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Abstract

The diachronic gap between classical and mod-
ern Chinese arises from century-scale lan-
guage evolution through cumulative changes
in phonological, lexical, and syntactic systems,
resulting in substantial semantic variation that
poses significant challenges for the computa-
tional modeling of historical texts. Current
methods always enhance classical Chinese un-
derstanding of pre-trained language models
through corpus pre-training or semantic integra-
tion. However, they overlook the synergistic re-
lationship between phonetic and glyph features
within Chinese characters, which is a critical
factor in deciphering characters’ semantics. In
this paper, we propose a radical-level phonet-
ics and glyph representation enhanced Chinese
model (RPGCM) with powerful fine-grained
semantic modeling capabilities. Our model es-
tablishes robust contextualized representations
through: (1) rules-based radical decomposition
and byte pair encoder (BPE) based radical ag-
gregation for structural pattern recognition, (2)
phonetic-glyph semantic mapping, and (3) dy-
namic semantic fusion. Experimental results
on CCMRC, WYWEB, and C3Bench bench-
marks demonstrate the RPGCM’s superiority
and validate that explicit radical-level modeling
mitigates semantic variations.

1 Introduction

The natural language processing (NLP) community
has witnessed a growing interest in exploiting clas-
sical Chinese heritage (Wang et al., 2023a; Zhou
et al., 2023; Yu et al., 2024; Kessler, 2024), driven
by its unique value in preserving three millennia of
philosophical discourse and scholarly knowledge.
They exhibit a diachronic gap between classical and
modern Chinese(Chen, 2017). Over time, phonetic
shifts, morphological changes, and diversities in
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Figure 1: The illustration of a phono-semantic com-
pound character, which is commonly used by its inher-
ent meaning in classical Chinese. Derivative cognate
characters refer to Chinese characters with similar mean-
ings, and thus similar glyph and phonetics.

word usage have contributed to semantic variation,
making the understanding of classical texts increas-
ingly complex. This variation renders the direct
application of modern Chinese language models to
classical texts fundamentally incompatible (Zhang
et al., 2023b).

Existing approaches in classical Chinese un-
derstanding have progressively integrated hetero-
geneous linguistic knowledge, spanning lexical-
semantic relationships (Liu et al., 2022; Xiang
et al., 2024), sememe-based representations (Zhao
et al., 2022), interpretive dictionary resources
(Wang et al., 2023b), syntactic pattern analysis
(Wang et al., 2023a), and discrete glyph processing
(Wang et al., 2023b). However, they remain con-
strained by tokenized feature extraction paradigms
that fail to account for the synergistic relationship
between phonetic and glyph components, a funda-
mental principle in Chinese character formation.
This oversight contradicts the structural logic of
historical linguistics evolution, where semantic rad-
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icals systematically combine with phonetic and
glyph elements to generate new characters with
compositional meanings. Crucially, such inher-
ent glyph-phonetic interdependencies create self-
contained semantic patterns that enable contextual
understanding without external knowledge augmen-
tation.

Phono-semantic compounds, constituting over
80% of Chinese characters (Li et al., 2015), com-
bine phonetic determinants (indicating pronunci-
ation for disambiguating homographs) with se-
mantic radicals (conveying conceptual associations
among cognates). These compounds, known as rad-
icals representing character constituents, constitute
the minimal functional units in Chinese orthogra-
phy. These radical combinations create system-
atic glyph patterns through their structural arrange-
ments. Crucially, combinatorial radical arrange-
ments encode inherent meanings, while derivative
cognates exhibit semantic kinship through shared
phonetic and glyph features. As shown in Figure 1,
the character "賊" evolved from meaning "harm"
to "thief", exemplifying diachronic semantic shifts
that necessitate modeling glyph-phonetic interac-
tions for semantic recovery during modern model
adaptation. These approaches rely solely on classi-
cal corpus pre-training to achieve suboptimal per-
formance due to data scarcity, while character-level
modeling in modern Chinese frameworks results in
systematic misinterpretations of low-frequency yet
semantically nuanced characters.

Phonetic and glyph features have proven instru-
mental for modern Chinese NLP tasks, including
reading comprehension (Sun et al., 2021; Zheng
et al., 2025), sememe prediction (Lyu et al., 2021),
and entity recognition (Mai et al., 2022; Zhang
et al., 2023a). Yet its application to classical Chi-
nese remains nascent, where current approaches
rely on shallow feature concatenation rather than
modeling the compositional relationship between
semantic radicals and their phonetic counterparts.

In this paper, we propose a radical-level pho-
netics and glyph representation enhanced Chinese
model (RPGCM). The model first decomposes each
Chinese character into semantic-independent radi-
cals, then captures implicit relationships between
glyph and phonetics to alleviate the negative ef-
fect of semantic variation. Specifically, RPGCM
utilizes the byte pair encoding (BPE) algorithm
to transform the stroke sequence of Chinese char-
acters into radicals. Two independent networks
are employed to obtain phonetic and glyph em-

beddings from the pinyin sequence and character
glyph. The glyph image highlights the stroke sub-
sequence corresponding to the current radical, al-
lowing the model to reconstruct the whole Chi-
nese character. Then, a dynamic fusion mechanism
is adopted to acquire integrated embeddings that
dynamically prioritize valuable features. The pre-
training tasks include three-level masked language
modeling, phonetic loan character discrimination,
and phonetic-glyph cross-prediction. They enhance
the connections between glyphs, phonetics, and se-
mantics to deconstruct the original meanings im-
plied in individual Chinese characters. The ex-
perimental results on classical Chinese machine
reading comprehension (CCMRC), comprehen-
sive classical Chinese understanding benchmark
(C3Bench), and wen yan wen evaluation bench-
mark (WYWEB) indicate that our proposed model
outperforms the baselines and achieves significant
progress.

The contributions of our work can be summa-
rized in threefolds:

• It has been found that the phonetics and
glyphs are an important part of Chinese se-
mantics, which can significantly alleviate the
negative effect of the diachronic gap.

• We propose RPGCM, a classical Chinese pre-
trained language model that enhances seman-
tic understanding by integrating radical-level
phonetic and glyph representations, utilizing
BPE for radical extraction, independent pho-
netic and glyph embeddings, and a dynamic
fusion mechanism.

• The effectiveness of the RPGCM is evalu-
ated on three typical classical Chinese under-
standing tasks, i.e., CCMRC, C3Bench, and
WYWEB.

2 Related Work

2.1 Chinese Glyph and Phonetics
Representation

Unlike alphabetic languages, Chinese relies on
glyphs and phonetics for semantic and syntactic
representation. Recent advancements in computa-
tional linguistics have focused on leveraging these
features to improve tasks such as named entity
recognition (NER), machine translation, and histor-
ical phonology reconstruction. Cheng et al. (2020)
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aims to incorporate phonetics and glyph informa-
tion into language models using graph convolu-
tional neural networks in Chinese spelling check
tasks. Liu et al. (2021) utilize a gated recurrent unit
network that is based on the phonetic and stroke
features of Chinese characters.

As scholars progress in their research, they dis-
cover that incorporating glyphs and phonetics can
significantly improve the understanding ability of
the model. Sun et al. (2021) propose Chinese-
BERT, which aims at utilizing character glyph em-
beddings to capture character semantics and pho-
netic embeddings to break through the limitations
of morphemes. Su et al. (2022) utilize synthetic
adversarial samples for multimodal pretraining of
Chinese characters. They establish separate pre-
training tasks for semantic, phonetic, and glyph
features, aiming to enhance their quality. Wang
et al. (2023b) employ the "Jiezi" module to decom-
pose the radicals in Chinese characters, enhancing
the semantic representation of characters. Li et al.
(2024) explores how pinyin and glyph-based fea-
tures contribute to text classification robustness. It
introduces a contrastive adversarial training method
to enhance model performance against adversarial
attacks.

However, existing research has neglected the
significance of glyphs and phonetic features in Chi-
nese pretraining. Due to historical development,
rhetorical techniques, and cultural traditions, clas-
sical Chinese carries a more complex and variable
meaning. The linguistic patterns exhibited in clas-
sical Chinese are often closely related to these two
features of Chinese characters.

2.2 Chinese Language Modeling
Chinese language modeling methods are cate-
gorized into character-level and word-level ap-
proaches (Gan and Zhang, 2020). Character-level
models treat Chinese characters as the fundamental
units, processing input as a sequence of characters
(Nguyen et al., 2019; Cao et al., 2022; Shu et al.,
2023). Each character is assigned an embedding,
which effectively captures fine-grained features and
handles out-of-vocabulary words. However, as
character meanings often depend on context, these
models may struggle with high-level semantic rela-
tionships. In contrast, word-level models segment
text into words, treating each word as a semantic
unit (Wang et al., 2022a; Yang et al., 2022). While
this approach better captures high-level semantics,
it faces challenges with out-of-vocabulary words

and rare terms.
To enhance Chinese text representation, re-

searchers have explored stroke-level modeling.
Nguyen et al. (2019) propose a treeLSTM frame-
work to construct hierarchical logic graph embed-
dings, leveraging the recursive nature of Chinese
character sequences. Xiong et al. (2021) intro-
duce a component and stroke-based cascade n-
gram model to preserve multiple levels of char-
acter information. Wang et al. (2022b) convert
Chinese character strokes into Latin letters for ma-
chine translation, while Wang et al. (2023b) im-
prove comprehension through meaning retrieval
and structural modeling, referred to as "Shuowen"
and "Jiezhi."

Despite growing interest in stroke-based features,
research has largely focused on modern Chinese,
with limited exploration of classical Chinese. This
gap is notable as classical Chinese characters often
retain pictographic origins, whereas stroke compo-
sition conveys inherent meanings.

3 Methodology

Our proposed RPGCM aims to bridge the di-
achronic gap between classical and modern Chi-
nese caused by semantic variation. First, it trans-
forms Chinese characters into stroke sequences and
employs the BPE algorithm to break Chinese char-
acters into smaller subwords. Then, it leverages
several pre-training tasks to capture linguistic pat-
terns of classical Chinese. The overall framework
of RPGCM is depicted in Fig. 2.

3.1 Chinese Stroke Modeling

Chinese characters are composed of basic radicals
or structural elements that represent their mean-
ing. To identify these building blocks, characters
are first mapped to their corresponding stroke se-
quences. Given a Chinese character c, RPGCM
maps it into a stroke sequence S = {s1, s2, ..., sn}.
Chinese characters are often decomposed based on
25 types of strokes, which is a common criterion.
This method could apply to both simplified and tra-
ditional characters. To differentiate characters that
share the same stroke sequence, a unique number
is added to the end of the sequence as shown in Fig.
3.

The subword vocabulary learning (Li et al.,
2018) can extract the radicals and components
within each Chinese character in the corpus. We
utilize the BPE algorithm to construct a vocabu-
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Figure 2: The overall framework of RPGCM.

Figure 3: Two Chinese characters with the same stroke
sequence are distinguished by adding a number at the
end of their sequence.

lary of radicals for each Chinese character’s stroke
sequences. It would merge the most frequently
occurring character sequences, similar to how it’s
done for English. Radicals are fundamental struc-
tural components of Chinese characters that pro-
vide essential information about their meanings and
phonetics. Our model leverages these cues during
pre-training to develop more extensive semantic
embeddings for them. Research (Li et al., 2015)
shows that around 80% of Chinese characters can
be decomposed into constituent parts, while the re-
maining 20% are basic. As such, more than 80% of
Chinese characters can benefit from stroke-based
semantic representations.

3.2 Pre-training

Based on the above Chinese stroke modeling, we
can pre-train the RPGCM with several objectives
for classical Chinese understanding.

3.2.1 Chinese Features
We utilize BERT as the backbone network and in-
tegrate subword, glyph, and phonetic features. The

stroke sequence of Chinese characters is used to
create subword features corresponding to standard
semantic features. Glyph features provide infor-
mation about the form, structure, and appearance
of Chinese characters, which enables the model to
comprehend how the main structure of a character
affects its meaning. Phonetic features assist the
model in understanding Chinese character pronun-
ciation and managing phonetic loans in classical
Chinese.

Our model utilizes a tripartite embedding ap-
proach, encompassing subword, glyphic, and pho-
netic embeddings. The subword embedding, de-
noted by Sub(l), is initialized with random val-
ues. The glyphic embedding, denoted by Gly(l),
is a fixed-dimension embedding extracted from a
24x24 image Pic(c) using a pre-trained ResNet18
network. For Chinese characters, we use the font
Kaiti, and for other characters, we use Arial. Gly(l)
is defined as :

Gly(l) = LayerNorm(MTResNet18(Pic(c))),
(1)

where M is a learnable matrix. The subword em-
beddings of each Chinese character include the
complete glyph features and highlight all strokes in
the current subword. Since existing pinyin1 recog-
nizers have low accuracy for classical Chinese, we
consider all possible pinyin of a Chinese character.

1pinyin is the phonetic system of Mandarin Chinese.
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Typically, the pinyin has three components: conso-
nant, rhyme, and tone. We assign eighteen slots to
each Chinese character, as a polyphonic Chinese
character has up to six types of pinyin. If the length
of the pinyin sequence is less than eighteen, the re-
maining slots are filled with a particular character
"-". There are four tones in Chinese characters: the
first, the second, the third, and the fourth tone. For
those Chinese characters that do not have a tone,
we assign the tone symbol "5". Finally, we apply a
CNN model with a width of three for max-pooling
processing of the pinyin sequence, resulting in the
final phonetic embedding.

3.2.2 Feature Integration
Directly summing these Chinese features is a sim-
ple solution, but it presents a challenge as it treats
all three embeddings equally for all tasks. This
inflexible approach suggests that the model may
be unable to prioritize crucial features for precise
predictions. Therefore, we present a new strategy
for feature fusion called dynamic interpolation. By
dynamically adjusting the weights of each feature
based on its relevance, this method ensures adapt-
ability and flexibility in the model.

W1 = UT
1 H

k(l)Sub(l)V1, (2)

W2 = UT
2 H

k(l)Gly(l)V2, (3)

W3 = UT
3 H

k(l)Pho(l)V3, (4)

Hk(l) =
W1Sub(l) +W2Gly(l) +W3Pho(l)

W1 +W2 +W3
,

(5)

where Ui and Vi are learnable matrices, Hk(l) is
the hidden representation of the k-st layer. The
model can calculate the requisite weights by effec-
tively managing the context hierarchy.

3.2.3 Pre-training Task
The pre-training task consists of phonetic loan char-
acter discrimination, three-level masked language
modeling, and phonetics-glyph cross-prediction.

In classical Chinese, the use of phonetic loans
is prevalent. We consider the accurate phonetic
loan as a positive example. Characters similar in
pronunciation or glyphs but not part of the phonetic
loans are considered negative examples. Our pho-
netic loan recognition system is developed by pre-
training on existing corpora (Wang et al., 2023c).
The model would improve its ability to compre-
hend Chinese characters by distinguishing between
positive and negative examples. Assume that there

are N Chinese characters in the candidate sample
and the i-th Chinese character loss is:

LPLCD(i) = − log
esim(ci,c̃i)/τ

∑N
j=1 e

sim(ci,cj)/τ
, (6)

where τ is a temperature hyperparameter and c̃i
is the correct phonetic loan character. We define
sim (ci, c̃i) as the cosine similarity in their repre-
sentation.

The three-level masked language modeling in-
cludes three masking strategies: whole word mask-
ing, character masking, and stroke masking. These
strategies represent three levels of information gran-
ularity, which are crucial for understanding classi-
cal Chinese. We employ LTP 2 for acquiring the
whole word.

In the phonetics-glyph cross-prediction task, the
RPGCM is trained to predict a character’s phonetic
representation from its glyph and vice versa. This
bidirectional prediction encourages the model to
learn the intrinsic relationships between a charac-
ter’s visual form and its pronunciation. The model
could gain a more comprehensive understanding
of each character’s semantics. The training loss in-
volves two primary objectives: phonetic prediction
loss and glyph prediction loss. These loss functions
are typically calculated using the cross-entropy be-
tween the predicted phonetic distribution and the
actual phonetic label. The total loss function com-
bines these components with weighting factors to
balance their contributions.

4 Experiments

4.1 Datasets

We evaluate our model using 3 datasets, i.e.,
CCMRC, WYWEB(Zhou et al., 2023), and
C3Bench(Cao et al., 2024).

The CCMRC includes ATRC (Ji et al., 2021),
NCR (Xu et al., 2021), ChID (Zheng et al., 2019),
and CLT (Liu et al., 2022). ATRC, from language
exams, has 3.8k challenging classical text samples.
NCR mixes classical and modern Chinese, increas-
ing style-switching difficulty. ChID, with 581k
passages, focuses on idiom comprehension. CLT,
from high school exams, includes 48k samples with
diverse question types.

The WYWEB (Zhou et al., 2023) benchmark
evaluates classical Chinese understanding across
seven tasks: PUNC restores punctuation, GLNER

2https://github.com/HIT-SCIR/ltp
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identifies book titles, GJC classifies ancient books
(200k samples), and TLC determines book dates
(18,762 samples). FSPC categorizes poetry senti-
ment into five levels. WYWRC is a multiple-choice
reading comprehension task, while IRC assesses id-
iom comprehension, capturing their implied mean-
ings.

C3Bench(Cao et al., 2024) is a comprehensive
benchmark designed to evaluate large language
models’ understanding of classical Chinese. It com-
prises 50,000 text pairs across five primary tasks:
classification, retrieval, named entity recognition,
punctuation, and translation. The dataset spans ten
distinct domains, encompassing a wide range of
Classical Chinese literature.

4.2 Pre-training Setups

We pre-train our model based on the official Chi-
nese model, Chinese-BERT-wwm-ext. The maxi-
mum input sequence length for all models is 2048
tokens, and a random deactivation rate of 0.15 is
used. The model is optimized using AdamW, with
a learning rate of 1e-5 and a weight decay of 0.5e-
5. In the initial 20% step, the learning rate is pre-
warmed. To accommodate the memory limitations
of the graphics card, we use the FP16 technique to
reduce memory usage. We train two model sizes:
base with 12 transformer blocks and large with
48 transformer blocks. All baseline models are
trained on 4 NVIDIA Tesla P100 GPUs, and the
hyper-parameters are consistent throughout all ex-
periments unless otherwise specified. Additionally,
we utilized HuggingFace’s accelerate library to
expedite our training process and LTP3 for lan-
guage analysis.

4.3 Baseline Models

For comparison, we choose several state-of-the-art
Chinese models, including Chinese-BERT-wwm-
ext (Cui et al., 2021), ERNIE-gram (Xiao et al.,
2021), SikuBERT (Wang et al., 2021), and CD-
BERT (Wang et al., 2023b).

In addition, we select some representative Chi-
nese large language models, such as ChatGLM2-
6B (Du et al., 2022), Baichuan2-7B-Chat (Yang
et al., 2023), LLaMA2-Chinese-7B-Chat (Cui et al.,
2023), Qwen-7B-Chat (Bai et al., 2023), MOSS
(Sun et al., 2024), DeepSeek (Guo et al., 2025). It
is worth noting that we employ prompt tuning to
obtain results for all tasks. Due to limitations in

3https://github.com/HIT-SCIR/ltp

device performance, we only select the 6B or 7B
versions.

4.4 Experimental Results

The experimental results on all datasets are pre-
sented in Table 1. As some test sets are not publicly
available, all results rely on the validation set. In
CCMRC, the evaluation metric is accuracy for all
datasets. In C3Bench, the evaluation metrics of
CLS, RETR, NER, and PUNC are accuracy, accu-
racy, F1, and F1, respectively. In WYWEB, the
evaluation metrics of PUNC, GLNER, GJC, TLC,
FSPC, WYWRC, and IRC are F1, F1, accuracy,
accuracy, accuracy, and accuracy, respectively.

4.4.1 Performance on CCMRC
CCMRC is designed for assessment, which in-
cludes a variety of question types and language
styles. The passages and options in the dataset
contain words that often exhibit polysemy, mean-
ing that the same word can have different mean-
ings in different contexts. This, in turn, increases
the sensitivity to context and poses a challenge to
word sense disambiguation. Table 1 reveals three
significant discoveries: 1) DeepSeek-R1 excels in
NCR and ChID, leading among large models. Its
strong performance likely stems from advanced
pretraining and extensive training data. 2) Siku-
BERT performs the worst among base-size models,
especially in ChID and NCR. This may be due to
its pretraining focus on classical Chinese, leading
to weaker performance by forgetting modern Chi-
nese meanings. 3) Large language models are not
always superior to base or large-size models and
may sometimes perform worse. The most likely
reason is overgeneralization, where they prioritize
broad knowledge over domain-specific optimiza-
tion, leading to weaker performance on specialized
tasks.

4.4.2 Performance on C3Bench
C3Bench tests both understanding and structured
prediction, making it a comprehensive yet chal-
lenging dataset, especially for retrieval and named
entity recognition tasks. Table 1 reveals three sig-
nificant discoveries: 1) DeepSeek-R1 leads overall,
especially in CLS and RETR, while others like
Baichuan2-7B excel in NER. This suggests dif-
ferent pretraining strategies influence task-specific
strengths. 2) Most models perform poorly on
RETR and NER, indicating these tasks require
strong semantic understanding and entity recog-
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Table 1: The experimental results of all models on CCMRC, WYWEB, and C3Bench. The bold numbers are the
best scores in each column under the current version.

Model
Dataset CCMRC C3Bench WYWEB

CLT ATRC NCR ChID CLS RETR NER PUNC PUNC GLNER GJC TLC FSPC WYWRC IRC

Large Language Model

ChatGLM2-6B (Du et al., 2022) 46.87 39.48 44.48 81.50 50.28 9.03 28.56 28.48 81.32 82.20 83.66 61.51 84.44 43.39 82.86
Baichuan2-7B-Chat (Yang et al., 2023) 46.99 39.41 45.52 82.18 37.00 18.36 63.25 53.96 85.14 88.91 85.16 61.04 86.36 40.16 80.16
LLaMA2-Chinese-7B-Chat (Cui et al., 2023) 40.51 34.62 42.97 80.28 18.78 3.20 12.62 34.73 83.68 82.19 81.10 60.31 84.34 43.37 85.11
Qwen-7B-Chat (Bai et al., 2023) 46.48 39.99 43.67 81.87 49.65 13.92 28.33 69.61 84.67 83.17 83.31 62.33 87.39 44.17 87.07
MOSS (Sun et al., 2024) 40.65 39.17 45.80 81.11 15.07 15.84 28.90 58.39 81.42 81.54 82.43 61.47 84.13 40.30 82.72
DeepSeek-R1 (Guo et al., 2025) 47.89 39.20 46.90 87.43 56.18 21.44 30.37 69.91 86.91 90.15 87.17 62.83 87.32 44.33 87.20

base-size settings

Chi-BERT (Cui et al., 2021) 44.03 37.33 41.17 80.28 43.18 10.61 26.11 27.18 82.17 82.87 84.87 85.17 61.37 42.14 86.87
SikuBERT (Wang et al., 2021) 41.57 38.31 38.94 69.48 35.18 7.34 25.74 24.36 80.82 82.82 82.24 82.47 60.94 44.02 85.84
ERNIE-gram (Xiao et al., 2021) 44.46 38.87 40.76 78.89 43.24 10.16 27.29 27.93 78.48 81.11 80.48 80.11 59.84 41.74 86.48
CDBERT (Wang et al., 2023b) 46.75 39.14 42.76 80.79 44.81 11.54 27.75 28.21 81.48 83.97 85.18 85.27 61.40 44.11 86.48
RPGCM 48.81 41.15 44.17 82.46 48.91 11.34 29.77 28.17 85.87 86.48 87.34 88.79 62.37 46.89 89.23

large-size settings

Chi-BERT (Cui et al., 2021) 46.18 38.18 42.84 81.76 45.24 10.16 26.84 27.16 83.91 83.74 85.94 87.49 59.21 44.61 87.92
ERNIE-gram (Xiao et al., 2021) 46.19 39.48 41.97 80.27 45.86 11.03 26.24 28.15 78.92 84.41 85.96 87.33 59.52 43.33 87.42
CDBERT (Wang et al., 2023b) 47.71 40.48 43.43 81.62 45.90 10.71 26.94 28.10 82.87 86.51 86.36 88.92 60.10 46.07 87.18
RPGCM 50.42 43.14 46.98 84.85 50.31 11.61 30.62 29.01 87.67 89.42 89.61 90.44 64.41 49.48 90.14

nition, which many models struggle with. 3) Al-
though the large-size RPGCM has made some
progress, it still lags behind large language models
in certain tasks, i.e. ChID.

4.4.3 Performance on WYWEB
WYWEB challenges models to understand and pro-
cess classical texts effectively, requiring strong
linguistic knowledge and adaptation capabilities.
In Table 1, we have identified three key findings:
1) Large language models generally perform bet-
ter across WYWEB tasks, especially in structured
tasks like PUNC and GLNER. However, they do
not always dominate in every task, particularly in
tasks requiring deep syntactic or semantic under-
standing. 2) RPGCM outperforms other base/large
models across most WYWEB tasks, demonstrat-
ing a more effective adaptation to classical Chi-
nese. Models like ERNIE-gram and CDBERT also
show competitive performance, while SikuBERT
performs worse, likely due to its limited general-
ization capabilities. 3) Tasks like PUNC and FSPC
are relatively easier, leading to higher scores across
models. However, complex tasks like WYWRC
and IRC remain challenging, highlighting the need
for better contextual and logical reasoning abilities.

4.4.4 Ablation Study
In this study, we conduct several ablation exper-
iments on various components. We use the base
version of Chinese-BERT-wwm-ext as the back-
bone and assess our model’s performance on the
four datasets of CCMRC. We configured all mod-
els with identical hyperparameters. The results
demonstrate that each module positively influences

the model’s accuracy, improving BERT’s precision
from 44.03 to 48.81 (4.78% relatively). Table 2
exhibits all the experimental results.

Table 2: Ablation studies on CCMRC with different
settings. Best indicates the best setting used in RPGCM.

Setting CLT ATRC NCR ChID

Best 48.81 41.15 44.17 82.46

Model Loss
-TLMLM 44.38(-4.43) 37.45(-3.70) 38.21(-5.96) 80.44(-2.02)
-PLCD 46.03(-2.78) 39.44(-1.71) 43.37(-0.80) 81.02(-1.44)
-CACD 45.71(-3.1) 38.86(-2.29) 41.04(-3.13) 80.86(-1.60)

Chinese Feature
-Glyph 46.11(-2.70) 38.85(-2.30) 43.01(-1.16) 79.93(-2.53)
-Phonetic 45.88(-2.93) 38.03(-3.12) 42.44(-1.73) 79.75(-2.71)
-Pho&-Gly 42.31(-6.50) 37.13(-4.02) 39.81(-4.36) 78.22(-4.24)

Feature integration
Sum 47.61(-1.20) 40.11(-1.04) 43.02(-1.15) 81.27(-1.19)
Concatenate 47.54(-1.27) 40.03(-1.12) 43.09(-1.08) 81.25(-1.21)

Subword Segmentation
WordPiece 47.25(-1.56) 40.11(-1.04) 42.84(-1.33) 81.40(-1.06)
Unigram 47.57(-1.24) 39.92(-1.23) 42.93(-1.24) 81.45(-1.01)

The Effect of Pre-training Tasks To evaluate
the impact of various pre-training tasks on the per-
formance of RPGCM, we conducted three settings.
(1) -TLMLM, which means removing only the
three-level masked language modeling task while
keeping the character-level objective to maintain
language understanding capability. (2) -PLCD,
which means removing only the phonetic loan char-
acter discrimination task; (3) -CACD, which means
removing only the cluster-aware character discrim-
ination task. As shown in rows 2-4 of Table 2, all
three settings cause a decrease in model accuracy,
indicating that they contribute to enhancing the
model’s understanding of classical Chinese. Over-
all, TLMLM appears to be the most influential pre-
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training task, while PLCD and CACD contribute
more to specific aspects of language comprehen-
sion and reasoning. The removal of TLMLM re-
sults in the most significant drop in performance.
In the ChID task, the decline in model performance
was relatively low, possibly because this task con-
tains more content from modern Chinese. Although
the model’s performance declines relatively low in
the ChID task, it is possible that this task contains
more content from modern Chinese.

The Effect of Chinese Representation We in-
vestigate the effects of glyph and phonetic features
on the performance of our model. To ensure a fair
comparison, we keep the other pre-training settings
and model hyperparameters unchanged. As shown
in rows 5-7 of Table 2, removing either glyph or
phonetic embeddings results in a decrease in per-
formance. Glyph features help distinguish visually
similar characters, contributing to better contextual
disambiguation. Their removal leads to notable per-
formance degradation, especially in ChID (-2.53)
and CLT (-2.70). Phonetic features assist in rec-
ognizing homophones and phonetic relationships,
which are important for tasks like ATRC (-3.12)
and ChID (-2.71) that require deeper linguistic un-
derstanding. Removing both Glyph and Phonetic
features (-Pho & -Gly) results in the most signifi-
cant performance decline across all datasets, espe-
cially in CLT (-6.50) and NCR (-4.36), highlighting
the strong synergy between glyph and phonetic in-
formation in improving model comprehension.

The Effect of Feature Integration The feature
integration subtable examines the impact of differ-
ent feature fusion strategies, showing minor but
consistent performance drops across all datasets
when using sum or concatenation instead of the
best setting. The experimental results are shown in
lines 8-9 of Table 2. Using sum integration leads to
slight performance degradation, with CLT (-1.20)
and ChID (-1.19) affected the most. This suggests
that simple summation may not effectively capture
interactions between features. Concatenation also
results in a small drop in performance, with the
largest decline in CLT (-1.27). While this method
retains more raw information, it may introduce re-
dundancy or inefficiencies. Both methods perform
similarly, indicating that neither is optimal, and
more advanced feature fusion techniques might be
needed to fully leverage the information.

The Effect of Subword Segmentation The sub-
word segmentation subtable examines the impact of
different subword tokenization strategies on CLT,
ATRC, NCR, and ChID datasets. The results show
slight performance declines when using WordPiece
or Unigram, but the differences are relatively small.
In Table 2, lines 10-11 display the experimental re-
sults. WordPiece segmentation leads to a moderate
performance drop, with CLT (-1.56) experiencing
the largest decline. This suggests that WordPiece
might struggle to capture fine-grained semantic dis-
tinctions in Chinese. Unigram segmentation shows
a slightly smaller drop across datasets, with ATRC
(-1.23) affected the most. This implies that Uni-
gram may provide a more flexible representation,
but it still fails to fully match the performance of
the BPE. Overall, neither subword segmentation
method outperforms the BPE.

4.4.5 Visualization
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Figure 4: Visualization of model attention weights in
fill-masking task. Based on the predictions from BERT
and RPGCM, we identified the top five most likely can-
didates for the masked token. Notably, the tokens gen-
erated by the two models share no common Chinese
characters. This suggests that BERT may struggle to
fully grasp the semantics of classical Chinese charac-
ters.

The RPGCM and BERT models are pro-
vided with the following inputs: "[CLS]剿此违
天[MASK]，岂为拓疆土。[SEP]".

5 Conclusions and Future Works

We proposed RPGCM, a phonetics and glyph en-
hanced Chinese model for classical Chinese un-
derstanding. By integrating phonetic and glyph
embeddings, RPGCM effectively mitigates seman-
tic variation. Experiments on CCMRC, C3Bench,
and WYWEB confirm its superiority, highlighting
the importance of phonetics and glyphs in classical
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Chinese NLP. Future work will explore multimodal
learning by integrating phonetics, glyphs, and con-
textual knowledge to further enhance classical Chi-
nese understanding.

Limitations

The primary limitation of our study arises from
the introduction of additional parameters and cal-
culations associated with the phonetics and glyph
representation. The model employs BPE to ob-
tain Chinese radicals and convolutional neural net-
works to model better semantic representation. The
incremental increase in parameters and computa-
tions imposes a heightened demand on hardware
resources during the training process. In addition,
our model is still difficult to handle the allusions
in classical Chinese texts, whose true meanings are
often hidden.

Furthermore, the quality and representativeness
of the training data are crucial. Inadequate or bi-
ased data can adversely affect the model’s perfor-
mance and its applicability across diverse contexts.
Meanwhile, pre-training stages can be suscepti-
ble to backdoor attacks, where malicious patterns
are introduced without knowledge of downstream
tasks, potentially compromising model integrity.

Ethics Statement

Our research in artificial intelligence, particularly
in NLP, is committed to ethical principles prior-
itizing fairness, transparency, and accountability.
We strive to develop models that minimize biases,
respect user privacy, and ensure inclusivity across
diverse languages and cultures. We acknowledge
the potential risks of artificial intelligence misuse
and take proactive measures to mitigate harm. Our
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models are not used for misinformation, discrim-
ination, or privacy violations. We promote trans-
parency by making datasets, methodologies, and
limitations clear, allowing for responsible scrutiny
and improvements. The data and other related
resources in this work are open-source and com-
monly used by many existing works. Furthermore,
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technologies, ensuring compliance with relevant
legal and ethical standards. We encourage inter-
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A Appendix: Overview of Pre-training
Data and Pre-processing Process

Our pre-training corpus comprises two distinct
components: a classical Chinese dataset and a mod-
ern Chinese dataset, carefully curated to support
comprehensive language model training. The clas-
sical Chinese dataset primarily derives from the
Siku Quanshu (the Complete Library of the Four
Treasuries), supplemented with additional classi-
cal texts collected from various digital archives.
To address the frequent absence of punctuation
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in historical texts, we systematically applied the
Language Technology Platform (LTP) for auto-
matic punctuation restoration, followed by man-
ual validation to ensure syntactic integrity. This
preprocessing pipeline enables effective tokeniza-
tion and structural analysis of classical writings
while preserving their linguistic authenticity. The
modern Chinese dataset aggregates diverse textual
resources from publicly available web sources, en-
compassing multiple domains including news ar-
ticles, academic publications, and contemporary
literature. We implemented rigorous data clean-
ing protocols involving deduplication, profanity
filtering, and quality assessment through multi-
stage classifiers. Particular attention was devoted to
maintaining genre balance and temporal coverage,
with special annotation layers indicating text prove-
nance and domain classification. Both datasets
underwent thorough linguistic validation through
sampling-based human evaluation and downstream
task benchmarking, ensuring their suitability for
training robust cross-era language models. The fi-
nal corpus encompasses 1.2 billion tokens, with
classical Chinese texts constituting 31.23% (Clas-
sics 0.31%, History 9.37%, Philosophy 2.81%, Lit-
erature 18.74%) and modern domains comprising
68.77% (News 32.13%, Technical Writing 18.86%,
Fiction 17.78%), as detailed in Fig. 5.

We present a method for generating stroke-level
visualizations of Chinese characters using the cn-
char library, a comprehensive toolkit for analyzing
and rendering Hanzi components. Our approach
leverages cnchar’s stroke decomposition capabili-
ties to algorithmically reconstruct each character
as a sequence of standardized stroke primitives,
preserving the authentic writing order and spa-
tial relationships defined by traditional calligraphic
principles. The system operates by parsing input
characters into their constituent strokes through
Unicode-aware glyph analysis, subsequently ren-
dering each stroke as a scalable vector graphics
(SVG) path with precise curvature and directional
attributes. This vector-based implementation en-
sures resolution-independent output while main-
taining fidelity to stroke connectivity patterns ob-
served in human handwriting. We validate the
framework’s effectiveness through systematic com-
parison with official stroke diagrams from the Xi-
andai Hanyu Guifan Cidia, demonstrating complete
morphological correspondence for 99.2% of 3,500
frequently used characters. The library’s modular
architecture additionally supports variant handling

for regional glyph differences, making it particu-
larly valuable for cross-linguistic studies requiring
stroke-order visualization across Simplified and
Traditional character sets.

B Appendix: Experimental Methodology

We adapt standardized evaluation protocols aligned
with the nature of each task across the three bench-
marks. For classification tasks in CCMRC (e.g.,
CLT) and WYWEB (e.g., GJC and FSPC), we
employ accuracy and macro-F1 scores to assess
both overall performance and class-wise consis-
tency. Sequence labeling tasks such as GLNER are
evaluated using entity-level precision, recall, and
F1 metrics following the CoNLL-2003 evaluation
scheme.

The reading comprehension components are as-
sessed through accuracy, with additional human
evaluation conducted on 10% of samples to ver-
ify answer completeness and reasoning validity.
For generation tasks including punctuation restora-
tion (PUNC) and translation in C3Bench, we uti-
lize BLEU-4 and ROUGE-L scores while imple-
menting length-normalization to mitigate biases in
classical-modern text conversion.

C Appendix: Hyperparameters and
Training Details

We present a overview of the BERT-large architec-
ture with extended sequence processing capabili-
ties, focusing on its hyperparameter configuration
optimized for 2048-token sequences. This adapta-
tion addresses critical challenges in long-context
modeling while preserving the bidirectional repre-
sentation advantages inherent to the original BERT
framework.

The BERT-large model employs 48 transformer
encoder layers, each containing 32 parallel self-
attention heads and 1024-dimensional hidden rep-
resentations. This configuration yields 720 mil-
lion trainable parameters, with each encoder layer
comprising multi-head attention mechanisms and
position-wise feed-forward networks, dffn =
4096. The standard architecture is enhanced for
2048-token sequences through three primary modi-
fications: learned positional embedding interpola-
tion replaces fixed sinusoidal encodings to accom-
modate extended positions , and mixed-precision
training with FP8 arithmetic optimizes memory
utilization.

Key hyperparameter adaptations include scaling
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Figure 5: Pre-training data represent 31.23% with literature (18.74%), history (9.37%), and philosophy (2.81%) as
primary components, contrasted against modern domains at 68.77% comprising news (32.13%), technical writing
(18.86%), and fiction (17.78%).

22862



the dropout rate to 0.15 for enhanced regularization
in long-sequence contexts and implementing dy-
namic gradient accumulation to maintain effective
batch sizes under memory constraints. The ex-
tended positional embeddings utilize learned inter-
polation techniques that preserve relative position
information beyond the original 512-token limit,
while maintaining compatibility with pretrained
weights through initialization from shorter posi-
tional encodings. Our implementation achieves
78% memory reduction compared to naive se-
quence extension approaches through 8-bit quan-
tization and kernel fusion optimizations for trans-
former operations. All hyperparameters are shown
in Table 3.

D Appendix: Prompt Design of LLM
Baselines

To ensure fair and transparent comparisons with
LLMs, all evaluations are conducted under few-
shot settings with 2 examples per class provided
in the prompt. For each benchmark task, we de-
sign task-specific prompts that includes task in-
structions, contextual examples with input-output
pairs, phonetic annotations to align LLM reasoning
with classical Chinese semantics. We also maintain
uniform hyper-parameters, i.e., temperature = 0.3,
top-p = 0.9, across all tasks. Prompts are further
tailored to each benchmark. Example prompts and
full templates are provided in Table 6 ~Table 12.

22863



Table 3: Hyperparameters of the BERT Model

Parameter Value

Max Sequence Length 2048 tokens
Masking Rate 0.15
Optimizer AdamW
Learning Rate 1× 10−5

Weight Decay 0.5× 10−5

Warm-up Phase First 20% training steps
Precision FP16
Transformer Blocks (Large) 48 layers
GPU Configuration 4×NVIDIA Tesla P100

Dataset Task Prompt

CCMRC

CLT

English Prompt: You are a classical Chinese reading comprehension expert. Perform CLT 

(Classical Literary Testing) by: 1. Analyzing semantic density and polysemous characters through 

phonetic-glyph alignment 2. Identifying context-specific definitions of annotated terms 3. 

Selecting incorrect explanations via contextual-logical verification. Examples: Input 1 {"content": 

" ...", "questions": [{"choice": ["B. "]}]} → Output: B (

=harvest). Input 2 {"content": " ...", "questions": [{"choice": ["C. ... "]}]} 

→ Output: C ( =default). Focus on agricultural terms and legal vocabulary. Apply temperature 

0.3 and top-p 0.9 for answer stability. Return only the option letter (e.g., "B") in strict JSON 

answer field format without explanations.

:  CLT

1. 2. 3. 

1 {"content": " ...", "questions": 

[{"choice": ["B. "]}]} → B = 2 {"content": "

...", "questions": [{"choice": ["C. ... "]}]} → C =

" " " " temperature 

0.3 top-p 0.9 JSON answer

"B"

ATRC

English Prompt: You are a classical Chinese reading comprehension specialist. Perform ATRC 

(Ancient Text Reading Comprehension) by: 1. Analyzing bureaucratic terminology through 

phonetic-glyph alignment 2. Verifying event causality chains in historical narratives 3. Selecting 

answers via hierarchical semantic validation. Examples: For Q_id 401 ( ), input: {"Content": "

..."} → Output: D. Key markers: " " (official appointment 

syntax) and " / ..." (construction-event separation). For Q_id 402 (

), input: {"Content": " ... ..."} → Output: D. Critical validation: 

Original text specifies (accusation of imperial title misuse), not 

(hosting envoys). Apply temperature 0.3 and top-p 0.9 for consistency. Return only the option 

letter (e.g., "D")

: ATRC

1. 2. 3. 

Q_id 401 {"Content": "

..."} → D " " " /

..." Q_id 402 {"Content": " ...

..."} → D " "

" " [Unnamed:0, Question, Q_id, Content, label, choice0-3]

temperature 0.3 top-p 0.9 "label"

"D"

Figure 6: Prompt structures for CLT and ATRC tasks in the CCMRC Benchmark: Examples with radical decompo-
sition, phonetic-glyph alignment, and multi-Task contextual instructions.
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Dataset Task Prompt

CCMRC

NCR

English Prompt: You are a classical Chinese reading comprehension expert. Perform ATRC 

(Ancient Text Reading Comprehension) by: 1. Aligning phonetic-glyph patterns for literary 

analysis 2. Validating contextual semantics and orthographic accuracy 3. Selecting answers 

through hierarchical validation. Examples: For poetry analysis (Q_id 1), input: {"Content": "

..."} → Output: A. Key validation: " " contradicts the poem's 

title " " (acknowledged correspondence). For error detection (Q_id 2), input: {"Content": 

" ..."} → Output: A (" " → correct form " "). Focus on literary devices like 

allusion (" ") and morphological analysis of compound words. Apply temperature 0.3 and 

top-p 0.9. Return only the option letter (e.g., "A") matching the "Answer" field structure without 

explanations.

: ATRC

1. 2. 3. 

Q_id 1 {"Content": " ..."} → A

" " A" "

Q_id 2 {"Content": " ..."} → A " " " "

" " " "

temperature 0.3 top-p 0.9 "Answer" "A"

ChID

English Prompt: You are a Chinese idiom selection expert. Perform ChID (Chinese Idiom 

Detection) by: 1. Analyzing contextual semantics through phonetic-glyph alignment of four-

character structures 2. Matching logical coherence and conventional usage patterns 3. Selecting 

idioms that complete argumentative logic chains. Examples: Input 1 {"content": "

#idiom#... #idiom#", "candidates": [[" "," "], ["

"," "]]} → Output: , . Input 2 {"content": " #idiom000379#

... ,#idiom000380# ", "candidates": [" "," "]} 

→ Output: , . Key methods: Identify contrast structures like " ... " and 

causal conjunctions like " ". Apply temperature 0.3 and top-p 0.9 for idiom collocation 

stability. Return only selected idioms in order separated by commas without explanations.

: ChID

1. 2. 3. 

1 {"content": " #idiom#...

#idiom#", "candidates": [[" "," "], [" "," "]]} → 

2 {"content": " #idiom000379# ...

,#idiom000380# ", "candidates": [" "," "]} → 

" ... " " " "

"→" " temperature 0.3 top-p 0.9

Figure 7: Prompt designs for the NCR and ChID tasks in the CCMRC Benchmark:Integrating phonetic-glyph
Alignment, hierarchical validation, and contextual logic constraints for classical and idiomatic analysis.
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Dataset Task Prompt

C³Bench

CLS

English Prompt: You are a classical Chinese text classification expert. Perform CLS (Classical 

Categorization System) by: 1. Analyzing semantic themes and stylistic patterns through phonetic-

glyph alignment 2. Selecting exact category labels from [" "," "," "," "," "," "," ","

"," "," "] 3. Outputting "Classification [text] [label]" format. Examples: Input: 

→ Output: Classification 

Input: ... → Output: Classification ...

. Identify " " category through metric rhythm, parallelism, and lyrical imagery. 

Apply temperature 0.3 and top-p 0.9 for strict categorical determination. Return only the 

classification header with original text and single-character label.

: CLS

1. 2. [" "," "," "," "," "," "," "," "," ","

"] 3. "Classification [ ] [ ]"

→ Classification 

... → Classification ...

" "

temperature 0.3 top-p 0.9

RETR

English Prompt: You are a classical Chinese reference retrieval expert. Perform RETR 

(Reference Retrieval) by: 1. Matching semantic and military-strategic patterns through phonetic-

glyph alignment 2. Directly outputting source book titles without explanations 3. Maintaining strict 

"[classical_Chinese]"→"[source]" mapping. Examples: Input: 

→ Output: Input: 

→ Output: . Analyze military deployment 

descriptions and strategic admonitions characteristic of " ". Apply temperature 0.3 and 

top-p 0.9 for source consistency. Return only the book title in simplified Chinese characters.

: RETR

1. 2. 3. "[

]→[ ]"

→ 

→ 

temperature 0.3 top-p 0.9

Figure 8: Prompts of CLS and RETR tasks in the C3Bench: Bilingual structures with phonetic-glyph alignment,
parameter-constrained category/source determination, and task-specific label systems.
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Dataset Task Prompt

C³Bench

NER

English Prompt: You are a classical Chinese named entity recognition expert. Perform C3_bench 

NER by: 1. Identifying entities through phonetic-glyph alignment of geographic/military terms 2. 

Extracting complete nominal phrases while omitting directional/quantifier suffixes 3. Strictly 

preserving original lexical forms. Examples: Input: " ..." → Output: 

(extracting core names, ignoring directional 

suffixes like ). Input: " : ..." → Output: 

(capturing book titles with brackets and battle locations). Apply temperature 0.3 

and top-p 0.9 for entity boundary consistency. Return entities comma-separated in the "entity" 

field exactly matching the examples' format.

: C3_bench 1. 

2. / 3. 

" ..." → 

" " "

..." → 

temperature 0.3 top-p 0.9

"entity"

PUNC

English Prompt: You are a classical Chinese punctuation restoration expert. Perform C3_bench 

PUNC task by: 1. Segmenting text through phonetic-glyph alignment of military/geographic terms 

2. Inserting commas after parallel structures and book titles in brackets 3. Ending sentences with 

periods after troop/event descriptions. Examples: Input: "

" → Output: "

" (comma-separated commanders & 

locations). Input: " " → Output: "

" (book title colon & battle 

clauses). Apply temperature 0.3 and top-p 0.9. Return punctuated text matching exact character 

positions in "classical_Chinese" field.

: C3_bench 1. 

2. 3. /

"

" → "

" "

" → "

" temperature 0.3 top-p 0.9

"classical_Chinese"

Figure 9: Prompts of NER and PUNC task within C3Bench dataset: phonetic-glyph alignment with temperature
0.3 and top-p 0.9, structured examples of military/geographic entity extraction and text segmentation in classical
chinese, bilingual instruction templates for strict format preservation.
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Dataset Task Prompt

WYWEB

PUNC

English Prompt: You are a classical Chinese text processing specialist. Perform PUNC annotation 

on the input unpunctuated text by following these rules: 1. Replace each Chinese character with “O” 

2. Insert punctuation marks directly at their correct positions  without  altering the original 

character order. Examples: Input: 

→ Output: OO OOOOOOOOOOOO OOOOO OO OO OO OOO OOOOO

OOOOO OOOOOO OOO OOOOO OOO Input: 

→ Output: O OOOO OOO OOOO OOOOOO Maintain absolute 

character position integrity. Use temperature 0.3 and top-p 0.9 for pattern consistency. 

: 

1. "O" 2. 

→ 

OO OOOOOOOOOOOO OOOOO OO OO OOOOO OOOOO OOOOO

OOOOOO OOO OOOOOOOO

→ O OOOO OOO OOOO OOOOOO

temperature 0.3 top-p 0.9

GLNER

English Prompt: You are a classical Chinese semantic analysis expert. Perform GLNER (Graph-

based Labeling for Named Entity Recognition) on the input text by: 1. Identifying entities with 

phonetic-graphical alignment in classical contexts 2. Outputting [start_index, end_index, 

entity_type] triples 3. Using strict index-based span notation without modifying original characters. 

Examples: Input: {"text": " ...", "label": [[0,2,"noun_other"], 

[4,6,"noun_other"], [37,40,"noun_bookname"]]} Input: {"text": " ...", "label": 

[[128,129,"noun_bookname"], [129,131,"noun_bookname"]]}. Maintain zero character position 

offset. Apply temperature 0.3 and top-p 0.9 for entity boundary consistency. Return JSON format 

with "text" and "label" fields exactly matching the examples.

: GLNER

1. 2. 

[start_index, end_index, entity_type] 3. 

{"text": " ...", "label": [[0,2,"noun_other"], [4,6,"noun_other"], 

[37,40,"noun_bookname"]]} {"text": " ...", "label": 

[[128,129,"noun_bookname"], [129,131,"noun_bookname"]]}

temperature 0.3 top-p 0.9

JSON "text" "label"

Figure 10: Prompts of PUNC and GLNER task within WYWEB dataset: Character position integrity with O
replacement and punctuation insertion, graph-based labeling for entity triples and json format compliance, bilingual
instruction templates with temperature 0.3 and top-p 0.9, structured examples preserving text offset and strict
boundary alignment
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Dataset Task Prompt

WYWEB

GJC

English Prompt: You are a classical Chinese text classification expert. Perform GJC (Genre 

Judgment for Classical Texts) by: 1. Analyzing content semantics and contextual patterns 2. 

Combining phonetic-graphical features of classical expressions 3. Directly outputting category 

labels without explanations. Examples: Input: 

... → Output: Input: 

... → Output: . Use strict category determination based on 

historical/artistic content markers. Apply uniform temperature 0.3 and top-p 0.9 for classification 

consistency. Return only single-label results in "XX " format.

: GJC

1. 2. 3. 

... → 

... → /

temperature 0.3 top-p 0.9 "XX "

TLC

English Prompt: You are a classical Chinese temporal classification expert. Perform TLC 

(Temporal Period Categorization) by: 1. Identifying historical period markers through semantic 

analysis 2. Aligning phonetic-graphical patterns with dynastic terminology 3. Outputting dual 

labels in "[period] [dynasty]" format. Examples: Input: 

... → Output: Input: 

... → Output: . Analyze textual references to political 

systems/military geography for " " period, and philosophical allusions/folk narratives for "

" period. Apply temperature 0.3 and top-p 0.9 for label consistency. Return strictly formatted 

dual labels without explanations.

: TLC

1. 2. 3. 

"[ ] [ ]"

... → 

... → " "

/ " " temperature 0.3 top-p 0.9

Figure 11: Prompts of GJC and TLC task within WYWEB dataset: Bilingual instructions with phonetic-glyph
alignment, fixed parameters formats, structured examples for genre judgment based on historical/artistic markers
and temporal categorization via political/military semantic analysis.
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Dataset Task Prompt

WYWEB

IRC

English Prompt: You are a classical Chinese idiom analysis expert. Perform IRC (Idiomatic 

Reasoning and Classification) by: 1. Analyzing semantic-phonetic relationships between idioms 

and their origins 2. Matching glyph structures with contextual interpretations 3. Selecting correct 

option indices through classical textual alignment. Examples: Input → Output: { "idiom": "

", "options": [ 1, 2, 3, 4], "label": 3, "origin": " ..." } 

Input → Output: { "idiom": " ", "options": [ 1, 2, 3, 4], "label": 0, 

"origin": " ..." }. Use semantic density analysis on idiom origins to verify option 

validity. Apply temperature 0.3 and top-p 0.9 for selection consistency. Output must maintain strict 

JSON structure with 0-indexed labels matching the examples.

: IRC 1. 

- 2. 3. 

JSON → { "idiom": 

" ", "options": [ 1, 2, 3, 4], "label": 3, "origin": "

..." } → { "idiom": " ", "options": [ 1, 2, 3, 4], "label": 

0, "origin": " ..." }

temperature 0.3 top-p 0.9 JSON

0

WYWRC

English Prompt: You are a classical Chinese reading comprehension expert. Perform by: 1. 

Analyzing textual structure and semantic nuances through phonetic-glyph alignment 2. Identifying 

incorrect analytical options by comparing contextual patterns 3. Outputting JSON with "article", 

"question", "type" (fixed 0), "answer" (option index string), and "optionX" fields. Examples: Input 

→ Output: { "article": " ...", "question": "

", "type": 0, "answer": "2", "option0": " ...", 

"option1": " ...", "option2": " ...", "option3": "

..." } Second example: { "article": " ...", "question": "

", "type": 0, "answer": "1", "option0": "

...", "option1": " ...", "option2": " ' '...", "option3": "

..." }. Verify option validity through semantic density analysis of classical 

annotations (e.g., ). Use temperature 0.3 and top-p 0.9 for error 

pattern consistency. Maintain strict JSON format matching the examples.

: WYWRC

1. 2. 3. 

"article" "question" "type" 0 "answer"

"optionX" JSON → { "article": "

...", "question": "

", "type": 0, "answer": "2", "option0": " ...", "option1": "

...", "option2": " ...", "option3": " ..." } 

{ "article": " ...", "question": "

", "type": 0, "answer": "1", "option0": " ...", "option1": "

...", "option2": " ' '...", "option3": " ..." }

temperature 0.3 top-p 0.9 JSON

Figure 12: Prompts of IRC and WYWRC task within WYWEB dataset: Bilingual templates with phonetic-glyph
alignment, fixed parameters, single-label "xx藏" for genre classification via historical/artistic markers and dual-label
"[period][dynasty]" for temporal categorization through political/military analysis, structured examples enforcing
strict output formats and semantic-pattern consistency.
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Dataset Task Prompt

WYWEB FSPC

English Prompt: You are a classical Chinese poetry analysis expert. Perform FSPC (Fine-grained 

Sentiment and Paratext Classification) by: 1. Extracting metadata (poet, dynasty, title) through phonetic-

glyph pattern matching 2. Conducting holistic and line-level sentiment analysis using semantic-

contextual alignment 3. Outputting JSON with "poet", "poem", "dynasty", "sentiments" (holistic + per-

line labels), and "title" fields. Examples: Input → Output: { "poet": " ", "poem": "

| | | ", "dynasty": " ", "sentiments": { "holistic": 

"implicit positive", "line1": "implicit positive", "line2": "implicit positive", "line3": "implicit positive", 

"line4": "neutral" }, "title": "

" }. Second example: { "poet": " ", 

"poem": " | | | ", "dynasty": " ", 

"sentiments": { "holistic": "implicit negative", "line1": "implicit negative", "line2": "implicit negative", 

"line3": "implicit negative", "line4": "implicit negative" }, "title": " " }. Analyze implicit 

sentiments through semantic density and rhetorical devices. Use temperature 0.3 and top-p 0.9 for 

annotation consistency.

: FSPC

1. 2. 

3. "poet" "poem" "dynasty" "sentiments"

"title" JSON → { "poet": " ", 

"poem": " | | | ", "dynasty": " ", 

"sentiments": { "holistic": "implicit positive", "line1": "implicit positive", "line2": "implicit positive", 

"line3": "implicit positive", "line4": "neutral" }, "title": "

" }

{ "poet": " ", "poem": " | | |

", "dynasty": " ", "sentiments": { "holistic": "implicit negative", "line1": "implicit negative", "line2": 

"implicit negative", "line3": "implicit negative", "line4": "implicit negative" }, "title": " " }

temperature 0.3 top-p 0.9

JSON

Figure 13: Prompts of FSPC task within WYWEB dataset: Semantic-form preservation with phonetic-glyph
alignment, fixed parameters, strict [semantic-category][format-type] dual-label templates, bilingual instructions
enforcing content integrity and structural compliance through classical political/military semantic analysis and folk
narrative markers.
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