4bit quantization to fur-
ther push the boundaries of edge AI.

6 Limitations

While our GSQ-Tuning significantly advances on-
device LLM adaptation through integer-focused
optimization and parameter-efficient quantization,
two key limitations warrant discussion:
Non-linear Operator Precision. Our current im-
plementation maintains non-linear operations (e.g.,
LayerNorm, Softmax) in 16-bit to preserve numer-
ical stability. This introduces partial precision con-
version overhead during computation. However,
non-linear operations do not contain additional
learnable parameters and thus do not consume
memory. Moreover, these non-linear operations are
generally computation-light, making their computa-
tional burden negligible. Future work could explore
fully integer implementations for non-linear layers.
Bit-Width Range Constraints. The current frame-
work operates effectively in 5-8bit configurations
but didn’t present the performance at extreme low
bit (≤ 4bit) precision. This stems from gradient
direction distortion under extreme quantization—a
challenge requiring new error compensation mech-
anisms. We plan to investigate two directions: (1)
4bit stochastic rounding with gradient-aware scal-
ing, and (2) mixed-precision adapters allocating
higher bits to critical gradient dimensions.

Furthermore, future work could explore (1) full
integer fine-tuning, (2) low-bit quantized fine-
tuning and (3) co-design with emerging integer-
optimized AI accelerators.
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A Appendix

A.1 Differences with Quantization-aware
training (QAT):

Quantization-aware training (QAT) (Choi et al.,
2018; Zhang et al., 2018; Zhou et al., 2017; Ja-
cob et al., 2018a; Dong et al., 2019b,a; Shen et al.,
2020a; Zafrir et al., 2019; Shen et al., 2020b; Tang
et al., 2022; Zhang et al., 2020; Bai et al., 2020;
Foret et al., 2020; Wang et al., 2022) is an infer-
ence acceleration technique which trains networks
with quantizers inserted in the forward propaga-
tion graph, so the trained network can perform
efficiently during inference. QAT can compress
activation/weights to extremely low precision (e.g.
1-2 bits). It is tempting to think that directly apply-
ing a quantizer for QAT to FQT can lead to similar
low activation/weights bit-width. However, even
only quantizing the forward propagation for FQT
is much more challenging than QAT because: ❶
QAT requires a converged full-precision model as
initialization (Esser et al., 2019) and/or as a teacher
model for knowledge distillation (Bai et al., 2020);
❷ QAT may approximate the discrete quantizer
with continuous functions during training (Gong
et al., 2019), which cannot be implemented with
integer arithmetic. Due to these challenges, it is
still an open problem to do FQT with low-bit acti-
vations/weights.

A.2 Detailed results on different rank setting:
Here, we also report the results of our GSQ-Tuning
on different LlaMA model, including LlaMA2-
7B (Tab.10), LlaMA2-13B (Tab.11), LlaMA2-
70B(Tab.12), LlaMA3-3B(Tab.13), and LlaMA3-
8B(Tab.14). The results consistently demonstrated
the effectiveness and efficiency of GSQ-Tuning.

A.3 Comparison with FP8 with 64 rank
Here, we compare the designed GSE data format
with FP8 in fully quantized fine-tuning framework
with 32 rank setting. As shown in Tab. 15, the
results still demonstrate that the designed GSE im-
plemented in our GSQ-Tuning method achieves
superior fine-tuning performance compared to FP8
while significantly reducing computation efficiency.
Even under 5-bit settings, GSQ-Tuning maintains
fine-tuning performance on par with FP8, validat-
ing its effectiveness.
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Table 10: 0-shot commonsense QA accuracy (%) across different bits and rank on llama2-7B.

Method rank LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-7B 16-16-None w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.2
w/ QLoRA 16 4-16-16 16-16-16 65.05 47.53 75.17 78.59 76.09 44.00 79.54 49.44 70.09 10.18

w/ GSQ-Tuning 16

4-8-8 8-8-8 65.10 47.53 74.71 78.35 75.99 45.00 79.65 49.28 70.32 6.73
4-7-7 7-7-7 64.96 47.18 75.21 78.10 75.98 44.80 79.27 49.95 69.38 5.98
4-6-6 6-6-6 64.87 46.84 73.78 78.07 75.88 45.80 79.22 49.39 70.01 5.32
4-5-5 5-5-5 63.97 46.76 72.64 75.78 74.95 45.20 79.05 48.62 68.75 5.27

w/ QLoRA 32 4-16-16 16-16-16 65.44 47.27 75.04 78.87 76.11 44.60 79.76 49.95 70.32 10.37

w/ GSQ-Tuning 32

4-8-8 8-8-8 65.45 48.12 74.71 78.38 76.14 46.00 79.71 49.64 70.96 6.92
4-7-7 7-7-7 65.43 47.35 74.20 78.99 75.84 46.00 79.92 49.59 71.59 6.16
4-6-6 6-6-5 65.01 47.44 74.62 78.65 76.03 44.00 79.60 50.05 69.69 5.55
4-5-5 5-5-5 64.00 44.97 73.32 75.29 74.95 44.60 79.27 48.93 70.24 5.45

w/ QLoRA 64 4-16-16 16-16-16 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 10.73

w/ GSQ-Tuning 64

4-8-8 8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 7.28
4-7-7 7-7-7 65.47 47.78 74.71 79.51 76.09 45.80 79.60 49.80 70.48 6.52
4-6-6 6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 5.97
4-5-5 5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 5.81

w/ QLoRA 128 4-16-16 16-16-16 65.84 48.24 74.91 79.78 76.27 45.52 79.77 50.48 71.79 11.46

w/ GSQ-Tuning 128

4-8-8 8-8-8 65.79 48.12 74.83 80.28 75.96 45.80 79.54 50.61 71.19 8.02
4-7-7 7-7-7 65.69 48.04 74.87 79.79 76.08 45.00 79.49 50.61 71.67 7.26
4-6-6 6-6-6 65.58 47.87 74.54 80.09 76.05 45.40 79.38 50.10 71.27 6.10
4-5-5 5-5-5 64.46 46.50 72.77 75.99 75.31 46.60 79.00 48.98 70.56 6.14

w/ QLoRA 256 4-16-16 16-16-16 66.12 48.33 75.00 80.94 76.37 45.61 79.97 51.13 71.64 12.93

w/ GSQ-Tuning 256

4-8-8 8-8-8 66.19 48.55 75.13 80.76 76.14 47.00 79.38 50.72 71.82 9.47
4-7-7 7-7-7 65.96 48.46 75.08 80.43 76.04 45.60 79.76 50.72 71.59 8.42
4-6-6 6-6-6 65.90 48.38 74.16 79.94 75.81 46.80 79.43 50.87 71.82 7.66
4-5-5 5-5-5 64.59 46.33 72.60 76.51 75.57 46.40 79.60 49.39 70.32 6.75

w/ QLoRA 512 4-16-16 16-16-16 66.59 49.26 75.20 81.99 76.06 46.74 79.49 51.71 72.27 15.85

w/ GSQ-Tuning 512

4-8-8 8-8-8 66.52 49.49 74.92 81.28 75.89 47.60 79.49 51.59 71.90 11.40
4-7-7 7-7-7 66.33 48.89 74.75 81.41 76.06 47.00 79.54 51.74 71.27 9.95
4-6-6 6-6-6 66.31 48.55 75.51 80.80 76.42 46.00 79.60 51.64 71.98 9.19
4-5-5 5-5-5 64.86 47.44 73.15 76.85 75.62 47.00 79.33 49.18 70.32 8.25
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Table 11: 0-shot commonsense QA accuracy (%) across different bits and rank on llama2-13B.

Method rank LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-13B - 16-16-None w/o 66.65 48.81 76.47 82.45 79.67 44.80 80.36 48.31 72.38 25.70
w/ QLoRA 16 4-16-16 16-16-16 67.32 49.74 76.98 82.94 78.85 46.00 80.52 50.36 73.16 16.56

w/ GSQ-Tuning 16

4-8-8 8-8-8 67.35 49.83 77.06 83.09 78.89 46.00 80.47 50.31 73.16 11.13
4-7-7 7-7-7 67.29 49.91 76.94 83.03 78.90 45.40 80.58 50.61 73.01 10.58
4-6-6 6-6-6 67.23 49.66 76.98 82.75 78.79 46.00 80.47 50.05 73.16 10.03
4-5-5 5-5-5 66.57 49.57 76.43 81.62 77.98 45.40 80.09 49.39 72.06 9.47

w/ QLoRA 32 4-16-16 16-16-16 67.47 49.83 77.02 83.24 78.92 46.20 80.58 50.77 73.24 16.85

w/ GSQ-Tuning 32

4-8-8 8-8-8 67.49 49.83 76.98 83.15 78.94 45.60 80.79 51.07 73.56 11.42
4-7-7 7-7-7 67.38 50.17 77.06 82.81 78.99 45.40 80.79 50.46 73.40 10.87
4-6-6 6-6-6 67.35 49.83 77.06 83.09 78.89 46.00 80.47 50.31 73.16 10.31
4-5-5 5-5-5 66.65 48.38 76.18 82.08 78.07 45.60 80.36 49.74 72.77 9.76

w/ QLoRA 64 4-16-16 16-16-16 67.61 49.66 77.23 83.30 78.95 45.40 80.74 51.59 73.24 17.42

w/ GSQ-Tuning 64

4-8-8 8-8-8 67.48 49.57 77.40 82.87 78.88 46.20 80.90 50.72 73.32 11.99
4-7-7 7-7-7 67.43 49.74 77.27 82.91 78.89 46.00 80.90 50.61 73.09 11.44
4-6-6 6-6-6 67.35 49.66 77.27 82.75 78.66 79.05 80.90 50.97 73.16 10.89
4-5-5 5-5-5 66.97 49.91 76.60 81.87 78.15 46.20 80.41 49.54 73.09 10.33

w/ QLoRA 128 4-16-16 16-16-16 67.61 50.34 77.40 83.55 78.89 46.00 80.85 50.92 72.93 18.56

w/ GSQ-Tuning 128

4-8-8 8-8-8 67.62 50.34 77.06 83.18 78.96 46.40 80.69 50.92 73.40 13.14
4-7-7 7-7-7 67.57 50.43 77.36 83.06 79.05 45.60 80.85 51.28 72.93 12.58
4-6-6 6-6-6 67.53 50.43 77.31 83.15 78.81 45.80 80.58 50.97 73.16 12.03
4-5-5 5-5-5 67.10 49.49 76.81 82.08 78.22 46.40 80.03 50.56 73.24 11.48

w/ QLoRA 256 4-16-16 16-16-16 67.91 50.77 77.36 83.64 78.88 46.60 80.74 51.69 73.64 20.85

w/ GSQ-Tuning 256

4-8-8 8-8-8 67.84 51.11 77.06 83.82 78.80 46.40 80.69 52.00 72.85 15.42
4-7-7 7-7-7 67.74 50.77 77.31 83.79 78.84 46.00 80.63 51.89 72.69 14.87
4-6-6 6-6-6 67.68 50.77 77.19 83.49 78.82 46.00 80.58 51.38 73.24 14.32
4-5-5 5-5-5 67.22 50.85 75.84 82.11 78.21 46.00 80.36 50.92 73.48 13.76

w/ QLoRA 512 4-16-16 16-16-16 67.94 50.60 77.48 83.88 79.00 46.40 80.74 52.05 73.40 25.43

w/ GSQ-Tuning 512

4-8-8 8-8-8 67.92 51.02 77.27 83.27 79.04 46.40 81.01 51.79 73.56 20.00
4-7-7 7-7-7 67.90 51.19 77.15 83.79 78.82 46.80 80.69 51.79 73.01 19.45
4-6-6 6-6-6 67.82 51.02 77.02 83.85 78.93 46.20 80.90 51.54 73.09 18.89
4-5-5 5-5-5 67.39 50.94 76.68 82.29 78.39 46.20 80.41 51.69 72.53 18.34

Table 12: 0-shot commonsense QA accuracy (%) across different bits and rank on llama2-70B.

Method rank LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-70B - 16-16-None w/o 70.68 56.91 80.05 85.78 83.59 48.60 82.48 48.67 79.40 137.42
w/ QLoRA 16 4-16-16 16-16-16 71.72 58.62 81.44 86.39 83.92 49.80 83.03 50.46 80.11 63.90

w/ GSQ-Tuning 16

4-8-8 8-8-8 71.65 58.62 81.23 86.36 83.87 49.60 83.19 50.41 79.95 49.17
4-7-7 7-7-7 71.63 58.87 81.57 86.24 83.89 49.20 83.19 50.46 79.64 47.44
4-6-6 6-6-6 71.58 58.62 81.36 86.15 83.84 49.60 82.97 50.41 79.64 45.72
4-5-5 5-5-5 71.02 57.34 80.56 85.93 83.75 49.00 82.59 49.33 79.64 43.99

w/ QLoRA 32 4-16-16 16-16-16 71.84 59.13 81.82 86.27 83.88 49.20 83.03 51.02 80.35 64.87

w/ GSQ-Tuning 32

4-8-8 8-8-8 71.78 59.04 81.90 86.33 83.89 49.00 83.19 51.07 79.79 50.17
4-7-7 7-7-7 71.76 59.30 81.61 86.18 83.98 49.00 83.19 51.02 79.79 48.44
4-6-6 6-6-6 71.60 58.96 81.36 86.15 83.87 48.80 83.03 51.02 79.64 46.72
4-5-5 5-5-5 71.26 57.59 80.85 86.15 83.93 49.00 83.13 50.00 79.40 44.99

w/ QLoRA 64 4-16-16 16-16-16 72.22 59.81 82.20 86.51 83.89 50.40 83.13 51.48 80.35 66.82

w/ GSQ-Tuning 64

4-8-8 8-8-8 72.20 59.90 82.32 86.51 83.90 50.20 83.08 51.59 80.11 52.17
4-7-7 7-7-7 72.18 59.81 82.28 86.39 83.88 50.20 83.13 51.54 80.19 50.44
4-6-6 6-6-6 72.10 59.39 82.15 86.51 83.94 50.00 83.30 50.92 80.58 48.71
4-5-5 5-5-5 71.70 58.87 81.48 85.90 83.91 49.60 82.81 50.67 80.43 46.98

w/ QLoRA 128 4-16-16 16-16-16 72.39 60.67 82.37 86.88 84.05 49.20 83.19 52.15 80.66 70.96

w/ GSQ-Tuning 128

4-8-8 8-8-8 72.37 60.75 82.49 87.00 83.94 49.40 83.08 52.15 80.19 56.16
4-7-7 7-7-7 72.32 60.41 82.45 86.94 83.94 49.00 83.08 52.15 80.58 54.43
4-6-6 6-6-6 72.28 59.81 82.45 86.91 83.99 49.60 83.35 51.89 80.27 52.70
4-5-5 5-5-5 71.85 59.47 81.90 86.48 83.82 48.20 83.08 51.02 80.82 50.97
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Table 13: 0-shot commonsense QA accuracy (%) across different bits and rank on llama3-3B.

Method rank #Bits Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA3-3B - 16-16-None 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 6.42
w/ QLoRA 16 4-16-16 65.05 47.53 75.17 78.59 76.09 44.00 79.54 49.44 70.09 6.42

w/ GSQ-Tuning 16

8-8-8 65.10 47.53 74.71 78.35 75.99 45.00 79.65 49.28 70.32 3.57
7-7-7 64.96 47.18 75.21 78.10 75.98 44.80 79.27 49.95 69.38 3.34
6-6-6 64.87 46.84 73.78 78.07 75.88 45.80 79.22 49.39 70.01 3.11
5-5-5 63.97 46.76 72.64 75.78 74.95 45.20 79.05 48.62 68.75 2.88

w/ QLoRA 32 4-16-16 65.24 47.27 75.04 78.87 76.11 44.60 79.76 49.95 70.32 6.54

w/ GSQ-Tuning 32

8-8-8 65.45 48.12 74.71 78.38 76.14 46.00 79.71 49.64 70.96 3.69
7-7-7 65.43 47.35 74.20 78.99 75.84 46.00 79.92 49.59 71.59 3.46
6-6-6 65.01 47.44 74.62 78.65 76.03 44.00 79.60 50.05 69.69 3.23
5-5-5 64.00 44.97 73.32 75.29 74.95 44.60 79.27 48.93 70.24 3.00

w/ QLoRA 64 4-16-16 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 6.78

w/ GSQ-Tuning 64

8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 3.93
7-7-7 65.47 47.78 74.71 79.51 76.09 45.80 79.60 49.80 70.48 3.70
6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 3.47
5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 3.24

w/ QLoRA 128 4-16-16 65.84 48.24 74.91 79.78 76.27 45.52 79.77 50.48 71.79 6.76

w/ GSQ-Tuning 128

8-8-8 65.79 48.12 74.83 80.28 75.96 45.80 79.54 50.61 71.19 4.41
7-7-7 65.69 48.04 74.87 79.79 76.08 45.00 79.49 50.61 71.67 4.18
6-6-6 65.58 47.87 74.54 80.09 76.05 45.40 79.38 50.10 71.27 3.95
5-5-5 64.46 46.50 72.77 75.99 75.31 46.60 79.00 48.98 70.56 3.72

w/ QLoRA 256 4-16-16 66.12 48.33 75.00 80.94 76.37 45.61 79.97 51.13 71.64 7.61

w/ GSQ-Tuning 256

8-8-8 66.19 48.55 75.13 80.76 76.14 47.00 79.38 50.72 71.82 5.37
7-7-7 65.96 48.46 75.08 80.43 76.04 45.60 79.76 50.72 71.59 5.13
6-6-6 65.90 48.38 74.16 79.94 75.81 46.80 79.43 50.87 71.82 4.90
5-5-5 64.59 46.33 72.60 76.51 75.57 46.40 79.60 49.39 70.32 4.67

w/ QLoRA 512 4-16-16 66.59 49.26 75.20 81.99 76.06 46.74 79.49 51.71 72.27 9.73

w/ GSQ-Tuning 512

8-8-8 66.52 49.49 74.92 81.28 75.89 47.60 79.49 51.59 71.90 7.28
7-7-7 66.33 48.89 74.75 81.41 76.06 47.00 79.54 51.74 71.27 7.05
6-6-6 66.31 48.55 75.51 80.80 76.42 46.00 79.60 51.64 71.98 6.82
5-5-5 64.86 47.44 73.15 76.85 75.62 47.00 79.33 49.18 70.32 6.59
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Table 14: 0-shot commonsense QA accuracy (%) across different bits and rank on llama3-8B.

Method rank #Bits Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA3-8B - 16-16-None 67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 16 4-16-16 68.14 54.52 79.50 83.43 78.66 44.80 80.85 50.00 73.32 10.71

w/ GSQ-Tuning 16

8-8-8 68.16 54.61 79.84 83.70 78.58 44.80 80.79 49.85 73.16 7.03
7-7-7 68.00 54.01 79.29 83.46 78.65 45.00 80.85 49.80 73.01 6.65
6-6-6 67.74 54.01 78.70 83.09 78.49 44.00 80.90 49.44 73.32 6.26
5-5-5 66.51 51.54 77.27 81.99 77.00 44.40 78.84 48.46 72.61 5.87

w/ QLoRA 32 4-16-16 68.31 55.55 80.39 83.36 78.65 44.60 81.28 50.05 72.61 11.02

w/ GSQ-Tuning 32

8-8-8 68.45 55.72 80.22 83.43 78.60 45.00 81.18 50.20 73.32 7.23
7-7-7 68.29 54.95 80.13 83.36 78.53 44.80 81.01 50.20 73.32 6.84
6-6-6 68.08 55.29 79.29 83.55 78.28 45.80 81.07 49.39 71.98 6.46
5-5-5 66.48 51.71 77.69 82.11 76.91 44.20 79.43 48.16 71.67 6.07

w/ QLoRA 64 4-16-16 68.45 55.63 80.13 83.67 78.78 44.80 81.28 50.41 72.93 11.64

w/ GSQ-Tuning 64

8-8-8 68.61 55.97 80.22 83.61 78.68 45.20 81.50 50.41 73.32 7.63
7-7-7 68.57 55.97 80.68 83.73 78.84 45.20 81.01 50.26 72.85 7.24
6-6-6 68.22 55.55 79.29 83.67 78.47 44.80 80.90 50.05 73.09 6.86
5-5-5 66.69 54.10 77.99 81.65 77.12 43.80 79.54 47.90 71.43 6.47

w/ QLoRA 128 4-16-16 68.77 56.14 80.56 83.98 79.03 45.60 81.34 50.56 72.93 12.13

w/ GSQ-Tuning 128

8-8-8 68.72 56.57 80.22 83.82 78.80 45.40 81.23 50.41 73.32 8.43
7-7-7 68.71 56.48 80.18 83.88 78.78 45.80 81.34 50.36 72.93 8.04
6-6-6 68.67 56.91 79.50 83.79 78.71 46.60 80.52 50.36 73.01 7.66
5-5-5 66.92 52.47 78.45 82.63 77.22 44.60 79.49 48.52 71.98 7.27

w/ QLoRA 256 4-16-16 69.09 56.74 80.35 84.56 79.02 45.20 81.83 50.92 74.11 13.81

w/ GSQ-Tuning 256

8-8-8 69.04 56.57 80.85 84.07 78.97 45.40 81.45 51.28 73.72 10.03
7-7-7 69.00 56.83 80.89 84.25 78.96 45.60 81.50 50.46 73.56 9.64
6-6-6 68.84 56.74 79.80 83.98 78.84 46.40 81.12 50.77 73.09 9.26
5-5-5 67.54 53.33 78.49 83.21 77.38 44.60 79.98 48.93 73.64 8.87

w/ QLoRA 512 4-16-16 69.18 57.17 80.30 84.65 79.28 46.40 81.07 50.36 74.27 16.81

w/ GSQ-Tuning 512

8-8-8 69.24 56.48 80.47 85.35 79.13 45.40 81.56 51.54 74.03 13.23
7-7-7 69.16 56.40 80.68 85.26 79.10 45.80 81.28 51.13 73.64 12.84
6-6-6 69.01 56.57 80.01 84.56 78.84 45.80 81.23 51.64 73.48 12.45
5-5-5 67.90 54.38 78.60 83.97 78.08 45.30 80.24 50.00 72.76 12.07

Table 15: 0-shot accuracy comparison with FP8 in different quantization bits in 64 rank setting.

Method #Bits Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-7B 16-16-None 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.20
w/ QLoRA 4-16-16 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 9.73
w/ FP8 8-8-8 64.46 46.84 73.61 77.83 76.03 44.60 79.65 47.80 69.38 6.88

w/ GSQ-Tuning
8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 6.88
6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 6.17
5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 5.81

LLaMA3-8B 16-16-None 67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 4-16-16 68.45 55.63 80.13 83.67 78.78 44.80 81.28 50.41 72.93 11.71
w/ FP8 8-8-8 66.46 50.77 76.39 81.38 78.19 43.40 79.92 47.29 74.35 7.63

w/ GSQ-Tuning
8-8-8 68.61 55.97 80.22 83.61 78.68 45.20 81.50 50.41 73.32 7.63
6-6-6 68.22 55.55 79.29 83.67 78.47 44.80 80.90 50.05 73.09 6.86
5-5-5 66.69 54.10 77.99 81.65 77.12 43.80 79.54 47.90 71.43 6.47
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