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Abstract
Digital agents for automating tasks across dif-
ferent platforms by directly manipulating the
GUIs are increasingly important. For these
agents, grounding from language instructions
to target elements remains a significant chal-
lenge due to reliance on HTML or AXTree
inputs. In this paper, we introduce Aria-
UI, a large multimodal model specifically de-
signed for GUI grounding. Aria-UI adopts a
pure-vision approach, eschewing reliance on
auxiliary inputs. To adapt to heterogeneous
planning instructions, we propose a scalable
data pipeline that synthesizes diverse and high-
quality instruction samples for grounding. To
handle dynamic contexts in task performing,
Aria-UI incorporates textual and text-image
interleaved action histories, enabling robust
context-aware reasoning for grounding. Aria-
UI sets new state-of-the-art results across of-
fline and online agent benchmarks, outperform-
ing both vision-only and AXTree-reliant base-
lines. We release all training data and model
checkpoints at https://ariaui.github.io
to foster further research.

1 Introduction

The rapid expansion of graphical user interfaces
(GUIs) across web, desktop and mobile platforms
has made them indispensable for digital interac-
tions. From completing daily tasks like shopping
or booking tickets to complex professional work-
flows, GUI agents play a critical role in automating
these processes. As illustrated in Figure 1, a typi-
cal GUI agent operates in two stages: planning and
grounding. In the planning stage, the agent gener-
ates action decisions to accomplish the user’s task
based on the current screen state as its observation.
In the grounding stage, the agent is tasked with
locating and interacting with the target element as
referred in the instructions provided by planning,
thus make actions truly happen in the environment.

† Corresponding author(s).

While efforts have been put to improve the plan-
ning of large multimodal models (LMMs) with
CoT (Yao et al., 2022b; Wei et al., 2022), and
inference-time scaling (Saha et al., 2024), effec-
tively grounding GUI elements from language re-
mains a significant challenge. The problem is com-
pounded by the diverse visual layouts across di-
verse devices, wide variability in planned instruc-
tions, and the dynamic nature of task execution
in real-world environments, all of which demand
robust, adaptable, and efficient solutions.

The basic grounding method involves leveraging
HTML or accessibility trees (AXTress, or A11y)
to identify the target element. However, feeding
long textual contexts of the tree often leads to in-
efficiencies, hallucination, and biases due to miss-
ing information in the tree. The absence of vi-
sual input further limits the method’s ability to
address instructions requiring visual or positional
cues. Set-of-Mark (Yang et al., 2023) combines
visual and tree tag information. However, its re-
liance on HTML or AXTrees limits flexibility in
diverse environments, as platform standards are
inconsistent and, particularly on mobile and desk-
top, the quality of AXTrees depend largely on app
developers’ implementation. Additionally, LMMs
struggle to accurately select from numerous tags in
images, constraining grounding performance (Xie
et al., 2024). To this end, building a pure-vision
solution for GUI agent grounding is crucial.

Training an LMM for GUI instruction ground-
ing is non-trivial. Existing LMMs are: 1) heav-
ily skewed towards natural images due to data
biases. 2) rarely trained for grounding. While
some models are trained with datasets like Ref-
COCO (Kazemzadeh et al., 2014), these datasets
are not aligned with GUI scenarios and are sparsely
populated. Recently, some studies (Cheng et al.,
2024; Gou et al., 2024) have leveraged LMMs’
powerful vision and language capabilities, using
public mobile- or web-sourced data as (GUI image,
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Current Trajectory:
The agent is performing the ultimate task:
Look for the locks on the Etsy app so I
can utilize them at home.

History of the agent's steps:
1. Open Etsy app.
The recent steps with the GUI images
are:
2. Click on the search bar on the top of
the screen.

Input: [User Task] Look for the locks on
the Etsy app. [Observation]: GUI
Screenshots + Action History
Output: Click on the lock displayed on
the screen.

Input: [Instr.] Click on the lock displayed on
the screen. [Observation]: GUI Screenshot
 [Optional] User Task + Textual Action
History/Text-Image Interleaved History
Output: (12, 46)Aria-UI

Grounding

PlanningMultimodal Observation

? Coordinates:
(12, 46)

Action:
Click on the lock
displayed on the
screen.

Grounded GUI Action

Figure 1: The two-stage task performing process for general GUI agents. Aria-UI serves as a robust grounding
model to make the planned actions truly happen.

Collection #Web Img. #Mobile Img. #Desktop Img. Input Text Supervision Open Source Action History #Elements #Samples

Ferret-UI-AMP / 84K / Human Ann. Point Coordinates % % - 160K
CogAgent-CCS400K 400K / / HTML Text Point Coordinates % % 70M -
UGround-Web-Hybrid 773K / / HTML Attr. + Refer. Caption Point Coordinates % % 18.1M 9M
UGround-Web-Direct 408K / / Refer. Caption Point Coordinates % % 408K 408K
SeeClick 270K / / HTML Text Point Coordinates ! % 3.3M 3.3M
GUIEnv-local 73K 9K / HTML Text Point Coordinates ! % 700K 700K

Aria-UI Collection 173K 104K 7.8K Diversified Instr. Refer. Caption + Point Coordinates ! ! 3.9M 11.5M

Table 1: Grounding data of Aria-UI compared to existing collections.

instruction, coordinates) tuples to train LMMs as
grounding models. Despite their effectiveness, we
identify two key limitations in these approaches:
(1) They overly depend on rigid instruction
sources and formats, mainly HTML or AXTree-
based textual elements. This lack of diversity hin-
ders their robustness in adapting to the flexible and
heterogeneous instructions generated by task plan-
ners. (2) They overlook the dynamic contextual
information during task performing, such as the
action history, which can provide valuable refer-
ences for more accurate element grounding.

In this paper, we introduce Aria-UI, a robust
LMM designed specifically for GUI grounding.
Aria-UI is built upon Aria (Li et al., 2024a), the
state-of-the-art multimodal MoE model with 3.9B
activated parameters. Aria-UI adopts a pure-vision
approach, avoiding reliance on AXTree-like in-
puts while achieving superior grounding accuracy
across diverse tasks and platforms.

By addressing the core limitations of existing
methods, we propose two key contributions in Aria-
UI. For the challenge of rigid instructions, we de-
sign a large-scale, diverse data synthesis pipeline
from our Common Crawl collection and public
available data. This pipeline first leverages strong
LMMs to generate detailed and accurate element
captions and then utilizes an LLM to create diverse,
human-like instructions that align with potential
interactions based on these captions. We further
incorporate the high-quality captions as additional
supervision during training, enabling the model to
better associate diverse instructions with their cor-
responding elements. For the challenge of ignoring
dynamic contexts, we further leverage textual or

text-image interleaved action history from trajec-
tory data for training. This equips Aria-UI with
robust grounding capabilities, enabling it to per-
form effectively in dynamic, multi-step real-world
task scenarios.

To summarize, our contributions are:
• We propose a novel approach to address the chal-

lenge of rigid instructions with a scalable, data-
centric pipeline. It generates high-quality and
diverse (element caption, instruction) samples
from Common Crawl and publicly available data,
enabling Aria-UI to generalize effectively across
diverse instructions in different environments.

• Aria-UI introduces innovative designs for incor-
porating dynamic action history in textual or in-
terleaved text-image formats. The improvements
allow Aria-UI to ground elements more effec-
tively in dynamic, multi-step task scenarios, es-
pecially under zero-shot settings.

• We conduct comprehensive evaluations on ex-
tensive benchmarks including both offline and
online agent tasks, showcasing Aria-UI’s state-of-
the-art performance. Notably, Aria-UI achieves
higher grounding accuracy and task success
rates compared to both vision-only and AXTree-
reliant baselines.

2 Method

Aria-UI is designed to seamlessly integrate into
the latest general-purpose multimodal GUI agent
framework (Zheng et al., 2024; Xie et al., 2024;
Koh et al., 2024; Rawles et al., 2024a), serving as
a robust grounding model. We outline a solution
to the challenges from a scalable, data-centric ap-
proach, as shown in Figure 2. In Section 2.1.1, we
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Aria-UI

Mobile Desktop Web

Coordinates 
(X, Y)

Referring Caption 
The Amazon Books
icon, located at the..

Coordinates 
(X, Y)

 Additional Supervision

 Instruction Diversification 

check more options
for the first vid

click the three-dot
menu for the first video

access more options for "28
YEARS LATER Trailer"

Diverse Instructions

"The veritical three dot, next to
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Task and Action History
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Figure 2: The overall data and training pipeline for Aria-UI.

detail the synthesizing of diverse grounding data.
Section 2.1.2 discusses building grounding sam-
ples with task context for dynamic scenarios, and
Section 2.2 explains Aria-UI ’s training details.

2.1 Large-scale Diverse GUI Data
Synthesizing

As summarized in Table 1, several existing meth-
ods have collected diverse corpus for GUI ground-
ing. However, these corpora fail to effectively ad-
dress GUI grounding for LMMs. They are either
not open-source, too small, or lack coverage of all
the major platforms. Moreover, they rely on rigid
instruction sources and formats, from HTML ex-
traction or specifically formatted referring caption.
Additionally, they overlook the importance of the
contextual information for grounding during dy-
namic task performing. We present how to solve
these challenges by a data-centric approach with
diverse data scaling from multiple platforms and
context-aware data extension with trajectories.
2.1.1 Diverse Data Scaling from Multiple

Platforms
We propose a two-stage pipeline to transform raw
samples into high-quality and diverse element in-
structions for grounding training. At the first stage,
we utilize a strong LMM (GPT-4o or Qwen2-VL-
72B (Wang et al., 2024a)) that takes element screen-
shots and text extracted from HTML as input for
accurate and detailed element descriptions. To en-
hance accuracy and reduce hallucination, the model
perceives two screenshots: (1) an isolated image
of the element and (2) a zoomed-in view, where
the element is highlighted with a red bounding box.
Additionally, the HTML text and the screen po-
sition of the element are provided for reference.
The model is then prompted to generate a detailed
caption of the element, including its visual proper-
ties, functionality, positional relationships, and any

other distinctive attributes. In the second stage, we
utilize an LLM to generate natural language instruc-
tions that correspond to potential interactions with
the elements, based on their detailed captions. For
instance, for the caption "The "subscribe" button,
colored in bright red with white text and a bell icon,
is positioned in the upper-right section of Chef-
Maria’s cooking channel header, showing "2.3M"
subscribers” underneath," the synthesized instruc-
tion could be "subscribe to ChefMaria’s channel."
To ensure diversity and expand the data volume,
we produce three instructions for each element.

We apply our pipeline to three key GUI envi-
ronments: web, desktop, and mobile, each with
distinct challenges and characteristics.
Web. Web data, with its diversity and dynamic
rendering, is ideal for expanding GUI grounding
datasets with varied element samples in size, type,
and resolution. We leverage the latest collection of
Common Crawl for data collection. We build a rig-
orous data curation and filtering pipeline to produce
high-quality samples. We first filter out harmful
webpages using fastText (Bojanowski et al., 2017).
Subsequently, we identify and select interactive el-
ements by checking the HTML attributes. Consid-
ering that LMMs have acquired fundamental OCR
skills during pretraining, we prioritize graphical
elements over text-based elements. To reflect real-
world grounding tasks in complex, element-rich en-
vironments, we heuristically retain webpages con-
taining more than 20 valid elements. We use Play-
wright to render these webpages at 1920×1080 and
2440×1600 resolutions to accommodate common
resolution requirements. We gather a diverse set of
173K webpages containing 2M elements through
the procedure. With the data pipeline, we build de-
tailed caption and instructions for elements, result
in 6M high-quality and diverse instruction samples.
Desktop. Since desktop environment is less scal-
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able and human annotation costs high, desktop
data has remained scarce. OmniACT (Kapoor
et al., 2024) manually annotated 7.3K instruction-
grounding pairs. However, creating an automated
data scaling pipeline for desktop remains a chal-
lenge. To mitigate the research gap, we develop a
traverse agent powered by an LMM to explore an
OS environment for data collecting. We build the
agent on an Ubuntu Desktop with Gemini 1.5 Flash.
Leveraging the accessibility tree, the agent selects
the next element to click in each screen state, aim-
ing to reach previously unexplored screens. The im-
plementation details can be found in Appendix A.2.
We collect all screenshots and the corresponding
A11y to parse all elements. Using this automated
pipeline, we collected 88K unique elements across
7.8K screenshots tailored for desktop environment.
We then utilize the data pipeline to extend the sam-
ples to 264K by generating diverse instructions.
Mobile. Since automated GUI agents for mobile
environments were explored earlier, a substantial
amount of open-source data has been accumulated
for mobile environment. Currently, the largest-
scale grounding dataset for mobile is AMEX (Chai
et al., 2024), which provides 104K screenshots and
1.6M elements. While AMEX provides a large-
scale dataset, it has only 712K elements with ba-
sic textual descriptions extracted from accessibil-
ity tags, and merely 3K elements are paired with
human-like instructions. To address this gap, we re-
generate high-quality caption and instruction sam-
ples with the data pipeline for AMEX, improving
the training effectiveness.

To further expand our grounding corpus and in-
troduce more diverse sources for GUI images and
instructions, we incorporate the following public
datasets: 3M Web and 273K mobile elements from
SeeClick training data (Cheng et al., 2024; Li et al.,
2020b,a), 15K mobile elements from (Bai et al.,
2021), 748k Web elements from GUICourse (Chen
et al., 2024), 131K desktop elements from Om-
niAct (Kapoor et al., 2024), and 693K Web and
mobile elements from AutoGUI (Li et al., 2025).
We summarize the details of the datasets in Table 8.
2.1.2 Context-aware Data Extension from

Trajectories
Accurately and efficiently performing grounding
tasks within the dynamic context of real-world en-
vironments is a crucial capability for GUI agents.
Despite its importance, existing approaches largely
focus on grounding tasks under a single-step set-
ting, where LMMs are trained to infer grounding

results based only on the current state and instruc-
tion. Such approaches overlook the dynamic nature
of GUI grounding and the critical role of context
in real-world scenarios. For example, after execut-
ing a TYPE action, the next grounding step is likely
associated with an ENTER or SUBMIT button. Sim-
ilarly, in multi-step tasks that involve navigating
through a multi-layered menu to locate a target
entry, there is a strong contextual relationship be-
tween consecutive grounding actions. Leveraging
such contextual information enriches the ground-
ing context and aids the model in avoiding bias,
thereby enhancing grounding performance.

We utilize publicly available agent trajectories
to simulate grounding tasks with contexts. We
focus on constructing two types of contextual se-
tups: (1) textual action history and (2) text-image-
interleaved history. The text-based setup incor-
porates the ultimate task along with prior action
histories, and the text-image-interleaved setup ex-
tends this by including N historical screen images,
providing richer contextual cues and training the
model to understand multimodal interaction history.
Notably, most trajectory data only includes basic se-
quential information, such as the click coordinates,
thus lacks comprehensive stepwise instruction se-
mantics. To address this, we augment all grounding
steps within the trajectory data using the proposed
data pipeline to generate detailed stepwise instruc-
tions. For non-grounding actions, we encode them
(e.g., SWIPE and TYPE) using rules for natural
language formats. For the interleaved setting, we
collect data with image number N = [1, 2, 3], and
for the text-based setting, we input all historical
actions in text. Finally we collect 992K samples
with the trajectories from GUI-Odyssey (Lu et al.,
2024), Android in the Zoo (Zhang et al., 2024d),
Android Control (Li et al., 2024b), Android in the
Wild (Rawles et al., 2024b) and AMEX (Chai et al.,
2024). The details are presented in Table 9.
2.2 Model Architecture
We build Aria-UI with the state-of-the-art multi-
modal MoE model, Aria (Li et al., 2024a). We
leverage two strengths from Aria for GUI agents:
1) Aria is multimodal-native, built for better under-
standing of complex and interleaved contexts; 2)
with only 3.9B activated parameters, Aria shows
even faster inference speed than 7B dense models.
2.2.1 Ultra Resolution Support
With the shift from 1080p to 2K resolutions on
computers and mobile devices, training grounding
LMMs at high resolutions has become essential.
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Method
Mobile Desktop Web

Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.7
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.1
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 49.6
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 55.8
Qwen2-VL 75.5 60.7 76.3 54.3 35.2 25.7 55.3
UGround 82.8 60.3 82.5 63.6 80.4 70.4 74.1

Aria-UI 92.3 73.8 93.3 64.3 86.5 76.2 82.4

Table 2: Results on ScreenSpot. We report element accuracy and the micro average results.

Aria originally supports high-resolution images up
to 980×980, which we extend to a maximum of
3920×2940 on Aria-UI by splitting the image into
smaller blocks, significantly increasing the range
of image sizes to handle. To maintain positional ac-
curacy, we take inspiration from NaViT (Dehghani
et al., 2024) to place padding before resizing for
keeping the original screenshot ratio.

2.3 Training and Inference Paradigm
We train Aria-UI following a two-phase procedure.
We first leverage all the single-step grounding data
to train the foundation GUI grounding capability of
Aria-UI. Specifically, Aria-UI is tasked with gener-
ating grounding answers given the prompt "Given
a GUI image, what are the relative (0-1000) pixel
point coordinates for the element corresponding to
the following instruction or description: [...]". We
follow (Gou et al., 2024) to group all the samples
for the same GUI image into a multi-turn conver-
sation format. Then, context-aware data with both
text-based and text-and-image-interleaved history
settings are fed into the model to further enhance
the grounding capability under the dynamic setting.
For this phase, we add extra 20% samples from
the single-step data to keep the generic grounding
capability and avoid over-fitting. We place more
training details in Appendix B.

During inference, Aria-UI outputs the grounded
pixels coordinates normalized to [0, 1000]. Since
Aria-UI is also trained with context-aware trajecto-
ries, it can take historical agent actions and ground-
ing actions as chat history, formulating a stronger
grounding system in dynamic environments.

3 Experiments

We testify the performances of Aria-UI via ex-
tensive experiments including single-step ground-
ing, grounding under offline agent trajectories and
grounding in dynamic online agent environments.

3.1 GUI Grounding Evaluation

We first examine Aria-UI’s foundational GUI
grounding capabilities on ScreenSpot (Cheng et al.,
2024). The benchmark compasses six subsets span-
ning over two types of elements and three major
platforms. Each test entry provides a unique GUI
image and a human-annotated instruction for lo-
cating a specific element. The typical resolution
for mobile and web subsets is 2k, and for desk-
top samples it is 540p. We include the state-of-
the-art UGround (Gou et al., 2024), with previous
grounding models SeeClick (Cheng et al., 2024)
and CogAgent (Hong et al., 2024) as baselines. We
also include generic LMMs – GPT-4, GPT-4o and
Qwen2-VL (Wang et al., 2024a).

From the results in Table 2, Aria-UI achieves
the highest average accuracy (82.4%) across all
subsets, demonstrating its superior grounding per-
formance. Aria-UI achieves a significant margin
over the state-of-the-art UGround, particularly ex-
celling in tasks for textual elements. The results
showcase Aria-UI’s robustness and generalizability
across diverse platforms and element types.

3.2 Offline Agent Evaluation

Mobile Agents. We further testify how Aria-
UI performs under an offline dynamic setting,
where the model is required to provide ground-
ing coordinates in agent task trajectories. We em-
ploy AndroidControl-Low (Li et al., 2024b), GUI-
Odyssey (Lu et al., 2024) and AndroidControl-
High, the first two has human-annotated or gen-
erated stepwise instruction, while the last one only
provides the user task, and needs an additional
planner for stepwise instructions. We follow (Li
et al., 2024b; Gou et al., 2024) to utilize GPT-4o
as the planner. We report element accuracy and
the task success rate in Table 3. Specifically, we
evaluate Aria-UI and the baselines on both zero-
shot and training split-included settings. As we
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Models
AndroidControl-Low AndroidControl-High GUI-Odyssey
Grounding Task SR Grounding Task SR Grounding Task SR

Zero-shot

GPT-4o 16.36 5.12 10.36 2.84 19.66 0.05
Qwen2-VL 64.24 32.53 30.32 4.08 49.56 2.00
SeeClick 45.55 17.72 20.17 4.29 45.19 1.45
UGround - - - - 50.25 2.02
Aria-UI 79.70 54.39 35.12 5.95 64.81 5.28

W. Training Set

UGround 74.28 46.85 37.98 9.15 - -
Aria-UI 85.71 66.30 41.78 9.97 84.57 31.87
Aria-UITH 87.69 67.33 43.16 10.17 86.75 36.47
Aria-UIIH 87.20 67.26 42.97 10.10 87.02 37.30

Table 3: Results for offline mobile agent evaluation. We report element accuracy for grounding and the task success
rate. For AndroidControl-High, GPT-4o serves as the planner to generate stepwise instructions for all methods.

Input Planner Grounding Cross-Task Cross-Website Cross-Domain Avg.

Image + HTML Tree
GPT-4 Choice 46.4 38.0 42.4 42.3
GPT-4 SoM 29.6 20.1 27.0 25.6

Image

GPT-4 SeeClick 29.6 28.5 30.7 29.6
GPT-4 UGround 45.1 44.7 44.6 44.8
GPT-4 OmniParser 42.4 41.0 45.4 42.9

GPT-4o SeeClick 32.1 33.1 33.5 32.9
GPT-4o UGround 47.7 46.0 46.6 46.8
GPT-4o Aria-UI 56.1 57.0 59.5 57.5
GPT-4o Aria-UITH 57.6 58.0 61.2 58.9
GPT-4o Aria-UIIH 57.6 57.7 61.4 58.9

Table 4: Results on Multimodal-Mind2Web, with grounding element accuracy reported. None of the methods
adopted the training split, therefore we exhibit a fully zero-shot out-of-distribution evaluation.

evaluate Aria-UI with agent trajectories, we ex-
tend the model with two variants: Aria-UITH and
Aria-UIIH , for textual action history input and text-
image interleaved history input, separately. We
choose N = 1 for Aria-UIIH to include additional
one GUI image from history during inference. For
Aria-UITH , we always input the full action history.

The results demonstrate the superior perfor-
mance of Aria-UI across different evaluation set-
tings and metrics. Specifically, Aria-UI and its
variants consistently outperform existing baselines,
with Aria-UITH achieving peak performance of
grounding accuracy and task success rate on An-
droidControl, and Aria-UIIH achieving the best
performances on GUI-Odyssey. Empirically, we
found that the incorporation of historical actions,
whether in text-only (TH) or text-image inter-
leaved (IH) format, provides crucial context for
accurate element grounding and task completion.
In particular, we observe that the textual action
history (Aria-UITH) strikes an effective balance
between efficiency and performance compared to
both the base model and Aria-UIIH .

In summary, the significant performance gap
between Aria-UI and existing approaches like
SeeClick and UGround underscores the effective-
ness of our proposed model in understanding and
executing mobile interface interactions.
Web Agents. We evaluate how Aria-UI and its
variants perform on multimodal Web agent tasks
with the Multimodal-Mind2Web (Deng et al., 2024)
benchmark. The original training split is not in-
cluded by Aria-UI and the baselines during the
training stage, thus we form a fully zero-shot out-
of-distribution scenario. Three subsets, cross-task,
cross-website and cross-domain are employed for
a comprehensive evaluation.

Shown in Table 4, Aria-UI and its variants sig-
nificantly outperform all baselines across the three
subsets, achieving an average accuracy of 57.5%
for the base model and 58.9% for Aria-UITH and
Aria-UIIH . Notably, Aria-UIIH demonstrates the
strongest performance in the cross-website and
cross-domain subsets, showcasing its robust abil-
ity to leverage historical multimodal context. The
improvements over previous models, including
UGround and SeeClick, underscore Aria-UI’s ef-
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Input Planner Grounding AndroidWorld MobileMiniWob++

AXTree
GPT-4-Turbo Choice 30.6 59.7
Gemini 1.5 Pro Choice 19.4 57.4

Image + AXTree
GPT-4-Turbo SoM 25.4 67.7
Gemini 1.5 Pro SoM 22.8 40.3

Image
GPT-4-Turbo UGround 31.0 -
GPT-4o UGround 32.8 48.4
GPT-4o Aria-UI 39.7 60.4
GPT-4o Aria-UITH 44.8 -

Table 5: Task success rate results for online mobile and Web agents on AndroidWorld and MobileMiniWob++.

Models OS Calc Impress Writer VLC Thunderbird Chrome VSC GIMP Multi Avg.

GPT-4o + SoM 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60 4.59
CogAgent + SoM 4.17 2.17 0.00 4.34 6.53 0.00 2.17 0.00 0.00 0.00 0.99
GPT-4o + A11y 41.67 4.26 6.81 8.70 9.50 6.67 15.22 30.43 0.00 7.46 11.21

CogAgent 4.17 2.17 0.00 4.35 6.53 0.00 2.17 0.00 0.00 0.10 1.11
GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58 5.03
GPT-4o + Aria-UITH 25.00 4.26 15.32 8.70 30.06 26.67 23.80 21.74 19.23 8.55 15.15

Table 6: OSWorld results. The top part denotes methods with both accessibility tree (A11y) and screenshot input,
while the bottom part is for pure-vision methods that rely only on screenshots.

fectiveness in handling zero-shot grounding tasks
on diverse and unseen web interfaces.
3.3 Online Agent Evaluation
Mobile and Web. We use AndroidWorld (Rawles
et al., 2024a) for online mobile agent evaluation in
an Android emulator environment. The evaluation
is fully based on success of the task by checking
the system state of the virtual device. We also
include the MobileMiniWob++ task collection pro-
vided by AndroidWorld, which adpats the Web
agent environment MiniWob++ (Liu et al., 2018)
to AndroidEnv (Toyama et al., 2021), the same en-
vironment as AndroidWorld. We evalute Aria-UI
with the strongest baseline, UGround under the
same M3A agent framework, compared with SoM
and Choice methods that require AXTree input. We
report task success rate, the most important metric
for real agents in Table 5. Our observations are:
• In AndroidWorld, our approach achieves the best

performance to date, with a task success rate of
44.8%, achieved by Aria-UITH . This surpasses
the previous state-of-the-art method, UGround,
as well as non-pure vision methods such as SoM
and Choice, which rely heavily on AXTree input.
The results highlight Aria-UI’s superior ability
to handle diverse element instructions in real-
world settings, demonstrating its robustness and
adaptability for pure-vision GUI agents.

• On MobileMiniWob++, Aria-UI outperforms
UGround, and choice-based methods. Due to
the simplicity of MiniWob++ layouts, GPT-4-
Turbo with SoM achieves the highest perfor-

mance. However, Aria-UI still demonstrates the
highest scores with pure-vision input.

OSWorld. We further evaluate Aria-UI on the
most up-to-date and complex computer use simu-
lator benchmark, OSWorld (Xie et al., 2024). Fol-
lowing the pure-vision agent framework in OS-
World, we place Aria-UI as the grounding model to
work collaboratively with GPT-4o on the 369 real
tasks provided. We compared Aria-UI with previ-
ous SOTA methods and summarize the task suc-
cess rate in Table 6. With GPT-4o as planner and
Aria-UITH as the grounding model, we achieve the
highest average task success rate of 15.15%, out-
performing previous methods across all computer-
use scenarios in OSWorld. Notably, it excels in
tasks like VLC (30.06%), Chrome (23.80%), and
Impress (15.32%), highlighting Aria-UI’s strong
performance in diverse, complex GUI tasks.
3.4 Ablation Study
Model Components.
• (-) Ultra Resolution. We remove the ultra resolu-

tion support for Aria-UI.
• (+) Visual CoT Prompting. We use CoT prompt-

ing for Aria-UI inference, as in Figure C.2.
Training Data Ablation.
• (-) Aria-UI Pipeline Data. We remove the data

from our pipeline during training.
• (-) Diversified Instruction. We directly use refer.

caption as input and coordinates as output for
training, removing the diversified instructions.

• (-) Refer. as Supervision. We use only coordi-
nates for supervision for our pipeline data.
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Method
Mobile Desktop Web

Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

Aria-UI 92.3 73.8 93.3 64.3 86.5 76.2 82.4
(-) Ultra Resolution 87.5 61.1 70.6 40.0 53.5 40.3 61.1
(+) Visual CoT Prompting 93.8 59.8 80.4 51.4 73.0 57.8 71.4
(-) Aria-UI Data 89.0 60.7 78.3 34.3 79.6 52.9 68.7
(-) Diversified Instruction 88.3 67.2 83.0 57.1 82.2 63.1 74.9
(-) Refer. as Supervision 92.7 69.0 81.4 54.3 85.2 70.0 77.5

Table 7: Ablation study results on ScreenSpot.

We summarize the ablation results in Table 7. The
results highlight the critical role of ultra resolu-
tion (Avg. 61.1) and Aria-UI data, particularly
for Icon/Widget grounding. Removing diversified
instruction or refer. as supervision degrades per-
formance across platforms, due to weak alignment
between instruction, refer. caption and grounding
coordinates. We also found that adding CoT im-
proves text-based tasks on mobile but struggles
with others, caused by noise in visual reasoning.
Context-aware Grounding Effect. We propose
two variants—text-only (TH) and text-image inter-
leaved (IH) for Aria-UI —to evaluate the context-
aware grounding design. We present the ablation
results comparing the two variants and the base
Aria-UI model in Tables 3, 4, and 5, across both of-
fline and online agent settings. Notably, in the
dynamic agent environment AndroidWorld, the
context-aware model outperforms the base model
by a significant margin of 12.8%. The results
demonstrate that incorporating dynamic context
substantially enhances the performance of Aria-UI.

4 Related Work
Vision-language Grounding with Large Mul-
timodal Models. Foundational approaches for
vision-language grounding, such as (Zou et al.,
2023; Liu et al., 2023; Li et al., 2023), integrate
CLIP with specialized vision models to tackle
language-guided grounding tasks. To address the
limitations in complex reasoning scenarios, re-
searchers have begun leveraging LMMs (Liu et al.,
2024; Dai et al., 2023; Shao et al., 2024) as a
promising direction. Notable works (Peng et al.,
2023; Pi et al., 2023; Wang et al., 2024b) train
LMMs to respond to fine-grained language instruc-
tions by grounding them in specific visual regions,
while general-purpose models (Bai et al., 2023;
Li et al., 2024a) incorporate grounding as a core
function during training. Additionally, significant
advances in spatial information processing (Zhang
et al., 2023b; Chen et al., 2023; Zhang et al., 2023c;
You et al., 2023; Zhang et al., 2024b) have en-

hanced regional visual comprehension capabilities.
However, these methods, while effective for natu-
ral images, face challenges when applied to GUI
screenshots due to insufficient adaptation.
General GUI Agents. Automating GUI opera-
tions with capable agents has become a trending
research area that leverages LMMs. Existing ef-
forts have been put to design autonomous agents
for complex task completion on mobile (Rawles
et al., 2024a; Bai et al., 2024; Li et al., 2024c;
Zhang et al., 2023a; Wen et al., 2024; Nong et al.,
2024; You et al., 2024; Li et al., 2024d), Web (Koh
et al., 2024; Yao et al., 2022a; Zhou et al., 2023;
Lai et al., 2024; He et al., 2024; Abuelsaad et al.,
2024; Ma et al., 2023; Zhang et al., 2024c) and
desktop (Xie et al., 2024; Wu et al., 2024; Gao
et al., 2023; Zheng et al., 2023; Zhang et al., 2024a;
Niu et al., 2024) environments. These methods
initially relied on HTML or AXTrees for element
grounding to perform actions. Recently, several no-
table studies (Cheng et al., 2024; Gou et al., 2024)
have proposed developing pure vision-based GUI
grounding models with LMMs. However, due to
their lack of instruction diversity and insufficient
consideration of dynamic context, these approaches
have delivered sub-optimal performances.

5 Conclusion
In this paper, we introduced Aria-UI, a robust
LMM for GUI grounding across diverse environ-
ments. We designed a two-stage data pipeline for
high-quality and diverse GUI grounding data from
multiple platforms. We further incorporated dy-
namic action history as effective cues for stronger
grounding capabilities in real-world environments.
As a scalable and data-centric method, Aria-UI out-
performs existing methods on all evaluated bench-
marks, with both offline and online agent tasks.
The model demonstrates strong zero-shot general-
ization across platforms, establishing Aria-UI as a
powerful solution for universal GUI grounding.
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6 Limitations

While Aria-UI demonstrates strong performance
in grounding target elements based on instructions
provided by a planner, it currently lacks the abil-
ity to autonomously perform both planning and
grounding for a given task. This reliance on the
planner model introduces a dependency on the qual-
ity and effectiveness of the planner, which can af-
fect overall performance for complex tasks. Ad-
ditionally, Aria-UI ’s training does not yet incor-
porate error correction for planner-generated in-
structions, limiting its ability to correct mistakes
made by the planner during dynamic tasks. Future
work will focus on enabling Aria-UI to perform
integrated planning and grounding, as well as en-
hancing its ability to handle and correct planner
errors in real-time.
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A Details on Aria-UI Datasets

A.1 Comprehensive Dataset Statistics
We summarize the statistical details of the single-
step and context-aware grounding datasets in Ta-
ble 8 and Table 9. The key points are:
1. Within each platform, the collection of Aria-UI

dataset possesses the largest sample size, high-
lighting the scale-up capacity of our automated
data pipeline.

2. Our collection adopts high-quality diversified in-
structions for the input text, while other publicly
available datasets use plain tags from the tree
information, or small-scale human annotations.

3. We use diverse trajectory data for context-aware
training, with the average steps spanning from
5.5 to 15.4. For the text-based action history
setting, we treat all previous actions for a spe-
cific grounding step as the context. For the text-
image-interleaved setting, we adopt a window
size of N = [1, 2, 3]. We then scale up the
available training samples to nearly 1M.

A.2 Pseudo-code for Desktop Grounding Data
Scaling Agent Implementation

We present the pseudo-code for OS traverse agent
with LMM (Gemini 1.5) guidance in Figure A.1.
To summarize, the key ideas for developing the
agent are:
1. The system is designed as a heuristic depth-first

search over the OS environment. A large multi-
modal model (Gemini 1.5) is employed to pri-
oritize informative UI elements that are more
likely to lead to novel system states, while avoid-
ing interactions with exit elements until other
options are explored.

2. We represent the system state by hashing all in-
tractable elements on the current screen, using
these hashes as unique state IDs. Empirically,
this approach effectively identifies identical sys-
tem states and discriminates between similar yet
distinct states.

3. Operating system hotkeys, such as ESC and
SPACE, are used to force a transition from the
current state to a previous one for backtracking
purposes.

A.3 Discussion on the Overlap between
OSWorld Tasks and the Desktop Data

As discussion in Section 2.1.1, we traverse and
scale-up desktop GUI data from general OS and

software functionality interfaces on Ubuntu. For
clarification, in the process, we do not target any
specific downstream tasks in OSWorld, and we
strictly do not load any task-specific file or pre-
defined system states from OSWorld configura-
tions, to prevent data leakage. For example, in
Chrome, we traverse settings and general function-
ality but avoid browsing any specific webpages or
configured set of pages that are part of the test ex-
amples. Similarly, in Impress and VLC, we collect
general interface functionalities without accessing
any specific slides or videos used in the test. Fur-
ther, we only collect general single-app grounding
screenshots. But the test tasks in OSWorld are more
complex – 1/3 of them involves multiple opened
windows on the screen with specific contents. Fi-
nally, our data collection also extends to other parts
of the OS (e.g., Ubuntu’s system settings and app
store), which are not within the scope of the OS-
World benchmark tasks.

B Aria-UI Training Details

We train Aria-UI with 64 NVIDIA H800 GPUs us-
ing the Megatron-LM (Shoeybi et al., 2019) frame-
work. For the phase-1 single-step grounding train-
ing, we use a context length of 4096, which is kept
the same as the original Aria-base model. The
phase-1 training takes 18 hours with 10K steps.
The phase-2 training aims at enabling Aria-UI’s
context-aware grounding ability with trajectory-
based samples. In this stage, we extend the model’s
context length to 8192 to accommodate long trajec-
tory data. It takes 6 hours for the phase-2 training
with 2K steps. During training, expert parallelism
(EP) was enabled with a factor of 8 to balance work-
load distribution across GPUs. Global batch size
is set to 256, and we use a learning rate of 2e-5 for
phase-1 training and 1e-5 for phase-2 training, sep-
arately. The minimum learning rate is set to 1e-8.
We enable ViT training and set the learning rate of
ViT parameters to 1/10 of the LLM’s learning rate
for better performance in multimodal multi-task
learning (Li et al., 2024a).

C Prompts for Data Augmentation and
Model Inference

In the following boxes, we present comprehensive
and detailed prompts we use for Aria-UI’s data
augmentation, training and inference.
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Data Collection Platform Input Text #Screenshots #Samples

SeeClick (Cheng et al., 2024) Web HTML Text 270K 3.3M
Widget Captioning (Li et al., 2020b) Mobile Instruction 14.4K 101K
RicoSCA (Li et al., 2020a) Mobile Instruction 18.1K 173K
UIBert (Bai et al., 2021) Mobile Refer. Caption 16.9K 16.9K
GUIEnv (Chen et al., 2024) Web HTML Text 50K 700K
GUIAct (Chen et al., 2024) Web Instruction 13K 67K
OmniACT (Kapoor et al., 2024) Desktop A11y Text 7.3K 131K
AutoGUI (Li et al., 2025) Web & Mobile Instruction 693K 693K

Aria-UI Web Web Diversified Instr. 173K 6.4M
Aria-UI Mobile (from AMEX (Chai et al., 2024)) Mobile Diversified Instr. 104K 4.8M
Aria-UI Desktop Desktop Diversified Instr. 7.8K 264K

Total 1.37M 16.6M

Table 8: Statistics information for Aria-UI single-step grounding datasets. The collections with largest size of
samples for each platform are highlighted in blue, red and olive, separately.

Data Collection #Avg. Steps #Trajectories #Samples

AitW (Rawles et al., 2024b) 9.67 24.5K 473K
AitZ (Zhang et al., 2024d) 7.5 2.0K 26K
AMEX (Chai et al., 2024) 12.8 3.0K 68K
AndroidControl (Li et al., 2024b) 5.5 13.6K 156K
GUI Odyssey (Lu et al., 2024) 15.4 7.7K 269K

Total 50.8K 992K

Table 9: Statistics information for Aria-UI context-aware grounding datasets.

OS Traverse Agent with LMM Guidance
1. Initialize:

- stack ← [( start_state , 0)] # Stack holds (state , depth)
- visited ← {} # Track visited states using hashed entrances
- memory ← {} # Store state transitions

2. While stack is not empty:
- (current_state , depth) ← stack.pop()
- current_hash ← hash(extract_entrances(current_state)) # Hash entrances to

represent state
- If current_hash in visited or depth > max_depth: continue
- visited.add(current_hash)

2.1. Extract entrances:
- entrances ← extract_entrances(current_state) # From accessibility tree

2.2. Rank entrances using LMM:
- selected_entrances ← LMM.rank_and_select(entrances , memory)

2.3. For each entrance in selected_entrances:
- next_state ← simulate_interaction(current_state , entrance)
- next_hash ← hash(extract_entrances(next_state))
- If next_hash not in visited:

- stack.push((next_state , depth + 1))

2.4. Update memory:
- memory[current_state] ← selected_entrances

2.5. Log transitions:
- Record (next_state ← current_state) for debugging or visualization.
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System Prompt for Element Captioning
Given two related images:
A context image: One of a 1x3 grid layout from a full UI screenshot , where a

specific element is highlighted in a red box
A detail image: The isolated element itself

Task: Provide a comprehensive sentence describing the button by combining:
Visual properties (text , shape , color , icons)
Functionality (what the button does)
Position (both within the screen layout and in relation to nearby elements)
Any distinctive visual characteristics

The description must include ALL these elements , structured naturally in concise
and accurate sentences.

Position descriptions should reference both:
Screen quadrant location (e.g., top -left , bottom -right)
Relative position to surrounding elements

Guidelines:
Do not mention the red highlighting box
Keep the description concise but complete
Include all specified properties
Reference surrounding elements for context
Incorporate the provided screen relative position: {relative_position}
Do not mention the position to the cropped image , only to the full screen layout

Satisfy these requirements to receive a reward. Failure to do so will result in a
penalty.

Starting with "The [short text/shape/visual feature] [button/icon/menu/image/bar
/...]". If the element has no text , use the most prominent icon or shape.

System Prompt for Aria-UI Single-step Grounding Training
<Input >
<|img|>Given a GUI image , what are the relative (0 -1000) pixel point coordinates

for the element corresponding to the following instruction: {instruction}

<Output >
```
{coordinates}
```

<CoT Input >
<|img|>Given a GUI image , what are the relative (0 -1000) pixel point coordinates

for the element corresponding to the following instruction: {instruction}
Think step -by-step , provide referring for the element first and then the grounded

point coordinates.

<CoT Output >
```referring
{elem_caption}
```
```grounding
{coordinates}
```
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System Prompt for Aria-UI Context-aware Grounding Training
The agent is performing the ultimate task: {ultimate_task }.

History of the agent 's steps:\n{history_list }.

<Text -Image Interleaved Context >
<|img|>Step {step_idx }. Instruction: {prev_instruction}

<|img|>Step {step_idx }. Given a GUI image , what are the relative (0 -1000) pixel
point coordinates for the element corresponding to the following instruction or
description: {instruction}

System Prompt for Instruction Diversification
Attention! You know a lot about GUIs on mobile , desktop and web. Given a detailed

description of a GUI element , your task is to generate several user -oriented
instructions that would require interacting with the GUI element.

For example:
Input: The 'Search Jobs ' button , located at the center -right part of the image and

just below the search bar , features a magnifying glass icon on a blue
background , indicating its function to initiate a job search.

Output: The 'Search Jobs ' button is key to starting or updating a job search after
users enter or change their criteria. Instructions should focus on interacting
with this button directly after inputting search terms or making adjustments.

```
"search for jobs."
"initiate job search ."
"retry the job search ."
"begin a new search"
```

Include the important identifications of the specific object to interact with.
Examples:

Input: The "subscribe" button , colored in bright red with white text and a bell
icon , is positioned in the upper -right section of ChefMaria 's cooking channel
header , showing "2.3M subscribers" underneath.

Output: (your reflection here)
```
"subscribe to ChefMaria 's channel"
"click subscribe on ChefMaria 's cooking channel"
```

First do a short reflection and give your answers that involve several possible
user instructions. Wrap your answers in ``` as in the example. Use \n to
separate multiple possible instructions.

{elem_caption}
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