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Abstract
Evaluating tables qualitatively and quantita-
tively poses a significant challenge, as standard
metrics often overlook subtle structural and
content-level discrepancies. To address this,
we propose a rubric-based evaluation frame-
work that integrates multi-level structural de-
scriptors with fine-grained contextual signals,
enabling more precise and consistent table
comparison. Building on this, we introduce
TabXEval, an eXhaustive and eXplainable
two-phase evaluation framework. TabXEval
first aligns reference and predicted tables struc-
turally via TabAlign, then performs semantic
and syntactic comparison using TabCompare,
offering interpretable and granular feedback.
We evaluate TabXEval on TabXBench, a
diverse, multi-domain benchmark featuring re-
alistic table perturbations and human annota-
tions. A sensitivity-specificity analysis further
demonstrates the robustness and explainabil-
ity of TabXEval across varied table tasks.
Code and data are available at https://coral-
lab-asu.github.io/tabxeval/.

1 Introduction
Tables are a ubiquitous data format across critical
workflows: budget forecasts, patient dashboards,
and experimental logs alike where even a one-cell
error can trigger costly re-statements or clinical mis-
interpretations. As large language models (LLMs)
and other neural systems are increasingly tasked
with generating or transforming such tables, reliable
automatic evaluation becomes a bottleneck.

Despite the structured nature of tables, most eval-
uation metrics treat them as plain text. Metrics
like BLEU, ROUGE, METEOR, and chrF rely on
n-gram overlap, ignoring row–column alignment
and unit consistency (Papineni et al., 2002; Lin,
2004; Banerjee and Lavie, 2005; Popović, 2015).
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Figure 1: Sensitivity–Specificity trade-off across met-
rics. Bubble size reflects the harmonic mean of accuracy,
sensitivity, and specificity; color shows F1-score. The
dashed line marks ideal balance top-right methods per-
form best. Green denotes optimal (Goldilocks) zone;
pink favors sensitivity, yellow favors specificity.

Embedding-based scores such as BERTScore im-
prove semantic sensitivity but overlook structural
errors like column swaps (Zhang* et al., 2020).
Token-level metrics, including Exact Match and
PARENT, address factual grounding but fail un-
der reordered or merged schemas (Dhingra et al.,
2019). Structural benchmarks highlight these is-
sues: StructBench exposes failures on partial
cell mismatches (Gu et al., 2024), TanQ reveals
brittleness under unit conversions (Akhtar et al.,
2025), and Data-QuestEval sacrifices structure
for corpus-level QA-based comparisons (Rebuffel
et al., 2021). Atomic decomposition methods like
“Is this a bad table?” improve detection but add
opacity and computational cost (Ramu et al., 2024).
In contrast, work like THumB shows the benefit of
rubric-based human ratings in improving evaluation
transparency (Kasai et al., 2022).

Taken together, existing metrics tend to empha-
size either semantics or structure, but rarely both.
They offer limited diagnostic insight, often masking
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specific error types and failing to provide action-
able feedback for model improvement. As shown in
image-captioning work like THumB, coupling auto-
matic scores with rubric-based human ratings yields
more interpretable and reliable evaluations (Kasai
et al., 2022). These findings underscore the need for
a rubric-based evaluation framework that explicitly
assesses both structural alignment and semantic
fidelity. In contrast to single-score metrics that col-
lapse diverse errors—such as schema mismatches,
contextual omissions, or subtle content shifts—into
a single value, a rubric-based approach offers fine-
grained, interpretable feedback. Such granularity
is essential for complex or high-stakes tasks, where
even minor discrepancies can significantly affect
downstream performance.

To overcome these challenges, we introduce
TabXEval, a novel evaluation framework built
on a structured, multi-level rubric that combines
high-level structural descriptors with fine-grained
contextual signals. TabXEval operates in two
phases: TabAlign first performs precise alignment
of table elements using both rule-based and LLM-
assisted strategies, followed by TabCompare, which
conducts detailed semantic and syntactic analysis
over the aligned cells. This design allows TabX-
Eval to capture both table-level and cell-level
discrepancies that prior metrics often overlook.

To rigorously test our rubric and framework, we
construct TabXBench, a diverse, synthetic bench-
mark that emulates realistic table perturbations
across multiple domains. TabXBench includes
human-annotated ratings grounded in our rubric,
serving as a gold standard for evaluating metric
sensitivity, specificity, and alignment with human
judgment. By providing controlled, interpretable
scenarios, TabXBench fills a critical gap in current
evaluation practice, enabling robust and explain-
able assessment of structured table outputs. Unlike
prior metrics, TabXEval, as shown in Figure 1,
excels at detecting subtle discrepancies i.e. sensi-
tive and accurately localizing errors between tables
i.e. specific enough. We summarize our main
contributions below:

• We introduce the first rubric integrating multi-
level structural descriptors and fine-grained
contextual quantification for robust table com-
parisons.

• We propose TabXEval, a two-phase LLM-
based table evaluation method that aligns ref-

erence tables structurally and compares them
semantically and syntactically via our rubric.

• We construct TabXBench, a diverse bench-
mark derived from multi-domain datasets, val-
idating evaluation metrics through structured
perturbations and human assessments.

• We analyze the strengths and weaknesses of
existing evaluation methods via Sensitivity-
Specificity Trade-off.

• We present TabXEval’s qualitative and quan-
titative effectiveness in table generation task,
enabling explainable automatic evaluation.

2 TabXEval
We establish a transparent and systematic proto-
col for table evaluation by comparing a reference
table—the candidate table produced by a human
or an LLM with a ground-truth table. These ta-
bles may differ in formatting, interpretation, or unit
representation, necessitating a rigorous evaluation
framework. For instance, an LLM-generated ta-
ble might omit entire rows or abbreviate numeric
values (e.g., “100k” vs. “100,000”), while a human-
curated table may specify units only in the header
(e.g., “velocity” vs. “velocity (m/s)”). To address
such discrepancies, we design a set of rules based
rubrics TabXEval, which aim to improve the relia-
bility and interpretability of table evaluation.

2.1 Evaluation Rubric
Towards ensuring consistency and fairness in struc-
ture evaluation we provide an exhaustive rubric
that enhances clarity and transparency in reference-
based table evaluation. To quantify the degree
of correctness and coverage of information at the
most granular level, we advocate 4 categories of
evaluation protocols:
Structure Descriptor coarsely assesses the overall
structure against ground truth. This component
compares information at the table level (missing
information, extra information and exact matches),
giving a high level description of information in-
tegrity.

Column Descriptor identifies data types of each
column based on missing and extra information.
This allows for a fine-grained strategy for eval-
uating cell values, as tables with heterogeneous
columns like dates, numbers, strings etc should not
be penalized on the same scale.
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Figure 2: End-to-end schematic of TabXEval. (1) TabAlign aligns rows, columns, and cells using deterministic
rules plus an LLM refinement loop. (2) TabCompare classifies each aligned cell as extra, missing, or partial and
combines the counts with rubric weights (α, β, γ). This workflow populated the rubrics and outputs a table-level
score and cell-level error trace, enabling fine-grained analysis.

Cell Level Descriptor looks at both semantic and
syntactical representation of cell values. Other
methods such as (Zhang* et al., 2020; Ramu et al.,
2024; Gu et al., 2024) fail in recognizing different
representations of the same data and hence can
wrongly penalize correct information. This com-
ponent of the rubric is necessary to craft an ideal
table evaluation framework.
Granular Cell Level Difference that determines
the magnitude of discrepancies between reference
and ground truth table necessary to quantify in-
stances w.r.t. cell level descriptions. It also captures
variations by changing the format(e.g. m to cm,
years to date) to report the absolute differences.

2.2 TabXEval Rubric
We propose TabXEval, a two-phase framework
that combines deterministic rules and LLM-based
analysis for robust and interpretable table evaluation.
This design strikes a balance between precision
(capturing exact matches) and flexibility (handling
semantic or structural variations).

Phase 1: TabAlign matches columns, rows, and
cells between the reference and candidate tables.
We begin with exact string matching to establish
a precise baseline alignment. Next, we refine this

alignment using an LLM to account for abbrevi-
ations, synonyms, and structural transformations
(e.g., merged columns, row/column transpositions).
Purely exact matching can be overly strict, missing
semantically equivalent but syntactically different
cells. The LLM-driven refinement ensures a more
comprehensive alignment while preserving high
precision. Finally, we get an output table which
has a combination of strict and relaxed mapping as
shown in Figure 2.

Phase 2: TabCompare performs a fine-grained
evaluation of the aligned tables. From the refined
alignment, we extract table-level statistics (e.g.,
missing/extra rows or columns) and focus on par-
tially matched cells. These cells are compared in
detail using LLM-generated “comparison tuples”
as shown in Figure 2 which capture numeric, string,
date/time, and unit mismatches. We also com-
pute magnitudes of differences (e.g., converting
months to days) for precise reporting of discrepan-
cies. Table-level summaries alone cannot uncover
subtle cell-level errors, such as unit mismatches
or minor numeric discrepancies. By combining
table-level statistics with granular cell comparisons,
TabXEval yields a more reliable and transparent
assessment of content fidelity.
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Score Our scoring function for TabXEval is
defined as follows:

TabXEval =
∑

I∈{Missing,Extra, Partial}
βI

×
( ∑

E∈{row, column, cell}
αE

fE
NE

)
γp .

where βI is the weight assigned to each type of
information error (I) such as Missing, Extra, and
Partial; αE is the weight for each entity type (E)
including rows, columns, and cells; fE represents
the number of correctly matched entities; and NE

is the total number of entities in the ground truth.
For partial matches at the cell level, the modifier

γp is defined as:

γp =

{
1, if no partial cell,

ωp

∣∣GT−Ref
Ref

∣∣, if partial cell detected.

This formulation captures the multi-level nature
of table evaluation insipred by proposed rubric.
First aggregating errors across different informa-
tion types (Missing, Extra, Partial) via the outer
summation, and then evaluating the correctness
at various entity levels (row, column, cell) using
the inner summation. The term γp further refines
the score by quantifying discrepancies in partially
matched cells through a normalized absolute dif-
ference between the ground truth (GT ) and the
reference (Ref ), ensuring that both coarse struc-
tural errors and fine-grained content differences
are robustly accounted for in a single, interpretable
metric. An illustrative example demonstrating the
application of the above equations is provided in
Appendix B.

Overall, TabXEval’s two-phase structure en-
sures that both coarse (table-level) and fine (cell-
level) differences are captured, providing an adapt-
able and explainable approach to table evaluation.

2.3 TabXBench Benchmark
Evaluating table metrics across diverse domains
and error types remains a significant challenge due
to the limited scope of existing datasets, which
often focus on a single domain or contain only
select data types. To bridge this gap, we introduce
TabXBench, a controlled multi-domain test bed
that comprehensively captures real-world nuances
of tabular data generation and evaluation.

TabXBench is designed to rigorously assess
the sensitivity and specificity of reference-based
table evaluation methods. Unlike prior datasets
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Figure 3: Perturbation spectrum in TabXBench. The
outer ring enumerates the frequency (numeric labels)
of the 16 fine-grained perturbation types applied to
reference tables. The inner ring groups these edits into
three difficulty bands Easy (light green, ≈44%), Medium
(blue, ≈34%), and Hard (red, ≈35%).

that narrowly target specific tasks (e.g., finance or
sports), our benchmark spans multiple domains
(finance, sports, knowledge bases, and more) while
systematically incorporating an extensive range of
potential table perturbations. This diversity ensures
that TabXBench captures common pitfalls such
as missing rows/columns, reordered headers, unit
mismatches, numeric discrepancies, and complex
structural variations (e.g., row/column transposi-
tion).

Dataset # of Tables # Perturb/Table Average
Rows Cols Cells

FINQA 13 5 13.08 5.54 71.00
TANQ 8 5 8.38 5.38 44.25
ROTOWIRE 12 5 12.08 14.08 165.67
FETAQA 7 5 15.86 5.14 88.14
WIKITABLES 5 5 16.40 3.60 53.60
WIKISQL 6 5 8.33 5.17 42.17

Table 1: Composition of the TabXBench corpus across
six source datasets.

TabXBench consists of 50 handpicked “clean”
(reference) tables from six popular text-to-table
and table QA datasets: RotoWire (Wiseman et al.,
2017), TANQ (Akhtar et al., 2025), FetaQA (Nan
et al., 2022), FinQA (Chen et al., 2021), WikiTable
(Pasupat and Liang, 2015), and WikiSQL (Zhong
et al., 2017) and the statistics can be found in
Table 1. Each table was augmented with five dis-
tinct perturbations spanning over 16 error types,
carefully curated to reflect common generation mis-
takes. The perturbations were first drafted with
LLM assistance (e.g., reformatting numeric values,
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altering units, swapping headers) and subsequently
validated by human experts for correctness and va-
riety. We categorize the resulting perturbed tables
into three difficulty levels (Easy, Medium, Hard)
as demonstrated in Figure 3, ensuring coverage
of both straightforward errors (e.g., minor typos)
and complex structural manipulations (e.g., merged
cells or shifted rows).

By offering a controlled yet diverse environment,
TabXBench enables: Fine-Grained Analysis: Re-
searchers can systematically evaluate how well
metrics detect specific error types (e.g., unit mis-
matches vs. missing rows). Sensitivity-Specificity
Trade-offs: The benchmark’s difficulty levels and
variety of perturbations allow detailed insights into
a method’s robustness and tolerance for minor vs.
major errors. Realistic Scoring Correlations:
It includes human annotations (aligned with our
rubric in Section 2.1), enabling correlation studies
that compare machine-generated scores to human
judgments.

Finally, to illustrate TabXEval pragmatic value,
we apply it to evaluate table outputs from three
LLMs across four standard tasks - RotoWire, TANQ,
WikiBio, and WikiTable highlighting how each
evaluation method fares in a realistic setting. As
a pioneering multi-domain resource, TabXBench
thus provides a solid foundation for advancing
research in reliable, explainable table evaluation.

3 Experiments

To validate efficacy of TabXEval, we conduct ex-
periments using our synthetic dataset TabXBench.
We report GPT-4o (OpenAI et al., 2024) and
LLaMA-3.3-INSTRUCT results for our framework
TabXEval for both components TabAlign and Tab-
Compare.

Baselines. Our evaluation compares TabXEval
against a broad range of baselines, which we clas-
sify into deterministic and non-deterministic ap-
proaches. Deterministic metrics (e.g., Exact Match
(EM), chrf, ROUGE-L) yield fixed outputs based
on string- or character-level comparisons, ensur-
ing reproducibility. In contrast, non-deterministic
metrics (e.g., BERTScore, BLUERT, H-Score)
leverage contextualized neural representations to
capture subtle linguistic nuances albeit with poten-
tial variability. We also include two recent methods:
P-Score, an LLM-based metric outputting scores
on a 0–10 scale, and TabEval, an embedding-
based method that unrolls tables using an LLM and

computes entailment via RoBERTa-MNLI. For a
fair comparison, we further propose a Direct-LLM
baseline that is prompted with the same evaluation
rubric detailed in Section 2.1.

LLMs. Throughout our experiments, we
used GPT-4o, Gemini 2.0-flash, and
LLaMA-3.3-Instruct 70B. All models were
executed with identical sampling settings (default
temperature, top-k, and top-p) unless specified
otherwise. All our prompts for TabAlign,
TabCompare and Direct-LLM basline are given in
Appendix C.

3.1 Human correlation
For each sample in the ground truth set of
TabXBench, two human evaluators evaluated the
tables using our proposed rubrics and guidelines.
For both Human and TabXEval, we present ground-
truth and a randomly selected perturbation (out of
5) to fill the rubrics. The detailed human annotation
protocol is described in Appendix F. Finally these
rubrics are compared using both Pearson (Sedgwick,
2012) and Kendall’s Tau (Sen, 1968) correlation
coefficients to quantify the degree of alignment
between our method and human ratings. We ob-
serve very high correlation, i.e, 99.7% and 95.1%
Pearson’s ρ correlation for the Rubric Structure
Descriptor and Cell Level Descriptor respectively.

In contrast, Direct LLM based baseline corre-
lates, only 30.6% and 40.6% Pearson’s ρ correla-
tion for the Rubric Structure Descriptor and Cell
Level Descriptor respectively. Revealing that it
fails to understand the rubric, and quantify the
structural and contextual challenges in table evalu-
ation, and hence is unable to correctly align with
humans correlation. Similarly we report 99.1%
and 92.8% human correlation using Kendall’s τ .
While the baseline is 30.7% and 55% on Structure
Descriptor and Cell Level Descriptor rubric respec-
tively. These results demonstrate that disentangling
the alignment and comparison phases is critical
for robust table evaluation as Direct method falls
short even hen presented with evaluation rubrics.
TabXEval’s correlation with human are consis-
tent in capturing multi-level nuances for real-world
challenges in table evaluation resembling humans.

3.2 Human Ranking Correlation Study
To further validate the robustness of our evalua-
tion framework, we conducted a human ranking
correlation study using outputs from TabXBench.
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In this study, expert annotators ranked the quality
of a ground-truth table and its perturbed variants
each reflecting real-world errors such as structural,
semantic, and formatting issues. These human
rankings serve as our gold standard for assessing
table quality.

For each table, we computed an aggregated score
(based on cell-level f1 measures) using various
evaluation metrics, including deterministic base-
lines (e.g., Exact Match, chrf, ROUGE-L) and
non-deterministic methods (e.g., BERTScore, H-
Score, P-Score, BLUERT, TabEval), alongside our
proposed TabXEval. Further, for baselines imple-
mentation we run both a single-step and multi-step
LLM baseline to populate our proposed rubric ta-
bles that mirrors our two-stage TabXEval pipeline
more closely along with LLM based ranking and
multi-step LLM baseline with Chain-of-thoughts.
We then measured the correlation between the auto-
matic rankings and the human judgments using mul-
tiple metrics: Spearman’s ρ, Kendall’s τ , Weighted
Kendall’s τ †, Rank-Biased Overlap (RBO), and
Spearman’s Footrule. These measures collectively
assess both the overall ranking order and positional
differences.

As shown in Table 2, TabXEval achieves the
strongest correlation with human rankings across
all metrics. Specifically,

Overall Ranking Order: TabXEval attains a
Spearman’s ρ of 0.44 a relative improvement of
nearly 47% over the next-best method (P-Score
at 0.30). Its Kendall’s τ of 0.40 and Weighted
Kendall’s τ † of 0.38 further indicate strong mono-
tonic agreement with human assessments.

Top-Weighted Agreement: With an RBO of 0.34,
TabXEval demonstrates superior alignment in the
higher-ranked items, compared to values ranging
from 0.23 to 0.31 for other methods.

Positional Accuracy: TabXEval records the low-
est Spearman’s Footrule distance (0.29), reflecting
minimal positional discrepancy relative to the hu-
man gold standard.

Notably, the TabEval method not only fails to
capture these nuances as it negatively correlates,
highlighting its inability to account for the multi-
faceted nature of table quality. This analysis rein-
forces the importance of our two-phase approach,
disentangling structural alignment (TabAlign) from
detailed cell-level comparison (TabCompare) to
effectively mirror human judgment. Finally, the

human ranking correlation study clearly demon-
strates that TabXEval provides a more robust,
interpretable, and human-aligned evaluation of ta-
ble outputs, capturing both coarse and fine-grained
discrepancies that are critical in real-world scenar-
ios.

3.3 What Sets TabXEval Apart?
A key criteria of any evaluation metric is to achieve
a balance between specificity (i.e., avoiding false
positives) and sensitivity (i.e., avoiding false neg-
atives). In Figure 1, we visualize this trade-off by
plotting each metric’s specificity (y-axis) against
its sensitivity (x-axis). The background colormap
in the figure corresponds to the F1 score. Finally,
Bubble Size represented by harmonic mean of speci-
ficity, sensitivity and accuracy, providing a quick
visual cue for overall performance.

Goldilocks Zone for Ideal Metrics. Metrics
positioned in the top-right portion of the chart (the
green-shaded “Goldilocks zone”) demonstrate the
desired trait of consistently identifying correct
table content (high sensitivity) while minimizing
the likelihood of falsely flagging errors (high
specificity). TabXEval resides firmly in this zone,
illustrating its balanced performance across diverse
table perturbations.

Comparisons with Other Metrics. We compare
TabXEval against several widely used metrics: (1)
P-Score performs well at a high level and sits near
the Goldilocks zone in our evaluations, reflecting
strong table-level correctness. However, it lacks
explainability and granular insights, offering only
a single 0–10 score that limits interpretability and
error traceability. (2) H-Score and BERTScore
better capture semantics than string-based metrics
such as EM, ROUGE-L, and chrF, but often over-
look structural errors like swapped columns or
missing rows—resulting in moderate sensitivity but
poor specificity. (3) TabEval uses entailment over
LLM-generated atomic statements, but frequently
misses fine-grained numeric or unit mismatches.
In our experiments, it produced false positives on
tables that were re-formatted yet semantically equiv-
alent.

Why TabXBench Matters. TabXBench intro-
duces diverse table perturbations (e.g., missing
rows/columns, numeric/unit mismatches) to stress-
test metrics across real-world errors (Figure 3). Sim-
ple metrics like Exact Match fail under reordering
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Metrics Spearman’s ρ ↑ Kendall’s τ ↑ W-Kendall’s τ† ↑ RBO ↑ Spearman’s Footrule ↓
EM 0.18 0.16 0.16 0.26 0.57
chrF 0.12 0.11 0.08 0.25 0.59
H-Score 0.14 0.11 0.09 0.28 0.51
BERTScore 0.19 0.15 0.13 0.25 0.57
ROUGE-L 0.21 0.18 0.40 0.27 0.53
BLEURT 0.29 0.25 0.25 0.27 0.51
TabEval -0.04 -0.04 -0.03 0.23 0.63
P-Score 0.30 0.27 0.24 0.31 0.39
LLM rubric 0.23 0.16 0.17 0.28 0.47
LLM ranking 0.29 0.24 0.23 0.30 0.41
Multi-prompt 0.29 0.24 0.23 0.30 0.42
Multi-prompt + CoT 0.30 0.25 0.24 0.29 0.45
TabXEval 0.44 0.40 0.38 0.34 0.29

Table 2: Correlation between automatic rankings and human judgments. Higher Spearman’s ρ, Kendall’s τ ,
Weighted Kendall’s τ †, and RBO values indicate better agreement, while lower Spearman’s Footrule values are
preferable.

or semantic shifts, while LLM/embedding-based
methods miss unit mismatches or partial errors.
TabXEval’s two-phase approach first aligning
structure (TabAlign), then systematically com-
paring content (TabCompare) ensures precise dis-
crepancy detection aligned with human judgment.

Significance of TabXEval. By balancing sensi-
tivity, specificity, and F1 scores, TabXEval not
only outperforms across evaluation dimensions but
also explains its judgments via structured rubrics.
This transparency is crucial for financial report-
ing, scientific validation, and knowledge curation,
where subtle errors can be costly. Identifying what
went wrong and where, TabXEval provides both
quantitative and qualitative insights for improving
table generation.

In summary, TabXEval’s interpretability, robust
performance, and alignment with TabXBench’s
challenging setup establish it as the new standard
for explainable, human-aligned table evaluation.

3.4 Performance Analysis
The results from our Endurance Test on Text-to-
Table Generation as depicted in Table 3 and Table 4
clearly demonstrate how TabXEval’s two-phase
evaluation framework enables us to drill down from
overall table structure to fine-grained cell details.

Table-Level Performance Across datasets, GPT-4o
frequently exhibits higher exact match scores (EM)
for both rows and columns compared to LLaMA-3.3
and Gemini-2.0-flash. For instance, on WikiTa-
bles, GPT-4o achieves a row EM score of 27.11,
surpassing the performance of the other models.
Additionally, GPT-4o consistently maintains low
Extra Information (EI) values at the column level
(e.g., only 0.07 EI on WikiTables), indicating that it
preserves the intended table structure with minimal

unintended additions. Such metrics underscore the
model’s ability to capture overall table integrity
across diverse datasets, including WikiBio, TANQ,
and RotoWire.

Cell-Level Performance A closer examination at
the cell level reveals further nuances. In datasets
such as WikiTables and WikiBio, GPT-4o records
significantly fewer errors in string cells; for ex-
ample, its string EI on WikiTables is only 1.17
compared to 4.33 for LLaMA-3.3. On TANQ, both
GPT-4o and Gemini-2.0-flash show lower partial
errors in numerical and string cell types relative to
LLaMA-3.3, suggesting more robust semantic and
syntactic matching. Notably, on RotoWire, GPT-4o
also demonstrates lower partial error counts in both
numerical and string cells when compared with
Gemini-2.0-flash. These detailed cell-level in-
sights are crucial as they highlight the models’
abilities to handle fine-grained discrepancies such
as unit mismatches or subtle formatting errors. This
course-to-fine grain evaluation not only facilitates
the identification of specific error types but also
offers interpretable insights into the strengths and
weaknesses of each model.

Adaptability and Robustness Evaluation Fig-
ure 4 illustrates that TabXEval consistently outper-
forms existing metrics in human-correlation across
a broad range of weighting schemes (Appendix
A Figure 5). Each box plot corresponds to 26
permutations of weights for key dimensions (e.g.,
missing, extra, row, column, cell, partial); these
weights contribute to Equations 2.2 and 2.2, set ei-
ther as perm(0)={0, 1} or perm(0.25)={0.25, 1}.
This flexibility allows TabXEval to adapt to
dataset-specific priorities (e.g., penalizing miss-
ing rows more heavily) while maintaining robust,
domain-agnostic performance. Notably, our best-
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LLaMA-3.3 70B GPT-4o Gemini-2.0-flash
Stat Num String Bool Date List Time Others Num String Bool Date List Time Others Num String Bool Date List Time Others

WikiTables
EI 0.05 4.33 0.00 0.17 0.00 0.00 0.13 0.03 1.17 0.00 0.02 0.00 0.00 0.13 0.02 2.33 0.00 0.11 0.00 0.00 0.07
MI 0.01 0.80 0.00 0.03 0.00 0.00 0.00 0.01 0.93 0.00 0.00 0.00 0.00 0.01 0.00 0.73 0.00 0.00 0.00 0.00 0.00
Partial 0.22 25.00 0.00 0.35 0.00 0.01 0.09 0.32 20.34 0.00 0.55 0.00 0.02 0.10 0.30 22.50 0.00 0.48 0.00 0.02 0.07

WikiBio
EI 0.04 2.84 0.00 0.09 0.00 0.00 0.12 0.04 2.02 0.00 0.03 0.00 0.00 0.09 0.04 2.30 0.00 0.07 0.00 0.00 0.06
MI 0.02 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.01 0.00 0.00 0.00 0.00 0.37 0.00 0.01 0.00 0.00 0.00
Partial 0.16 14.38 0.00 2.60 0.00 0.00 0.03 0.16 15.80 0.00 0.86 0.00 0.00 0.03 0.15 13.59 0.00 2.97 0.00 0.00 0.04

TANQ
EI 0.05 0.84 0.00 0.16 0.09 0.00 0.00 0.02 0.18 0.00 0.06 0.03 0.01 0.00 0.00 0.29 0.00 0.07 0.02 0.00 0.00
MI 0.01 0.24 0.00 0.11 0.01 0.04 0.00 0.01 0.08 0.00 0.05 0.02 0.01 0.00 0.02 0.21 0.00 0.05 0.00 0.02 0.00
Partial 2.73 20.50 0.00 4.72 4.82 2.19 0.07 1.28 11.92 0.00 3.48 3.46 1.32 0.01 1.22 9.35 0.00 2.02 2.64 1.12 0.02

RotoWire
EI 0.84 0.50 0.00 0.00 0.00 0.00 0.01 0.68 0.23 0.00 0.00 0.00 0.00 0.00 1.31 0.54 0.00 0.00 0.00 0.00 0.09
MI 0.97 0.32 0.00 0.00 0.00 0.00 0.04 0.56 0.08 0.00 0.00 0.00 0.00 0.00 1.06 0.28 0.00 0.00 0.00 0.00 0.02
Partial 0.66 0.92 0.00 0.00 0.00 0.00 0.00 0.31 0.69 0.00 0.00 0.00 0.00 0.00 2.72 3.87 0.00 0.00 0.00 0.00 0.03

Table 3: Cell-Level Performance Analysis of Extra (EI), Missing (MI), and Partial mismatches across data types
numerical, string, boolean, date, list, time, and other for WikiTables, WikiBio, TANQ, and RotoWire. Highlights:
GPT-4o shows fewer string EI in WikiTables and lower partial errors in numerical and string cells in TANQ and
RotoWire.

LLaMA-3.3 70B GPT-4o Gemini-2.0-flash
MI EI EM MI EI EM MI EI EM

WikiTable
Row 8.69 15.82 25.59 23.44 11.51 27.11 20.81 10.67 26.03
Col 0.37 0.92 1.67 4.47 0.07 1.02 2.97 0.37 1.55

WikiBio
Row 25.16 29.33 16.17 26.09 27.63 19.39 30.08 24.38 16.89
Col 0.10 0.0 0.05 0.05 0.025 0.0 0.12 0.0 0.0

TANQ
Row 7.6 5.83 10.97 8.27 2.80 13.00 8.51 4.01 13.01
Col 2.69 1.82 23.89 2.24 0.19 22.42 2.82 0.63 21.78

RotoWire
Row 3.48 39.22 17.62 1.32 28.65 38.41 3.10 22.82 13.80
Col 10.87 16.21 52.70 17.57 5.71 60.24 16.35 10.52 48.51

Table 4: Table-Level Performance Analysis: Row/Column MI, EI, and EM rates on WikiTables, WikiBio, TANQ,
and RotoWire. Highlights: GPT-4o leads with highest Row EM (27.11) and lowest Col EI (0.07) on WikiTables.

Ta
bX

Ev
al

Existing metrics TabXEval metrics

Best Config.

Figure 4: Human Ranking Correlation. This plot com-
pares existing metrics (with the best performance indi-
cated by the red dashed line) against various configura-
tions of our TabXEval metric. The green star highlights
the best performing TabXEval configuration.

performing configuration (marked by the star)
demonstrates both high average correlation and
low variance, underscoring TabXEval’s capacity
to balance fine-grained descriptors with overall
structural fidelity.

Complementing this, Table 5 demonstrates TabX-
Eval’s backbone-agnostic robustness: it achieves

strong alignment with human rankings across di-
verse LLMs, including GPT-4o, LLaMA, Qwen, and
Gemini. Even under varying model architectures,
TabXEval maintains a correlation of ≥ 0.30 across
all metrics, reinforcing its reliability beyond just
weighting flexibility. A detailed qualitative analy-
sis, provided in Appendix D, further demonstrates
TabXEval’s effectiveness across both domain-
agnostic and specific weighting configurations.

4 Comparison with Related Work
Text-to-Table Generation. Early text–to–table
research exploited single–domain corpora such as
RotoWire for basketball summaries (Wiseman
et al., 2017), the E2E restaurant set (Novikova et al.,
2017), WikiBio infobox–biography pairs (Lebret
et al., 2016), and WikiTableText (Pasupat and
Liang, 2015). While pioneering, these resources
offer limited schema variety and often encour-
age hallucinated or under-structured outputs. Re-
cent collections address these gaps: StructBench
permutes headers, merges columns, and shuffles
schemas to test structural generalisation (Gu et al.,
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Metrics Spearman’s ρ ↑ Kendall’s τ ↑ W-Kendall’s τ† ↑ RBO ↑ Spearman’s Footrule ↓
P-Score (GPT-4o) 0.30 0.27 0.24 0.31 0.39
BleuRT 0.29 0.25 0.25 0.27 0.51
TabXEval (GPT-4o) 0.44 0.40 0.38 0.34 0.29
TabXEval (LLaMA) 0.37 0.30 0.30 0.29 0.44
TabXEval (Qwen) 0.33 0.27 0.28 0.30 0.38
TabXEval (Gemini) 0.30 0.23 0.21 0.30 0.40

Table 5: Robustness of TabXEval across LLM back-bones. Human-ranking correlations for TabXEval run with
GPT-4o, LLaMA-3.3 70B-Instruct, Qwen-72B-Instruct and Gemini-2.0-pro, compared to BLEURT and the
P-Score baseline. TabXEval + GPT-4o attains the strongest alignment (Spearman’s ρ = 0.44), but all back-bones
retain a ≥ 0.30 correlation, indicating backbone-agnostic reliability.

2024), whereas TanQ requires multi-hop, multi-
source reasoning to generate answer tables (Akhtar
et al., 2025). Such challenging benchmarks expose
systematic weaknesses in both generation models
and legacy evaluation metrics, motivating the fine-
grained rubric employed by TabX.

Other Evaluation Metrics 1. Surface and
embedding overlap. Classic n-gram scores
BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
and chrF (Popović, 2015) treat a table as flat
text, ignoring header alignment or cell hierar-
chy. Embedding-based BERTScore (Zhang* et al.,
2020) improves semantic sensitivity, yet still over-
looks structural fidelity. Token-level Exact Match
and PARENT (Dhingra et al., 2019) partially re-
ward factual grounding, but cannot detect column
swaps or unit shifts.

2. Structure-aware and reference-less scores.
StructBench introduces H-Score and P-Score,
targeting hierarchical integrity and holistic quality,
respectively (Gu et al., 2024). TabEval (“Is this
a bad table?”) decomposes each table into atomic
statements and uses textual entailment to capture
fine-grained errors (Ramu et al., 2024). Comple-
mentarily, Data-QuestEval dispenses with ref-
erences altogether by generating and answering
questions directly over the source data, achieving
strong human correlation in data-to-text tasks (Re-
buffel et al., 2021). We further show that our
approach performs robustly across a wide range
of table structures and can be extended to handle
hierarchical formats, as discussed in Section E.

Despite these advances, existing metrics still em-
phases either semantics or structure and provide a
single numeric values with limited error traceability
or explainability. Our two-phase TabX closes this
gap by disentangling alignment (TabAlign) from
cell-level comparison (TabCompare), producing
an interpretable score that balances sensitivity and
specificity.

5 Conclusion and Future Work
In this work, we have introduced TabXEval an
eXhaustive and eXplainable, two-phase framework
that transforms table evaluation by disentangling
structural alignment from detailed cell-level com-
parison. Our method leverages a comprehensive
rubric to quantify both coarse and fine-grained er-
rors, yielding results that strongly correlate with
human assessments. By developing TabXBench, a
challenging multi-domain benchmark with diverse
perturbations, we have demonstrated the robust-
ness, explainability, and human-alignment of our
approach. While limitations such as computational
overhead and handling of hierarchical tables re-
main, the promising performance of TabXEval
opens avenues for further research and refinement
in automatic table evaluation.

We found two key directions for future work.
Firstly, while our current approach leverages large
language models to ensure robustness and gen-
eralization to unseen table structures, their com-
putational overhead can hinder practical deploy-
ment. Developing more compact alternatives using
smaller models (e.g., BART, T5) would require
large-scale, heterogeneous fine-tuning data to pre-
serve performance on out-of-distribution tables—a
resource that is currently limited. Future efforts
could explore model distillation or semi-supervised
training to create lightweight yet reliable variants of
TabXEval. Secondly, although TabXEval effec-
tively handles structural variations—such as merged
or decomposed cells—through LLM-guided align-
ment, directly supporting complex hierarchical ta-
bles (e.g., nested cells or multi-level headers) re-
mains a challenge. A promising direction is to
incorporate a preprocessing step that flattens hi-
erarchical structures into standardized key paths
(e.g., transforming “Release Date” with sub-headers
“Month” and “Year” into “Release Date.Month” and
“Release Date.Year”), enabling compatibility with
our approach while preserving semantic structure.
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Limitations
While TabXEval demonstrates strong perfor-
mance, it is not without its limitations. Its reliance
on large-scale language models comes at the cost
of increased computational overhead, which may
impact scalability. Moreover, the method faces chal-
lenges when dealing with hierarchical tables, where
nested headers and multi-level groupings make
alignment significantly more complex. Lastly, as a
reference-based evaluation approach, TabXEval
necessitates access to ground-truth tables, leaving
the question of referenceless evaluation an open
and compelling challenge for future research.
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Appendix
A Performance Analysis
Figure 5 represent human ranking correlation of TabXEval across various confirgrations of parameters.

Figure 5: Human Ranking Correlation, ours all configurations.

B Illustration Example
Below is a detailed breakdown of our scoring method. For example we are evaluating two movie examples
where the Ground Truth Table (GT): 5x5 table and a Reference Table (Ref): 4x6 table.

TabXEval =
∑

I ∈{Missing,Extra,Partial}
βI

( ∑

E ∈{row, column, cell}
αE

fE
NE

)
× γp (1)

Partial Score Weight Definition

γp =





1, if no partial cell,

ωp ×
∣∣∣∣
GT −Ref

Ref

∣∣∣∣ , if partial detected.

Observed Errors
• Missing Row: The reference table is missing one row compared to the ground truth.

• Extra Column: The reference table has an additional column about directors.

• Partial Match in a Cell: One cell in the reference table (release date) has a typo and increases the
date by 2 days.

Weights
Entity Weights

• Column: αcolumn = 1

• Row: αrow = 0.9

• Cell: αcell = 0.8

Information Error Weights
• Missing: βMissing = 1

• Extra: βExtra = 0.9

• Partial: βPartial = 0.8
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Gamma Modifier for Partial Matches
For numerical data, we use a weight ωp = 0.9 and compute a normalized difference:

∣∣∣∣
GT −Ref

Ref

∣∣∣∣ = 0.4.

Thus,
γp = 0.9× 0.4 = 0.36.

Our proposed rubric is domain agnostic, the beauty of our work is that our weighting scheme is flexible
which makes the evaluation metric domain specific based on domain knowledge, for instance one can set
higher weights to cell values with numeric types for financial data, in contrast the same rubric can be
tuned for sports data where structural nuances should be penalized. Moreover, evidenced by our findings
(Figure 4), highlights the strength and generalizability of the underlying scoring mechanism.

Scoring:
Missing Row:

• Weight for rows: αE = 0.9

• Total rows in GT: 5

• Weight for missing: βI = 1

Contribution to error = αE × βI ×
Number of missing rows

Total rows
= 0.9× 1× 1

5
= 0.18

Extra Column:
• Weight for columns: αE = 1

• Weight for extra: βI = 0.9

• Total columns in GT: 5

Contribution to error = αE × βI ×
1

5
= 1× 0.9× 1

5
= 0.18

Partial Match (Cell):
• Weight for cells: αE = 0.8

• Weight for partial: βI = 0.8

• Total cells in GT: 5× 5 = 25

• γp = 0.36

Contribution to error = αE × βI ×
1

25
× γp = 0.8× 0.8× 1

25
× 0.36 = 0.0088

Total Error Score:
0.18 + 0.18 + 0.0088 = 0.368

By adjusting the weights assigned to entity types (rows, columns, cells), information errors (missing,
extra, partial), and partial matches, the framework can be fine-tuned to emphasize aspects critical to
particular applications.

C Prompts
We provide detailed prompts for TabAlign in Figure 6, TabCompare in Figure 7 and Direct-LLM Baseline
in Figure 8.
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D Qualitative Example
Figure 9 presents sample perturbed tables from the TabXBench benchmark, illustrating domain-specific
corruptions across varying difficulty levels. It includes qualitative examples and a performance comparison
of TabXEval against prior metrics.

E Hierarchial Tables
Though direct processing of complex hierarchical tables as shown in table 6 (e.g., nested merged cells,
multi-level headers) is currently a limitation, we’ve ideated a viable workaround. We can employ a
preliminary structure decoding step, as illustrated in table 7, which effectively unrolls hierarchical headers
into a flattened format. For example, parent header ’Release Date’ and sub-headers ’Month’/’Year’
transform into ’Release Date.Month’ and ’Release Date.Year.’ This standardized table representation is
then fully compatible with our evaluation framework, accommodating both strict and relaxed mapping
criteria

Table 6: Hierarchical table

Movies Parts Release Date Ratings

Month Year

When we die Part 1 May 2010 5
Part 2 December 2022 3

Table 7: Flattened formatted table

Movies ∨ Parts Release Date ∧ Month Release Date ∧ Year Ratings

When we die ∨ Part 1 May 2010 5
When we die ∨ Part 2 December 2022 3
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INSTRUCTIONS:

Given three tables — Table 1, Table 2, and a Partially Aligned Table — your goal is to align Table 1 and 
Table 2 using the Partially Aligned Table and output a Final Aligned Table in Markdown.

Follow this general algorithm:

1. Compare Table 1 and Table 2, keep differences in mind.
2. If one table appears to be a transpose of the other, take the transpose to match structures.
3. Use the Partially Aligned Table to align remaining rows and columns.
4. If a row or column cannot be matched, keep it as extra and fill with - (dash).
5. Handle multiple possible mappings carefully (multi-mapping).
6. Ensure the Partially Aligned Table is part of the final output.
7. Place unmatched rows/columns at the end of the table.
8. Recheck for correct alignment of columns, rows, and cells.
9. Include all cells from both Table 1 and Table 2 in the Final Aligned Table.

10. Do not omit any columns from either table.

If the Partially Aligned Table is None, simply perform alignment without it. Output only the final aligned table in 
Markdown (no extra text).

Format for the Final Aligned Table:

Each cell is written as cell1/cell2 (where cell1 is from Table 1 and cell2 from Table 2).
If a value is missing in one table, use a dash: -/cell2 or cell1/-.
Each row must have the same number of columns.
Do not add columns that do not exist in either table.

Examples:

Table 1:
| Year | Competition | Venue | ...
| ...  | ...         | ...   | ...

Table 2:
| Year | Place | Country | ...
| ...  | ...   | ...     | ...

Partially Aligned Table:
| Year.T1/Year.T2 | Position.T1/Position.T2 | ...
| 2011/2011       | 2nd/2nd                 | ...
| ...             | ...                     | ...

Output (shortened):
| Year.T1/Year.T2 | Competition.T1/- | Venue.T1/Place.T2 | ... |
| ...             | ...             | ...                | ... |

The final alignment shows all matched and unmatched columns/rows, with slashes and dashes where 
appropriate.

...

TabAlign Prompt

Figure 6: Prompt for tabular alignment, leveraging Partially Aligned Table and Reference Tables to generate a final
structured table while preserving unmatched elements.
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Text

INSTRUCTIONS:
You are given a table where each cell is "value1/value2". Determine differences between value1 (from Table 1) 
and value2 (from Table 2). If a cell is "-", skip it; if both parts are empty, output "[-]". Use the column headers (also 
"header1/header2") as context for:

1. Data Type (Numerical, String, List, Date, Time, Boolean, Others, Empty)
2. Entity (Person, Organization, Location, Date, Time, Money, Percent, Facility, Event, Product, Work of Art, 

Language, Nationality, Ordinal, Cardinal, Others)
3. Unit (determine from context or values; if none, use "None")
4. Missing/Extra Info (e.g., if something appears only in one part)
5. Difference (format depends on Data Type: numerical → absolute difference, date → difference in days, time 

→ difference in seconds, etc.)

For each cell, output a 5-element tuple:

[DataType1/DataType2, Entity1/Entity2, Unit1/Unit2, Missing/Extra Info, Difference]

Output: Only the final table (Markdown) with these tuples, keeping the same structure as the input table. No extra 
explanations.

EXAMPLES:

Example 1
Input Table:

| Director.T1/Director.T2 | Writer.T1/Writer.T2 | Original Air Date/Air Date | Production 
Code/Prod. Code |
|:------------------------|:---------------------|:---------------------------|:-------------
--------------|
| Richard Dale/R. Dale    | Tim Loane/T. Loane  | 21 March 2001/21/03/2001   | 101/106        
            |
| ...                     | ...                 | ...                        | ...            
            |

Output Table:

| Director.T1/Director.T2                                              | Writer.T1/Writer.T2 
                                        | Original Air Date/Air Date                         
              | Production Code/Prod. Code                                    |
|:---------------------------------------------------------------------|:--------------------
----------------------------------------|:---------------------------------------------------
--------------|:--------------------------------------------------------------|
| [String/String, Person/Person, None/None, None, abbreviated string:Richard Dale -> R. Dale] 
| [String/String, Person/Person, None/None, None, abbreviated string:Tim Loane -> T. Loane] | 
[Date/Date, Date/Date, None/None, None, absolute difference:0:days:] | [Numerical/Numerical, 
Cardinal/Cardinal, None/None, None, ab                                                      | 
...                                                               | ...                      
                                    |

 TabCompare Prompt

Figure 7: Prompt for identifying data type, entity, and unit differences between two tables, outputting structured
tuples to capture variations in numerical, string, date, and categorical values.
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Baseline comparison
prompt

You are an advanced data comparison and analysis engine. Your task is to receive two tables (GT and 
Generated) and perform a thorough comparison to extract difference metrics. Output four statistics:

Row and Column Stats
For each, report EM, MI, EI ...
Format:
| Type   | MI  | EI  | EM  |
|--------|-----|-----|-----|
| Row    | ... | ... | ... |
| Column | ... | ... | ... |

1. 
Detailed Column Stats
Analyze each column by data type (Numerical, String, Bool, Date, List, Time, Others) ...
Format:
|           | Numerical | String | Bool | Date | List | Time | Others|
|-----------|-----------|--------|------|------|------|------|-------|| EI        | ...     
  | ...    | ...  | ...  | ...  | ...  | ...   |
| MI        | ...       | ...    | ...  | ...  | ...  | ...  | ...   |

2. 
Detailed Cell Stats
Exclude missing/extra rows/columns, then classify cell differences (MI, EI, Partial) ...
Format:
| Category | Numerical | String | Bool | Date | List | Time | Others |
|----------|-----------|--------|------|------|------|------|--------|
| MI       | ...       | ...    | ...  | ...  | ...  | ...  | ...    |
| EI       | ...       | ...    | ...  | ...  | ...  | ...  | ...    |
| Partial  | ...       | ...    | ...  | ...  | ...  | ...  | ...    |

3. 
Cell Level Difference with Magnitude
For nuanced differences (unit, format, etc.), output JSON with ...
Example Structure:

{
  "bool": { "same": ..., "different": ... },
  "Date": { "date": ..., "time": ... },
  "List": { "MI": ..., "EI": ..., "EM": ... },
  "Distance (yards).T1/Distance (meters).T2": {
    "Numerical": { "unit_mismatch": ..., "ner_mismatch": ..., "delta": ..., "MI": ..., "EI": 
... },
    "String": { "ner_mismatch": ..., "spell_errors": ..., "abbreviated_string": ..., 
"semantically": { "same": ..., "different": ... }, "other": ..., "MI": ..., "EI": ... }
  }
}

4. Additional Notes:
MI: ...
EI: ...
EM: ...
Partial matches: ...

OUTPUT:
Only output the 4 tables (Row and Column Stats, Detailed Column Stats, Detailed Cell Stats, and Cell Level 
Difference with Magnitude) in the specified formats with no extra text.

Figure 8: Baseline comparison prompt for evaluating differences between ground truth (GT) and generated data,
providing structured metrics for row, column, and cell-level analysis.
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Figure 9: Sample perturbed tables from the TabXBench benchmark, illustrating domain-specific corruptions at
different difficulty levels. (a) Movie domain with Easy: “Easy” perturbations applied to a clean movie-metadata
table, including minor spelling errors in film titles, superficial header rephrasing, simple date-format conversions
(e.g., “March 3, 2020” ↔ “03/03/2020”), trivial numeric formatting changes (addition/removal of thousands
separators), and basic unit shifts (e.g., runtime in minutes vs. hours). (b) Finance domain with (Easy + Hard):
A financial report table subjected to both “Easy” (currency-symbol normalization, decimal rounding) and “Hard”
modifications, such as inconsistent metric abbreviations (e.g., “Rev.” vs. “Revenue”), merged indicator columns,
omitted quarterly rows, and large-scale unit mismatches (millions vs. billions). (c) Sports domain with Medium :
A sports-stats table with “Medium” perturbations, featuring moderate header reordering (e.g., swapping “Team”
and “Position”), slight numeric shifts in game statistics (win/loss counts adjusted by one or two), merged athlete
performance rows, and partial row/column transpositions to emulate realistic table-generation errors.
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F Human Evaluation Setup

TabXVal

Instructions

1. Review the ground truth table below carefully.

2. Examine each of the five reference tables.

3. Rank the reference tables from 1 (best) to 5 (worst) based on their similarity to the

ground truth.

4. Enter your ranking in the input box at the bottom using comma-separated numbers (e.g.,

"2,1,4,3,5").

Ranking Criteria

Structural Factors (In Order of Priority)

1. Column Missing – Should be ranked lower in case of a tie in the number of missing cells in
rows.

2. Column Extra – Should be ranked lower in case of a tie in the number of extra cells in rows.

3. Row Missing – Tables with missing rows should be ranked lower.

4. Row Extra – Tables with additional rows should be ranked lower.

5. Cells Missing – The number of missing individual cells should influence ranking.

6. Cells Extra – The number of extra individual cells should be considered.

7. Partial Mismatching Severity – The extent to which values differ from the ground truth should
impact the ranking.

Contextual Factors (In Order of Priority)

1. String Values – Should be prioritized in mismatches.

2. Numeric, Boolean, Date-Time Values – Rank based on their correctness.

3. List Values – Consider discrepancies in list-type data.

4. Other Data Types – Consider deviations in less common formats.

Tie-Breaking Rule

If a tie occurs, prioritize ranking based on the number of affected cells within rows and columns.
Additionally, headers with inappropriate values that do not match the expected column meaning
should be treated as "wrong columns" and ranked similarly to missing columns.
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Ground Truth Table

Distance (yards) Greyhound Time Date

325 Lemon Clover 17.34 11.10.1996

525 Whitty Guinness 28.54 29.10.2010

550 Whatsupjack 29.91 18.09.2009

700 Tinas Girl 38.79 19.08.2003

790 Shining Rumble 44.76 13.07.2004

Reference Tables

Reference Table 1

Distance (meters) Greyhound Time Date

297.48 Lemon Clover 17.34 11.10.1996

480.21 Whitty Guinness 28.54 29.10.2010

502.92 Whatsupjack 29.91 18.09.2009

640.08 Tinas Girl 38.79 19.08.2003

722.62 Shining Rumble 44.76 13.07.2004

Reference Table 2

Distance (meters) Greyhound Time Date

297.48 Lemon Clover 17.34 10-November-1996

480.21 Whitty Guinness 28.54 29-October-2010

502.92 Whatsupjack 29.91 18-September-2009

640.08 Tinas Girl 38.79 19-August-2003

722.62 Shining Rumble 44.76 13-July-2004
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Reference Table 3

Distance (meters) Greyhound Time Date Date

297.48 Lemon Clover 17.34 10-November-1996 18.09.2009

480.21 Whitty Guinness 28.54 29-October-2010 13.07.2004

502.92 Whatsupjack 29.91 18-September-2009 19.08.2003

640.08 Tinas Girl 38.79 19-August-2003 10.11.1996

722.62 Shining Rumble 44.76 13-July-2004 29.10.2010

Reference Table 4

Distance (yards) Greyhound Duration Date

525 29.91 29-October-2010

550 Whitty Guinness 11-October-1996

700 Shining Rumble

525 29.91 29-October-2010

550 Whitty Guinness 11-October-1996

700 Shining Rumble

Reference Table 5

Distance (yards) Greyhound Time Date

325 Nova Eclipse 28.54 29.10.2010

525 Galaxy Flame 17.34 19.08.2003

550 Sonic Dash 44.76 13.07.2004

700 Midnight Star 29.91 18.09.2009

790 Thunder Strike 38.79 11.10.1996
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Your Ranking

Enter your ranking (comma-separated numbers, e.g., "2,1,4,3,5"):

Enter ranking (e.g., 2,1,4,3,5)

Format: Five numbers from 1-5, separated by commas

Previous Tables Next Tables
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