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Abstract

We present CausalLink, an innovative evalua-
tion framework that interactively assesses the
causal reasoning skill to identify the correct
intervention in conversational language mod-
els. Each CausalLink test case creates a hy-
pothetical environment in which the language
models are instructed to apply interventions to
entities whose interactions follow predefined
causal relations generated from controllable
causal graphs. Our evaluation framework iso-
lates causal capabilities from the confound-
ing effects of world knowledge and semantic
cues. We evaluate a series of LLMs in a sce-
nario featuring movements of geometric shapes
and discover that models start to exhibit re-
liable reasoning on two or three variables at
the 14-billion-parameter scale. However, the
performance of state-of-the-art models such as
GPT4o degrades below random chance as the
number of variables increases. We identify and
analyze several key failure modes.

1 Introduction

Evaluating the causal reasoning abilities of gener-
ative AI has become a popular research area, es-
pecially given the advancements of modern LLMs
(Zhang et al., 2023; Kıcıman et al., 2023; Cai et al.,
2023; Liu et al., 2024). However, there are at least
two major challenges with regards to the effective-
ness of causal reasoning benchmarks: 1) clearly
defining the targeted abilities and 2) disentangling
reasoning processes from confounding factors such
as data contamination and shortcuts. In this study,
we tackle these two challenges and propose a dy-
namic evaluation framework in which the models
are instructed to discover causal rules by interact-
ing with hypothetical entities.

Although human causal reasoning has been sys-
tematically studied in various domains including
computer science, psychology, and cognitive sci-
ence (Goldvarg and Johnson-Laird, 2001; Gopnik

et al., 2004; Pearl, 2009; Goddu and Gopnik, 2024),
we still observe blurred lines among different facets
of causal reasoning in the current AI literature,
where the term “causal capabilities" may refer to
a range of abilities from retrieving commonsense
knowledge (Du et al., 2022; Frohberg and Binder,
2022; Srivastava et al., 2022) to multi-step struc-
tural inference (Jin et al., 2023).

We bifurcate causal reasoning skills into two gen-
eral categories based on whether or not the reason-
ing process depends on existing world knowledge
of causal facts (e.g., given a known causal rela-
tionship between X and Y such that X causally
impacts Y ). Fact-dependent abilities include effect
retrieval, cause retrieval, and mechanism explana-
tion. While all types of fact-dependent abilities
fit under the general framework of causal reason-
ing, none of them requires a genuine understanding
of causality. In other words, applying knowledge-
based causal abilities requires no higher level of
sophistication than superficial knowledge retrieval.

In contrast, fact-independent reasoning abilities
represent the foundational mechanisms of causal
reasoning, which do not rely on exhaustive knowl-
edge of causal facts. These abilities enable humans
to derive new causal insights, design experiments,
and build the body of common knowledge. Hu-
mans develop foundational causal reasoning skills,
such as reasoning about immediate context and ac-
tions, in the early stages of cognitive development
prior to language acquisition (Goddu and Gopnik,
2024). As a result, LLMs may lack causal rea-
soning skills parallel to early-stage human causal
reasoning through interactions, which serves as a
foundation for more advanced reasoning processes
(Goddu and Gopnik, 2024). In this paper, we de-
fine a causal capability named action identification,
which entails identifying the correct intervention,
observing the effects of its action, and reasoning
about whether a causal relationship exists.

The key contributions of our work are threefold:
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• We introduce a novel multi-round interactive
evaluation framework for causal reasoning,
designed to isolate the effects of grounded
knowledge and semantic cues. This method
is broadly applicable beyond the specific
use case demonstrated in this paper. The
framework and code is available at https:
//github.com/JinyueF/CausalLink.

• We systematically evaluate and compare a
series of LLMs, establishing our evaluation
framework as a reliable benchmarking tool.

• We analyze failure modes in state-of-the-art
models, identifying recurring "cognitive bi-
ases" that affect their causal reasoning.

2 Related Work

Current causal benchmarks usually evaluate mod-
els with cases developed from real-world causal
scenarios (Du et al., 2022; Frohberg and Binder,
2022; Srivastava et al., 2022; Kıcıman et al., 2023;
Jin et al., 2023; Wang, 2024). While real-world
causal cases are undoubtedly effective in testing
fact-dependent causal skills (Kıcıman et al., 2023),
researchers must carefully mitigate the potential
bias that causal claims can be made with knowledge
recall rather than actual reasoning (Cai et al., 2023).
Previous mitigation included reversing the direc-
tion of causality to make causal relations counter-
factual (Jin et al., 2023), using nonsensical descrip-
tors to eliminate semantic cues (Jin et al., 2023),
and questioning the model from multiple perspec-
tives differentiating the directions of causality and
the presence of interventions (Wang, 2024). Our
solution is to construct a hypothetical world from
scratch with underlying causal rules, which offers
several distinctive advantages compared to previ-
ous work. First, the causal relations in the bench-
mark are systematically generated from causal
graphs, allowing precise control over the difficulty
of the task. Second, the causal entities are cus-
tomizable and can be designed to be entirely free of
linguistic or contextual clues that could otherwise
create semantic shortcuts in reasoning. Finally, the
interactive nature of the benchmark allows for the
analysis of model strategies.

2.1 Causal Reasoning in LLMs

Chan et al. (2023) evaluated temporal, causal, and
discourse relation tasks and found that ChatGPT
achieved the best performance relative to fine-
tuned SotA models in causal relation tasks specifi-

cally. This work again confirmed the models’ abil-
ity to match commonsense knowledge patterns in
causality-related tasks. By contrast, Jin et al. (2023)
showed that even the most advanced GPT-4 model
(OpenAI, 2023) struggles with the formal causal
reasoning task, CLADDER. They proposed a tai-
lored Chain-of-Thought prompt (Wei et al., 2022b)
that marginally increases the overall accuracy from
64.28% to 66.64% (Jin et al., 2023). Liu et al.
(2023) investigated causal reasoning abilities in
code-based LLMs and reported that models lever-
aging code prompts — which explicitly encode
conditional structures — exhibit superior perfor-
mance in identifying causal relations. Jin et al.
(2024) introduced the Corr2Cause benchmark to
assess the ability of LLMs to infer causation from
correlational data, showing that these models often
perform near chance levels when faced with out-
of-distribution examples. Finally, Chi et al. (2024)
proposed the G2-Reasoner framework, which aug-
ments LLMs with external general knowledge and
goal-driven prompts to elevate their reasoning from
simple, fact-dependent associations (level-1) to-
ward more robust, inference-driven capabilities
(level-2). While LLMs show notable strengths in
leveraging vast amounts of training data to rec-
ognize common causal patterns, significant gaps
remain in achieving genuine, context-independent
causal reasoning.

2.2 Interactive Evaluation
Advancements in conversational language mod-
els have paved the way for interactive evaluations,
moving beyond the limitations of traditional static
datasets. Prior to the era of LLMs, Kiela et al.
(2021) identified the need for dynamic benchmark-
ing to address the rapid saturation of model perfor-
mance on static datasets. This need has become
even more pronounced as models are increasingly
exposed to vast amounts of training data. Platforms
like Chatbot Arena (Chiang et al., 2024) have intro-
duced effective evaluation methods by leveraging
human preferences, where rankings emerge natu-
rally through pairwise battles rather than relying on
predefined ground-truth labels. Similarly, Hu et al.
(2024) proposed GameArena, a framework that
evaluates reasoning abilities through human-AI in-
teractions constrained by gaming rules designed to
test deductive and inductive reasoning.

Building on these approaches, we argue that dy-
namic benchmarks are inherently more effective
and flexible; however, we aim to reduce reliance on
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human involvement. While some may view close-
form labels as a weakness (Chiang et al., 2024),
we argue that they offer a clear and objective stan-
dard. Our framework introduces carefully designed
programs as stand-ins for human evaluators, en-
abling robust interaction-driven assessments while
maintaining scalability and consistency.

3 Framework Description

CausalLink evaluates causal reasoning in language
models through interactive simulations grounded in
formal causal graphs. The system comprises three
integrated components: (1) a configurable causal
graph generator that encodes ground-truth relation-
ships, (2) a dynamic simulation environment where
variables map to interactive entities, and (3) a lan-
guage model interface that tests causal understand-
ing through multi-step interventions. Each compo-
nent is formalized as follows.

3.1 Causal Graph Construction
The foundational causal structure is implemented
as a directed acyclic graph (DAG). We support
three core structural paradigms: direct causation
(A → B), mediation (A → B → C), and con-
founder (A← B → C). Optional secondary edges
(A→ C) are allowed in confounder structures, al-
lowing exploration of both canonical and perturbed
causal configurations. The perturbed confounder
structure inherently contains the collider structure
(A → B ← C). We also allow randomly gener-
ated DAGs with any number of variables for test
cases with varying difficulty. For random causal
graphs, structural integrity is maintained through
constrained edge generation. Causal connectiv-
ity between variables is algorithmically validated,
which serves as ground truths in our evaluation. We
implement graphical computation using the Net-
workX (Hagberg et al., 2008) library.

3.2 Interactive Simulation Environment
In our experiments, we define a simulated environ-
ment called ShapeWorld where the abstract causal
variables are represented as geometric shapes with
dynamic states, moving or static. Given a causal
graph G = (E, V ), for any edge e ∈ E from
v1 ∈ V to v2 ∈ V , v1 and v2 represent two shapes
s1 and s2 such that the movement of s1 causes s2
to move. Models can manipulate shapes by either
moving them, thereby activating their causal de-
scendants, or holding them in place, which prevents
movement if no other causal factors remain. Causal

effects propagate throughout the system according
to the underlying graph structure, and deactivating
an influence follows a backward-tracing process
to verify dependencies and remove effects accord-
ingly. Our implementation follows Markovian state
transitions such that each intervention’s effects de-
pend solely on the current set of active elements
and the causal graph structure.

While we use ShapeWorld as an example, our
general framework can be extended to other sim-
ulated environments with different themes. We
choose geometric shapes as causal entities because
they have minimal semantic meaning, minimizing
the risk of models relying on pretraining biases or
external knowledge. This design choice allows us
to isolate causal reasoning from knowledge ground-
ing, ensuring that model performance reflects an
understanding of causal relationships rather than
memorized associations. To construct a new sim-
ulated environment within our framework, several
key principles must be followed. First, each vari-
able in the causal graph should correspond to a
pair of an entity and its change. Despite our setup
having only one type of change (movement), the
system can incorporate multiple types of changes as
long as the mapping between causal relationships
and observed transformations is clear. Second, the
environment must include a static or neutral state
for entities, preserving the visibility of the under-
lying causal graph. In other words, it is necessary
to maintain the possibility of removing the effects
of a variable from the system. Finally, the system
must define well-structured interventions that can
reliably activate changes in an entity, ensuring that
causal dependencies can be systematically tested.

3.3 Language Model Interaction Protocol
We evaluate LLMs through templated dialogues,
requiring models to select shapes to intervene, inter-
pret the feedback from the environment after each
action, and conclude whether a specified causal
relationship exists. The interaction process is illus-
trated in Figure 1. We present the general idea of
the prompting process for the four phases shown in
Figure 1 in this section and provide complete sets
of prompts in the appendix.

Initialization: We present the settings of the
hypothetical world of shapes and specify the rules
of the task. We give the models the initial states
of each shape in the system and propose a ques-
tion that asks whether the movement of one shape
causes the movement of another.
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Figure 1: Illustration of the interaction process between our CausalLink system and a language model. This figure
demonstrates an example test case where the model hypothetically correctly solves the task.

Model Acc. (F) Acc. (T) Acc. Avg. Steps Err.
Llama 3.2 3B(AI@Meta, 2024b) 0.766 0.622 0.702 1.88 5
Llama 3.1 8B (AI@Meta, 2024b) 0.979 0.189 0.631 3.35 0
Mistral 7B(*) (Jiang et al., 2023) 0.957 0.216 0.631 1.02 3
Qwen2.5 3B (Yang et al., 2024) 0.894 0.297 0.631 1.00 0
GPT-4o-mini (OpenAI, 2024a) 1.000 0.243 0.666 1.54 0
Qwen2.5 14B (Yang et al., 2024) 0.936 0.622 0.797 2.23 1
DS-Distill Qwen 14B(DeepSeek-AI, 2025) 0.826 0.789 0.809 2.02 4
Qwen2.5 32B (*) (Yang et al., 2024) 0.979 0.784 0.893 1.68 1
DS-Distill Qwen 32B (*) (DeepSeek-AI, 2025) 0.979 0.865 0.929 1.63 0
Llama 3.1 Nemotron 70B(*) (Wang et al., 2024) 1.000 0.892 0.952 2.40 0
Gemini 2.0 Flash (Mallick and Kilparick, 2025) 0.787 0.919 0.845 1.40 0
GPT-4o(*) (Hurst et al., 2024) 0.915 0.892 0.904 1.57 0

Table 1: Model Performances on the core set. Acc. (F) and Acc. (T) refer to accuracy scores on test cases with
False and True ground truth labels respectively. Err. refers to the number of errors due to invalid formats, invalid
answers, or invalid actions. Models with (*) perform better with rate-limiting instruction and models without (*)
perform better without rate-limiting instruction. DS-Distill is a shorthand form of "DeepSeek Distilled".

You are in a world of shapes. The movements
of shapes follow internal causal rules. You are
required to interact with the shapes until you can
answer a question about the causal rules. All
changes in the world are deterministic and con-
sistent. There is no hidden confounder. You can
either 1) move a static shape or 2) hold a moving
shape. A shape only stops moving when there
are no other causes of its movement.
Following are your current observations: (initial
states of shapes)
Please interact with the shapes to answer: Does
triangle moving cause square to move?

Intervention Phase: We ask the model to pro-
pose JSON-formatted {shape, action} pairs, which
we use to apply interventions to our system.

Please propose your interaction. Please provide
your response by filling the JSON:
{"shape":"", "action":""}

State Reflection: We feed the model with post-
intervention state updates and request the model to
either continue interaction or answer the question.

Following your last action, the current states of
shapes are: (current states of shapes)
Based on the results you observed so far, please
decide to continue the interaction or answer the
question.

Conclusion: We conclude a test case when the
model is ready to answer the question. The model
delivers a final yes/no judgment.

You are ready to answer the question:
(question)

3.4 Experiment Setup
Our experiments are divided into two primary com-
ponents. The first, referred to as the core set,
comprises only direct (two-variable), mediation
(three-variable), and confounder (three-variable)
causal structures. The second, the advanced set,
features randomly generated causal graphs that in-
clude more than three variables. We use the core
set as a comprehensive test of basic causal struc-
tures. For each causal structure in the core set, we
systematically generate all possible initial config-
urations of active nodes and formulate pairwise
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causal queries (i.e., A→ B and B → A) for every
pair of shapes. To create a comprehensive set of
initial setups, we enumerate all combinations of
nodes, simulate the cascade of causal effects based
on the underlying graph, and eliminate redundant
configurations. This results in 84 test cases for the
core set.

The advanced set is designed to simulate increas-
ingly complex problems. We rely on randomized
experiments to increase the likelihood of capturing
the most challenging cases. Given the rapid growth
of combinatorial possibilities, it is infeasible to ex-
haustively test all configurations of experimental
setups and cause-effect pairs. Therefore, for the
advanced set, we restrict our analysis to the "all-
active" setup, where all shapes are in motion, and
we randomly sample six pairs of variables for each
generated graph. This method balances computa-
tional feasibility with sufficient complexity to eval-
uate model performance on more difficult causal
inference tasks. We generate 50 random graphs
with 50% connectivity for 4 to 7 variables, result-
ing in 1200 test cases for the advanced set.

For a test case with n variables, the model is
allowed up to 2n intervention steps, after which it
is considered to have failed due to timeouts. We
assess model performance using three key met-
rics: accuracy, defined as the proportion of correct
causal judgments relative to the ground-truth graph;
efficiency, measured as the mean number of steps
required to reach a final judgment; and robustness,
evaluated based on the frequency of invalid actions,
format errors, and timeouts. We run the experi-
ments twice with two prompting strategies: the
basic prompt and one that specifically instructs the
models to reach the conclusion in the fewest steps
possible. We limit prompt engineering to avoid
conflating the evaluation of reasoning ability with
instruction-following.

In our experiments, we capture 3 error modes:
invalid action (where the model attempts to choose
action-shape pairs outside of valid settings), in-
valid format (where the model fails to follow the
instructed format), and invalid answer (where the
model answers neither yes nor no).

4 Experiment Results

4.1 Core Set Performance

We run experiments on both locally deployed open-
source models using the HuggingFace Transformer
(Wolf et al., 2020) library and OpenAI GPT models

and Gemini 2.0 Flash through API calls. We report
the better performance out of the two prompting
strategies in Table 1 and present the complete sets
of results in Appendix E.

The results indicate that causal reasoning on our
core set of test cases aligns with the pattern of emer-
gent abilities (Wei et al., 2022a), with reasoning
skills generally appearing at scales of 14 billion pa-
rameters and above. Smaller models except Llama
3.2 3B exhibit a strong bias toward concluding that
no causal relationship exists, achieving a maximum
of only 29.7% (GPT-4o-mini) accuracy rate of pos-
itive cases. Llama 3.2 3B generates relatively bal-
anced outputs but still underperforms with 70.2%
accuracy. Llama 3.1 Nemotron 70B outperforms
other models, including GPT-4o, achieving 95.2%
accuracy. Additionally, providing an instruction to
reach the conclusion as quickly as possible gener-
ally benefits larger models but negatively impacts
smaller ones. We observe that this instruction limits
the generation of error-prone and sometimes contra-
dicting rationales in larger models, allowing them
to reason more accurately with fewer interactions.
This phenomenon is particularly pronounced in the
DeepSeek-distilled Qwen 2.5 32B model, which
shows a remarkable 30.2% performance improve-
ment when the instruction is applied. One special
case is the best-performing Llama 3.1 Nemotron
model whose accuracy and the average number of
steps both increase with the step-limiting instruc-
tion. Figure 2 shows side-by-side comparisons of
model performances across the three causal struc-
tures. Models achieving more than 80% overall
accuracy can perfectly solve all of the two-variable
cases, with which the smaller models struggle. As
shown by the error bars in Figure 2, we also observe
greater variability in performance across different
initial setups in the mediation structure compared
to the confounder structure.

Although large models achieve seemingly strong
performance, we argue that the core set is inten-
tionally designed to be fundamental and straight-
forward. Any failure on these tasks suggests gaps
in the action identification skill we aim to evalu-
ate. We will explore failure cases further in the
following sections.

4.2 Advanced Set Performance
Due to practical constraints on computational re-
sources, we select GPT4o and Gemini 2.0 Flash
as the test models for the advanced set study be-
cause of their representative performance on the
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Figure 2: Comparison of model performances by causal structures. Similar to Table 1, this graph only showcases
the better performance out of the two prompting strategies for each model. We recognize perfectly solving cases
with direct causal structures as the indicator of basic causal capability. Error bars indicate the standard error of
accuracy with respect to initial setups.

core set and their widespread popularity. Figure 3
shows the performance of the two models across
the core and the advanced sets grouped by the num-
ber of variables. We observe a clear pattern that
the model’s performance degrades as the number
of variables increases.

Although the number of variables increases, the
fundamental reasoning processes required to solve
the task remain unchanged. For humans, the in-
creased difficulty may stem primarily from the
cognitive demand of managing more information
(Sweller, 2011) rather than requiring more sophis-
ticated reasoning skills. The observed decline in
models’ performance as the number of variables
increases may suggest a lack of genuine causal
reasoning. This deficiency is less apparent in the
simpler core set but becomes more evident when
the complexity of the problem increases.

Figure 3: Performance of GPT4o and Gemini 2.0 Flash
on ShapeWorld with increasing number of variables.
We compare the average accuracy score among the "all-
active" initial setups for fairness.

5 Discussion

5.1 Observed Abilities in Simple Settings
In our study, models at the 14B scale and above
exhibit a basic understanding of causal interven-
tion. When prompted with a question, the mod-
els reliably select the cause variable to intervene
and observe the corresponding effect. They also
demonstrate the capability of identifying potential
confounding variables in simple settings; for exam-
ple, when the effect variable is already moving in
the initial setup, the models may attempt to halt its
movement by holding a shape that is neither the
cause nor the effect variable. Additionally, these
models are generally efficient at solving the prob-
lem, rarely engaging in unnecessary or repeated
interaction steps.

5.2 Observed Weaknesses in Complex
Settings

Despite demonstrating basic causal reasoning abil-
ities in simpler scenarios, state-of-the-art models
do not scale well to more complex setups. Perfor-
mance declines sharply as the number of variables
increases, dropping below random chance when
the variable count exceeds six, highlighting a clear
gap in causal reasoning capabilities. While mod-
els are generally efficient, they sometimes fail by
prematurely jumping to conclusions without suffi-
cient evidence (see section 5.3 for examples). Addi-
tionally, even when all necessary observations are
available, models can misinterpret causal relation-
ships and arrive at incorrect conclusions. Notably,
our experimental setup is already a highly distilled
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simulation of real-world causal reasoning, reduc-
ing complex interactions to the movements of ab-
stract shapes. Furthermore, we design interactions
such that the underlying causal structure is fully ob-
servable through interventions, whereas real-world
scenarios often present much greater ambiguity.
The fact that models struggle even under these con-
trolled conditions underscores the limitations of
their causal reasoning abilities.

5.3 "Cognitive" Bias in Failure Cases
We now present case studies on model failure
modes. To ensure the validity of our analysis, we
focus only on recurring error patterns in models
that perform well on the core set. Table 2 shows
the prevalence of each type of failure mode and
how we identify each patter.

Our findings suggest that these "cognitive bi-
ases" stem not from a lack of causality-related
knowledge (e.g., confounding variables) but rather
from its misapplication. While models often gener-
ate rationales that include correct principles—such
as "to conclude causality, I need to isolate the
effects"—their actual behaviour does not always
align with their stated reasoning.

In the following examples, (m) indicates a shape
is moving and (s) indicates a shape is static.

Root Cause Bias As discussed in Section 4.1,
even the best-performing models may struggle with
the simple mediator structure. Given the causal
structure A → B → C, where B mediates the
effect of A on C, it is important to recognize both
A and B as the cause of C. This concept is crucial
in front-door adjustment, a key technique in causal
inference (Pearl, 2009). However, we observe a
prevalent pattern that models incorrectly disregard
the mediate as a potential cause as soon as they
figure out the root cause. Models tend to attribute
movements of the shapes to be systematically de-
pendent on the root cause and do not attempt to
further investigate other internal interactions. De-
spite explicit instructions in the prompt allowing
for multiple causes, models remain biased toward
the false assumption that only a single cause is
responsible for an effect.

Does the square moving cause the circle to
move?
Setup: triangle (m); square (m); circle (m)
[hold square]
triangle (m); square (m); circle (m)
[hold triangle]
triangle (s); square (s); circle (s)
Model (Nemotron) Answer: no

Correlation Bias Language models may strug-
gle to differentiate correlation from causation.
When two variables exhibit the same behaviour
across multiple actions, models tend to infer a
causal relationship as soon as their states change
together. In such cases, models may disregard the
direction of causality entirely or the existence of a
confounder.

Does the octagon moving cause the triangle to
move?
Setup: triangle (m); octagon (m);
rectangle (m); circle (m)
[hold octagon]
triangle (m); octagon (m);
rectangle (m); circle (m)
[hold rectangle]
triangle (m); octagon (m);
rectangle (m); circle (m)
[hold circle]
triangle (m); octagon (m);
rectangle (m); circle (m)
[hold triangle]
triangle (s); octagon (s);
rectangle (s); circle (s)
Model (GPT4o) Answer: yes

Another form of correlation bias occurs when
the effect shape is already moving in the initial
state. In such cases, the model moves the supposed
cause shape and infers causality when it observes
both shapes in motion.

Does the circle moving cause the triangle to
move?
Setup: triangle (m); square (s); circle (s)
[move circle]
triangle (m); square (s); circle (m)
Model (GPT4o) Answer: yes

Interestingly, this type of correlation bias does
not appear in the direct causal structure. One possi-
ble explanation is that the presence of a static third
shape (e.g., the square) leads the model to assume
that confounding factors are controlled. This as-
sumption may then reinforce its incorrect inference
of causality.

Illusive Confounder Bias The illusive con-
founder bias complements the correlation bias such
that the model refuses to identify a positive causal
relationship due to the potential existence of con-
founders even if there is evidence against it. In the
following example, holding the triangle effectively
eliminates the movement of the square as a poten-
tial confounder. However, the model mistakenly
concludes that the square may be an intermediary
factor, confusing mediators with confounders, and
denies the causal relationship.
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Failure Mode Percentage Result Characteristic Pattern
Root Cause Bias 42.6% False negative all shapes become static
Correlation Bias 14.8% False positive two shapes in question act the same
Illusive Confounder Bias 11.1% False negative all necessary evidence present
Reverse Collider Bias 11.1% False negative two shapes in question not in sync

Table 2: Prevalence of failure modes by percentage of occurrences among 55 failed cases on the core set (using both
prompting strategies) from the three best-performing models (Nemotron, DS-distill Qwen 32B, and GPT4o). Note
that 20% of the failure cases are not categorized due to variations in failure patterns.

Does the triangle moving cause the circle to
move?
Setup: triangle (m); square (m); circle (m)
[hold triangle]
triangle (s); square (s); circle (s)
Model (DeepSeek Distilled Qwen 2.5 32B) An-
swer: no

Reverse Collider Bias In causal inference, the
collider structure is characterized by two cause
variables (A and B) influencing the same effect
variable (C) (Pearl, 2009). A collider bias refers
to the false positive claim of causality where the
cause and effect variables (A and B) in question
both influence a third common variable (C) that is
controlled due to problematic experimental design
(Pearl, 2009; Holmberg and Andersen, 2022). We
observe a related but different pattern in language
models where the model controls A and concludes
A does not cause C because there is another vari-
able (unidentified B) that also causes C.

Does the square moving cause the hexagon to
move?
Setup: square (m); ellipse (m); hexagon (m);
circle (m)
[hold square]
Setup: square (s); ellipse (m); hexagon (m); circle
(m)
Model (GPT4o) Answer: no

5.4 The effect of Chain-of-Thought (CoT)
Prompting: A Case Study on Gemini 2.0
Flash

As a case study, we evaluate the impact of chain-
of-thought (CoT) prompting (Wei et al., 2022b) on
Gemini 2.0 Flash, a model selected for its promis-
ing reasoning indicators — achieving perfect ac-
curacy on the direct causal structure and produc-
ing a balanced distribution of positive and nega-
tive predictions — while still exhibiting room for
improvement on the core set. We test two CoT
prompting strategies: (1) a generic zero-shot CoT
prompt that simply instructs the model to "think
step by step," and (2) a system-level CoT prompt
that provides a clearly defined sequence of reason-

ing steps guaranteed to yield the correct result. Full
prompt sets are provided in Appendix A.2. Our
findings highlight a key trade-off in the use of CoT
prompting for evaluating reasoning. Generic zero-
shot CoT, which avoids embedding explicit struc-
ture into the prompt and therefore maintains the
integrity of a reasoning-focused evaluation, yields
only a marginal gain (84.3% to 85.5%). In con-
trast, prompts carefully engineered to guide the
model through a specific sequence of reasoning
steps produce a dramatic performance increase (up
to 97.6%), but at the cost of conflating reasoning
ability with instruction-following.

6 Conclusion

In this paper, we introduced CausalLink, a novel
interactive evaluation framework that rigorously
assesses a fact-independent causal reasoning skill
that we term "action identification" in LLMs. By
constructing a controlled, simulated environment
with predefined causal relationships, we effectively
isolate genuine reasoning from the confounding
influences of world knowledge and semantic cues.
This approach not only enables precise measure-
ment of causal reasoning abilities but also offers
a generalizable methodology for a wide range of
experimental designs.

Our empirical evaluations reveal that, although
larger models demonstrate foundational causal rea-
soning skills, their performance becomes increas-
ingly fragile as the complexity of causal interac-
tions grows. Importantly, we identify recurring
cognitive biases—including single cause bias, cor-
relation bias, and illusive confounder bias. These
underscore a critical gap: models misapply their
causal knowledge rather than lack it outright. These
discrepancies between the models’ articulated rea-
soning and their actual behaviour highlight the lim-
itations of current approaches in achieving robust,
context-independent causal reasoning.

By establishing a new benchmark for causal in-
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ference, our study underscores the need for im-
proved methodologies that enhance both the reli-
ability and generalizability of causal reasoning in
AI systems. Future directions include mitigating
model biases and extending the framework to eval-
uate more aspects of causal reasoning.

7 Limitations

7.1 Knowledge-agnostic causal reasoning

Disentangling grounded knowledge from the rea-
soning process remains a challenging and impor-
tant task that helps assess whether models can gen-
eralize causal reasoning to novel scenarios without
being biased by encoded knowledge. While we
strive to achieve this, we acknowledge several limi-
tations in our current approach.

First, our synthetic environment does not fully
capture the complexity of real-world causal struc-
tures. The experimental setup employs symbolic
representations for entities which, while effective
in controlling for semantic cues, lacks inherent
real-world meaning. While this design choice min-
imizes confounding factors related to knowledge
recall, it may also alter model behaviour in unin-
tended ways. Future research should further ex-
plore whether models rely on semantic informa-
tion for causal reasoning and how best to introduce
fine-grained controls to separate genuine reasoning
from implicit knowledge recall.

Second, our system enables fully automated in-
teractions, requiring human effort only in the initial
design of a hypothetical world, the naming of en-
tities, and the identification of associated changes.
While this allows for the efficient generation of
large-scale test cases, the structured nature of these
cases may lead to overly rigid evaluations. We be-
lieve that interactive benchmarks should become
the standard for evaluating language models’ causal
reasoning abilities. However, further studies are
needed to determine the optimal balance between
efficiency and flexibility in such benchmarking sys-
tems.

7.2 Causal structures and test difficulty

Our experimental setup relies on randomly gener-
ated causal graphs, which entails statistical sound-
ness but limits our ability to precisely control the
causal structures that models encounter. Carefully
designed complex causal graphs may yield new
insights into model performance.

Additionally, test case difficulty does not always

scale with the number of variables. For example,
if the initial setup consists of entirely static shapes,
the correct solution remains the same (acting on
the cause shape and observing the effect shape) re-
gardless of the total number of shapes present. To
address this, we adopt an "all-active" setup, where
all entities are subject to potential changes. While
this effectively increases task difficulty as a func-
tion of the number of variables, it also reduces our
ability to precisely manipulate test complexity.

Furthermore, our current design, which distin-
guishes only between movement and static states,
represents a simplified model of causality. Intro-
ducing additional actions, changes, and interactions
could enhance the challenge for models even in
cases with a limited number of entities.

7.3 Model Performance

Our observations and conclusions are restricted to
the models tested in this study. Due to constraints
on computational resources and access to propri-
etary models, we do not present exhaustive results
across all available large language models. While
our findings provide valuable insights, broader gen-
eralization to other models remains an open ques-
tion. Future research should aim to expand cover-
age across a wider range of models and architec-
tures to obtain a more comprehensive understand-
ing of causal reasoning capabilities.
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A Prompts

We follow a step-by-step prompting structure (see
A.1) where the prompts (see A.2) are categorized
as system, initial, choice, interaction, and answer.
At each step, prompts are combined and format-
ted with generated strings describing questions or
current states of shapes.

We only apply the system role where applicable,
otherwise all instructions are given through the user
role.

A.1 Step-by-Step Prompting Structure

1. Initial Setup: System prompt + Initial
prompt

2. Choice: Updates on shape status +Choice
prompt

3. Interaction: Interaction prompt

4. Answer: Answer prompt

The program starts the conversation by present-
ing the initial setups and then loops between choice
and interaction until the model chooses to answer
the question.

A.2 Prompts in Experiments

System
You are in a world of shapes. The movements

of shapes follow internal causal rules. You are re-
quired to interact with the shapes until you can an-
swer a question about the causal rules. All changes
in the world are deterministic and consistent. There
is no hidden confounder. Please reach the conclu-
sion in the least number of steps possible (only for
the step-limiting prompting strategy).

You can either 1) move a static shape or 2) hold
a moving shape. A shape only stops moving when
there is no other causes of its movement.
Initial

Following are your current observations: {}
Please interact with the shapes to answer: {}
Please propose your first interaction. Please pro-

vide your response by filling the JSON below:
- The value to "shape" field must be one of the

listed shapes: {}
- The value to "action" field must be one of the

listed actions: {}
{"shape":"","action":""}

Choice

22323

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/policies/terms-of-use/
https://aclanthology.org/2024.sighan-1.17
https://aclanthology.org/2024.sighan-1.17
https://aclanthology.org/2024.sighan-1.17
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Based on the results you observe so far, please
decide to continue interaction or answer the ques-
tion: {}.

Please provide your response by filling JSON
below:

- The value to "next" field must be either "con-
tinue interaction" or "answer the question"

{"next":""}
Interaction

Please propose your next interaction. Please
provide your response by filling the JSON below:

- The value to "shape" field must be one of the
listed shapes: {}

- The value to "action" field must be one of the
listed actions: {}

{"shape":"","action":""}
Answer You are ready to answer the question: {}

Please answer the question by filling the JSON
below.

- The value to "answer" field must be "yes" or
"no"

{"answer":""}

A.3 Chain of Thought

Step-by-step System Level Prompt
You are in a world of shapes. The movements

of shapes follow internal causal rules. You are re-
quired to interact with the shapes until you can an-
swer a question about the causal rules. All changes
in the world are deterministic and consistent. There
is no hidden confounder.

You can either 1) move a static shape or 2) hold
a moving shape. A shape only stops moving when
there is no other causes of its movement. Please
reach the conclusion in the least number of steps
possible.

To conclude the causal relation exist, make sure
you: 1. Identify the cause shape and the effect
shape. For example, in the question "does the cir-
cle’s movement cause the triangle to move?", the
cause shape is the circle and the effect shape is the
triangle. 2. Make both shapes static. Other shapes
in the world may cause them to move. Identify and
stop those causes accordingly. 3. Move the cause
shape and observe the effect shape. 4. Answer the
question.

B Experiment Details

For all of the models in our experiments, we use the
original configuration of hyperparameters released

with the models. We stick to any recommended set-
ting (for example, temperature = 0.6 for DeepSeek
Distilled models) provided by the models’ authors.
Details of each model are linked in Table 3. The
models are instructed by the prompts to answer in
JSON formats, but we also allow an output length
of up to 2048 characters to accommodate any rea-
soning processes models may generate.

We run experiments once using the setups de-
scribed in Section 3.4. We implement the chat-style
interface with HuggingFace’s text-generation
pipeline1, OpenAI’s chat completions APIs2,
and Google GenAI’s chat APIs 3. Runtimes of
the experiment vary depending on the sizes of the
model, ranging from approximately 1 hour to 4
hours. GPUs used in the experiments are specified
in Table 3.

C The Use and Release of Scientific
Artifacts

C.1 Models, Licenses, and Hardware
Model cards, licenses, and GPU hardware
used to run each model are listed in ta-
ble 3. The OpenAI models we use in
the experiments are gpt-4o-2024-08-06 and
gpt-4o-mini-2024-07-18. Our use of the models
is consistent with their intended uses as specified
in the licenses and terms of use.

C.2 Release of Artifact
Code for CausalLink is released under the MIT
License. Due to the interactive nature of our evalu-
ation framework, we do not produce any datasets
as an artifact.

D Use of AI Assistants

Generative AI assistants are used to polish original
content and identify relevant literature. The authors
check, review, and edit any generated content or
suggested references to ensure accuracy. We do not
use generative AI for new ideas.

For coding, we use AI assistants to help with non-
novel components (including regular expressions,
statistics computation, and plotting).

1HuggingFace Text Generation Pipeline
2OpenAI Text Generation
3Google genai text generation
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Model Card (linked) License GPU used
Llama 3.2 3B (AI@Meta, 2024a) 1 A40
Llama 3.1 8B (AI@Meta, 2024a) 1 A40
Mistral 7B (Apache, 2004) 1 A40
Qwen 2.5 3B (Cloud@Alibaba, 2024) 1 A40
Qwen 2.5 14B (Cloud@Alibaba, 2024) 1 A40
Qwen 2.5 32B (Cloud@Alibaba, 2024) 1 A40
DS-Distill Qwen 14 B (DeepSeek, 2023) 1 A40
DS-Distill Qwen 32B (DeepSeek, 2023) 2 A40
Llama 3.1 Nemotron 70B (NVIDIA, 2024) 4 A40
GPT4o (OpenAI, 2024b) -
GPT4o mini (OpenAI, 2024b) -
Gemini 2.0 Flash (Google, 2021) -

Table 3: Models and GPU hardware.

E Proximal Experiment Results

Experiment results using basic and step-limiting
prompting strategies are listed in Table 4 and Table
5.
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Model Acc. (F) Acc. (T) Overall Acc. Avg. Steps Err. Count
Llama 3.2 3B 0.766 0.622 0.702 1.88 5
Llama 3.1 8B 0.979 0.189 0.631 3.35 0
Mistral 7B 0.915 0.189 0.595 1.27 7
Qwen2.5 3B 0.894 0.297 0.631 1.00 0
Qwen2.5 14B 0.936 0.622 0.797 2.23 1
DeepSeek Distill Qwen 14B 0.826 0.789 0.809 2.02 4
Qwen2.5 32B 0.957 0.703 0.845 2.75 3
DeepSeek Distill Qwen 32B 0.809 0.432 0.642 1.69 26
GPT-4o-mini 1.000 0.243 0.666 1.54 0
GPT-4o 0.915 0.838 0.881 1.59 0
Llama 3.1 Nemotron 70B 1.000 0.784 0.905 2.29 0
Gemini 2.0 Flash 0.787 0.919 0.845 1.40 0

Table 4: Model Performance (basic template)

Model Acc. (F) Acc. (T) Overall Acc. Avg. Steps Err. Count
Llama 3.2 3B 0.766 0.622 0.702 1.88 5
Llama 3.1 8B 0.936 0.135 0.583 3.29 1
Mistral 7B 0.957 0.216 0.631 1.02 3
Qwen2.5 3B 0.894 0.297 0.631 1.00 0
Qwen2.5 14B 1.000 0.541 0.798 1.99 0
DeepSeek Distill Qwen 14B 0.851 0.703 0.786 2.01 7
Qwen2.5 32B 0.979 0.784 0.893 1.68 1
DeepSeek Distill Qwen 32B 0.979 0.865 0.929 1.63 0
GPT-4o-mini 0.979 0.189 0.631 1.58 0
GPT-4o 0.915 0.892 0.905 1.57 0
Llama 3.1 Nemotron 70B 1.000 0.892 0.952 2.40 0
Gemini 2.0 Flash 0.723 0.892 0.798 1.42 0

Table 5: Model Performance (Step-limiting template)
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