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Abstract

The challenge of developing agents capable
of open-world planning remains fundamental
to artificial general intelligence (AGI). While
large language models (LLMs) have made
progress with their vast world knowledge, their
limitations in perception, memory, and reli-
able reasoning still hinder LLM-based agents
from achieving human-level performance in
long-term tasks. Drawing inspiration from
human cognitive-metacognitive collaboration,
we propose Metagent-P, integrating the world
knowledge of LLMs, the symbolic reason-
ing capabilities of cognitive architectures, and
the self-reflection characteristic of metacog-
nition to construct a “planning-verification-
execution-reflection” framework. Metagent-P
improves experience utilization through mul-
timodal memory integration. It uses a neural-
symbolic hierarchical representation structure
to ensure the plan’s reasoning correctness in
advance. Finally, it actively adapts the agent
to dynamic environments through monitoring,
evaluation, and regulation mechanisms. Exper-
imental results show Metagent-P significantly
outperforms current state-of-the-art methods in
Minecraft. In long-term tasks, Metagent-P re-
duces the average replanning counts by 34%
and exceeds the average human success rate
by 18.96%. Additionally, Metagent-P also
demonstrates self-evolution through step-by-
step open-world exploration.

1 Introduction

Planning (Russell and Norvig, 2016) in open-world
environments remains a key challenge in artificial
intelligence. Recent advances in Large Language
Models (LLMs) (Achiam et al., 2023; Guo et al.,
2024) show promising potential through their world
knowledge and language processing capabilities in
open-world planning (BAAI, 2023; Wang et al.,

* Equal contribution.
† Corresponding author.

2023, 2024; Qin et al., 2024). However, LLMs
struggle with long-term tasks due to limited per-
ception, memory, and reliable reasoning (Venkit
et al., 2022; Tang et al., 2023), failing to match
human-like planning and adaptation.

Human cognition theory suggests a solution
through dual cognitive-metacognitive mechanisms.
The cognitive domain (Laird et al., 2017) primarily
handles task decomposition and action planning,
while the metacognition domain (Flavell, 1979)
monitors and optimizes these processes, enabling
adaptive planning in changing environments.

Cognitive Architectures (CAs) (Anderson, 2009;
Laird, 2019) simulate human cognition through
semantic memory (general knowledge), episodic
memory (past experiences), and procedural mem-
ory (skills knowledge stored as condition-action
rules). Procedural memory drives CAs’ core sym-
bolic reasoning by matching rules with current
states and inferring actions to generate reliable
plans (Mininger and Laird, 2022). However, their
dependence on pre-encoded domain knowledge
limits knowledge acquisition and generalization
in open-world environments (Lieto et al., 2018).
Moreover, with increasing task complexity and
environmental uncertainty, basic cognitive capa-
bilities become insufficient (Cox, 2005). Human
higher-order metacognition (Flavell, 1979) can ad-
dress this by monitoring, evaluating, and regulating
cognitive processes, enhancing adaptability by de-
tecting failures, and adjusting strategies for more
flexible performance in uncertain environments.

Based on our analysis (Table 1), LLM-based
agents face two key challenges:

1. Insufficient Cognition. Existing agents focus
on semantic reasoning but neglect symbolic reason-
ing based on procedural rules, leading to reasoning
errors in long-term planning.

2. Insufficient Metacognition. Existing agents
directly employing LLMs alone cannot accurately
identify planning deviations in the dynamic envi-
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Figure 1: Comparison of Metagent-P and Traditional LLM-based Agent. (a) Traditional methods use a
“planning-execution-reflection” framework. (b) Inspired by cognitive theory, Metagent-P constructs a “planning-
verification-execution-reflection” framework. It combines CAs’ strengths in symbolic reasoning, perception, and
experience with LLMs’ world knowledge, plus metacognitive abilities, to achieve human-like planning.

ronments or provide reliable corrective feedback.
Consequently, they cannot do adaptive planning
like humans do.

Feature CAs LLMs Human
Symbolic reasoning ++ -+ ++
Perception ++ - ++
Memory accumulation ++ - ++
Language processing -+ ++ -+
World knowledge -+ ++ -+
Self-reflection (metacognition) - -+ ++

Table 1: ++ Fully supported, (-+) Partially supported,
(-) Rarely (or not) supported.

To address these limitations, we propose
Metagent-P, a neuro-symbolic planning agent with
metacognition, consisting of four components:
planner, verifier, controller, and reflector. As shown
in Figure 1, it combines the world knowledge of
LLMs, the symbolic reasoning capabilities of CAs,
and the self-reflection characteristic of metacogni-
tion, creating a “planning-verification-execution-
reflection” framework for open-world tasks.

To improve the agent’s situation awareness and
experience utilization, we propose an Experience-
Enhanced Planner with multimodal memory that
encodes both successful and failed cases. Success-
ful cases guide task decomposition, while failed
cases inform the reflector’s decision-making.

To preemptively detect reasoning errors and im-
prove efficiency, we design a Symbol-Reasoning
Driven Verifier with a neuro-symbolic knowledge
hierarchical representation structure. The top layer
encodes explicit rules for reliable reasoning, while
the bottom layer embeds LLMs for implicit world
knowledge. Through novel knowledge represen-
tation, it enhances verifier reasoning. The verifier

achieves autonomous rule learning via bidirectional
top-down guidance and bottom-up learning, with-
out any manual rule definition.

We design a Metacognitive Reflector inspired
by human metacognition that enhances the agent’s
adaptability through three steps: (1) Monitoring:
Detects execution anomalies and dynamically trig-
gers evaluation. (2) Evaluation: Similar to human
self-examination, it evaluates plan rationality with
quantitative scoring, by considering current obser-
vation and past experience. (3) Regulation: Opti-
mizes plans based on evaluation feedback to enable
agent adaptation to dynamic environments.

We evaluate Metagent-P in Minecraft, a popular
open-world game environment, showing signifi-
cantly outperforms current state-of-the-art meth-
ods. In long-term tasks, it has a 2 to 25 times
performance improvement, reduces the average re-
planning counts by 34%, and exceeds the human
success rate by 18.96%. Through step-by-step ex-
ploration, Metagent-P demonstrates self-evolution
by actively adapting to dynamic environments.

The main contributions of this paper are:

• Metagent-P integrates LLMs’ world knowl-
edge, CAs’ symbolic reasoning, and metacog-
nition’s self-reflection to enable human-like
open-world planning.

• Symbolic Reasoning-Driven Verifier uses a
neural-symbolic structure to enhance knowl-
edge representation and reasoning, enabling
autonomous rule learning. It detects reasoning
errors early and boosts planning efficiency.

• Metacognitive Reflector enables human-like
actively adaptive planning via quantitative
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Figure 2: Overview of the Metagent-P framework. Metagent-P consists of four components: Planner, Verifier,
Controller, and Reflector. Given the task “obtain 1 cobblestone”, the Planner decomposes the task into actions
using multimodal memory. The Verifier checks the feasibility of actions, and the Controller executes them or sends
them back for refinement. The Reflector monitors, evaluates and adapts plans based on observations and experience.
Through exploration, Metagent-P enriches its rule and experience pools for self-evolution.

evaluation, facilitating agent self-evolution.

2 Method

In this section, we first give an overview of our
Metagent-P. Next, we present detailed discussions
of Metagent-P’s key components: the Experience-
Enhanced Planner, the Symbolic Reasoning-Driven
Verifier, and the Metacognitive Reflector.

2.1 Overview

To develop an agent to complete long-term tasks
in open-world environments like humans, we de-
sign the Metagent-P. As shown in Figure 2, our
Metagent-P includes four major components. The
Experience-Enhanced Planner breaks the high-
level task into executable action sequences. The
Symbolic Reasoning Verifier checks the plan’s
reasoning errors before task execution. The Action
Controller converts each action in the sequence
into executable commands, enabling the agent to
interact with the environment (In this paper, we
employ the Controller proposed by MP5 (Qin et al.,
2024). Details of Controller can be found in Ap-
pendix C.2). The Metacognitive Reflector enables
the agent to actively adapt the plan to environmen-
tal changes.

Why can Metagent-P solve long-term tasks?
Metagent-P achieves long-term tasks mainly
through its three interacting components. The

Experience-Enhanced Planner leverages multi-
modal memory for situation-aware task decompo-
sition and action generation. The Symbolic Rea-
soning Verifier pre-checks action feasibility to en-
sure correct reasoning and reliable planning. The
Metacognitive Reflector triggers upon monitoring
anomalies, quantitatively evaluates plans by inte-
grating observation and experiences, and provides
reliable feedback for plan refinement before fail-
ure occurs. This enables Metagent-P’s adaptive
planning capability for long-term task completion.

How does Metagent-P achieve self-evolution?
Metagent-P achieves self-evolution through cogni-
tive shaping and adaptive optimization (For details,
see Section 3.4.) During cognitive shaping, it ab-
stracts implicit knowledge into symbolic rules and
records successful and failed cases to enrich its rule
and experience pools, continuously enhancing its
planning capabilities through step-by-step explo-
ration. In adaptive optimization, the Reflector’s
active plan adaptation handles environmental dis-
turbances, ensuring stable planning performance in
uncertain environments.

2.2 Experience-Enhanced Planner

Inspired by the memory management and percep-
tion modules of CAs, Metagent-P employs LLMs
to design a multimodal experience-enhanced plan-
ner, providing richer references for in-context learn-
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ing. The formulation is as follows:

T = {g1, g2, . . . , gn} = decompose(E, T, h; Θ,P),

{ai1, ai2, . . . , ait} = plan(E, gi; Θ,P).
(1)

Where E denotes the environment and T is the
task, h is the historical experience. At time step t,
the agent takes action ait to achieve subgoal gi. The
LLM’s parameters and prompts are represented by
Θ and P respectively.

We build a multimodal experience pool by en-
coding both successful and failed cases at different
granularity levels. Successful cases guide the plan-
ner’s task decomposition, while failed cases pro-
vide data for quantitative analysis by the reflector.

Successful Cases. Each experience encodes
key elements (task, scene graph, plan, inventory
) to preserve decision paths and context. We use
MineClip (Fan et al., 2022) instead of CLIP (Rad-
ford et al., 2021) for scene graph encoding due to
its better instruction-following in Minecraft.

Failed Cases. These are encoded at a fine-
grained level focusing on the subgoal. The reflector
retrieves relevant failed cases as references to pre-
vent repeated mistakes. Each case encodes key
elements:

( G,A, S, suggestion ) . (2)

Where G is the failed subgoal, A is the corre-
sponding action sequence, S is the failure-time
scene graph, and suggestion provides optimiza-
tion recommendations.

2.3 Symbolic Reasoning-Driven Verifier
Similar to human procedural memory, the verifier
stores skill knowledge in rule-based formats, driv-
ing symbolic reasoning to pre-check the reasoning
errors of the plan and guide reliable replanning.
While CAs need manual rules and LLMs reasoning
lack reliability, our hierarchical neural-symbolic
structure addresses these limitations. The two-
layer design enables dynamic interaction between
symbolic knowledge and neural knowledge repre-
sentations. This structure enhances the verifier’s
knowledge representation and reasoning, improv-
ing planning efficiency.

2.3.1 Hierarchical Representation Structure
The structure of the verifier is illustrated in Figure 3
has two layers: symbolic representation for explicit
“if-then” rules at the top, and LLM-based implicit
knowledge at the bottom. The verifier has two
functions:

Figure 3: Hierarchical representation structure. This
neuro-symbolic structure enhances the verifier’s knowl-
edge representation and reasoning by combining explicit
rules at the top layer with LLM-based implicit knowl-
edge at the bottom. It enables autonomous rule through
bidirectional design without any manual rule definition.

Action Feasibility Verification. Checks action
prerequisites before execution. The verifier first
uses symbolic rules for explicit checks, then LLMs
for cases not covered by rules. This early detection
helps avoid invalid environment interactions. The
formulation is as follows:

fij = V erifier ( aij , rij ) . (3)

Where fij denotes the verifier’s feedback on ac-
tion aij , rij represents the relevant rules.

Guiding Reliable Replanning. When actions
are infeasible, the verifier provides specific feed-
back by referring to explicit rules to guide plan
revision, reducing replanning counts and improv-
ing planning performance. The formulation is as
follows:

P ∗ = plan ( E, T, fij ; Θ,P ) . (4)

2.3.2 Rule Learning and Evaluation
Mechanism

Existing agents often rely on predefined rules or
fine-tuning (Zeng et al., 2023) for rules learn-
ing, limiting generalization, and increasing com-
putation. Our approach uses top-down guid-
ance to convert rules into prompts guiding LLMs
reasoning, and bottom-up learning to automati-
cally extract symbolic rules from LLMs responses.
The prompt can be seen in Appendix F.2. The
bidirectional interaction mechanism, built upon a
hierarchical representation structure, enables au-
tonomous rule learning and eliminates the need for
predefined rules, leading to improved generaliza-
tion performance.
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Then, we evaluate rule quality across three di-
mensions: common-sense consistency, condition
clarity, and action feasibility. Rules that exceed a
predefined quality threshold are incorporated into
the rule pool for automatic expansion. More details
can be found in Appendix F.3. The formulation is
as follows:

eval (r) = wc · sc (r) + wp · sp (r) + wa · sa (r) . (5)

Where sc, sp, and sa represent common sense
consistency, condition clarity, and action exe-
cutability scores, respectively, with corresponding
weights wc, wp, and wa.

2.4 Metacognitive Reflector
In open-world environments, plans may fail during
execution despite correct initial planning. This is
mainly due to both LLMs and CAs struggling to
fully model open-world uncertainties. Drawing
from human metacognition, Metagent-P introduces
a metacognitive reflector. Its mechanism can be
seen in Figure 2. The reflector uses a three-step
process of monitoring, evaluation, and regulation
to enable adaptive planning. The formula is as
follows:

si = Reflector ( E, gi, h; Θ,P ) ,

P ∗ = plan ( E, T, si; Θ,P ) .
(6)

Where si denotes the reflector’s suggestion on
refining the subgoal gi.

Monitoring. Following human brain patterns,
not all cognitive activities trigger metacognitive
evaluation (Lai, 2011). It triggers upon anomalies,
such as excessive replanning counts or execution
failures. Then the monitor collects environment
and agent’s information, helping analyze anomalies
during evaluation.

Evaluation is similar to human self-
examination. While LLMs may hallucinate
(Varshney et al., 2023) and often show over-
confidence in their responses (Lin et al.), we
enhance the reliability of their confidence by
extending the CoT-style prompting (Dohan et al.,
2022). Traditionally, LLM’s answer A is sampled
from p ( A | Q, T, θ ), where Q is the query,
T is thought chain, and θ represents model
parameters. Instead of simple error reflection,
we collect two component thoughts Te and Th,
representing the current observation and historical
experiences. The final answer is sampled from
p ( A | Q, Te, Th, θ ). Additionally, we compute
an integrated confidence score to evaluate planning

rationality. If irrational, failed cases guide
replanning; if rational, exploration continues.

confidence = α · Chistory + β · CLLM ,

CHistory = Sim (v1, v2) =
v1 · v2

∥v1∥ ∥v2∥
.

(7)

Where Chistory measures the similarity between
plans v1 and v2 using cosine similarity [ 0, 1 ] .
CLLM represents the LLM’s verbalized confidence
[ 0, 1 ] . α and β are weights where α+ β = 1.

Regulation. Metagent-P can self-correct and
improve based on evaluation results. Specifically,
when confidence exceeds 0.5, the evaluation con-
clusion is accepted. Otherwise, re-evaluation is
triggered.

3 Experiment

3.1 Experimental Setup
3.1.1 Environment
The experiments are carried out in MineDojo (Fan
et al., 2022), a Minecraft benchmark with various
tasks and standardized evaluation. Compared to
directly using multimodal large models, we utilize
OpenAI’s GPT-4-turbo (Achiam et al., 2023) and
integrate MineClip (Fan et al., 2022) vision encoder
for Minecraft visual parsing, which achieves better
instruction-following capabilities (Qin et al., 2024).
Text-embedding-ada-002 (OpenAI, 2022) API is
used for efficient storage and retrieval.

3.1.2 Task Setting
We select 50 tasks from MineDojo (Fan et al.,
2022) varying in duration and complexity, focusing
on obtainable overworld items. Tasks are catego-
rized into five difficulty levels (basic, easy, medium,
hard, and complex) based on the minimum required
subgoals. All Minecraft tasks information can be
found in Appendix D.2

3.1.3 Evaluation Metrics
Metagent-P starts in survival mode with an empty
inventory. We conducted each task 30 times with
different seeds to simulate various scenarios. We
design a specific action space for agent control.
More details about the action space can be found
in Appendix C.2. Two evaluation metrics are used:

Success Rate (SR): Measures the accuracy of
agent planning.

Replanning Counts (RC): Indicates the num-
ber of times an agent recovers from failed states to
eventually complete the task successfully. Lower
CT values suggest stronger problem-solving capa-
bilities and higher planning efficiency.
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3.1.4 Baselines
We compare Metagent-P with three representative
baselines in the experiments, please refer to Ap-
pendix D.1 for more details. DEPS (Wang et al.,
2023), employs an LLM-based planner and reflec-
tor, but lacks visual information planning. MP5
(Qin et al., 2024), combining visual information
and using successful experiences to achieve reliable
planning. Huamn players (Li et al.), ten experi-
enced Minecraft players participated in the evalua-
tion, with their average success rate for each task
serving as the human-level baseline.

3.2 Main Results

Task Metric DEPS MP5 Human Metagent-P

Basic
SR 91.00 97.00 100 99.67
RC 4.14 2.73 - 0.2

Easy
SR 80.33 84.67 100 99.33
RC 11.32 7.41 - 3.75

Medium
SR 53.67 71.33 100 88.33
RC 26.78 20.44 - 9.63

Hard
SR 19.20 43.00 86 53.00
RC 36.81 26.72 - 17.04

Complex
SR 0.8 9.67 16.98 20.20
RC 41.54 38.42 - 26.33

Table 2: Main results of Metagent-P and baselines
on Minecraft tasks. We report the average success rate
(SR)(%) and average replanning count (RC) on each
task group, the full results can be found in the Appendix
E.

Table 2 shows that Metagent-P significantly
outperforms other LLM-based agents (DEPS and
MP5) across all tasks. While achieving comparable
performance to humans in basic and easy tasks with
a nearly 100% success rate. Specifically, in com-
plex tasks, Metagent-P achieves a 20.20% success
rate, surpassing human performance by 18.96%
and baselines DEPS and MP5 by 25 and 2 times
respectively. Furthermore, Metagent-P requires
34% fewer re-planning times compared to base-
lines, highlighting its effectiveness and efficiency
in long-term tasks.

Metagent-P’s superior performance over human
players in complex tasks but not in simple tasks is
an intriguing finding. We believe this might be at-
tributed to the following reasons: (1) In basic tasks
with limited problem spaces and straightforward
actions, human intuition and common sense en-
able efficient goal-to-action mapping. Conversely,
Metagent-P’s comprehensive process of task de-

composition, symbolic reasoning, and plan verifi-
cation may introduce overhead. (2) As tasks grow
more complex, the problem space expands expo-
nentially with longer planning horizons. While
humans face cognitive limits in tracking actions
and adapting to changes. However, Metagent-P’s
neural-symbolic framework with metacognitive re-
flection enables logically sound planning and dy-
namic environmental adaptation. (3) Additionally,
Metagent-P achieves self-evolution through cog-
nitive shaping and adaptive optimization (see Sec-
tion 3.4.2), leading to more efficient and robust
planning compared to humans’ heuristic-based ap-
proaches and limited learning capacity.

3.3 Ablation Study

To evaluate Metagent-P components, we conducted
ablation experiments on varying difficulty tasks.
The results are shown in Table 3. The base model
achieves an 80.33% success rate in basic task ,
showing the basic planning abilities of the LLM-
based agent. Adding Experience-Enhanced Plan-
ner achieves the first success in the complex task

, with a 3.33% success rate, demonstrating the
value of multimodal experience in complex plan-
ning. The Symbolic Reasoning-Driven Verifier
enhances performance across all tasks, particularly
in complex task where it increases success rates
4 times and cuts replanning counts by 46%. This
might be caused by identifying potential errors and
providing guidance for efficient replanning. The
full Metagent-P model with Metacognitive Reflec-
tor enhances performance on difficult tasks, partic-
ularly complex task , doubling the success rate
to 33.33%, indicating its necessity for long-term
tasks.

3.4 Exploring Self-Evolution Capabilities

Metagent-P’s self-evolution capability distin-
guishes it from previous methods. We analyze
it from two perspectives: cognitive shaping and
adaptive optimization. Cognitive shaping helps
agents both build knowledge through reusable rules
and gain experience for a better understanding of
their world. Adaptive optimization focuses on the
agent’s ability to dynamically adjust its plan in re-
sponse to changing environments. This allows the
agent to maintain strong performance, even when
facing unexpected challenges.
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Ablation Setting SR (RC)
Base Planner Verifier Reflector
✓ 80.33(6.5) 63.33(10.2) 46.67(32.1) 16.67(44) 0.00(-)
✓ ✓ 93.33(2.2) 83.33(6.4) 63.33(21.4) 43.33(37.2) 3.33(44.9)
✓ ✓ ✓ 100.00(1.5) 93.33(4.6) 83.33(13.3) 53.33(21.8) 16.00(24.2)
✓ ✓ ✓ ✓ 100.0(1.5) 96.67(4.5) 90.00(9.6) 56.67(18.7) 33.33(22.1)

Table 3: Ablation study results. We report the success rate (SR) and replanning count (RC) on each task, in the
format of “SR (RC)”. The base model includes the planner, controller, and reflector, with both the planner and
reflector using only an LLM.

3.4.1 Cognitive Shaping
To study Metagent-P’s cognitive shaping process,
we test it in Minecraft technology tree explo-
ration. As Table 4 shows, Metagent-P builds its
rule and experience pools by abstracting knowl-
edge into symbolic rules and recording successful
and failed cases, enriching them with increased
exploration tasks. This enrichment process demon-
strates Metagent-P’s cognitive shaping capabilities
through exploration. Additionally, Figure 4 shows
this cognitive shaping process improves planning
performance, achieving higher success rates with
fewer replanning counts.

Number of Exploratory Tasks
Cognitive Shaping

20 40 60 80 100
Rules Num. 54 109 134 178 216

Experiences Num. 26 57 102 157 224

Table 4: Cognitive shaping study. We analyze the
growth of rule and experience pools as Metagent-P ex-
plores 100 tasks in the Minecraft technology tree.

Figure 4: Planning performance during cognitive
shaping. We track the planning success rates (a) and
replanning counts (b) as Metagent-P explores 100 tasks
in the Minecraft technology tree.

3.4.2 Adaptive Optimization
We evaluated how Metagent-P adapts to environ-
mental changes. As is known, long-term tasks
involve longer interaction with the environment,
making them more susceptible to environmental

Figure 5: Metacognitive trigger counts. We tested
each difficulty level 30 times, counting triggers from en-
vironmental disruptions and reasoning errors separately.

changes. Figure 5 shows more complex tasks trig-
ger more metacognitive responses. This demon-
strates the reflector’s ability to actively adapt plans
to environmental changes, notably enhancing per-
formance on complex tasks. Furthermore, our anal-
ysis shows 77.0% of triggers come from environ-
mental changes rather than reasoning errors (like
failing to mine “cobblestone” witout a “wooden
pickaxe” ), indicating the verifier could prevent
most of the reasoning errors in advance, while
the reflector mainly handles environmental distur-
bances.

Figure 6: Illustration of metacognition reflection
mechanism. In a “obtain 1 iron pickaxe” task, despite
correct initial planning and completing the stone pick-
axe subgoal, environmental disruption broke the tool.
The reflector identifies this and adds a new stone pick-
axe crafting subgoal, actively adapting to environmental
disruptions before failure occurs.

We have shown a case of “obtain 1 iron pickaxe”
in Figure 6, monitor module triggers upon de-
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tecting execution anomaly (excessive replanning
counts). Based on observations and experiences,
the evaluation module identifies a broken tool and
suggests: “stone pickaxe is broken, we need an-
other one.” The regulation module then adds a sub-
goal to re-craft the stone pickaxe . Notably, the
subgoal had already been completed but got dam-
aged due to environmental disruptions. The reflec-
tor actively adapts plans to environmental changes
before failure occurs, further enhancing Metagent-
P’s flexibility.

4 Related Work

4.1 Planning with LLM-Based Agents

We summarise the differences of existing Minecraft
agents in Appendix D.1. Early methods based on
symbolic planning and reinforcement learning (Oh
et al., 2017; Wichlacz et al., 2019) have struggled
with complex tasks in Minecraft (Wikipedia con-
tributors, 2024) due to modeling difficulties and
sample inefficiency.

The rapid advancement of LLMs has enabled
their use as planners and reflectors in Minecraft
studies like DEPS (Wang et al., 2023) and Plan4mc
(BAAI, 2023). However, their semantic reason-
ing rather than symbolic (Tang et al., 2023) poses
challenges for consistency and reliability in multi-
step reasoning (Dziri et al., 2024). Recent works
like Jarvis-1 (Wang et al., 2024), Optimus-1 (Li
et al.), and MP5 (Qin et al., 2024) have introduced
external memory to address this. However, most
methods overlook failed cases and lack effective
experience encoding. Additionally, reflector design
remains underexplored, as LLMs alone struggle to
provide accurate feedback for replanning.

Our Metagent-P includes an Experience-
Enhanced Planner that conducts multi-granular en-
coding of successful and failed experiences to en-
hance in-context learning. A Symbolic Reasoning-
Driven Verifier that employs a neural-symbolic
structure, combining LLMs’ world knowledge with
CAs’ symbolic reasoning to effectively pre-check
reasoning errors in plans. A Metacognitive Reflec-
tor to actively adapt to environmental disruptions.

4.2 Planning with CAs

Cognitive Architectures (CAs) Laird et al., 2017,
such as Soar (Laird, 2019) and ACT-R (Anderson,
2009), include perception, motor, working memory,
semantic memory, episodic memory and procedu-
ral memory. Among these, procedural memory

stores condition-action rules and drives symbolic
reasoning. By representing knowledge, actions,
and states symbolically, CAs apply these rules to
match current observations and infer appropriate
actions, producing logical and reliable plans. Sys-
tems like Rosie built on Soar (Mininger and Laird,
2022) have demonstrated goal-oriented task learn-
ing, reasoning, and planning. However, due to
their heavy reliance on domain-specific and task-
tailored knowledge, planning with CAs has faced
challenges in knowledge representation and scala-
bility (Gunetti et al., 2013b,a; Lieto et al., 2018),
making it difficult to accomplish open-world tasks
effectively.

4.3 Metacognition

Metacognition, a higher-order cognitive capabil-
ity (Wang et al., 2025), enables self-reflection
and evaluation of cognitive processes (Flavell,
1979). In humans, it drives strategy optimiza-
tion through continuous reflection on thought pat-
terns. Recently, Integrating metacognitive abil-
ities into AI has shown potential for enhancing
autonomous learning and introspective reasoning.
Some studies(Cox, 2005) have introduced intro-
spection and self-management into cognitive sys-
tems, improving adaptability and robustness, while
others (Conway-Smith and West, 2024) have used
metacognition to boost self-directed learning in
LLMs or designed metacognitive prompts (Wang
and Zhao, 2023) to enhance comprehension. How-
ever, current designs still lack sophistication in
handling dynamic, uncertain open-world environ-
ments.

5 Conclusion

We propose Metagent-P for open-world plan-
ning, consisting of four components: planner,
verifier, controller, and reflector. It integrates
the world knowledge of LLMs, the symbolic
reasoning capabilities of cognitive architectures,
and the self-reflection characteristic of metacogni-
tion, forming a “planning-verification-execution-
reflection” framework. Experimental results show
that Metagent-P outperforms current state-of-the-
art agents across 50 Minecraft tasks. In long-
term tasks, it improves performance by 2 to
25 times, reduces average replanning counts by
34%, and exceeds the average human success
rate by 18.96%. Through step-by-step explo-
ration, Metagent-P demonstrates self-evolution,
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achieving more reliable and efficient adaptive plan-
ning. Metagent-P’s symbol-neural integration and
metacognitive enhancement offer valuable insights
for artificial general intelligence research and appli-
cations, bringing us closer to human intelligence.

6 Limitation

In Metagent-P, we aim to improve open-world
planning through an Experience-Enhanced Planner,
Symbolic Reasoning-Driven Verifier, and Metacog-
nitive Reflector. However, the study has limitations:
1) Metagent-P is primarily designed for single-
agent scenarios, with limited multi-agent collab-
oration; 2) We directly utilize the MP5 controller
(Qin et al., 2024) enhances instruction-following,
but it lacks low-level control due to insufficient
video-action training data, limiting its ability to
mimic human behavior more closely, please refer
to the Appendix B for more details.

Future work will expand Metagent-P to multi-
agent settings and develop an exploration learning
mechanism for Metagent-P to autonomously col-
lect and annotate video-action data, enabling the
training of a more effective low-level action con-
troller.

7 Ethics Statement

We propose Metagent-P to address open-world
planning challenges. Our approach combines the
world knowledge of LLMs, the symbolic reasoning
capabilities of cognitive architectures, and the self-
reflection characteristic of metacognition to solve
long-term tasks and adaptive planning problems in
open-world environments. Our experiments were
conducted in MineDojo, an open-source research
framework built on Minecraft that provides a rich,
open-ended environment for developing and evalu-
ating AI agents. MineDojo includes a comprehen-
sive API, task datasets, and benchmarks for embod-
ied AI research. The framework is released under
the MIT license and built on Minecraft’s official
APIs, ensuring research reproducibility and ethical
compliance. Additionally, we have submitted our
code to facilitate future research and implementa-
tion of our methods.
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A Challenges of the Open-World
Environments

Open-world environments present significantly
greater challenges for agent development compared
to traditional controlled scenarios. While con-
ventional environments feature limited scope, pre-
dictable dynamics, and a restricted task set, open
worlds demand agents capable of handling diverse
and complex challenges. In this section, we ex-
amine two fundamental challenges that emerged
during our development of Metagent-P.

Challenge I: Task Complexity. Tasks in open-
world environments are typically long-term and
diverse. Take the task of “obtaining diamonds”
as an example - it needs to be broken down into
11 subtasks, such as “crafting a wooden pickaxe”,
“mining stone blocks”, and “crafting a stone pick-
axe”. These subtasks have complex logical rela-
tionships and sequential dependencies, which chal-
lenge the agent’s planning capabilities. Therefore,
agents need symbolic reasoning abilities to decom-
pose complex goals and generate correct execution
plans.

Moreover, tasks in open worlds are highly di-
verse. Agents need to continuously enrich their
knowledge base and experience pool during explo-
ration to improve their ability to handle various
tasks. This process essentially shapes the agent’s
cognitive capabilities, enabling it to understand the
intrinsic connections between tasks and develop
general problem-solving strategies.

Challenge II: Environmental Disruption.
Open-world environments are dynamic and full of
various interfering factors. The open world is char-
acterized by uncertainty and constant change: ter-
rain may shift, weather systems affect visibility and
movement, day-night cycles present different chal-
lenges, hostile entities may appear unexpectedly,
and even other players’ actions can influence the en-
vironmental state. These environmental disruptions
create uncertainties that demand high adaptability
from agents.

To address environmental disruptions, agents
need metacognitive abilities similar to humans.
Metacognition is the awareness and understand-
ing of one’s own cognitive processes, including en-
vironmental perception, self-behavior monitoring,
and regulation. Through metacognition, agents can
dynamically evaluate how environmental changes
affect their current action plans, learn from fail-
ures, and adjust plans when facing new situations,

demonstrating strong adaptive planning capabili-
ties. This ability helps agents robustly complete
tasks in complex and dynamic open worlds.

To address these challenges, our Metagent-P
introduces four key components: an Experience-
Enhanced Planner, a Symbolic Reasoning-Driven
Verifier, an Action Controller, and a Metacogni-
tive Reflector. It integrates the world knowledge
of LLMs, the symbolic reasoning capabilities of
cognitive architectures, and the self-reflection char-
acteristic of metacognition, forming a “planning-
verification-execution-reflection” interactive plan-
ning framework. Notably, during progressive open-
world exploration, Metagent-P continuously shapes
its cognition and adaptively optimizes its perfor-
mance, achieving self-evolution.

B Limitation and Future Work

In the framework of Metagent-P, we are dedicated
to leveraging the proposed Experience-Enhanced
Planner, Symbolic Reasoning-Driven Verifier, and
Metacognitive Reflector to enhance the agent’s per-
formance and efficiency in open-world planning.
However, this study has several limitations: 1)
Metagent-P currently focuses primarily on single-
agent scenarios, with only preliminary support for
multi-agent collaboration; 2) We directly employ
the controller proposed by MP5 (Qin et al., 2024),
which demonstrates improved instruction follow-
ing capabilities and can effectively clarify Planner-
generated actions such as equip, move, and craft.
However, low-level commands (e.g., keyboard and
mouse operations) more closely mimic human be-
havior, due to the current lack of high-quality video-
action training data, we cannot achieve a more ef-
fective low-level action controller.

Future work will focus on extending the
“planning-verification-execution-reflection” inter-
active planning framework to multi-agent scenar-
ios. Additionally, we will design an exploration
learning mechanism for Metagent-P to actively
collect and automatically annotate high-quality
video-action training data during world exploration,
which will be used to train a low-level action con-
troller with enhanced instruction-following capa-
bilities.

C Environment Setting

C.1 Observation Space
To achieve embodied agent-like perception, we re-
strict environmental information access and imple-
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Index Action Argument Description

1 Find Object Navigate the environment to locate a target object
2 Approach Object Move towards a target object
3 Mine Object, tool Using a tool to break down a block or object

4 Craft/Smelt Object, platform Combine raw materials or items at a crafting table or furnace to
create a new item

5 Attack Object, tool Attack entity
6 Equip Object Equip or hold a specific item or tool in the player’s hand

7 Dig-down Y-level, tool Dig or excavate downwards to a specified y-coordinate using a
tool

8 Dig-up Tool Dig or excavate upwards using a tool

Table 5: The definition of the Action Space we use in MineDojo simulator.

Planning componentsAgents
Planner Verifier Controller Reflector

Input Memory External knowledge

DEPS (Wang et al., 2023) ✓ ✓ ✓ T Raw T Succ. -
Plan4m (BAAI, 2023) ✓ ✓ T - - - Pre-defined skill
GITM (Zhu et al., 2023) ✓ ✓ ✓ T Raw T Succ. -
Jarvis-1 (Wang et al., 2024) ✓ ✓ ✓ T+V Raw T+V Succ. -
MP5 (Qin et al., 2024) ✓ ✓ ✓ T+V Voctor T Succ. External train data
Metagent-P (our) ✓ ✓ ✓ ✓ T+V Voctor T+V Succ.+Fail -

Table 6: Minecraft Agents.

ment a human-like observation system. Rather than
using omniscient perception methods like LiDAR
rays in GIMT (Zhu et al., 2023), our agent relies
on egocentric RGB images to perceive its environ-
ment. The observation space is structured into two
main components:

Perceptual observations:
Egocentric, Minecraft-style RGB images, 3x3x3

voxels encountered by the agent (object properties)
Status observations:
Relevant ancillary text information (health statis-

tics, inventory details)
This dual observation system enables situation-

aware planning.

C.2 Action Space

We directly employ the controller proposed by MP5
(Qin et al., 2024), which demonstrates improved
instruction following capabilities and can effec-
tively clarify Planner-generated action sequences
in Table 5. For navigation tasks, such as the “find”
action, the agent moves while continuously updat-
ing its orientation based on MineDojo’s field of
view data to locate and approach targets.

D Benchmark Suite

D.1 Minecraft Agents

While reinforcement learning (RL) (Matsuo et al.,
2022) has emerged as the dominant approach for

creating game-playing agents, its application to
Minecraft has revealed significant limitations. RL
agents face two major challenges: they demand ex-
tensive training (for instance, DreamerV3 (Hafner
et al., 2023) requires approximately 30 million
steps just to learn diamond collection) and strug-
gle with task generalization (as evidenced by VPT
(Baker et al., 2022), which needs separate agents
for exploration and diamond mining tasks).

In this section, we summarise the differences
between existing LLM-based agents. As shown in
Table 6, traditional LLM-based approaches use a
“planning-execution-reflection” framework, while
Metagent-P advances the LLM-based agent plan-
ning paradigm by introducing a validator. The
neural-symbolic hierarchical representation struc-
ture enhances the validator’s reasoning capabili-
ties through symbolic reasoning, enabling early
detection of planner errors and avoiding unneces-
sary environmental interactions, thereby improving
planning efficiency. Additionally, rule-based reli-
able feedback improves the planner’s replanning
accuracy. Experimental results demonstrate that
this approach effectively enhances both planning
success rate and efficiency. Furthermore, success-
ful and failed experiences are stored separately and
encoded at different granularities. This approach
leverages successful experiences to guide task de-
composition by the planner while incorporating
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failed cases into the reflector’s design, enabling
a more comprehensive utilization of Metagent-
P’s exploration experiences. Metagent-P operates
without external data or predefined rules, instead
evolving through progressive exploration. It con-
tinuously enriches its experience and rule repos-
itories while leveraging metacognitive reflection
mechanisms for adaptive planning, achieving self-
evolution.

D.2 Minecraft Task Details

We conducted a systematic evaluation of Metagent-
P using MineDojo tasks. First, we analyzed and
categorized tasks based on their minimum required
sub-goals (Table 7), acknowledging that the actual
number may vary depending on initial conditions
and biome types. Our experimental setup includes:

• 50 selected tasks arranged by minimum sub-
goal complexity.

• Five difficulty levels: basic, easy, medium,
hard, and complex.

• Task parameters: complexity level, name, min-
imum sub-goals, required tools, platforms, ini-
tial inventory, and maximum episode steps.

• Time limits ranging from 12,000 steps (basic)
to 36,000 steps (complex).

E Full Experimental Results

We list the full results of each task below (Table 8),
with details including task level, task name, suc-
cess rate (SR), and average replanning counts (RC).
To account for Minecraft’s open-world variability,
we performed 30 trials per task with randomized
initial positions and environment seeds. All trials
were conducted under survival mode with an empty
initial inventory. Success was defined as target ac-
quisition within the time limit, while agent death
constituted failure.

F PROMPT DESIGN

F.1 Decision-Making Prompt

We show the prompt templates for the Experience-
Enhanced Planner in Table 9.

F.2 Generate Rule Prompt

We show the prompt templates for Symbolic
Reasoning-Driven Verifier in Table 10. Implement

bottom-up automatic rule learning to extract ex-
plicit rules from LLMs’ implicit knowledge, with-
out requiring predefined knowledge.

F.3 Rule Evaluation Prompt
We show the prompt templates for rule evalua-
tion in Table 11. To ensure the reliability of rules
extracted from LLMs, we designed a structured
prompt-based rule evaluation mechanism that con-
siders three dimensions:

Common-Sense Consistency: whether the rule
aligns with common sense and basic logic;

Condition Clarity: whether the rule’s condi-
tions are sufficiently explicit and complete;

Action Feasibility: whether the actions are clear
and executable.

Given a rule extracted from LLM output: “IF:
iron ore discovered; THEN: mine with stone pick-
axe”, denoted as r, we apply the evaluation func-
tion eval(r) across multiple dimensions. Rules
that exceed a predefined quality threshold are in-
corporated into the rule pool for automatic expan-
sion. (Rules scoring above 0.85 are considered
high-quality.)

This structured prompt-based evaluation mech-
anism enables the validator to continuously learn
and correct from LLM outputs, refining its rule
base and improving generalization in open environ-
ments.
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Task level Task Sub-goal Num. Tools/Platform Step Setting

Basic

mine log 1 -
mine sand 1 -
mine sapling 1 -
mine wheat seeds 1 -
mine dirt 1 -
mine grass 1 - 12K
craft plank 2 -
craft stick 3 -
craft button 3 -
craft crafting table 3 -

Easy

craft chest 4 crafting table
craft bowl 4 crafting table
craft boat 4 crafting table
craft wooden slab 5 crafting table
craft wooden pressure
plate 5 crafting table

craft ladder 5 crafting table 12K
craft barrel 5 crafting table
craft wooden axe 5 crafting table
craft wooden pickaxe 5 crafting table
craft wooden sword 5 crafting table

Medium

mine cobblestone 6 wooden pickaxe
mine coal ore 7 wooden pickaxe
craft furnace 7 crafting table
craft lever 7 crafting table
craft stone pickaxe 7 crafting table
craft stone axe 7 crafting table 24K
craft stone hoe 7 crafting table
craft stone shovel 7 crafting table
craft stone sword 7 crafting table
mine iron ore 8 stone pickaxe

Hard

smelt glass 9 furnace
smelt iron ingot 10 furnace
craft iron bars 11 crafting table
craft carpentry table 11 crafting table
craft iron pickaxe 11 crafting table
craft iron door 11 crafting table 36K
craft iron trapdoor 11 crafting table
craft rail 11 crafting table
craft cauldron 11 crafting table

Complex

obtain diamond 12 iron pickaxe
mine redstone 12 iron pickaxe
craft dropper 13 crafting table
craft redstone torch 13 crafting table
craft compass 13 crafting table
craft clock 13 crafting table 36K
craft piston 13 crafting table
craft diamond pickaxe 13 crafting table
craft diamond sword 13 crafting table
craft raw gold block 13 crafting table

Table 7: The details of all the tasks.
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Task level Task name SR RC

mine log 100.00 0.0
mine sand 96.67 0.3

mine sapling 100.00 0.0
mine wheat seeds 100.00 0.0

mine dirt 100.00 0.0
mine grass 100.00 0.0
craft plank 100.00 0.0
craft stick 100.00 0.0

craft button 100.00 0.2

Basic

craft crafting table 100.00 1.5

craft chest 100.00 2.1
craft bowl 100.00 2.4
craft boat 100.00 2.4

craft wooden slab 100.00 4.6
craft wooden pressure

plate 100.00 4.5

craft ladder 100.00 4.1
craft barrel 100.00 4.3

craft wooden axe 96.67 4.7
craft wooden pickaxe 96.67 4.5

Easy

craft wooden sword 100 3.9

mine cobblestone 93.33 7.6
mine coal ore 86.67 9.5
craft furnace 90.00 10.9

craft lever 86.67 9.9
craft stone pickaxe 90.00 9.6

craft stone axe 86.67 9.7
craft stone hoe 90.00 9.4

craft stone shovel 90.00 8.9
craft stone sword 86.67 9.4

Medium

mine iron ore 83.33 11.4

smelt glass 66.67 13.0
smelt iron ingot 66.67 16.4
craft iron bars 56.67 15.8

craft carpentry table 53.33 17.5
craft iron pickaxe 56.67 18.7

craft iron door 50.00 16.1
craft iron trapdoor 43.33 17.6

craft rail 46.67 19.3
craft cauldron 46.67 17.6

Hard

craft minecart 43.33 18.4

obtain diamond 33.33 22.1
mind redstone 33.33 26.9
craft dropper 23.33 27.6

craft redstone torch 20.00 24.3
craft compass 23.33 27.5

craft clock 16.00 25.9
craft piston 16.00 26.7

craft diamond pickaxe 13.33 28.2
craft diamond sword 10.00 27.4

Complex

craft raw gold block 13.33 26.7

Table 8: Full experimental results of Metagent-P.
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Decision-Making Prompt

You are a helpful planner in Minecraft, and good at planning workflows to complete tasks. I will give you a task, for
which you need to conceive a plan, and then create a workflow.
I will give you the following information:
task information:
task: The name of the task.
quantity: The required quantity for the task.
material: The necessary materials for achieving the task in your inventory.
tool: The primary tool necessary for this task is, for instance, a wooden pickaxe.
platform: The crafting station or block that is necessary for this task, for instance, a crafting table or a furnace.
current environment information: MineClip-encoded scene graph.
inventory: a dict representing the inventory, whose keys are the names of the objects and the values are their quantities.
RESPONSE FORMAT:

"workflow": [
"times": "the number of times the actions will perform", "actions": [ "name": "action name", "args": "arg name": value,
... ],
"times": "the number of times the actions will perform", "actions": [ "name": "action name", "args": "arg name": value,
... ] ]
Ensure the response can be parsed by Python json.loads, e.g.: no trailing commas, no single quotes, etc.
Examples:
USER:
task information:
- task: cobblestone
- quantity: 4
- material: None
- tool: wooden pickaxe
- platform: None
current environment information: MineClip-encoded scene graph
inventory: "cobblestone": 2, "wooden pickaxe": 1
SYSTEM:
{ "workflow": [
{"times": "1", "actions": [ {"name": "equip", "args": {"obj": "wooden pickaxe"} } ] },
{"times": "1", "actions": [ {"name": "digdown", "args": {”ylevel”:58, "tool": "wooden pickaxe"} } ] },
{"times": "4", "actions": [ {"name": "find", "args": {"obj": "cobblestone"} },
{"name": "approach", "args": {"obj": "cobblestone"} },
{"name": "mine", "args": {"obj": "cobblestone", "tool": "wooden pickaxe"} } ] } ] }

USER:
My information is as follows:
- The task is:
{task_information}
- The current environment:
{current_environment_information}
- The current inventory: {inventory}
-Based on experience: {episodic_memory}
-The reflection is: {feedback}
Please plan for the task.

Table 9: Decision-Making Prompt.
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Generate Rule Prompt

You are well-versed in all the rules of Minecraft. Please complete the following two tasks:
Given the inputs of action and inventory, determine whether the action satisfies the execution constraints.
If it satisfies the constraints, return:
"return": {"success": true,
"suggestion": ""}
Otherwise, based on your analysis, fill in the suggestion field accordingly and return:
"return": {"success": false,
"suggestion": "Your suggestion here"}
Examples:
USER:
action: {"name": "craft", "args": {"obj": {"stone pickaxe": 1}, "materials": {"cobblestone": 3, "stick": 2}, "platform":
"crafting table"}}
inventory: {"crafting table": 1, "stick": 2}
SYSTEM:
{"return": {
"success": false,
"suggestion": "Mine or Craft enough cobblestone first." },
"craft, stone pickaxe": ["Rule1: Check if inventory contains crafting table", "Rule2: Check if inventory contains 3
cobblestone and 2 stick"]}

Table 10: Generate Rule Prompt.

Rule Evaluation Prompt

Please evaluate this rule across three dimensions, providing a score from 0 to 1 for each:
1. Common-Sense Consistency: Does this rule align with Minecraft’s mechanics and logic?
2. Condition Clarity: Is the trigger condition-specific and unambiguous?
3. Action Feasibility: Is the action executable, considering any prerequisites?
For each dimension provide a numerical score
Example:

USER:
Rule: IF iron ore is discovered; THEN mine with stone pickaxe
SYSTEM:
Common-Sense Consistency (wc = 0.3)
Condition Clarity (wp = 0.3)
Action Feasibility (wa= 0.4)

Table 11: Rule Evaluation Prompt.

22764


