
Findings of the Association for Computational Linguistics: ACL 2025, pages 22299–22312
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Unsupervised Morphological Tree Tokenizer

Qingyang Zhu1∗, Xiang Hu2∗†, Pengyu Ji3, Wei Wu2†, Kewei Tu3†

1New York University, 2Ant Group, 3ShanghaiTech University
qz2457@nyu.edu

{aaron.hx, congyue.ww}@antgroup.com
{jipy2023, tukw}@shanghaitech.edu.cn

Abstract

As a cornerstone in language modeling, tok-
enization involves segmenting text inputs into
pre-defined atomic units. Conventional statisti-
cal tokenizers often disrupt constituent bound-
aries within words, thereby corrupting semantic
information. To address this drawback, we in-
troduce morphological structure guidance to to-
kenization and propose a deep model to induce
character-level structures of words. Specifi-
cally, the deep model jointly encodes internal
structures and representations of words with a
mechanism named MorphOverriding to ensure
the indecomposability of morphemes. By train-
ing the model with self-supervised objectives,
our method is capable of inducing character-
level structures that align with morphological
rules without annotated training data. Based
on the induced structures, our algorithm tok-
enizes words through vocabulary matching in
a top-down manner. Empirical results indicate
that the proposed method effectively retains
complete morphemes and outperforms widely
adopted methods such as BPE and WordPiece
on both morphological segmentation tasks and
language modeling tasks. 1

1 Introduction

Tokenization, the initial step of language model-
ing, segments natural language into manageable
units. While this process is crucial for represent-
ing natural language, research on new tokenization
methods has remained limited, particularly in con-
trast to the rapid advancements in language model
architectures and learning approaches. Currently,
the de-facto tokenizers are BPE (Sennrich et al.,
2016) and WordPiece (Schuster and Nakajima,
2012), which have been widely adopted by state-
of-the-art language models such as GPT (Radford

∗ Equal contribution.
† Corresponding authors.

1Code is available at https://github.com/
martianmartina/TreeTokenizer. Part of the work
was done during Qingyang’s internship at Ant Group.

Figure 1: BPE (top) tokenizes a word through a bottom-up
greedy merging approach given pre-learned merge operations,
while ours (bottom) tokenizes a word via a top-down vocabu-
lary matching while traversing a global parse tree.

et al., 2019) and BERT (Devlin et al., 2019). How-
ever, numerous studies have challenged these meth-
ods (Bostrom and Durrett, 2020; Church, 2020;
Hofmann et al., 2021; Minixhofer et al., 2023),
arguing that they cannot adequately capture lin-
guistic information. They often disrupt constituent
boundaries within words, leading to unnatural and
fragmented token representations. Figure 1(top)
demonstrates an example where BPE fails to iden-
tify the appropriate boundaries in a word.

According to linguistic theories, both words
and sentences are believed to have internal struc-
tures (Selkirk, 1982; Marvin, 2002; Cotterell and
Schütze, 2015). While sentence-level grammar in-
duction methods based on deep neural networks
are highly effective, whether these methods can
be applied equally well to words remains under-
explored. In this work, we systematically evaluate
neural grammar induction methods at the word
level, propose a hypothesis explaining their subop-
timal performance, and empirically validate this hy-
pothesis. Building on these insights, we introduce
the first effective unsupervised neural grammar in-
duction model at the word level and present a more
morphologically aligned tokenizer that leverages
our model as shown in Figure 1(bottom).

Our approach draws inspiration from syntactic
composition models (Maillard et al., 2017), where

22299

https://github.com/martianmartina/TreeTokenizer
https://github.com/martianmartina/TreeTokenizer

a sentence is encoded as a weighted sum over all
composed root representations of its underlying bi-
nary parse trees via dynamic programming. Instead
of composing a sentence from words, we apply
composition models on characters in a word to in-
duce its morphological parse tree. To train the com-
position model, we propose two self-supervised
objectives akin to next token prediction and span
prediction that effectively leverage both contextual
information at the sentence level and semantic in-
formation at the subword level. Thus the model
can learn to assign higher probabilities to morpho-
logical constituents of a word and induce the un-
derlying morphological parse tree.

However, character sequences present a unique
challenge to composition models because mor-
phemes, the smallest meaning-bearing units in a
language (Jurafsky and Martin, 2009), are indecom-
posable. While we can represent a constituent by
composing its sub-constituents in most cases, we
cannot represent a subword by composing its com-
ponents if the subword is a morpheme. For exam-
ple, the meaning of windsurf can be decomposed
to wind+surf, but wind is a morpheme whose
meaning is not a function of its components. To
address the challenge, we propose a mechanism
named MorphOverriding. During the bottom-up
composition process in our model, upon identifying
a subword that matches an entry in a heuristically
constructed morpheme vocabulary, we compute the
subword representation from both its components
and the corresponding morpheme embedding, i.e.,
the model may learn to mix or override the com-
position with the morpheme embedding. Our ex-
periments show that such a mechanism is critical
in morphological structure induction.

Building upon the resolution of morphological
structure induction, we introduce a novel tokeniza-
tion algorithm named TreeTok, which includes both
vocabulary construction and word segmentation.
During vocabulary construction, TreeTok first uti-
lizes a tree-based BPE variant to build an initial
vocabulary and then applies a tree-based Unigram
variant to prune the initial vocabulary to a speci-
fied size. Because TreeTok operates in a top-down
manner, it does not need to retain all intermedi-
ate tokens produced by merge operations in the
vocabulary as BPE does. By this means, we can
build a more compact vocabulary by pruning less
important subwords. During word segmentation,
we employ a lightweight parser with compact pa-

rameters distilled from the composition model to
parse a word into a character-level binary tree and
then apply top-down vocabulary matching to en-
hance the tokenizer’s alignment to morphological
structure, as illustrated in Figure 1.

In our experiments, which mainly focus on
English, we train TreeTok and baselines on the
Wikitext-103 corpus (McClosky et al., 2006) and
assess their performance on morphological segmen-
tation tasks and language modeling tasks. Evalua-
tion results indicate that TreeTok consistently out-
performs BPE and WordPiece across all the tasks.

In conclusion, our contributions are three-fold:
• We conduct empirical study on character-level

neural parsing, identifying its limitations and
proposing a novel explanation—lack of Mor-
phOverriding—to account for its suboptimal per-
formance.

• Building on the MorphOverriding hypothesis, we
introduce the first effective unsupervised neural
model for character-level structure induction, ad-
dressing a critical gap in the field.

• We show that our character-level structure induc-
tion method can be integrated into mainstream
tokenizers to significantly enhance their perfor-
mance on morphological tasks.

2 Related Work

Subword Tokenizers. Subword tokenization,
with typical methods such as BPE (Sennrich et al.,
2016) and WordPiece (Schuster and Nakajima,
2012), has become customary in most NLP fields.
BPE builds its vocabulary by repeatedly merging
the most frequent subword unit pairs, whereas
WordPiece selects pairs using the highest mutual
information. During tokenization, BPE applies
learned merge operations in the same order to new
text initialized with characters while WordPiece it-
eratively finds the longest match in the vocabulary.
Unigram (Kudo, 2018), another popular tokenizer,
builds its vocabulary in the opposite direction: it
starts with a large set of potential subwords and
prunes them based on delta entropy in a unigram
language model. Our tokenizer aims to build upon
the advantages of these effective statistical tokeniz-
ers and augment them with unsupervised induced
tree structures.

Unsupervised Morphological Segmentation. In
the line of work on unsupervised morphologi-
cal segmentation, the most well-known model is
Morfessor (Creutz and Lagus, 2002), along with

22300

its multiple variants (Creutz and Lagus, 2005;
Grönroos et al., 2014, 2020). In Morfessor, an
online search algorithm is utilized to apply a hier-
archical word splitting strategy with a Minimum
Description Length (MDL) (Rissanen, 1989) cost
function. However, its lack of explicit control
over vocabulary size makes it unsuitable for use
as a tokenizer. In addition, although some stud-
ies (Ataman and Federico, 2018; Hou et al., 2023)
find morphologically motivated segmentation can
improve data-driven tokenizers, most other stud-
ies (Machácek et al., 2018; Domingo et al., 2019;
Sälevä and Lignos, 2021) find no reliable improve-
ment of such methods over BPE. According to
Gallé (2019), the effectiveness of BPE lies in its
superior compression capability. A more detailed
discussion can be found in Mielke et al. (2021).
Some other studies try to model morphological
structures using Bayesian PCFGs (Johnson et al.,
2007) or a non-parametric Bayesian generalization
of PCFGs (Johnson et al., 2006). However, they are
pure statistical models and do not utilize modern
neural methodologies. Our method differs from
previous unsupervised morphological methods in
our character-based structures, thereby possessing
the superior compression capability of BPE. Mean-
while, our method leverages modern neural method-
ologies to better utilize contextual and intra-word
semantic information.

Composition Model. In this work, we utilize a
composition model to induce morphological struc-
tures. Composition models jointly learn represen-
tations and structures of a symbol sequence by
transforming text encoding into a combinatorial
optimization problem. Maillard et al. (2017) pro-
poses a CKY-like (Cocke, 1969; Kasami, 1966;
Younger, 1967) encoder, in which each constituent
is represented as a weighted average of the set of
composed representations computed from different
splits of the constituent. Drozdov et al. (2019) pro-
poses a deep inside-outside encoder (Baker, 1979;
Lari and Young, 1990), enabling the encoder to
learn underlying structures via an auto-encoding
objective. Recently, a series of studies (Hu et al.,
2024a,b) have been conducted to reduce the deep
inside-outside encoder complexity from cubic to
linear, on which our work is based.

3 Methodology

To tokenize a word x = {x1, x2, ..., xn} where xi
is the i-th character, we aim to parse it into a binary

tree and then tokenize it via top-down vocabulary
matching. The parser is a deep composition model
capable of jointly modeling the internal structures
and representations of words. It is trained on se-
quences of words sampled from the corpus and op-
timized with self-supervised objectives that capture
both intra-word compositionality and inter-word
contextual dependencies. In the following sections,
we sequentially introduce the composition model,
training objectives, and the tree-based tokenization
algorithm.

3.1 Composition Model for Word
For a given word x, we denote ii,j as the represen-
tation of subword xi:j = {xi, ..., xj}. The inside
pass (Drozdov et al., 2019) of a composition model
computes a composition vector īki,j and a compat-
ibility score āki,j for each pair of sub-constituents
(i, k) and (k + 1, j). The compatibility score indi-
cates how likely these two sub-constituents are to
be merged. The constituent representation ii,j is
computed as a weighted average over composition
vectors of all possible pairs of sub-constituents as
follows:

āki,j , ī
k
i,j = fα(ii,k, ik+1,j) ,

ŵk
i,j =

exp(āki,j)∑j−1
k′=i exp(ā

k′
i,j)

, ii,j =

j−1∑

k=i

ŵk
i,j ī

k
i,j .

(1)

The inside pass starts with characters by initializing
ii,i with character embeddings and recursively com-
putes constituent representations bottom up follow-
ing Equation 1. Representation i1,n of the whole
word x is regarded as the word embedding EMB(x).
fα is the composition function implemented with
a multi-layered Transformer. An example of the
bottom-up composition process is depicted in Fig-
ure 2(a). In this work, we employ a pruned version
of deep inside encoder (Hu et al., 2024b) as our
backbone, which is easy to scale up, thanks to the
logarithmic parallel time complexity and the linear
space complexity.

The limitation of this approach is that the repre-
sentation of any subword is always composed of
its component pairs, which is incompatible with
the linguistic constraint that morphemes are the
smallest meaning-bearing units and should not be
decomposed further. Hence, we introduce Mor-
phOverriding to enable a subword representation
to disentangle from its component pairs when the
subword is a morpheme. Specifically, we construct
a morpheme vocabulary V heuristically using a

22301

Figure 2: (a) The composition representation of asking (i1,6)
is a weighted sum over all subword pairs such as ask+ing
(̄i31,6) and as + king (̄i21,6). (b) The composition function.
Take ask (i1,3) as an example. s1,3 is EV[ask] if ask∈ V. Thus
the representation of ask depends not only on its components
but also on EV[ask]. However, if asking /∈ V, then s1,6 is
Eempty and the representation of asking (i1,6) only depends
on the composition representation of its components.

statistical method (BPE in this work), in which
each entry is associated with a learnable vector in a
morpheme embedding table E. When xi:j hits the
vocabulary V, we insert its morpheme embedding
si,j into the computation of ii,j , making it possi-
ble to mix or override the composition vector with
the morpheme embedding. Thus, the composition
vector and the compatibility scores can then be
reformulated as:

āki,j , ī
k
i,j = fα(ii,k, ik+1,j , si,j) ,

si,j =

{
EV[xi:j] if xi:j ∈ V
Eempty if xi:j /∈ V

,

Figure 2(b) illustrates the composition function
equipped with MorphOverriding. Our experiments
demonstrate that this mechanism is crucial for
character-level structure induction.

Tree induction. For a given span (i, j), the best
split-point is k with the highest compatibility score
āki,j . Thus, to derive a parse tree, we can recursively
select the best split-points top-down starting from
the root span (1, n). As the pruned inside-outside
encoder produces a lightweight parser (Hu et al.,
2022) with a compact parameter set as a byproduct,
we use it for efficient inference during tokenization.

3.2 Training Objectives

The composition model is trained on contiguous
sequences of words sampled from the corpus rather
than isolated words. The overall loss for training
the composition model is the summation of an intra-
word auto-encoding loss Lae and an inter-word
auto-regression loss Lar. The auto-encoding loss
is based on predicting each character or morpheme
from the rest of a word, leveraging intra-word struc-
ture. The auto-regression loss is based on predict-

ing next word in the sequence that leverages con-
textual cues to disambiguate different underlying
structures of a word. Under these objectives, the
composition model learns to assign proper scores
to each split point of a subword, benefiting from
both intra-word compositionality and inter-word
context.

Auto-encoding Loss (intra-word). Auto-
encoding is a common practice of training a
composition model. For our character-level com-
position model, we try to predict each character xi
based on its neighboring context representations
i1,i−1 and ii+1,n (Hu et al., 2021). However, the
auto-encoding objective turns out to be empirically
ineffective when training our model probably
because unlike word-level auto-encoding that
requires selecting from tens of thousands of words
in a vocabulary, here we only need to select from
tens of characters, which is much less challenging.

To enhance learning efficacy, we propose pre-
dicting both individual characters and morphemes
in the vocabulary V. For instance, given the word
windsurf, we mask out wind and let the model un-
cover the masked morpheme based on the visible
part surf. Analogous to the inside pass, the out-
side pass computes each outside representation oi,j
in a top-down manner based on context information
outside span (i, j), whose details are described in
Appendix A.3. we use oi,j to predict each subword
xi:j that belongs to V:

Lae = − 1

N
∑

xi:j∈V
log

exp(oTi,jEV[xi:j])∑|V|
k=1 exp(o

T
i,jEk)

,

where N is the total number of subwords belonging
to the vocabulary. 2

Auto-regression Loss (inter-word). Given a sen-
tence S = {x1, ...,xm}, whose word embedding is
computed by the composition model, we feed the
composed word embeddings into a causal language
model and let it pick the correct next word from
candidates built via in-batch sampling for each step.
Let ht denote the t-th hidden states of the causal
language model and W denote a deduplicated vo-
cabulary built on all input words in the same batch,

2Subword spans in the vocabulary may overlap (e.g., “ask-
ing” contains both “ask” and “king”), resulting in multiple
competing candidates for prediction. Among the overlapping
candidates, intuitively, it should be more reasonable to predict
a constituent than other subword candidates from the context.
Therefore, we assign a constituency weight to each subword
in the objective, as detailed in Appendix A.4.

22302

we have the auto-regression loss defined as:

Lar = − 1

m

m−1∑

t=1

log
exp(htEMB(xt+1))∑
x∈W exp(htEMB(x))

.

3.3 Tokenization

The proposed tree-based tokenization algorithm,
TreeTok, includes segmentation and vocabulary
construction procedures. As the latter depends on
the former, we first discuss the segmentation proce-
dure, followed by the vocabulary construction.

Segmentation Procedure. Given a constructed
vocabulary, whose details are described later, we
parse each word into a morphological tree and seg-
ment it via a top-down matching approach, as il-
lustrated in Figure 1(bottom). Specifically, during
the top-down traversal of a parse tree, we retain
a subword and backtrack if the subword matches
an entry in the vocabulary. Note that unsupervised
structural learning is often imperfect, causing er-
roneous tokenization. For instance, an incorrect
parse tree [[[book]e]d] may yield tokens book
e d where e d should be merged. To address this
issue, we propose a post-processing step to deal
with mergeable pairs of segmented tokens. Specifi-
cally, we define the empirical probability of token
t as COUNT(t)

T , where COUNT(t) is the frequency of
t in the entire corpus and T =

∑
t∈V COUNT(t).

Therefore, the probability of a certain merge is
the production of the probabilities of all tokens.
We find the optimal merge by searching for the
one with maximum probability among all poten-
tial merges via dynamic programming. Detailed
pseudo-code can be found in Appendix A.1.

Vocabulary Construction. One drawback of
BPE and WordPiece is that they have to keep all
intermediate “junk” tokens produced during the
iterations of merge operations, which results in
limited vocabulary space occupied by these mean-
ingless tokens. For instance, if the corpus contains
many occurrences of low and lower, the mean-
ingless token lo will be added to the vocabulary
before low and will not be removed later. However,
with the top-down matching framework, we don’t
need bottom-up merge operations to restore tokens,
allowing us to prune unnecessary tokens and create
a more compact vocabulary. To build a compact
vocabulary, we propose a vocabulary construction
algorithm in which we employ a tree-based BPE-
like algorithm to build a heuristic vocabulary and

a tree-based Unigram algorithm to prune unnec-
essary subword units. Specifically, we initialize
the token vocabulary with the character vocabulary
and repeat the following steps to build a heuristic
vocabulary given character-level tree structures of
words:
1. Count adjacent token pairs that share the same

parent in the tree structure, e.g., given [[b[o
o]]k], only the pair (o, o) is counted.

2. Merge adjacent symbol pairs whose counts ex-
ceed a given threshold, e.g., [[b[o o]]k] →
[[b oo]k].

3. Repeat 1-2 until there are no new symbol pairs.
In the pruning procedure, we start from the heuris-
tic symbol vocabulary and prune it as follows:
1. Tokenize the corpus via the top-down match-

ing according to the current vocabulary. The
total entropy of the whole corpus is defined
as HV = −∑

t∈V
COUNT(t)

T log COUNT(t)
T where

T =
∑

t∈V COUNT(t).
2. For each token s, calculate the entropy gain

after removing that word from the vocabulary
denoted as ∆Hs = HV/{s} − HV. Intuitively,
the higher ∆Hs is, the more important s is.

3. Sort delta entropy of tokens and remove the
lowest k% from V. Repeat step 1-2 until |V|
reaches the target vocabulary size.

In practice, we design a tree-based Viterbi algo-
rithm (Viterbi, 1967) to implement the pruning pro-
cedure efficiently. The pseudo-code is presented in
Appendix A.2.

4 Experiments

We focus on English in most of the experiments,
but we also evaluated the composition model on
Chinese in 4.2 and evaluated the tokenizer on Ger-
man, which is a morphologically richer language
than English, in a machine translation experiment
in 4.1. We evaluate the performance of TreeTok
against the de-facto tokenizers such as BPE, Word-
Piece, and Unigram as primary baselines.

Training setups. For a fair comparison, we train
all tokenizers from scratch on the lowercase ver-
sion of the WikiText-103 corpus (Merity et al.,
2017) without any word boundary marker and set
the same vocabulary size of 30,000. For BPE,
WordPiece, and Unigram, we use the implementa-
tion and default training paradigm provided by the
HuggingFace library3. Regarding the composition

3https://github.com/huggingface/tokenizers

22303

https://github.com/huggingface/tokenizers

model, we train it with a context window of up to
512 characters. We use GPT2 implemented from
HuggingFace4 as our causal language model when
computing the auto-regression loss. We present
detailed configurations of our model and training
setup in Appendix A.5.

Evaluation datasets. We compare our tokenizer
with other tokenizers for morphological alignment
(detailed in 4.1) using two datasets with gold-
standard morphological segmentation. One is from
the Morpho Challenge 2010 Workshop (Kurimo
et al., 2010) (Morpho), which contains 1,000 word
forms with their segmentations corresponding to
the surface forms of morpheme labels. The dataset
contains instances of all kinds of morphological
transformations, including inflection, derivation,
and compounding. The other dataset is from Minix-
hofer et al. (2023) (Compound), which contains
759 compound words specifically designed to test
the models’ capabilities in decompounding. We
also use these morphological segmentation datasets
to evaluate the induced morphological parse trees
(detailed in 4.2).

In addition, we evaluate the tokenizers using sta-
tistical metrics that have been shown to strongly
correlate with the performance on downstream
tasks (see Table 2). These metrics are calculated
on the validation set of WikiText-103.

4.1 Tokenization Quality
Metrics. We measure the performance of mor-
phological segmentation via accuracy, i.e., the ra-
tio of examples that are correctly segmented. We
also consider a few statistical metrics that can di-
rectly assess the quality of tokenization, includ-
ing Rényi Efficiency (Zouhar et al., 2023), aver-
age sentence-level perplexity, and average num-
ber of tokens per sentence. Rényi Efficiency is
introduced by Zouhar et al. (2023) as a princi-
pled intrinsic measure of tokenization quality and
is claimed to yield a Pearson correlation of 0.78
with BLEU (Papineni et al., 2002) on machine
translation. Sentence-level perplexity is defined
as − log p(s) = −∑n

i=1 log p(si|s<i), where
s = {s1, s2, ..., sn} is a sentence with si being
the i-th token. Since different tokenizers generate
distinct segmentations leading to different numbers
of tokens of the same word, sentence-level perplex-
ity provides fairer evaluation compared with the
default token-level perplexity − 1

n log p(s).
4https://github.com/huggingface/transformers

Morpho (Acc.) ↑ Compound (Acc.) ↑ |V|
EN. EN.

BPE 19.50 62.98 30,000
WordPiece 26.20 62.19 30,000
Unigram 27.10 53.10 30,000
TreeTok 37.9 68.07 30,000

Table 1: Results on two morphological segmentation datasets.
This table can be seen as a comparison between tree-enhanced
BPE (TreeTok) and vanilla BPE/WordPiece/Unigram.

According to Table 1, TreeTok significantly sur-
passes BPE, WordPiece, and Unigram on the two
morphological segmentation datasets. The results
demonstrate the efficacy of TreeTok in aligning
with morphology.

Rényi↑ PPL↓ BLEU↑ avg. #tokens
BPE 44.66 107.76 26.55 26.58
WordPiece 44.54 110.97 - 26.60
Unigram 45.07 106.91 - 31.68
TreeTok 44.82 107.26 26.68 25.99

Table 2: Results for different tokenization models on Wiki-
Text103 with 30,000 vocabulary size.

Rényi efficiency & Perplexity. Table 2 reports
the evaluation results in terms of Rényi efficiency
and perplexity (PPL). TreeTok outperforms BPE
and WordPiece on both Rényi and PPL. The im-
provements illustrate the benefits of TreeTok’s
structural constraints and more compact vocabulary.
The tree structure constraints enable the segmen-
tation of words into more morphology-aligned to-
kens, while the compact vocabulary allows for the
inclusion of meaningful morphemes by removing
intermediate tokens in the pruning process during
vocabulary construction, under a top-down match-
ing framework. Unigram performs slightly bet-
ter than TreeTok, but produces 22% more tokens
on average. A possible explanation for the better
performance of Unigram is that Unigram tends to
produce inflectional suffixes such as “-ing” and
“-ly”, while other methods tend to retain entire
words. This difference makes it easier for Unigram
to share the same stems and affixes between dif-
ferent word forms, thus achieving better parameter
sharing. However, under the Transformer architec-
ture, an additional 22% number of tokens means
extra inference steps and nearly 1.4 times the cost
of self-attention. Such additional costs only bring
marginal improvements as can be seen in the table.

We also note that TreeTok achieves the short-
est average token length among all the tokenizers,
which is desirable as Gallé (2019) shows that given

22304

https://github.com/huggingface/transformers

a fixed vocabulary size budget, the fewer tokens a
tokenizer needs to cover the test set, the better the
translation.

Machine Translation. We conduct experiments
on machine translation as a complementary. We
use the fairseq framework 5 to train a Transformer
on WMT14 English to German from scratch and
measure the performance by calculating the BLEU
score on the official test split.

We compare the model’s performance when the
tokenizer is BPE and TreeTok, respectively. We
use the same model training setups. For the two
tokenizers, the vocabulary size and basic characters
are exactly the same. The results from Table 2 show
that TreeTok is slightly better than BPE. Based on
the results, TreeTok can improve alignment with
morphology on top of BPE, while the new seg-
mentation does not compromise downstream task
performance.

4.2 Tree Structure Quality

Since tree structures play an important role in both
vocabulary construction and segmentation, we eval-
uate the quality of trees induced by various compo-
sition models.

Metric. We use recall of morphemes (van den
Bosch and Daelemans, 1999) in a tree to assess the
quality of the tree structures against gold-standard
segmentations, which is defined as the percentage
of morphemes in the gold segmentation that can
be found in the spans of the evaluated tree. We
discard spans that are trivial for a tree (character-
level and word-level spans) and report word-level
recall (averaged over word samples).

Baselines. For baseline composition models, we
include Fast-R2D2 (Hu et al., 2022), which is a
variant of DIORA (Drozdov et al., 2019), and
an efficient variant of neural PCFG (Yang et al.,
2022). We choose PCFG and R2D2 as our base-
lines because they represent two different classic
approaches to modeling composition: PCFGs are
based on underlying grammar structures, while
R2D2 (a neural inside algorithm) searches for the
optimal information compression structure through
binary composition of tokens.

We also include four variants of our composition
model for an ablation study. In w/o context, we re-

5https://github.com/facebookresearch/fairseq/
blob/main/examples/translation/README.md#wmt14-
english-to-german-convolutional

Morpho Compound Word Seg.
EN. EN. ZH.

Fast R2D2 67.69 48.96 —
Neural PCFG 39.87 58.33 74.26
TreeTok 90.10 86.20 —

w/o context 70.00 63.02 —
w/o MorphOverriding 75.99 46.35 99.24
w/o span weights 89.42 78.39 —
w/o span loss 86.79 73.70 —

Table 3: Performance evaluation of our model, baseline mod-
els, and ablation studies on morphological segmentation, mea-
sured by morpheme recall rate. EN:English, ZH: Chinese.

Figure 3: The effect of changing the vocabulary size learned
by BPE. The initial results on both tasks show that the per-
formance curve is a concave function where the maximum
resides in the middle.

move the auto-regression loss from our architecture
so that each representation only contains informa-
tion from individual words. In w/o MorphOverrid-
ing, we degenerate si,j to the default empty em-
bedding regardless of whether span xi:j hits the
external vocabulary or not. In w/o span loss, for
our auto-encoding loss, we only count loss from
predicting characters instead of every subword span
that hits the external vocabulary.

Results and Discussions. As shown in Table 3,
our model outperforms all the other composition
models. Compared with Fast-R2D2, our main
differences lie in the training objectives and the
MorphOverriding mechanism. This result fully
validates the effectiveness of these improvements.
Our ablation experiments further analyze the con-
tribution of these improvements to performance
enhancement. Specifically, we have the following
findings from each ablation.

Removing the auto-regression loss to prevent
the model from getting feedback from contextual
information significantly impacts the performance
on both tasks, especially Morpho. We believe that
contextual information can help the model capture
the regularities of tenses and learn how to build

22305

https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md##wmt14-english-to-german-convolutional
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md##wmt14-english-to-german-convolutional
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md##wmt14-english-to-german-convolutional

original word bed commonly windsurfing tricycles uniquenesses
BPE bed commonly wind/sur/fing tric/y/cles uniqu/eness/es
Unigram b/e/d common/ly wind/surf/ing t/r/i/cycle/s unique/ness/e/s
WordPiece bed commonly winds/ur/fing tric/y/cles unique/ness/es
TreeTok bed commonly wind/surf/ing tri/cycles unique/ness/es

Table 4: Example tokenizations.

composition representations for compound words.
For example, consider how the context can help
determine whether we should build the represen-
tation of asking as ask+ing or as+king. While
either is a valid combination of morphemes, the
former is more likely to be learned by our model
since the context around asking often indicates the
continuous tense or the gerund form, thus matching
better with ing.

Removing MorphOverriding from the model re-
sults in a significant decrease of around 50% in per-
formance on the decompounding task. The results
consolidate our insight about conventional compo-
sition models violating the indecomposability of
morphemes. Creating a morpheme’s representation
using its components’ representation might make
representations of disparate morphemes (e.g., wind
and win) entangled together.

Removing the span loss also causes a perfor-
mance drop on the two morphology tasks. This
aligns well with the insight behind our design
of morpheme-level loss, which augments the
character-level loss by enhancing the learning of
intra-word representations for most morphemes
that are at an intermediate granularity.

In addition, we train both Neural-PCFG and our
composition model on Chinese wiki (Xu and Lap-
ata, 2019) and evaluate the recall of word bound-
ary against Penn Chinese Treebank (XUE et al.,
2005). Our model can achieve a word boundary
recall of 99.24% without MorphOverriding. Chi-
nese is a language system that can be considered
simplistic in terms of its internal structure of words
where most of the time, each Chinese character
(referred to as a hàn zı̀) represents one morpheme,
and there are always explicit boundaries between
morphemes without orthographic changes during
word formation from characters. These features
make compositionality applicable in most cases,
thus alleviating the difficulty of modelling intra-
word structures. Hence, comparing with the poor
performance of w/o MorphOverriding on the En-
glish dataset (Compound), we can conclude that the

difficulties of modelling the internal word structure
vary greatly across languages, and MorphOverrid-
ing is effective and necessary for languages with
more challenging morphology structures.

Influence of Heuristic Vocabulary Size Addi-
tionally, we conduct experiments to investigate how
the size of our heuristic morpheme vocabulary in-
fluences the performance of structure induction.

Figure 3 shows that the optimal size of an exter-
nal vocabulary should be neither too large nor too
small. According to our hypothesis that the compo-
sitional representation of subcomponents of a mor-
pheme should be overridden by a high-level repre-
sentation, ideally, the external vocabulary should
contain all morphemes and only morphemes, be-
cause our model will trigger the soft morpheme
overriding mechanism for every span that hits the
external vocabulary. If BPE is used and the vo-
cabulary is too small, many morphemes (especially
longer standalone words) are excluded. Conversely,
if it is too large, BPE merges across morphemes,
creating spans larger than the smallest meaning-
bearing units.

4.3 Case Studies

To further examine the difference between tokeniz-
ers, we list their tokenizations in Table 4 and tree
structures induced by our composition model in
Figure 4.

Tokens produced by Unigram often include
many characters. BPE and WordPiece often vio-
late morpheme boundaries and tokenize words into
some intermediate “junk” tokens introduced dur-
ing the bottom-up vocabulary construction, such as
fing, cles, and eness in Table 4.

TreeTok aligns significantly better with morphol-
ogy. By merging the best of BPE and Unigram
pruning, our vocabulary construction algorithm
eliminates “junk” tokens. Meanwhile, top-down
matching under linguistic constraints prevents ex-
cessive word fragmentation and morpheme bound-
ary breaks.

22306

Figure 4: Example tree structures induced by our composition
model.

In Figure 4, our model’s high-level tree struc-
tures are generally accurate, although some low-
level structures appear random, since MorphOver-
riding prioritizes the most reasonable high-level
segmentations based on context, making lower-
level details less important.

5 Conclusion

Our work introduces the first effective unsuper-
vised neural model for character-level structure in-
duction. We discovered that recognizing the inde-
composability of morphemes is key, and to address
this, we developed a composition model with a
MorphOverriding mechanism alongside two self-
supervised objectives. TreeTok induces tree struc-
tures that closely match human-labeled morphol-
ogy and consistently outperforms baselines like
BPE and WordPiece across various tasks, offer-
ing new insights into unsupervised morphological
segmentation.

6 Limitations

Tokenizer Avg Time/Token (s)

BPE 2.49e-05
WordPiece 2.33e-05
Unigram 2.54e-05
TreeTok (single processing) 1.98e-03

Table 5: Average processing time per token with identical
vocabulary size. TreeTok is run on CPU and tokenises one
sample at a time.

Our main limitation is that we need additional
training and inference overheads. Considering that
the composition model only needs to be trained
once and the overall time consumption is accept-
able6, we believe it is not a fatal flaw. Regarding
inference cost, because a lightweight parser is pro-
duced as a byproduct, it can be afforded by even
CPU environments. According to Table 5, Tree-
tok’s average processing time per token is longer

6less than 1 day for 8× A100 for WikiText-103

than other tokenizers. However, if we allow Tree-
tok to tokenize in batches on a GPU in advance,
this gap can be easily compensated. Furthermore,
we can maintain a cache of high-frequency words
to avoid repeated tokenization. In wikitext-103,
the hit rate for a cache that stores the top 100000
frequent words is 98.11%, which means only 2%
tokens need to be parsed on the fly. e.g. for 1000
tokens, it only needs 0.16s to parse. Furthermore,
these results are based on single-core computation,
and there is still room for multi-core acceleration.

7 Acknowledgements

QZ acknowledges support through the NSF under
award 1922658.

References
Duygu Ataman and Marcello Federico. 2018. An evalu-

ation of two vocabulary reduction methods for neural
machine translation. In Proceedings of the 13th Con-
ference of the Association for Machine Translation in
the Americas, AMTA 2018, Boston, MA, USA, March
17-21, 2018 - Volume 1: Research Papers, pages
97–110. Association for Machine Translation in the
Americas.

James K. Baker. 1979. Trainable grammars for speech
recognition. Journal of the Acoustical Society of
America, 65.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4617–4624, Online.
Association for Computational Linguistics.

Kenneth Ward Church. 2020. Emerging trends: Sub-
words, seriously? Natural Language Engineering,
26(3):375–382.

John Cocke. 1969. Programming Languages and Their
Compilers: Preliminary Notes. New York University,
USA.

Ryan Cotterell and Hinrich Schütze. 2015. Morpholog-
ical word-embeddings. In NAACL HLT 2015, The
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Denver, Colorado, USA,
May 31 - June 5, 2015, pages 1287–1292. The Asso-
ciation for Computational Linguistics.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the ACL-
02 Workshop on Morphological and Phonological
Learning, pages 21–30. Association for Computa-
tional Linguistics.

22307

https://aclanthology.org/W18-1810/
https://aclanthology.org/W18-1810/
https://aclanthology.org/W18-1810/
https://api.semanticscholar.org/CorpusID:121084921
https://api.semanticscholar.org/CorpusID:121084921
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.1017/S1351324920000145
https://doi.org/10.1017/S1351324920000145
https://doi.org/10.3115/V1/N15-1140
https://doi.org/10.3115/V1/N15-1140
https://doi.org/10.3115/1118647.1118650
https://doi.org/10.3115/1118647.1118650

Mathias Johan Philip Creutz and Krista Hannele La-
gus. 2005. Inducing the morphological lexicon of
a natural language from unannotated text. In Proc.
International and Interdisciplinary Conference on
Adaptive Knowledge Representation and Reasoning
(AKRR’05), pages 106–113. International and In-
terdisciplinary Conference on Adaptive Knowledge
Representation and Reasoning (AKRR’05) ; Confer-
ence date: 01-01-1800.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Miguel Domingo, Mercedes Garcı́a-Martı́nez, Alexan-
dre Helle, Francisco Casacuberta, and Manuel Her-
ranz. 2019. How much does tokenization affect
neural machine translation? In Computational Lin-
guistics and Intelligent Text Processing - 20th Inter-
national Conference, CICLing 2019, La Rochelle,
France, April 7-13, 2019, Revised Selected Papers,
Part I, volume 13451 of Lecture Notes in Computer
Science, pages 545–554. Springer.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1129–1141, Minneapolis, Minnesota.
Association for Computational Linguistics.

Matthias Gallé. 2019. Investigating the effectiveness of
BPE: The power of shorter sequences. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1375–1381, Hong
Kong, China. Association for Computational Linguis-
tics.

Stig-Arne Grönroos, Sami Virpioja, and Mikko Ku-
rimo. 2020. Morfessor EM+Prune: Improved sub-
word segmentation with expectation maximization
and pruning. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
3944–3953, Marseille, France. European Language
Resources Association.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and
Mikko Kurimo. 2014. Morfessor FlatCat: An HMM-
based method for unsupervised and semi-supervised
learning of morphology. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1177–
1185, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schütze. 2021. Superbizarre is not superb: Deriva-
tional morphology improves BERT’s interpretation
of complex words. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3594–3608, Online. Association for
Computational Linguistics.

Jue Hou, Anisia Katinskaia, Anh-Duc Vu, and Roman
Yangarber. 2023. Effects of sub-word segmentation
on performance of transformer language models. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 7413–
7425. Association for Computational Linguistics.

Xiang Hu, Pengyu Ji, Qingyang Zhu, Wei Wu, and
Kewei Tu. 2024a. Generative pretrained structured
transformers: Unsupervised syntactic language mod-
els at scale.

Xiang Hu, XinYu KONG, and Kewei Tu. 2023. A multi-
grained self-interpretable symbolic-neural model
for single/multi-labeled text classification. In The
Eleventh International Conference on Learning Rep-
resentations.

Xiang Hu, Haitao Mi, Liang Li, and Gerard de Melo.
2022. Fast-R2D2: A pretrained recursive neural net-
work based on pruned CKY for grammar induction
and text representation. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2809–2821, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su,
Jing Zheng, and Gerard de Melo. 2021. R2D2: Re-
cursive transformer based on differentiable tree for
interpretable hierarchical language modeling. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 4897–4908,
Online. Association for Computational Linguistics.

Xiang Hu, Qingyang Zhu, Kewei Tu, and Wei Wu.
2024b. Augmenting transformers with recursively
composed multi-grained representations. In The
Twelfth International Conference on Learning Repre-
sentations.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater.
2006. Adaptor grammars: A framework for speci-
fying compositional nonparametric bayesian models.
In Advances in Neural Information Processing Sys-
tems, volume 19. MIT Press.

Mark Johnson, Thomas Griffiths, and Sharon Goldwa-
ter. 2007. Bayesian inference for PCFGs via Markov
chain Monte Carlo. In Human Language Technolo-
gies 2007: The Conference of the North American
Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages

22308

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-031-24337-0_38
https://doi.org/10.1007/978-3-031-24337-0_38
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/D19-1141
https://doi.org/10.18653/v1/D19-1141
https://aclanthology.org/2020.lrec-1.486
https://aclanthology.org/2020.lrec-1.486
https://aclanthology.org/2020.lrec-1.486
https://aclanthology.org/C14-1111
https://aclanthology.org/C14-1111
https://aclanthology.org/C14-1111
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.459
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.459
http://arxiv.org/abs/2403.08293
http://arxiv.org/abs/2403.08293
http://arxiv.org/abs/2403.08293
https://openreview.net/forum?id=MLJ5TF5FtXH
https://openreview.net/forum?id=MLJ5TF5FtXH
https://openreview.net/forum?id=MLJ5TF5FtXH
https://doi.org/10.18653/v1/2022.emnlp-main.181
https://doi.org/10.18653/v1/2022.emnlp-main.181
https://doi.org/10.18653/v1/2022.emnlp-main.181
https://doi.org/10.18653/v1/2021.acl-long.379
https://doi.org/10.18653/v1/2021.acl-long.379
https://doi.org/10.18653/v1/2021.acl-long.379
https://openreview.net/forum?id=u859gX7ADC
https://openreview.net/forum?id=u859gX7ADC
https://proceedings.neurips.cc/paper_files/paper/2006/file/62f91ce9b820a491ee78c108636db089-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/62f91ce9b820a491ee78c108636db089-Paper.pdf
https://aclanthology.org/N07-1018
https://aclanthology.org/N07-1018

139–146, Rochester, New York. Association for Com-
putational Linguistics.

Daniel Jurafsky and James H. Martin. 2009. Speech and
Language Processing (2Nd Edition). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

Tadao Kasami. 1966. An efficient recognition and
syntax-analysis algorithm for context-free languages.
Coordinated Science Laboratory Report no. R-257.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Mikko Kurimo, Sami Virpioja, Ville Turunen, and
Krista Lagus. 2010. Morpho challenge 2005-2010:
Evaluations and results. In Proceedings of the 11th
Meeting of the ACL Special Interest Group on Com-
putational Morphology and Phonology, pages 87–
95, Uppsala, Sweden. Association for Computational
Linguistics.

K. Lari and S.J. Young. 1990. The estimation of stochas-
tic context-free grammars using the inside-outside
algorithm. Computer Speech & Language, 4(1):35–
56.

Dominik Machácek, Jonás Vidra, and Ondrej Bojar.
2018. Morphological and language-agnostic word
segmentation for NMT. In Text, Speech, and Di-
alogue - 21st International Conference, TSD 2018,
Brno, Czech Republic, September 11-14, 2018, Pro-
ceedings, volume 11107 of Lecture Notes in Com-
puter Science, pages 277–284. Springer.

Jean Maillard, Stephen Clark, and Dani Yogatama.
2017. Jointly learning sentence embeddings
and syntax with unsupervised tree-lstms. CoRR,
abs/1705.09189.

Tatjana Marvin. 2002. Topics in the Stress and Syntax
of Words. Ph.D. thesis, Massachusetts Institute of
Technology.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference
of the NAACL, Main Conference, pages 152–159,
New York City, USA. Association for Computational
Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky,
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,
Chenglei Si, Wilson Y. Lee, Benoı̂t Sagot, and Sam-
son Tan. 2021. Between words and characters: A
brief history of open-vocabulary modeling and tok-
enization in nlp.

Benjamin Minixhofer, Jonas Pfeiffer, and Ivan Vulić.
2023. CompoundPiece: Evaluating and improving
decompounding performance of language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
343–359, Singapore. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jorma Rissanen. 1989. Stochastic complexity in statisti-
cal inquiry. In World Scientific Series in Computer
Science.

Jonne Sälevä and Constantine Lignos. 2021. The effec-
tiveness of morphology-aware segmentation in low-
resource neural machine translation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Stu-
dent Research Workshop, EACL 2021, Online, April
19-23, 2021, pages 164–174. Association for Com-
putational Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149–5152.

Elisabeth Selkirk. 1982. The Syntax of Words. Linguis-
tic inquiry monographs. MIT Press.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Antal van den Bosch and Walter Daelemans. 1999.
Memory-based morphological analysis. In Proceed-
ings of the 37th Annual Meeting of the Association
for Computational Linguistics, pages 285–292, Col-
lege Park, Maryland, USA. Association for Compu-
tational Linguistics.

Andrew J. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding algo-
rithm. IEEE Trans. Inf. Theory, 13(2):260–269.

Yumo Xu and Mirella Lapata. 2019. Weakly supervised
domain detection. Transactions of the Association
for Computational Linguistics, 7:581–596.

22309

https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://aclanthology.org/W10-2211
https://aclanthology.org/W10-2211
https://doi.org/https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1007/978-3-030-00794-2_30
https://doi.org/10.1007/978-3-030-00794-2_30
http://arxiv.org/abs/1705.09189
http://arxiv.org/abs/1705.09189
https://aclanthology.org/N06-1020
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
https://doi.org/10.18653/v1/2023.emnlp-main.24
https://doi.org/10.18653/v1/2023.emnlp-main.24
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://api.semanticscholar.org/CorpusID:9365056
https://api.semanticscholar.org/CorpusID:9365056
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://api.semanticscholar.org/CorpusID:22320655
https://api.semanticscholar.org/CorpusID:22320655
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3115/1034678.1034726
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://api.semanticscholar.org/CorpusID:198953316
https://api.semanticscholar.org/CorpusID:198953316

NAIWEN XUE, FEI XIA, FU-DONG CHIOU, and
MARTA PALMER. 2005. The penn chinese tree-
bank: Phrase structure annotation of a large corpus.
Natural Language Engineering, 11(2):207–238.

Songlin Yang, Wei Liu, and Kewei Tu. 2022. Dynamic
programming in rank space: Scaling structured in-
ference with low-rank HMMs and PCFGs. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4797–4809, Seattle, United States. Association for
Computational Linguistics.

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control, 10(2):189–208.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du,
Mrinmaya Sachan, and Ryan Cotterell. 2023. To-
kenization and the noiseless channel. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5184–5207, Toronto, Canada. Association for
Computational Linguistics.

22310

https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284

A Appendix

A.1 Pseudo-codes of tokenization

Algorithm 1 Tokenize
1: Input: string x, parse tree root r, vocabulary V
2: procedure TOKENIZE(x, r, V)
3: t← [] ▷ tokenized subword units list
4: stack ← [r]
5: while |stack| > 0 do
6: c← POP(stack)
7: i, j ← c.i, c.j
8: x̄← xi:j

9: if x̄ ∈ V then
10: APPEND(t, x̄)
11: else if i < j then ▷ Non-terminal nodes
12: PUSH(stack, c.right)
13: PUSH(stack, c.left)

14: t← POSTMERGE(t,V)
15: ▷ post processing if over-split
16: return t

Algorithm 2 Post-Merge Algorithm
1: Input: tokens t, vocab2entropy V
2: procedure POSTMERGE(t, V)
3: n← length of t
4: if n ≤ 1 then
5: tMERGE ← t
6: else
7: H[n][n] init with∞ ▷ Best entropy
8: s[n][n] init with [] ▷ Best segments
9: for i← 0 to n− 1 do ▷ Base case

10: Hi,i ← V[xi]
11: si,i ← [xi]

12: for h← 1 to n− 1 do ▷ Iterate tree height
13: for i← 0 to n− h− 1 do
14: j ← i+ h
15: kBEST ← −1
16: m← concatenate ti . . . tj
17: HBEST ← GET(V,m,∞)
18: for k ← i to j − 1 do
19: ifHi,k +Hk+1,j ≤ HBEST then
20: kBEST ← k
21: HBEST ← Hi,k +Hk+1,j

22: if kBEST ̸= −1 then
23: si,j ← si,kBEST + skBEST+1,j

24: else
25: si,j ← [m] ▷ Merge
26: Hi,j ← HBEST

27: tMERGE ← s0,n−1

28: return tMERGE

A.2 Pseudo-codes of vocab construction
Please refer to Algorithm 3 for details.

Algorithm 3 Vocabulary Construction
1: Input: tree-freq pair list T , vocab size k, pruning rate α
2: procedure VOCABULARY CONSTRUCTION(T, k, α)
3: procedure E-STEP(T,V)
4: V

′ ← DICT() ▷ E-step: Update vocab freq
5: for {root, freq} ∈ T do
6: , seg ← TREEVITERBI(root,V, null)
7: for token ∈ seg do
8: V

′
[token]← V

′
[token] + freq

9: return V
′

10:
11: procedure M-STEP(T,V)
12: l← DICT() ▷ M-step: Update delta loss
13: for {root, freq} ∈ T do
14: lword ← DICT() ▷ word-level delta-loss
15: , seg ← TREEVITERBI(root,V, lword)
16: for token ∈ seg do
17: loss← lword[token]
18: l[token]← l[token] + loss ∗ freq
19: return V

′

20:
21: V← INITVOCAB(T) ▷ Init with a BIG vocab
22: while |V| > k do
23: V← E-STEP(T,V) ▷ Estimate token count
24: L← M-STEP(T,V) ▷ Maximize delta losses
25: Remove min(|V| − k, ⌊α|V|⌋) of the
26: tokens t with lowest Lt from V
27: return V

Algorithm 4 TreeViterbi
1: Input: parse tree root r, vocabulary V, delta loss dict l
2: procedure TREEVITERBI(r,V, l)
3: w ← r.token
4: if r.i = r.j then
5: s← GET(V, w,∞) ▷ Infinity entropy if w /∈ V
6: return s, [w]
7: else
8: sL, wL ← TREEVITERBI(r.left,V, l)
9: sR, wR ← TREEVITERBI(r.right,V, l)

10: s← GET(V, w,∞)
11: if l then ▷ Enter in M-step
12: l[w]← l[w] + MAX(sL + sR − s, 0)
13: ▷ Record delta loss: Entropy increase
14: if sL + sR > s then
15: return s, [w]
16: else
17: return sL + sR, wL + wR

Algorithm 5 Vocabulary Initialization
1: Input: tree-freq pair list T , threshold k
2: procedure INITVOCAB(T, k)
3: V← All character freq
4: n← |V|
5: while True do
6: V

′ ← COUNTBIGRAMS(T,V)
7: Prune all the entries in V

′
with freq less than k

8: V.MERGE(V
′
) ▷ Add new items in V

′
to V

9: if |V| = n then
10: break
11: n = |V|
12: return V

22311

Algorithm 6 Count Bigrams
1: Input: tree-freq pair list T , vocabulary V
2: procedure COUNTBIGRAMS(T,V)
3: V

′ ← DICT() ▷ Store new merges
4: procedure RECURCOUNT(r, f)
5: if r.left & r.right then
6: hitL ← RECURCOUNT(r.left, f)
7: hitR ← RECURCOUNT(r.right, f)
8: if hitL and hitR then
9: if r.token ∈ V then

10: return True
11: else
12: V

′
[r.token]← f ▷ Merge: new entry

13: return False
14: else
15: return False
16: else
17: return True
18: for {root, freq} ∈ T do
19: RECURCOUNT(root, freq)
20: return V

′

A.3 The neural outside pass
The outside computation is akin to the inside pass
but in a top-down manner. We denote the outside
representation and score of a given span as ōki,j and
b̄ki,j respectively, whose parent span is (i, k) or (k,
j) for k > j or k < i.

ōki,j =

{
fβ(oi,k, ij+1,k) if k > j
fβ(ok,j , ik,i−1) if k < i

,

b̄ki,j =

{
ϕβ(oi,k, ij+1,k) if k > j
ϕβ(ok,j , ik,i−1) if k < i

,

w̌k
i,j =

exp(b̄ki,j)∑
k′>j,k′<i exp(b̄

k′
i,j)

,oi,j =
∑

k>j,k<i

w̌k
i,j ō

k
i,j .

A.4 Span weights
An intuitive idea is that the larger the probability
of a span’s existence, the greater its weight. A span
exists if its parent span exists and the span is an im-
mediate child of its parent span. Therefore, we can
recursively estimate the existence probability of
each span top-down (Hu et al., 2023) and formalize
the auto-encoding loss as follows:

pi,j =
∑

k<i

pk,jŵ
i
k,j +

∑

k>j

pi,kŵ
j
i,k , p1,n = 1 ,

Lae = − 1∑
pi,j

∑

xi:j∈V
pi,j log

exp(oTi,jEV[xi:j])∑|V|
k=1 exp(o

T
i,jEk)

.

A.5 Experimental Setup and
Hyperparameters

Our composition function uses 4 layers of Trans-
former layers. For span representations, we
use 128-dimensional embeddings with 4 attention

heads, 512-dimensional hidden layer representa-
tions, and a vocabulary size of 7835. This vocabu-
lary is built from concatenating 1903 most frequent
characters in the training set of wikitext-103 and
a 10,000-entry BPE dictionary, excluding all char-
acters. To guide the composition function, our
lightweight parser is a 4-layer Transformer model
that uses 64-dimensional embeddings with 4 at-
tention heads and 128-dimensional hidden layer
representations. For the causal language model, we
use a 3-layer GPT2 equipped with 128-dimensional
embeddings and 4 attention heads and follow the
original configuration for the rest of the hyperpa-
rameters.

Our composition models are trained on 8 PPUs
with a learning rate of 1e-2 for the light-weight
parser and 5e-4 for the rest. The batch size is 8×
128, and for each sample, we limit the context
window to 512 characters (whitespace included).
The total number of training steps is ten times the
number of sentences in Wikitext-103.

22312

