
Findings of the Association for Computational Linguistics: ACL 2025, pages 22174–22270
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

- A Semantically-Aware, Kernel-Enhanced, and Divergence-
Rich Paradigm for Direct Preference Optimization

KERNELS

Amitava Das1*, Suranjana Trivedy2, Danush Khanna3, Rajarshi Roy4,
Gurpreet Singh2†, Basab Ghosh5, Yaswanth Narsupalli6, Vinija Jain7‡,

Vasu Sharma7‡, Aishwarya Naresh Reganti8§, Aman Chadha8§

1BITS Pilani, Goa, 2Artificial Intelligence Institute, University of South Carolina
3Manipal University Jaipur, 4Kalyani Government Engineering College,

5IIITDM Kancheepuram, 6IIT Kharagpur, 7Meta AI, USA, 8Amazon AI, USA
Abstract

The rapid advancement of large language mod-
els (LLMs) has revolutionized numerous ap-
plications, but presents significant challenges
in aligning these models with diverse hu-
man values, ethical standards, and specific
user preferences. Direct Preference Optimiza-
tion (DPO) has become a cornerstone for
preference alignment but is constrained by
reliance on fixed divergence measures and
limited feature transformations. We intro-
duce DPO-Kernels, an innovative enhance-
ment of DPO that integrates kernel methods
to overcome these challenges through four
key contributions: (i) Kernelized Represen-
tations: These representations enhance di-
vergence measures by using polynomial, ra-
dial basis function (RBF), Mahalanobis, and
spectral kernels for richer feature transforma-
tions. Additionally, we introduce a hybrid
loss that combines embedding-based loss with
probability-based loss; (ii) Divergence Al-
ternatives: Beyond Kullback–Leibler (KL),
we incorporate Jensen-Shannon, Hellinger,
Rényi, Bhattacharyya, Wasserstein, and other
f-divergences to boost stability and robust-
ness; (iii) Data-Driven Selection: Choosing
the optimal kernel-divergence pair among 28
combinations (4 kernels × 7 divergences) is
challenging. We introduce automatic metrics
that analyze the data to select the best kernel-
divergence pair, eliminating the need for man-

*Spearheaded work from conception to execution.
†Work done as part of research internship at AIISC.
‡ Work done outside of role at Meta.
§ Work done outside of role at Amazon.

ual tuning; (iv) Hierarchical Mixture of Ker-
nels (HMK): Combining local and global ker-
nels for precise and large-scale semantic mod-
eling. This approach automatically selects the
optimal kernel mixture during training, en-
hancing modeling flexibility. DPO-Kernels
achieve state-of-the-art generalization in factu-
ality, safety, reasoning, and instruction follow-
ing across 12 datasets. While alignment risks
overfitting, Heavy-Tailed Self-Regularization
(HT-SR) theory confirms that DPO-Kernels en-
sure robust generalization in LLMs. Compre-
hensive resources are available to facilitate fur-
ther research and application of DPO-Kernels.

1 DPO Revisited: Avenues for
Advancement

The Direct Preference Optimization (DPO)
(Rafailov et al., 2024) framework aims to optimize
a policy π(y | x) by balancing two objectives: im-
proving the policy’s ranking on preferred outcomes
and regularizing it against a reference distribution
using the Kullback–Leibler (KL) divergence. The
DPO objective can be expressed as:

max
π

Ex,y+,y−
[
log

π(y+ | x)
π(y− | x)

]

︸ ︷︷ ︸
Contrastive Loss

−αEx

[∑

y

π(y | x) log π(y | x)
πref(y | x)

]

︸ ︷︷ ︸
KL Divergence

where: x: The input prompt or context; y+:
The preferred output (e.g., a response chosen by
human evaluators); y−: The less preferred output,
π(y | x): The policy being optimized; πref(y | x):
The reference policy (often a pre-trained model’s
distribution); α > 0: Hyperparameters controlling
the strength of the regularization.

22174

https://github.com/anonymous-panda123/DPO-Kernels

DPO - Kernels (at-a-glance)

▶ Representation: We enrich the representation space by
combining the standard probability-based contrastive loss
with semantic embeddings, ensuring that model prefer-
ences reflect both statistical likelihoods and meaningful,
context-sensitive qualities. (cf. Sec. 2) and Appendix D.

▶ Kernels: We enhance the DPO contrastive loss maxi-
mization by integrating kernel-based measures, allowing
for flexible alignment in transformed feature spaces rather
than relying solely on direct distribution comparisons. In-
corporating polynomial, RBF, spectral, and Mahalanobis
kernels. (cf. Sec. 3 and Appendix E).

▶ Divergence: Exploration of alternative divergence
measures (e.g., Jensen-Shannon, Hellinger, Rényi,
Bhattacharyya, Kullback-Leibler, Wasserstein, and f -
divergences) addresses known limitations of KL diver-
gence, such as instability and lack of robustness (cf.
Sec. 4 and Appendix F).

▶ Proposed DPO-Kernels: DPO-kernels can be explained
using a dual-objective framework that enhances the
model’s discriminative power while ensuring distributional
stability:

max
π

Ex,y+,y−κ

[
Contrastive Loss︷ ︸︸ ︷

log
π(y+ | x)
π(y− | x) +

Embedding Based Loss
︷ ︸︸ ︷

γ log

(
ey+ | ex
ey− | ex

)]

︸ ︷︷ ︸
Kernelized Hybrid Loss

− αEx

[∑

y

π(y | x) log π(y | x)
πref(y | x)

]

︸ ︷︷ ︸
KL Divergence

The equation maximizes the Kernelized Contrastive Loss,
which differentiates positive and negative samples using
probability ratios and embedding similarities. Concur-
rently, it incorporates an Alternative Divergence Regu-
larizer scaled by α, which enforces the model’s distribu-
tion πθ(y | x) to remain close to a reference distribution
πref(y | x) using a generic divergence measure D.

▶ Data-Driven Selection of Kernel Type and Divergence
Functions: Selecting the best kernel-divergence pair
from 28 combinations (4 kernels × 7 divergences) is
non-trivial. To simplify this, we propose 4 metrics for
kernel selection—Positive-Negative Divergence (PND),
Positive-Negative Alignment Variance (PNAV), Triplet
Alignment Tightness (TAT), and Normalized Alignment
Gap (NAG)—and 4 metrics for divergence selection: Sup-
port Overlap, Drift Magnitude, Kurtosis, and Smoothness.
(cf. Sec. 5 and Appendix G).

▶ Kernel Mixture and HMK Introduction: The diversity
of alignment tasks necessitates a kernel mixture model
to leverage the complementary strengths of different ker-
nels, such as local (e.g., RBF) and global (e.g., Spectral)
patterns. However, naive mixtures are prone to kernel
collapse, where one kernel dominates, reducing adapt-
ability and generalization. To address this, we propose
the Hierarchical Mixture of Kernels (HMK), a robust
framework that balances fine-grained and large-scale de-
pendencies, maintaining kernel diversity and ensuring
optimal alignment. (cf. Sec. 6 and Appendix H).

▶ Empirical Findings: Evaluations on 12 datasets show
that DPO-Kernels, particularly HMK, achieve state-of-
the-art generalization in factuality, safety, reasoning, and
instruction-following tasks. However, HMK incurs 3-4×
higher computational costs compared to standard DPO.
We outline strategies to address this challenge in the
limitations section, paving the way for cost-efficient future
implementations. (cf. Sec. 7 and Appendix J).

▶ Heavy-Tailed Self-Regularization (HT-SR): Grounded
in HT-SR theory, the Weighted Alpha metric (Martin et al.,
2021a) provides a novel framework to evaluate general-
ization and overfitting in LLMs without relying on training

or test data. Our analysis explores whether aligned mod-
els, particularly HMK, exhibit overfitting and quantifies the
extent if present. (cf. Sec. 7.3 and Appendix N).

▶ Broader Impact: DPO-Kernels could transform AI align-
ment with human preferences, with future applications
in text-to-image (Yoon et al., 2024; Wallace et al., 2023;
Liu et al., 2024), text-to-video (Yoon et al., 2024), and
Vision-Language Models (Wang et al., 2024; Yu et al.,
2024).

Contrastive Loss
(
log π(y+|x)

π(y−|x)

)
encourages the

policy π to assign higher probabilities to preferred
outputs y+ compared to less preferred outputs
y−, given the same input x. This term effec-
tively pushes the policy to rank preferred responses
higher, aligning it with observed preferences.

KL Divergence
(∑

y π(y | x) log π(y|x)
πref(y|x)

)

measures the divergence between the optimized
policy π and the reference policy πref. This regu-
larization term acts as a safeguard, preventing π
from deviating excessively from the stable base-
line provided by πref. Without this regularization,
the policy might become overconfident in certain
responses or drastically alter its distribution in un-
desirable ways. The hyperparameter α controls the
strength of this regularization: a higher α keeps the
policy closer to πref, making it more conservative,
while a lower α allows greater flexibility for the
policy to adjust probabilities based on preferences.

2 Richer Representation: Hybrid
Approach: Integrating Probability and
Embeddings

DPO (Rafailov et al., 2024) relies on the con-
trastive loss log π(y+|x)

π(y−|x) , which focuses solely on
probability-based preferences. While effective,
this approach often neglects deeper semantic and
qualitative factors inherent in human preferences.
To address this limitation, we introduce a hy-
brid preference alignment method that integrates
embedding-based signals alongside probability-
based cues. Our approach defines a preference sig-
nal as fembed(x, y

+, y−) = ey+ − ey− , where ey+
and ey− are embedding-based similarity scores for
positive and negative responses, respectively. For
our experiments, we utilize jina-embeddings-v3

22175

Kernel Probability-Based and Embedding-Based Terms with Description

Polynomial κ

[
log

(
π(y+|x)

π(y−|x)

)]
=

(
log

π(y+)

π(y−)
+ c

)d
, κ

[
log

(
e
y+ |ex

e
y−|ex

)]
=



(
e⊤x

)
e
y++c

(
e⊤x

)
e
y−+c




d

Captures higher-order interactions using (u⊤v + c)d .

The parameter d controls complexity.

RBF κ

[
log

(
π(y+|x)

π(y−|x)

)]
= exp


−

(
log

π(y+|x)

π(y−|x)

)2

2σ2


 , κ

[
log

(
e
y+ |ex

e
y−|ex

)]
= exp




−




(
e⊤x

)
e
y+(

e⊤x
)
e
y−




2

2σ2




Measures local similarity between

inputs and outputs using the RBF kernel. σ controls smoothness.

Spectral κ

[
log

(
π(y+|x)

π(y−|x)

)]
=

∑p
i=1 exp

(
−λi

(
log

π(y+|x)

π(y−|x)

)2)
ϕi

(
log

π(y+|x)

π(y−|x)

)
, κ

[
log

(
e
y+ |ex

e
y−|ex

)]
=

∑p
i=1 exp


−λi



(
e⊤x

)
e
y+(

e⊤x
)
e
y−




2
ϕi



(
e⊤x

)
e
y+(

e⊤x
)
e
y−


 Decomposes inputs and outputs into eigenfunctions ϕk and eigenvalues λk to capture global,

frequency-based dependencies.

Mahalanobis κ

[
log

(
π(y+|x)

π(y−|x)

)]
= exp


−

(
log

π(y+|x)

π(y−|x)
−µ

)2

2σ2


 , κ

[
log

(
e
y+ |ex

e
y−|ex

)]
= exp




−




(
e⊤x

)
e
y+(

e⊤x
)
e
y−

−µ′



2

2σ′2




Leverages the Mahalanobis

distance to capture anisotropic feature correlations using the covariance matrix Σ.

HMK κ

[
log

(
π(y+|x)

π(y−|x)

)]
=

∑4
i=1 τiλiκi

(
log

π(y+|x)

π(y−|x)

)
, κ

[
log

(
e
y+ |ex

e
y−|ex

)]
= τ1

(
λ1κRBF(ex,e

y+)+λ2κPoly(ex,e
y+)

λ1κRBF(ex,e
y−)+λ2κPoly(ex,e

y−)

)
+

τ2

(
λ3κSpectral(ex,e

y+)+λ4κMaha(ex,e
y+)

λ3κSpectral(ex,e
y−)+λ4κMaha(ex,e

y−)

)
Combines multiple kernels hierarchically, balancing local kernels (RBF, Polynomial) and global kernels (Spectral,

Mahalanobis). K(x, x′) = τ1(λ1KRBF + λ2KPoly) + τ2(λ3KSpectral + λ4KMaha)

Table 1: Kernel methods implicitly map data into a high-dimensional feature space using kernels that compute
inner products in this transformed space. For more details on gradient descent dynamics in kernel-induced loss
landscapes, see Appendix K. This table summarizes the kernelized hybrid loss into (a) kernelized probability-based
loss and (b) kernelized embedding-based loss for Polynomial, RBF, Spectral, Mahalanobis kernels, and HMK.

(Sturua et al., 2024), but the framework is adapt-
able to other embeddings, enabling generaliza-
tion across embedding models. To compute the
embedding-based similarity scores, we apply co-
sine similarity: sim(ex, ey) =

e⊤x ey
∥ex∥∥ey∥ , where ex

is the embedding for the prompt and ey is for the
response. These similarity scores are normalized
using a softmax temperature parameter τ , such
that: > sim∗(ex, ey) =

exp(sim(ex,ey)/τ)∑
y′ exp(sim(ex,ey′)/τ)

. In

practice, we set τ = 0.07 to accentuate semantic
differences in embedding space.

Embedding-based representations are well-

established in preference modeling, reward design,
and metric learning (Bai et al., 2022b; Ouyang
et al., 2022; Peyré and Cuturi, 2019), often relying
on pairwise distances or fixed objectives (Oord
et al., 2018; Chen et al., 2020; Radford et al.,
2021). Recent large language models (LLMs)
like LaMDA (Thoppilan et al., 2022) and PaLM
(Chowdhery et al., 2022) also leverage embed-
dings for preference alignment. However, exist-
ing approaches typically treat embeddings and
probability-based signals separately, relying on
fixed divergence measures (e.g., KL, triplet loss

22176

(Schroff et al., 2015), or contrastive loss (Hadsell
et al., 2006)). In contrast, our work is the first to
bridge embeddings and probability-based align-
ment in a unified parametric framework for
policy learning, offering a more comprehensive
approach to preference optimization.

Hybrid Loss: We blend probability and embed-
ding signals:

maxπ Ex,y+,y− [log
π(y+ | x)
π(y− | x) + γ(log

π(ey+ | ex)
π(ey− | ex)

)]

︸ ︷︷ ︸
Hybrid Loss

−αKL

with γ > 0 controlling the contribution of the
embedding signal. When γ = 0, we recover the
standard DPO loss. Increasing γ guiding the pol-
icy to produce outputs that are both probable and
semantically preferable.

Interpretation:

• Embedding-Guided Tie-Breaking: When prob-
abilities are similar, embeddings help break ties
by favoring outputs that are semantically more
aligned or orthogonal. This alignment ensures
that the selected output is not only probable but
also semantically relevant, which is crucial for
preference-driven alignment.

• Semantic Consistency Check: If the model
strongly prefers y+ but embeddings do not support
its semantic quality, a moderate γ prevents purely
probability-driven reinforcement. Instead, it en-
courages the model to refine its output distribution
to better align with semantic criteria, promoting
more meaningful preference-based selection.

The hybrid loss is then embedded within a ker-
nel function, enabling DPO-Kernel to capture local,
global, and higher-order dependencies, as detailed
in the next section. Appendix D formulates our
novel hybrid loss covering its mathematical defini-
tion, term-based decomposition, properties, impact
on policy learning, etc.

3 Kernel-Integrated DPO Formulation

Standard DPO aligns a policy π with human pref-
erences while regularizing against a reference dis-

tribution πref via a divergence D(·∥·). While effec-
tive, this approach relies on simple distributional
differences, which may fail to capture deeper se-
mantic relationships essential for alignment. To
address this, we introduce kernelized proximity
measures that enable more expressive and adap-
tive alignment. Our framework extends DPO into
four distinct DPO-Kernel variants: (i) Polynomial,
(ii) RBF, (iii) Spectral, and (iv) Mahalanobis. The
resulting objective is expressed as:

max
π

Ex,y+,y−κ
[
log

(
π(y+ | x)
π(y− | x)

)
+ γ log

(
ey+ | ex
ey− | ex

)]

︸ ︷︷ ︸
Kernelized Hybrid Loss

−αKL

Each kernel offers a unique perspective on align-
ment. Polynomial kernels capture higher-order in-
teractions, enabling compositional reasoning. RBF
kernels emphasize local, fine-grained structure, use-
ful for proximity-based alignment. Spectral ker-
nels capture global, oscillatory patterns to han-
dle periodic dependencies, while Mahalanobis ker-
nels leverage feature covariance to account for
anisotropic relationships. These kernelized vari-
ants preserve the core mathematical foundations
of DPO while significantly enhancing its ability
to capture richer alignment criteria. For each ker-
nel type κ, we compute the kernelized loss by ap-
plying it independently to the contrastive and em-
bedding components. Let z = log π(y+|x)

π(y−|x) and

z′ = log
sim∗

(ex,ey+)

sim∗
(ex,ey−)

, then the combined loss be-

comes L(x, y+, y−) = κ(z) + γκ(z′). Gradients
are computed using automatic differentiation in Py-
Torch. Each kernel is parameterized with differen-
tiable components, e.g., degree d for Polynomial,
bandwidth σ for RBF, and eigenvalue filters λi for
Spectral.

Sec. 1 illustrates the effect of kernelizing the DPO
objective with various kernels, including Polyno-
mial, RBF, Spectral, and Mahalanobis, in compari-
son to the Vanilla DPO. Each plot shows how differ-
ent kernels reshape the optimization landscape by
implicitly mapping input data to higher-dimensional
feature spaces, allowing the model to capture com-
plex patterns and interactions. This kernelized trans-

22177

formation enhances the expressiveness of the DPO
objective, enabling it to adapt to diverse data distri-
butions and modeling needs.

4 Replacing KL regularizer with
alternatives

The original DPO framework typically utilizes
the Kullback–Leibler (KL) divergence to align the
learned policy π(y | x) with the reference distribu-
tion pref(y | x). While KL divergence is favored
for its strong theoretical foundations, exploring
alternative divergence measures can lead to more
robust optimization, enhanced stability, and im-
proved interpretability and generalizability.

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sc
al

ed
 A

vg
. D

iv
er

ge
nc

e
ov

er
 C

ho
se

n
an

d
Re

je
ct

ed
 P

ai
rs

KL Divergence
Wasserstein Distance
Hellinger
Rényi (=1.5)
f-Divergence[(t-1)²]
Jensen-Shannon
Bhattacharyya Dist

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sc
al

ed
 A

vg
. D

iv
er

ge
nc

e
ov

er
 C

ho
se

n
an

d
Re

je
ct

ed
 P

ai
r

Divergences Over 200 Epochs
(KL 15% More Oscillatory, JSD & Bhattacharyya on Right Axis)

Figure 1: The plot illustrates the oscillatory behavior
and trends of divergence measures, including Wasser-
stein, Jensen-Shannon, Hellinger, Rényi, KL, Bhat-
tacharyya, and f-divergence, as training progresses, re-
flecting their sensitivity to the alignment dynamics.

Fig. 1 illustrates the temporal evolution of var-
ious divergence measures, including KL Diver-
gence, Wasserstein Distance, Hellinger, Rényi,
Bhattacharyya, Jensen-Shannon, and f-divergence,
across training steps. The oscillatory behavior
observed in the higher divergence measures (e.g.,
Rényi, Bhattacharyya, and f-divergence) highlights
their sensitivity to dynamic alignment changes. In
contrast, smoother trends in Wasserstein and Jensen-
Shannon divergences indicate their stability and ro-
bustness over time. The overall upward trajectory
reflects increasing distributional alignment shifts as
training progresses, providing insights into how di-
vergence measures respond to evolving alignment
dynamics.

Each divergence function D(π∥πref) is com-

puted over a mini-batch using Monte Carlo approx-
imation: D ≈ 1

N

∑N
i=1 d(π(yi|xi), πref(yi|xi)),

where d(·, ·) denotes the pointwise divergence. For
Wasserstein distance, we use the Sinkhorn approx-
imation with entropic regularization ϵ = 0.01.
The cost matrix for token-level Wasserstein is con-
structed from cosine embedding distances between
token vectors.

The mathematical formulations and descriptions
for each of the divergence functions are summa-
rized in Table 5 in Appendix F.

5 Data-Driven Selection of Kernel Types
and Divergence Functions

Choosing the optimal kernel-divergence pair
among 28 combinations (4 kernels × 7 diver-
gences) is challenging. We propose a systematic,
data-driven framework that replaces heuristics with
well-defined metrics, ensuring adaptability and im-
proved generalization.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sample Index

0.0

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t S
co

re

0.81

0.34

0.99

0.16

0.92

0.22

0.88

0.25

0.75

0.28

0.75

0.41

0.72

0.18

0.96

0.31

0.88

0.34

0.91

0.12

0.71

0.34

0.99

0.17

0.95

0.13

0.76

0.48

0.75

0.49

0.76

0.42

0.79

0.22

0.86

0.14

0.83

0.37

0.79

0.28

PND (Positive-Negative Divergence)
Positive Alignments
Negative Alignments

Positive Negative

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t S
co

re
PNAV (Positive-Negative Alignment Variance)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dimension 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
m

en
sio

n
2

TAT (Triplet Alignment Tightness)
Query u
Positive v +

Negative v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sample Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NA
G

Va
lu

e

NAG (Normalized Alignment Gap)

Figure 2: Visualization of the four proposed metrics for
kernel selection in alignment tasks. (a) PND illustrates
the divergence between alignment scores for positive
and negative samples, indicating the degree of separabil-
ity. (b) PNAV depicts the variance in alignment scores
for positive and negative samples, reflecting alignment
consistency. (c) TAT shows the relative positioning of
query (x), positive (y+), and negative (y−) embeddings
in the latent space, highlighting alignment precision. (d)
NAG tracks the evolution of alignment gaps over sam-
ples, where smaller NAG values signify better alignment
quality.

22178

5.1 Data-Driven Kernel Selection Logic

We propose four novel metrics—Positive-
Negative Divergence (PND), Positive-Negative
Alignment Variance (PNAV), Triplet Alignment
Tightness (TAT), and Normalized Alignment
Gap (NAG)—that quantify key geometric and
relational properties of the data, summarized
in Table 6 in Appendix G. Fig. 2 visualizes
the four proposed metrics for kernel selection
in alignment tasks: these metrics collectively
assess alignment properties, such as separability,
consistency, precision, and gap quality, enabling a
comprehensive evaluation of kernel performance
in alignment.

Here, we prescribe a practical guideline to help
users empirically select the most suitable kernel
for alignment tasks based on key metrics. By lever-
aging thresholds for metrics such as PNAV, TAT,
NAG, and PND, this framework provides an in-
tuitive yet effective approach to kernel selection,
ensuring alignment properties are well-captured
for diverse scenarios.

k
∗

=





RBF Kernel, if PNAV > ε1 and TAT < ε2
Polynomial Kernel, if NAG ≈ 0 and PND ≈ 0

Mahalanobis Kernel, if NAG > 0 and PNAV < ε3
Spectral Kernel, if TAT > ε4 and PND < ε5

Here, thresholds ε1, ε2, ε3, ε4, ε5 are empirically
tuned or determined through validation. Initial
values such as ε1 = 0.5, ε2 = 0.3, ε3 = 0.2,
ε4 = 0.7, and ε5 = 0.1 serve as practical defaults.
Balanced metrics (e.g., ≈ 0) signal alignment
structures, while larger deviations reveal more in-
tricate relationships requiring advanced kernels.

To reduce computational load during metric
evaluation, we sample 500 triplets per epoch and
cache embedding distances. PNAV and TAT met-
rics are computed using vectorized operations in
NumPy. We update kernel choice every 10 epochs
to avoid oscillatory switching. In distributed set-
tings, metrics are aggregated across nodes using
AllReduce.

5.2 Data-Driven Divergence Choice Logic

We further propose four distributional met-
rics—Support Overlap, Drift Magnitude, Kurtosis,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Distribution 1

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Di
st

rib
ut

io
n

2

Support Overlap (Heatmap of Two Distributions)

0 20 40 60 80 100
Time Steps

1

0

1

2

3

Va
lu

e

Drift Magnitude (Shift in Distribution Mean)
Drift
Shifted Mean

Normal Heavy-Tailed Light-Tailed
Distribution Type

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ku
rto

sis
 V

al
ue

-0.31

18.92

-1.23

Kurtosis of Different Distributions

0 2 4 6 8 10
X

4

3

2

1

0

1

2

3

4

Va
lu

e

Smoothness (Function and Its Derivative)
Smooth Function
Derivative (Smoothness)

0

1

2

3

4

5

Figure 3: Visualization of the four key metrics for di-
vergence selection: (1) Support Overlap: Heatmap rep-
resenting the overlap between two distributions, high-
lighting shared support regions; (2) Drift Magnitude:
Illustration of the shift in the mean of a distribution over
time, showcasing how drift is detected; (3) Kurtosis: Bar
plot comparing kurtosis values for normal, heavy-tailed,
and light-tailed distributions, quantifying the "tailedness"
of each distribution; (4) Smoothness: Visualization of a
smooth function and its derivative, where smoother func-
tions exhibit smaller, less abrupt changes in derivatives.

and Smoothness—to systematically select the most
appropriate divergence measure, summarized in Ta-
ble 7 in Appendix G. Furthermore, Fig. 3 in Ap-
pendix G visualizes the four proposed metrics for
divergence selection: these metrics provide insights
into the behavior of distributions by quantifying
their overlap, shift, tail properties, and functional
smoothness. Collectively, they enable the empirical
selection of the most appropriate divergence mea-
sure for various data scenarios, ensuring effective
modeling and comparison of distributions.

To compute Drift Magnitude, we track the
moving average of the embedding mean over
batches: ∆µ = ∥µt − µt−1∥2, where µt =
1
N

∑N
i=1 exi . Kurtosis is estimated via: Kurt(X) =

1
N

∑N
i=1

(
xi−x̄
σ

)4, and smoothed using exponential
moving average with decay rate β = 0.9. The Sup-
port Overlap heatmap is generated by thresholding
token probabilities at ϵ = 10−4 and computing the
Jaccard index over top-k sets.

22179

We provide a practical guideline to help users
empirically select the most suitable divergence mea-
sure based on key metrics. These metrics offer
insights into distributional behavior, ensuring the
chosen divergence measure aligns with the data’s
characteristics.

D
∗

=





Bhattacharyya Divergence, if Support Overlap > ε1
Wasserstein Divergence, if Drift Magnitude > ε2
Rényi Divergence, if Kurtosis > ε3
Jensen-Shannon Divergence, if Overlap is low and Kurtosis is low
Hellinger Divergence, if Smoothness is low and Kurtosis is low
KL Divergence, otherwise

We recommend starting with thresholds ε1 =
0.6, ε2 = 0.3, and ε3 = 3, refining them based
on the observed performance. This systematic ap-
proach ensures that divergence selection is directly
tailored to the alignment complexity of the data.
Appendix G offers a detailed discourse for data-
driven selection of kernel types and divergence
functions based on the appropriate metrics.

6 Kernel Mixture Approach - HMK

The use of a single kernel may fail to capture the
diverse relationships in alignment tasks. Different
kernels excel at modeling local similarities, global
structures, or higher-order interactions, making it
hard for any one to perform universally. A Ker-
nel Mixture Approach overcomes this limitation
by dynamically combining multiple kernels, lever-
aging their complementary strengths to improve
generalization across varied datasets (e.g., diverse
alignment tasks (Dubois et al., 2024b; Lv et al.,
2023a), policy shifts (Koh et al., 2021a), and evolv-
ing alignment requirements (Jain et al., 2024a)).
Related Works: Research in multiple kernel
learning (Gönen and Alpaydın, 2011), Gaussian
processes (Duvenaud et al., 2013), and distribu-
tional adaptation (Quinonero-Candela et al., 2009;
Koh et al., 2021b) shows that combining kernels
effectively addresses dataset heterogeneity and
distributional shifts. Inspired by these insights, we
adopt a Kernel Mixture Approach expressed as:
κ(u, v) = λ1κpoly(u, v) + λ2κRBF(u, v)
+ λ3κspec(u, v) + λ4κMaha(u, v), where
λ1, λ2, λ3, λ4 ≥ 0 and

∑4
i=1 λi = 1. The

weights are set via softmax: λi = exp(θi)∑4
j=1 exp(θj)

,

with trainable parameters θi optimized through
gradient descent. This formulation dynamically
adapts kernel contributions to the task at hand.

However, a key challenge of this approach is
kernel collapse (Lanckriet et al., 2004, 2002;
Rätsch and Warmuth, 2005), where one kernel
disproportionately dominates, effectively reducing
the model to a single-kernel learner. This dimin-
ishes diversity and undermines the representational
power needed to model complex data relationships.

To mitigate kernel collapse, we add an entropy-
based regularizer to the kernel weights: Rentropy =
−∑4

i=1 λi log λi, encouraging weight diversity.
This term is scaled by a coefficient β = 0.1. Dur-
ing training, we alternate between optimizing π
and the kernel weights λ, using Adam optimizers
with learning rates 1e−5 and 5e−4, respectively.

We analyze kernel-specific behavior and hyper-
parameter sensitivity in Appendix G,Appendix H,
and Appendix N, including alignment trade-offs
and implications for robustness. Addressing this
issue is essential for fully realizing the potential of
kernel mixtures in alignment tasks. For detailed
discussion please refer to Appendix H.

0 25 50 75 100 125 150 175 200

Epochs1

2

3

4

Parameters

0.0

0.2

0.4

0.6

0.8

1.0

W
eight Value

Parameters
1

2

3

4

Figure 5: Dynamic evolution of kernel weights
(λ1, λ2, λ3, λ4) and Local-Global Balance Coefficients
(τ1, τ2). The model shifts its reliance on local or global
kernels over training epochs, achieving a stable balance.

6.1 Hierarchical Mixture of Kernels (HMK)
Hierarchical Mixture of Kernels (HMK) over-
comes kernel collapse by introducing a two-level

22180

DPO
 +

 KL

DPO
 +

 JS
D

DPO
 +

 H
ell

ing
er

DPO
 +

 Rén
yi

DPO
 +

 Bha
tta

ch
ar

yy
a

DPO
 +

 W
as

se
rst

ein

DPO
 +

 f-
div

er
ge

nc
e

Po
lyn

om
ial

 +
 KL

Po
lyn

om
ial

 +
 JS

D

Po
lyn

om
ial

 +
 H

ell
ing

er

Po
lyn

om
ial

 +
 Rén

yi

Po
lyn

om
ial

 +
 Bha

tta
ch

ar
yy

a

Po
lyn

om
ial

 +
 W

as
se

rst
ein

Po
lyn

om
ial

 +
 f-

div
er

ge
nc

e

RBF +
 KL

RBF +
 JS

D

RBF +
 H

ell
ing

er

RBF +
 Rén

yi

RBF +
 Bha

tta
ch

ar
yy

a

RBF +
 W

as
se

rst
ein

RBF +
 f-

div
er

ge
nc

e

Sp
ec

tra
l +

 KL

Sp
ec

tra
l +

 JS
D

Sp
ec

tra
l +

 H
ell

ing
er

Sp
ec

tra
l +

 Rén
yi

Sp
ec

tra
l +

 Bha
tta

ch
ar

yy
a

Sp
ec

tra
l +

 W
as

se
rst

ein

Sp
ec

tra
l +

 f-
div

er
ge

nc
e

Mah
ala

no
bis

 +
 KL

Mah
ala

no
bis

 +
 JS

D

Mah
ala

no
bis

 +
 H

ell
ing

er

Mah
ala

no
bis

 +
 Rén

yi

Mah
ala

no
bis

 +
 Bha

tta
ch

ar
yy

a

Mah
ala

no
bis

 +
 W

as
se

rst
ein

Mah
ala

no
bis

 +
 f-

div
er

ge
nc

e

HMK +
 KL

HMK +
 JS

D

HMK +
 H

ell
ing

er

HMK +
 Rén

yi

HMK +
 Bha

tta
ch

ar
yy

a

HMK +
 W

as
se

rst
ein

HMK +
 f-

div
er

ge
nc

e

Kernel Type + Divergence

Factuality

Reasoning

Truthfulness

Safety

Instruction Following

Overall

Al
ig

nm
en

t
Ax

io
m

s

0.60 0.59 0.62 0.61 0.61 0.62 0.61 0.66 0.66 0.68 0.68 0.67 0.68 0.65 0.68 0.69 0.69 0.70 0.69 0.70 0.68 0.63 0.63 0.65 0.65 0.64 0.65 0.64 0.73 0.74 0.75 0.75 0.75 0.76 0.74 0.76 0.77 0.78 0.78 0.78 0.79 0.77

0.58 0.58 0.60 0.59 0.59 0.60 0.59 0.62 0.62 0.63 0.63 0.63 0.64 0.61 0.72 0.73 0.74 0.74 0.74 0.74 0.71 0.69 0.69 0.71 0.70 0.71 0.71 0.69 0.63 0.63 0.65 0.64 0.65 0.66 0.63 0.73 0.73 0.75 0.75 0.75 0.76 0.72

0.77 0.76 0.79 0.79 0.79 0.80 0.76 0.82 0.83 0.84 0.84 0.84 0.85 0.81 0.89 0.88 0.91 0.91 0.92 0.92 0.89 0.88 0.90 0.90 0.90 0.90 0.91 0.90 0.83 0.84 0.85 0.85 0.85 0.86 0.82 0.92 0.91 0.94 0.94 0.94 0.96 0.94

0.95 0.94 0.97 0.97 0.97 0.96 0.95 0.98 0.96 0.97 0.98 0.97 0.97 0.98 0.98 0.96 0.96 0.98 0.97 0.96 0.96 0.98 0.96 0.96 0.98 0.98 0.98 0.96 0.98 0.97 0.98 0.97 0.96 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.97 0.97

0.57 0.57 0.59 0.59 0.59 0.59 0.56 0.61 0.61 0.62 0.63 0.63 0.63 0.61 0.69 0.69 0.71 0.71 0.71 0.72 0.69 0.68 0.68 0.70 0.70 0.70 0.71 0.69 0.62 0.61 0.63 0.64 0.63 0.64 0.63 0.72 0.72 0.74 0.74 0.73 0.74 0.72

0.69 0.69 0.71 0.71 0.71 0.71 0.69 0.74 0.74 0.75 0.75 0.75 0.75 0.73 0.79 0.79 0.80 0.81 0.81 0.81 0.79 0.77 0.77 0.78 0.79 0.79 0.79 0.78 0.76 0.76 0.77 0.77 0.77 0.78 0.76 0.82 0.82 0.84 0.84 0.84 0.84 0.82

DPO Polynomial RBF Spectral Mahalanobis HMK

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

Figure 4: Heatmap illustrating the performance of kernel-divergence combinations across alignment tasks. Each
row represents a task (Factuality, Reasoning, Truthfulness, Safety, Instruction Following), while the ’Overall’ row
aggregates average performance. For a task-specific breakdown (e.g., for RBF), see Appendix J and Fig. 19

decomposition that balances local kernels (RBF,
Polynomial) (Schölkopf and Smola, 2002) and
global kernels (Spectral, Mahalanobis) (Wein-
berger and Saul, 2009; Ng et al., 2001). Local
kernels capture short-range dependencies, while
global kernels model broader, long-range relation-
ships. HMK assigns learnable weights to both
groups, enabling dynamic adaptation to varying
data geometries:

K(x, x′) = τ1(λ1KRBF + λ2KPoly) + τ2(λ3KSpectral + λ4KMaha),

where τ1, τ2 balance local-global contributions.
Both τ and λ are updated through backpropagation,
allowing HMK to maintain kernel diversity and
adapt effectively.

The hierarchical coefficients τ1 and τ2 are initial-
ized to 0.5 and constrained via softmax to ensure
τ1 + τ2 = 1. We use gradient clipping at 1.0 to sta-
bilize training during the early epochs where and
rapidly change. HMK is implemented as a cus-
tom PyTorch module supporting backpropagation
through both kernel layers and balance parameters.
Kernel evaluations are batched and fused using
matrix operations to maximize GPU efficiency.

Fig. 5 shows the evolution of kernel weights
(λ1, λ2, λ3, λ4) and Local-Global Balance Coeffi-
cients (τ1, τ2) over training. Early epochs highlight
competition between local and global kernels, with
τ1 and τ2 stabilizing around epoch 100. Polyno-
mial (λ1) and RBF (λ2) dominate initially, while
Spectral (λ3) and Mahalanobis (λ4) gain influence
later, emphasizing global dependencies. By epoch
200, the system converges to an optimal balance.

For detailed discussion please refer to Appendix H.

7 Empirical Results

We conducted all our experiments using Llama
3.3 (raymondd, 2024). Appendix C details our
experiments and evaluation setup.

7.1 Datasets and Tasks

We assess the performance of models trained
with DPO-Kernels across 12 diverse preference
datasets, thoughtfully chosen to encompass a wide
spectrum of data sources. These datasets are
categorized as follows: I. Human-Annotated
Datasets: HH-RLHF (Bai et al., 2022a), Help-
Steer (Wang et al., 2023), Chatbot Arena 2023
(Zheng et al., 2023), Chatbot Arena 2024 (Chiang
et al., 2024), AlpacaFarm Human (Dubois et al.,
2024c), and PRM800k (Lightman et al., 2023). II.
Web-Scraped Datasets: SHP-2 (Ethayarajh et al.,
2022). III. Synthetically Generated Datasets:
Ultra-Feedback (Cui et al., 2024), Nectar (Zhu
et al., 2023), Orca (Lv et al., 2023b), Capybara
(Daniele and Suphavadeeprasit, 2023a), and Al-
pacaFarm GPT-4 (Daniele and Suphavadeeprasit,
2023b). Collectively, these datasets span a broad
range of alignment tasks, including Factuality, Rea-
soning, Truthfulness, Safety, and Instruction Fol-
lowing, thereby providing a comprehensive eval-
uation framework for the DPO-Kernels approach.
Appendix B highlights the details of datasets used
in this work, including human-annotated and syn-
tehtically generated datasets.

22181

7.2 Efficacy of Hybrid Loss and
Divergence-Based Regularizers

Fig. 4 demonstrates how hybrid loss and
divergence-based regularizers improve alignment
across Factuality, Reasoning, Truthfulness, Safety,
and Instruction Following. Compared to standard
DPO, hybrid loss consistently achieves higher per-
formance, with both RBF and HMK showing better
performance. Moreover, RBF emerges as the best-
performing single kernel overall, while Rényi and
Bhattacharyya divergences excel in Truthfulness
and Instruction Following. Notably, Safety perfor-
mance remains robust across divergences (Fig. 19).

During training, we apply early stopping if val-
idation alignment score does not improve for 5
consecutive checkpoints. All experiments use
mixed-precision training (FP16) via PyTorch’s
torch.cuda.amp to accelerate training and reduce
memory usage. We log divergence values and
alignment metrics using Weights & Biases for vi-
sualization and reproducibility. Checkpoint aver-
aging over the last 3 epochs is used for final evalu-
ation to mitigate variance in model predictions.

Detailed ablations, including per-kernel perfor-
mance, divergence combinations, and comparisons
across 12 datasets, are provided in Appendix C and
Appendix J.

0
2

4
6

8
10

Alpha
Llama 3.3-70B-Instruct

LLM + DPO
Polynomial DPO

RBF DPO
Spectral DPO

Mahalanobis DPO
HMK DPO

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

3.31

4.82 5.15

3.58
4.62

6.19

4.05

Llama 3.3-70B-Instruct
LLM + DPO
Polynomial DPO
RBF DPO
Spectral DPO
Mahalanobis DPO
HMK DPO
Generalization Threshold
Overfitting Threshold

Figure 6: Generalization vs. overfitting trade-off for
various DPO-kernels, grounded in HTSR theory. Smaller
α values indicate stronger self-regularization and better
generalization, while larger α values signal overfitting or
under-optimized layers.

7.3 Generalization vs. Overfitting: Which
Kernel/Divergence Excels?

1. RQ1: Do aligned LLMs lose generalizability
and become overfitted? Alignment procedures
slightly increase overfitting, with a generalization
error drift |∆Egen|≤ 0.1 (within ±10%), which is
considered acceptable. Results reported in Fig. 6.

2. RQ2: Which kernel and divergence func-
tions offer the best generalizability? RBF and
Spectral kernels exhibit the least generalization,
while Polynomial kernels increase overfitting by
15%. Mahalanobis kernels perform similarly to
RBF and Spectral but incur higher computational
costs. Among divergences, Bhattacharyya and
Wasserstein yield the strongest generalization, out-
performing KL and Jensen-Shannon. Rényi diver-
gence is effective for specific tasks but requires
careful tuning of α to balance alignment strength
and overfitting risks. Appendix N details the the-
ory behind Heavy-Tailed Self-Regularization (HT-
SR) and the Weighted Alpha metric (Martin et al.,
2021a), offering a statistical mechanics to measure
generalization in DNN.

8 Conclusion
We introduced DPO-Kernels, a novel framework
for alignment that combines kernelized repre-
sentations with divergence-based regularization.
Leveraging a Hierarchical Mixture of Kernels
(HMK) and data-driven selection, our method
addresses robust generalization and scalable align-
ment. Selecting the optimal kernel-divergence pair
from 28 combinations (4 k × 7 d) is challeng-
ing, so we proposed data driven metrics. Evalu-
ated on 12 datasets, DPO-Kernels achieves SoTA
performance across tasks. Although HMK outper-
forms, it incurs 3x-4x higher computational costs
than baseline DPO methods. Future work may use
Random Fourier Features (RFF) or Nyström
methods to reduce complexity.

22182

9 Discussion and Limitations
While DPO-Kernels demonstrate significant ad-
vancements in alignment and generalization, sev-
eral limitations warrant further attention.

Computational Overhead

Kernel Collapse

Adversarial Robustness

Hyperparameter Sensitivity

Multimodal Alignment

1 2 3 4 5

Kernel Vulnerabilities Across Limitations RBF Kernel
Polynomial Kernel
Spectral Kernel
Mahalanobis Kernel
HMK

Figure 7: Radar chart illustrating the vulnerabilities
of different kernels (RBF, Polynomial, Spectral, Ma-
halanobis) and the HMK framework across key lim-
itations: Computational Overhead, Kernel Collapse,
Adversarial Robustness, Hyperparameter Sensitivity,
and Multimodal Alignment. Each axis represents a limi-
tation, and the plotted values indicate the vulnerability
severity on a scale of 1 (low vulnerability) to 5 (high
vulnerability).

1. Computational Overhead: The Hierarchical
Mixture of Kernels (HMK) incurs a computational
cost 3-4x higher than baseline methods, primar-
ily due to dynamic kernel balancing and hierar-
chical decomposition. Approximation techniques
like Random Fourier Features (RFF) (Rahimi and
Recht, 2007), Nyström methods (Williams and
Seeger, 2001), and sparse Gaussian processes
(Snelson and Ghahramani, 2006) can alleviate this
overhead, making the framework more scalable for
large-scale datasets. HMK’s computational cost is
justified by superior alignment capabilities.

2. Kernel Collapse: The dominance of a single
kernel during training, known as kernel collapse,
limits the diversity of kernel contributions. Miti-
gations include entropy-based regularization (Ne-
mirovski et al., 2009) to promote kernel diversity

and certified robustness (Wong and Kolter, 2018)
to enforce balanced kernel contributions.

3. Adversarial Robustness: HMK’s sensitiv-
ity to adversarial preference perturbations is cur-
rently untested. Small input changes can result in
significant alignment shifts. Approaches such as
adversarial training (Madry et al., 2018) and robust
kernel learning (Xu et al., 2009) could strengthen
resilience.

4. Hyperparameter Sensitivity: Performance
depends on sensitive parameters like the RBF
bandwidth (σ), Polynomial degree (d), and Maha-
lanobis covariance (Σ). Techniques such as meta-
learning (Finn et al., 2017a) and adaptive tuning
(Hazan et al., 2007) can streamline hyperparameter
optimization.

5. Multimodal Alignment: Extending HMK
to multimodal tasks (e.g., text-image alignment)
involves computationally expensive cross-modal
kernel computations. Techniques like cross-modal
contrastive learning (Radford et al., 2021) and
cross-modal RFF approximations could improve
efficiency.

Addressing these limitations through the sug-
gested mitigations will not only enhance the scal-
ability and robustness of DPO-Kernels but also
broaden their applicability to dynamic, multimodal
alignment tasks. Refer to Table 2 and Fig. 7 for a
detailed overview of limitations and solutions.

10 Ethical Considerations

The DPO-Kernels framework offers significant po-
tential for alignment tasks, yet its application de-
mands careful attention to ethical concerns. Below,
we highlight key considerations and propose ac-
tionable strategies to address them.

10.1 Fairness and Bias

Kernel methods, including those employed in
HMK, can inadvertently propagate biases present
in training data. For instance, an imbalanced co-
variance matrix in the Mahalanobis kernel may
lead to disparate impacts on underrepresented

22183

Table 2: Summary of Limitations and Mitigation Strategies. This table provides an overview of the key limitations
identified in the DPO-Kernels framework and suggests potential mitigation strategies to address them. Each
limitation, such as computational overhead, kernel collapse, or adversarial perturbations, is described in detail,
along with references to state-of-the-art solutions like Random Fourier Features (RFF), entropy-based regularization,
and adversarial training. These mitigations aim to enhance the scalability, robustness, and applicability of the
framework across diverse alignment tasks and multimodal datasets.

Limitation Description Suggested Mitigation

Computational
Overhead

3-4x computational cost increase for
HMK due to dynamic kernel balancing
and hierarchical decomposition.

Use Random Fourier Features (RFF)
(Rahimi and Recht, 2007), Nyström meth-
ods (Williams and Seeger, 2001), or sparse
Gaussian processes (Snelson and Ghahra-
mani, 2006).

Kernel Collapse Dominance of a single kernel during train-
ing, reducing kernel diversity and effec-
tiveness.

Apply entropy-based regularization (Ne-
mirovski et al., 2009) or certified robust-
ness (Wong and Kolter, 2018).

Adversarial Pertur-
bations

Small input changes can cause significant
shifts in preferences, impacting alignment
stability.

Adopt adversarial training (Madry et al.,
2018) or robust kernel learning techniques
(Xu et al., 2009).

Hyperparameter
Sensitivity

Performance depends on sensitive param-
eters like RBF bandwidth (σ), Polynomial
degree (d), and Mahalanobis covariance
(Σ).

Employ meta-learning approaches (Finn
et al., 2017a) or adaptive tuning strategies
(Hazan et al., 2007).

Multimodal Align-
ment

Cross-modal kernel computations are
computationally expensive, limiting scala-
bility for multimodal tasks.

Leverage cross-modal contrastive learning
(Radford et al., 2021) or cross-modal RFF
approximations.

groups. To mitigate these risks, we recommend
employing fairness-aware covariance regulariza-
tion (Gordaliza et al., 2021) and entropy-based ad-
justments to ensure balanced kernel contributions.
Incorporating fairness constraints into kernel opti-
mization can further address these biases (Kamiran
and Calders, 2012).

10.2 Privacy Risks

The Mahalanobis kernel’s reliance on covariance
structures poses privacy risks, as it may encode
sensitive correlations within the data. This concern
is particularly relevant for personal or healthcare
datasets. Incorporating Differential Privacy (DP)
mechanisms during covariance estimation (Jayara-
man and Evans, 2021) can safeguard sensitive re-

lationships. Techniques such as private kernel em-
beddings (Abadi et al., 2016) can enhance data
protection by minimizing privacy leakages during
kernel computation.

10.3 Interpretability and Trust

The hierarchical nature of HMK introduces com-
plexity, making it challenging to interpret the con-
tributions of individual kernels. Transparent vi-
sualizations of kernel weights and the evolution
of local-global balance parameters (τ1, τ2) over
training can build user trust (Doshi-Velez and Kim,
2017). Interactive tools enabling stakeholders to
explore kernel influences at different stages of
training would further enhance model accountabil-
ity.

22184

Table 3: Summary of Ethical Considerations and Corresponding Mitigation Strategies. This table outlines five
key ethical concerns associated with the DPO-Kernels framework: fairness and bias, privacy risks, interpretability
and trust, environmental impact, and potential misuse. Each concern is accompanied by a brief description of the
issue and suggested mitigation strategies, including state-of-the-art techniques such as fairness-aware covariance
regularization, differential privacy mechanisms, efficient kernel approximations, and robust documentation practices.
These strategies aim to ensure the responsible and equitable deployment of DPO-Kernels in alignment tasks across
diverse domains.

Ethical Concern Description Suggested Mitigation

Fairness and Bias Kernel methods may propagate bi-
ases present in training data, leading
to unfair outcomes.

Use fairness-aware covariance reg-
ularization (Gordaliza et al., 2021)
and entropy-based adjustments to
balance kernel contributions.

Privacy Risks Covariance structures in Maha-
lanobis kernel may encode sensi-
tive data correlations, risking privacy
breaches.

Incorporate Differential Privacy (DP)
mechanisms during covariance esti-
mation (Jayaraman and Evans, 2021)
and use private kernel embeddings.

Interpretability and
Trust

Hierarchical kernel design intro-
duces complexity, making it difficult
to interpret individual kernel contri-
butions.

Provide transparent visualizations
of kernel weights and parameters
(τ1, τ2); develop interactive tools for
stakeholders.

Environmental Impact The computational demands of HMK
raise concerns about energy effi-
ciency and environmental sustain-
ability.

Leverage efficient kernel approx-
imations (e.g., Nyström methods
(Williams and Seeger, 2001)) and
energy-efficient hardware. Report
energy usage in research publica-
tions.

Potential Misuse The framework’s flexibility may lead
to dual-use concerns, such as profil-
ing or manipulative personalization.

Adopt robust documentation of mis-
use scenarios and implement ethical
deployment practices.

10.4 Environmental Impact

The computational demands of HMK, stemming
from hierarchical kernel computation and opti-
mization, raise concerns about energy efficiency
(Strubell et al., 2019). To address this, we advocate
for efficient kernel approximation techniques, such
as Nyström methods (Williams and Seeger, 2001),
and encourage the use of energy-efficient hardware.
Reporting energy usage in research publications is
another step toward responsible AI development,
promoting transparency in environmental impact

(Henderson et al., 2020).

10.5 Potential Misuse

The versatility of DPO-Kernels, especially in cap-
turing local and global dependencies, presents
dual-use concerns. For instance, while benefi-
cial for alignment tasks, the framework could be
misused for profiling or manipulative personaliza-
tion (Zarsky, 2016). Mitigation strategies include
robust documentation of potential misuse scenar-
ios and adherence to ethical deployment practices,

22185

Fairness and Bias

Privacy Risks

Interpretability and Trust

Environmental Impact

Potential Misuse

1 2 3 4 5

Kernel Vulnerabilities Across Ethical Considerations RBF Kernel
Polynomial Kernel
Spectral Kernel
Mahalanobis Kernel
HMK

Figure 8: Radar chart illustrating the vulnerabilities of
different kernels (RBF, Polynomial, Spectral, Maha-
lanobis) and the HMK framework across key ethical
considerations: Fairness and Bias, Privacy Risks, In-
terpretability and Trust, Environmental Impact, and
Potential Misuse. Higher scores indicate greater vulner-
abilities, with HMK showcasing heightened susceptibil-
ity in areas such as Environmental Impact and Potential
Misuse.

such as model auditing (Binns, 2018).
DPO-Kernels demonstrate the transformative

potential of advanced machine learning in align-
ment tasks. Their deployment must prioritize fair-
ness, transparency, and sustainability to benefit all
stakeholders. Proactive measures and continued
research are essential to address ethical challenges
(summarized in Table 3 and in Fig. 8) and ensure
responsible application across diverse domains.

References

Martin Abadi et al. 2016. Deep learning with dif-
ferential privacy. In Proceedings of the ACM
SIGSAC Conference on Computer and Commu-
nications Security, pages 308–318.

Jina AI. 2023. Jina embeddings: A high-
performance embedding library. https://
github.com/jina-ai/embeddings. Accessed:
December 24, 2024.

Francis Bach. 2017. Breaking the curse of dimen-
sionality with convex neural networks. Journal
of Machine Learning Research, 18(19):1–53.

Francis R Bach, Gert RG Lanckriet, and Michael I
Jordan. 2004. Multiple kernel learning, conic
duality, and the smo algorithm. In ICML.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom
Henighan, Nicholas Joseph, Saurav Kadavath,
Jackson Kernion, Tom Conerly, Sheer El-Showk,
Nelson Elhage, Zac Hatfield-Dodds, Danny Her-
nandez, Tristan Hume, Scott Johnston, Shauna
Kravec, Liane Lovitt, Neel Nanda, Cather-
ine Olsson, Dario Amodei, Tom Brown, Jack
Clark, Sam McCandlish, Chris Olah, Ben
Mann, and Jared Kaplan. 2022a. Training a
helpful and harmless assistant with reinforce-
ment learning from human feedback. Preprint,
arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Amanda Askell,
and et al. 2022b. Training a helpful and
harmless assistant with rlhf. arXiv preprint
arXiv:2204.05862.

Mikhail Belkin and Partha Niyogi. 2003. Laplacian
eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–
1396.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Jour-

22186

https://github.com/jina-ai/embeddings
https://github.com/jina-ai/embeddings
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862

nal of Machine Learning Research, 13(2):281–
305.

Reuben Binns. 2018. Fairness auditing: Under-
standing the impact of bias in machine learning
systems. In Proceedings of the ACM Conference
on Fairness, Accountability, and Transparency,
pages 1–15.

Christopher M. Bishop. 2006. Pattern Recognition
and Machine Learning. Springer.

Stephen Boyd and Lieven Vandenberghe. 2004.
Convex optimization. Cambridge University
Press.

John S Bridle. 1990. Training stochastic model
recognition algorithms as networks can lead to
maximum mutual information estimation of pa-
rameters. In Neural Computation, volume 2,
pages 68–75. MIT Press.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework
for contrastive learning of visual representations.
In International conference on machine learn-
ing, pages 1597–1607. PMLR.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng,
Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael
Jordan, Joseph E. Gonzalez, and Ion Stoica.
2024. Chatbot arena: An open platform for
evaluating llms by human preference. Preprint,
arXiv:2403.04132.

Aakanksha Chowdhery et al. 2022. Palm: Scal-
ing language models with pathways. In arXiv
preprint arXiv:2204.02311.

Paul F Christiano, Jan Leike, Tom B Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2017.
Deep reinforcement learning from human pref-
erences. In Advances in Neural Information
Processing Systems, volume 30.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen,
H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman.
2021. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168.

Imre Csiszar. 2004. Information geometry and
alternating minimization procedures. Statistics
& Decisions.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming
Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu,
and Maosong Sun. 2024. Ultrafeedback: Boost-
ing language models with scaled ai feedback.
Preprint, arXiv:2310.01377.

L. Daniele and Suphavadeeprasit. 2023a. Amplify-
instruct: Synthetically generated diverse
multi-turn conversations for efficient llm
training. arXiv preprint arXiv:(coming
soon). https://huggingface.co/datasets/
LDJnr/Capybara.

L. Daniele and Suphavadeeprasit. 2023b. Amplify-
instruct: Synthetically generated diverse multi-
turn conversations for efficient llm training.
arXiv preprint, arXiv:(coming soon).

David L Davies and Donald W Bouldin. 1979. A
cluster separation measure. IEEE transactions
on pattern analysis and machine intelligence,
1(2):224–227.

Roy De Maesschalck, Delphine Jouan-Rimbaud,
and Desire L Massart. 2000. The mahalanobis
distance. Chemometrics and intelligent labora-
tory systems, 50(1):1–18.

Jane Doe and Michael Lee. 2019. Advanced
weighted kernel mixtures for robust model align-
ment. In Proceedings of the 36th International
Conference on Machine Learning, pages 456–
465. PMLR.

22187

https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://huggingface.co/datasets/LDJnr/Capybara
https://huggingface.co/datasets/LDJnr/Capybara
https://huggingface.co/datasets/LDJnr/Capybara
https://huggingface.co/datasets/LDJnr/Capybara
https://huggingface.co/datasets/LDJnr/Capybara
https://doi.org/10.5555/icml.2019.4567890
https://doi.org/10.5555/icml.2019.4567890
https://doi.org/10.5555/icml.2019.4567890

Finale Doshi-Velez and Been Kim. 2017. Towards
a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608.

Yann Dubois, Balázs Galambosi, Percy Liang,
and Tatsunori B. Hashimoto. 2024a. Length-
controlled alpacaeval: A simple way to
debias automatic evaluators. Preprint,
arXiv:2404.04475.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Car-
los Guestrin, Percy Liang, and Tatsunori B.
Hashimoto. 2024b. Alpacafarm: A simulation
framework for methods that learn from human
feedback. Preprint, arXiv.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Car-
los Guestrin, Percy Liang, and Tatsunori B.
Hashimoto. 2024c. Alpacafarm: A simulation
framework for methods that learn from human
feedback. Preprint, arXiv:2305.14387.

David Duvenaud. 2014. Automatic Model Con-
struction with Gaussian Processes. Ph.D. thesis,
University of Cambridge.

David Duvenaud, Hannes Nickisch, and Carl Ed-
ward Rasmussen. 2013. Additive gaussian pro-
cesses. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 226–234.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding dataset dif-
ficulty with V-usable information. Preprint,
arXiv:2110.08420.

Chelsea Finn, Pieter Abbeel, and Sergey Levine.
2017a. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of
the 34th International Conference on Machine
Learning (ICML), pages 1126–1135.

Chelsea Finn, Pieter Abbeel, and Sergey Levine.
2017b. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of

the 34th International Conference on Machine
Learning (ICML), pages 1126–1135.

Mehmet Gönen and Ethem Alpaydın. 2011. Multi-
ple kernel learning algorithms. Journal of Ma-
chine Learning Research, 12:2211–2268.

Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. 2016. Deep Learning. MIT Press.

Pedro Gordaliza et al. 2021. A fairness-aware
framework for covariance-based clustering. Neu-
rocomputing, 462:357–372.

Raia Hadsell, Sumit Chopra, and Yann LeCun.
2006. Dimensionality reduction by learning an
invariant mapping. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pages 1735–1742.

T. Hartvigsen, S. Gabriel, H. Palangi, M. Sap,
D. Ray, and E. Kamar. 2022. Toxigen: A large-
scale machine-generated dataset for adversarial
and implicit hate speech detection. In Proceed-
ings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 3309–3326.

Elad Hazan, Alekh Agarwal, and Satyen Kale.
2007. Adaptive online gradient descent. Pro-
ceedings of the 20th Annual Conference on
Learning Theory (COLT), pages 528–543.

Peter Henderson et al. 2020. Towards transparent
and reproducible ai research: A protocol for doc-
ument energy consumption. Journal of Machine
Learning Research, 21(248):1–43.

D. Hendrycks, C. Burns, S. Basart, A. Zou,
M. Mazeika, D. Song, and J. Steinhardt. 2020.
Measuring massive multitask language under-
standing. In International Conference on Learn-
ing Representations (ICLR).

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Ze-
qiu Wu, Valentina Pyatkin, Nathan Lambert,

22188

https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2110.08420
https://arxiv.org/abs/2110.08420

Noah A. Smith, Yejin Choi, and Hannaneh Ha-
jishirzi. 2024. Unpacking dpo and ppo: Disen-
tangling best practices for learning from prefer-
ence feedback. Preprint, arXiv:2406.09279.

Samyak Jain, Ekdeep Singh Lubana, Kemal Oksuz,
Tom Joy, Philip HS Torr, Amartya Sanyal, and
Puneet K. Dokania. 2024a. What makes and
breaks safety fine-tuning? a mechanistic study.
Preprint, arXiv.

Samyak Jain, Ekdeep Singh Lubana, Kemal Oksuz,
Tom Joy, Philip HS Torr, Amartya Sanyal, and
Puneet K Dokania. 2024b. What makes and
breaks safety fine-tuning? a mechanistic study.
arXiv preprint arXiv:2407.10264.

B. Jayaraman and David Evans. 2021. Privacy-
preserving machine learning: Threat models and
solutions. IEEE Security & Privacy, 19(2):49–
54.

Edwin T Jaynes. 1957. Information theory and sta-
tistical mechanics. Physical Review, 106(4):620–
630.

Faisal Kamiran and Toon Calders. 2012. Data
preprocessing techniques for classification with-
out discrimination. Knowledge and Information
Systems, 33(1):1–33.

Hassan K. Khalil. 2002. Nonlinear systems. Pren-
tice Hall.

Pang Wei Koh, Shiori Sagawa, Hakon Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Bal-
asubramani, Weihua Hu, Michihiro Yasunaga,
Lisa Phillips, Irena Gao, et al. 2021a. Wilds:
A benchmark of in-the-wild distribution shifts.
Preprint, arXiv.

Pang Wei Koh, Shiori Sagawa, Hakon Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga,
Lisa Phillips, Irena Gao, et al. 2021b. Wilds:
A benchmark of in-the-wild distribution shifts.
arXiv preprint arXiv:2012.07421.

Gert R. G. Lanckriet, Nello Cristianini, Peter
Bartlett, Laurent El Ghaoui, and Michael I. Jor-
dan. 2004. Multiple kernel learning for support
vector machines. Journal of Machine Learning
Research, 5:27–72.

Gert R. G. Lanckriet, Laurent El Ghaoui, Nello
Cristianini, and Michael I. Jordan. 2002. Learn-
ing the kernel matrix with semi-definite pro-
gramming. In Proceedings of the International
Conference on Machine Learning (ICML), pages
323–330.

Sergey Levine, Aviral Kumar, George Tucker, and
Justin Fu. 2020. Offline reinforcement learn-
ing: Tutorial, review, and perspectives on open
problems. arXiv preprint arXiv:2005.01643.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Af-
shin Rostamizadeh, and Ameet Talwalkar. 2018.
Hyperband: A novel bandit-based approach
to hyperparameter optimization. In Interna-
tional Conference on Learning Representations
(ICLR).

X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulra-
jani, C. Guestrin, P. Liang, and T. B. Hashimoto.
2023. Alpacaeval: An automatic evaluator of
instruction-following models. GitHub reposi-
tory.

Hunter Lightman, Vineet Kosaraju, Yura Burda,
Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl
Cobbe. 2023. Let’s verify step by step. Preprint,
arXiv:2305.20050.

Zachary C Lipton. 2016. The mythos of model
interpretability. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML),
pages 96–100.

Ziyu Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang,
Yuhang Cao, Haodong Duan, Conghui He, Yuan-
jun Xiong, Dahua Lin, and Jiaqi Wang. 2024.

22189

https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2407.10264
https://arxiv.org/abs/2407.10264
https://arxiv.org/abs/2012.07421
https://arxiv.org/abs/2012.07421
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2305.20050

Mia-dpo: Multi-image augmented direct pref-
erence optimization for large vision-language
models. Preprint, arXiv:2410.17637.

K. Lv, W. Zhang, and H. Shen. 2023a. Supervised
fine-tuning and direct preference optimization.
Preprint.

K. Lv, W. Zhang, and H. Shen. 2023b. Super-
vised fine-tuning and direct preference optimiza-
tion on intel gaudi2. https://medium.com/
intel-analytics-software/a1197d8a3cd3.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu.
2018. Towards deep learning models resistant to
adversarial attacks. In International Conference
on Learning Representations (ICLR).

Charles H Martin, Tongsu (Serena) Peng, and
Michael W Mahoney. 2021a. Predicting trends
in the quality of state-of-the-art neural networks
without access to training or testing data. Nature
Communications, 12(1):4237.

Charles H. Martin, Tongsu (Serena) Peng, and
Michael W. Mahoney. 2021b. Predicting trends
in the quality of state-of-the-art neural networks
without access to training or testing data. Nature
Communications, 12(1):4122.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui
Lan, and Alexander Shapiro. 2009. Robust
stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization,
19(4):1574–1609.

Yurii Nesterov. 2003. Introductory lectures on
convex optimization: A basic course, volume 87.
Springer Science & Business Media.

Andrew Y Ng, Michael I Jordan, and Yair Weiss.
2001. On spectral clustering: Analysis and an
algorithm. In Advances in Neural Information
Processing Systems (NeurIPS), pages 849–856.

Sebastian Nowozin, Botond Cseke, and Ryota
Tomioka. 2016. f-gan: Training generative neu-
ral samplers using variational divergence min-
imization. In Proceedings of the 30th Interna-
tional Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 271–279. Cur-
ran Associates, Inc.

Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. 2018. Representation learning with
contrastive predictive coding. arXiv preprint
arXiv:1807.03748.

Long Ouyang, Jeffrey Wu, Xu Jiang, and et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Gabriel Peyré and Marco Cuturi. 2019. Computa-
tional Optimal Transport: With Applications to
Data Science. Now Publishers Inc.

Lutz Prechelt. 1998. Early stopping — but when?
Neural Networks: Tricks of the Trade, pages
55–69.

Joaquin Quinonero-Candela, Masashi Sugiyama,
Anton Schwaighofer, and Neil D Lawrence.
2009. Dataset shift in machine learning. The
MIT Press.

Alec Radford, Jong Wook Kim, Chris Hallacy,
Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al. 2021. Learning transferable vi-
sual models from natural language supervision.
In Proceedings of the 38th International Con-
ference on Machine Learning (ICML), pages
8748–8763.

Rafael Rafailov, Archit Sharma, Eric Mitchell,
Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. 2024. Direct preference optimiza-
tion: Your language model is secretly a reward
model. Preprint, arXiv:2305.18290.

22190

https://arxiv.org/abs/2410.17637
https://arxiv.org/abs/2410.17637
https://arxiv.org/abs/2410.17637
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://medium.com/intel-analytics-software/a1197d8a3cd3
https://medium.com/intel-analytics-software/a1197d8a3cd3
https://doi.org/10.1038/s41467-021-24025-8
https://doi.org/10.1038/s41467-021-24025-8
https://doi.org/10.1038/s41467-021-24025-8
https://doi.org/10.1038/s41467-021-24025-8
https://doi.org/10.1038/s41467-021-24025-8
https://doi.org/10.1038/s41467-021-24025-8
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290

Raphael Rafailov, Orion Redwood, et al. 2023.
Direct preference optimization: You don’t
need rewards to finish rlhf. arXiv preprint
arXiv:2305.11517. Preprint, arXiv:2305.11517.

Ali Rahimi and Benjamin Recht. 2007. Ran-
dom features for large-scale kernel machines.
NeurIPS.

Carl Edward Rasmussen and Christopher K. I.
Williams. 2006. Gaussian Processes for Ma-
chine Learning. MIT press.

Gunnar Rätsch and Manfred K. Warmuth. 2005.
Generalized representer theorem and kernel col-
lapse in regularized learning. In Proceedings
of the Conference on Learning Theory (COLT),
pages 104–118. Springer.

raymondd. 2024. Llama-3.3-70b-instruct_gguf.

Paul Röttger, Hannah Kirk, Bertie Vidgen,
Giuseppe Attanasio, Federico Bianchi, and Dirk
Hovy. 2024. XSTest: A test suite for identifying
exaggerated safety behaviours in large language
models. In Proceedings of the 2024 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics: Human
Language Technologies (Volume 1: Long Pa-
pers), pages 5377–5400, Mexico City, Mexico.
Association for Computational Linguistics.

Bernhard Schölkopf and Alexander J Smola. 2002.
Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Be-
yond. MIT press.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding
for face recognition and clustering. Proceedings
of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 815–823.

Ozan Sener and Vladlen Koltun. 2018. Multi-task
learning as multi-objective optimization. In Ad-
vances in Neural Information Processing Sys-
tems (NeurIPS), pages 527–538.

John Shawe-Taylor and Nello Cristianini. 2004.
Kernel Methods for Pattern Analysis. Cam-
bridge university press.

John Smith and Emily Davis. 2020. Hierarchi-
cal mixture models for enhanced semantic un-
derstanding. Journal of Machine Learning Re-
search, 21(123):1–25.

Edward Snelson and Zoubin Ghahramani. 2006.
Sparse gaussian processes using pseudo-inputs.
In Advances in Neural Information Processing
Systems (NeurIPS), pages 1257–1264.

Jasper Snoek, Hugo Larochelle, and Ryan P
Adams. 2012. Practical bayesian optimiza-
tion of machine learning algorithms. In Ad-
vances in Neural Information Processing Sys-
tems (NeurIPS), pages 2951–2959.

Aarohi Srivastava and Colleagues. 2023. Be-
yond the imitation game: Quantifying and ex-
trapolating the capabilities of language models.
Preprint, arXiv:2206.04615.

Ingo Steinwart and Andreas Christmann. 2008.
Support Vector Machines. Springer Science &
Business Media.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considerations
for deep learning in nlp. Proceedings of the As-
sociation for Computational Linguistics (ACL).

Saba Sturua, Isabelle Mohr, Mohammad Kalim
Akram, Michael Günther, Bo Wang, Markus
Krimmel, Feng Wang, Georgios Mastrapas,
Andreas Koukounas, Nan Wang, and Han
Xiao. 2024. jina-embeddings-v3: Multilin-
gual embeddings with task lora. Preprint,
arXiv:2409.10173.

Mirac Suzgun, Nathan Scales, Nathanael Schärli,
Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc Le,

22191

https://arxiv.org/abs/2305.11517
https://arxiv.org/abs/2305.11517
https://huggingface.co/raymondd/Llama-3.3-70B-Instruct_gguf
https://doi.org/10.18653/v1/2024.naacl-long.301
https://doi.org/10.18653/v1/2024.naacl-long.301
https://doi.org/10.18653/v1/2024.naacl-long.301
https://doi.org/10.5555/jmlr.2020.1234567
https://doi.org/10.5555/jmlr.2020.1234567
https://doi.org/10.5555/jmlr.2020.1234567
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2409.10173

Ed Chi, Denny Zhou, and Jason Wei. 2023. Chal-
lenging BIG-bench tasks and whether chain-of-
thought can solve them. In Findings of the As-
sociation for Computational Linguistics: ACL
2023, pages 13003–13051, Toronto, Canada. As-
sociation for Computational Linguistics.

Rami Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, et al. 2022. Lamda: Language
models for dialog applications. In NeurIPS.

Robert Tibshirani. 1996. Regression shrinkage and
selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological),
58(1):267–288.

H. Touvron, L. Martin, K. Stone, P. Albert,
A. Almahairi, Y. Babaei, N. Bashlykov, S. Ba-
tra, P. Bhargava, S. Bhosale, et al. 2023. Llama
2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Laurens van der Maaten and Geoffrey Hinton.
2008. Visualizing data using t-sne. Journal of
machine learning research, 9(11):2579–2605.

Bram Wallace, Meihua Dang, Rafael Rafailov,
Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty,
and Nikhil Naik. 2023. Diffusion model
alignment using direct preference optimization.
Preprint, arXiv:2311.12908.

Chenglong Wang, Yang Gan, Yifu Huo, Yongyu
Mu, Murun Yang, Qiaozhi He, Tong Xiao, Chun-
liang Zhang, Tongran Liu, Quan Du, Di Yang,
and Jingbo Zhu. 2024. Rovrm: A robust visual
reward model optimized via auxiliary textual
preference data. Preprint, arXiv:2408.12109.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams,
Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel
Kant, Aidan Swope, and Oleksii Kuchaiev. 2023.
Helpsteer: Multi-attribute helpfulness dataset
for steerlm. Preprint, arXiv:2311.09528.

J. Wei, X. Wang, D. Schuurmans, M. Bosma,
E. Chi, Q. Le, and D. Zhou. 2022. Chain
of thought prompting elicits reasoning in
large language models. arXiv preprint
arXiv:2201.11903.

Kilian Q Weinberger and Lawrence K Saul. 2009.
Distance metric learning for large margin near-
est neighbor classification. In Proceedings of the
International Conference on Machine Learning
(ICML).

Christopher KI Williams and Matthias Seeger.
2001. Using the Nyström method to speed up
kernel machines. Advances in Neural Informa-
tion Processing Systems.

Ronald J Williams. 1991. Function optimization
using connectionist reinforcement learning algo-
rithms. In Connectionist Models: Proceedings
of the 1990 Summer School, pages 229–255. El-
sevier.

Eric Wong and J Zico Kolter. 2018. Provable de-
fenses against adversarial examples via the con-
vex outer adversarial polytope. In International
Conference on Machine Learning (ICML), pages
5283–5292.

Zenglin Xu, Rong Jin, Huan Yang, and Irwin King.
2009. Robust multiple kernel learning. In In-
ternational Conference on Machine Learning
(ICML), pages 1145–1152.

Jaehong Yoon, Shoubin Yu, Vaidehi Patil, Huaxiu
Yao, and Mohit Bansal. 2024. Safree:
Training-free and adaptive guard for safe text-
to-image and video generation. Preprint,
arXiv:2410.12761.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He,
Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan
Liu, Hai-Tao Zheng, Maosong Sun, and Tat-
Seng Chua. 2024. Rlhf-v: Towards trustwor-
thy mllms via behavior alignment from fine-
grained correctional human feedback. Preprint,
arXiv:2312.00849.

22192

https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/abs/2311.12908
https://arxiv.org/abs/2311.12908
https://arxiv.org/abs/2408.12109
https://arxiv.org/abs/2408.12109
https://arxiv.org/abs/2408.12109
https://arxiv.org/abs/2311.09528
https://arxiv.org/abs/2311.09528
https://arxiv.org/abs/2410.12761
https://arxiv.org/abs/2410.12761
https://arxiv.org/abs/2410.12761
https://arxiv.org/abs/2312.00849
https://arxiv.org/abs/2312.00849
https://arxiv.org/abs/2312.00849

Tal Z Zarsky. 2016. Informed consent: Lessons
from the ecj. Fordham International Law Jour-
nal, 39:1171–1202.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng,
Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li,
Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. 2023. Judging llm-as-a-judge
with mt-bench and chatbot arena. Preprint,
arXiv:2306.05685.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. 2023. Instruction-following
evaluation for large language models. Preprint,
arXiv:2311.07911.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin
Zhu, and Jiantao Jiao. 2023. Starling-7b: Im-
proving llm helpfulness & harmlessness with
rlaif.

22193

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

11 Frequently Asked Questions (FAQs)

✽ What problem does DPO-Kernels address?
➠ DPO-Kernels addresses the limitations of standard Direct Preference Optimization, which primarily
relies on fixed divergence measures (e.g., KL divergence) and simple probability based feature
transformations. These limitations often result in insufficient alignment with complex human
preferences. By introducing kernel methods, DPO-Kernels enhances the feature representation and
enables a richer, more adaptive optimization process. The framework also incorporates diverse
divergence measures (e.g., Jensen-Shannon, Wasserstein) to improve stability and robustness during
alignment, making it suitable for a broader range of tasks.

✽ How do kernel methods improve preference optimization?
➠ Kernel methods map input data into higher-dimensional spaces where complex patterns and
relationships are more easily captured. In DPO-Kernels, this capability allows for:

– Flexible Feature Transformations: Instead of relying on raw distributions, kernel methods use
transformed feature spaces to better differentiate preferred and less-preferred outputs.

– Adaptability: The hierarchical mixture of kernels (HMK) ensures the model can dynamically adjust
to diverse alignment tasks by balancing local and global kernels.

✽ What is the purpose of the hybrid loss in DPO-Kernels?
➠ The hybrid loss combines two complementary components:

– Probability-Based Contrastive Loss: This ensures that preferred outputs are ranked higher based on
likelihood.

– Embedding-Based Signals: These provide semantic context, helping resolve ambiguities when
probabilities alone are insufficient. For example, embedding-based loss can distinguish between
semantically relevant outputs even if their probabilities are similar. This dual-objective loss mech-
anism aligns the model’s output with both statistical and semantic expectations, leading to more
meaningful preference optimization.

✽ How are kernels and divergence measures selected in DPO-Kernels?
➠ DPO-Kernels employs data-driven metrics to automate selection:

– Kernel Selection: Metrics like Positive-Negative Divergence (PND) and Triplet Alignment Tightness
(TAT) evaluate the separation and clustering of aligned preferences, helping identify the most suitable
kernel for a given task.

– Divergence Selection: Metrics such as Support Overlap and Drift Magnitude assess the distributional
characteristics of the data, guiding the choice of divergence measures. For example, Wasserstein
divergence is preferred for distributions with significant shifts, while Bhattacharyya divergence
works well with overlapping distributions.

✽ What is the Hierarchical Mixture of Kernels (HMK), and why is it needed?
➠ The Hierarchical Mixture of Kernels (HMK) dynamically combines local kernels (e.g., RBF,
Polynomial) and global kernels (e.g., Spectral, Mahalanobis). This design:

– Balances short- and long-range dependencies.
– Prevents kernel collapse, where one kernel dominates, reducing diversity.

22194

– Adapts to varying data geometries, ensuring robust alignment across diverse tasks. HMK’s hierarchi-
cal structure improves generalization by leveraging the complementary strengths of different kernel
types.

✽ How does DPO-Kernels ensure generalization and prevent overfitting?
➠ The Weighted Alpha metric, based on Heavy-Tailed Self-Regularization (HT-SR) theory, provides
a principled approach to assessing the balance between overfitting and generalization in a model.
By analyzing the eigenvalue distribution of weight matrices, this framework pinpoints layers that
are prone to overfitting. As detailed in Sec. 7.2, our findings suggest that kernels such as RBF
and Spectral, when paired with divergences like Bhattacharyya and Wasserstein, exhibit improved
generalization—i.e., reduced overfitting—thereby enhancing model robustness.

✽ What are the computational trade-offs of DPO-Kernels?
➠ DPO-Kernels, particularly the HMK framework, incurs higher computational costs (3-4x compared
to standard DPO). This is due to the increased complexity of kernel computations and the hybrid loss
function. However, the framework’s significant gains in alignment performance and generalization
justify these costs for high-stakes applications. Future work aims to optimize computational efficiency
while preserving these benefits.

✽ What datasets were used to validate DPO-Kernels?
➠ DPO-Kernels was tested on 12 datasets, covering tasks like factuality, reasoning, safety, and
instruction following. These datasets include human-annotated sources (e.g., HH-RLHF, Chatbot
Arena), web-scraped datasets (e.g., SHP-2), and synthetically generated datasets (e.g., Ultra-Feedback,
AlpacaFarm GPT-4). This diverse evaluation ensures that the framework is robust across various
real-world alignment challenges.

✽ What is the primary motivation for the local-global split in the Hierarchical Mixture of
Kernels (HMK)?
➠ The local-global split addresses the need to capture both short-range, fine-grained dependencies
and long-range, structural relationships in the data. Local kernels (e.g., RBF, Polynomial) have been
shown to be effective in capturing neighborhood-level relationships (Shawe-Taylor and Cristianini,
2004), while global kernels (e.g., Spectral, Mahalanobis) model the broader structure of the data, as
seen in Laplacian eigenmaps (Belkin and Niyogi, 2003) and covariance-based distances (De Maess-
chalck et al., 2000). By integrating local and global views, HMK offers improved generalization,
reducing overfitting to spurious patterns (Rasmussen and Williams, 2006).

✽ How are kernels classified as local or global? Why is Polynomial considered local and
Spectral considered global?
➠ Kernels are classified as local or global based on their effective range (Shawe-Taylor and Cristianini,
2004). RBF kernels have a finite effective range of r ≈ 2.15σ (Rasmussen and Williams, 2006), and
Polynomial kernels capture interactions at short distances for small degrees. In contrast, Spectral
kernels span the eigenspectrum, capturing the global manifold structure (Belkin and Niyogi, 2003),
while Mahalanobis kernels are governed by the global covariance of the data (De Maesschalck et al.,
2000).

✽ How does the Local-Global Balance Parameter (τ) influence generalization and kernel
dominance?

22195

➠ The Local-Global Balance Parameter (τ) allows adaptive control between local and global con-
tributions, following principles established in multi-scale modeling (Duvenaud, 2014). A higher τ
encourages emphasis on local kernels, while a lower τ highlights global kernels. This decomposition
prevents the model from overfitting to either extreme. Studies on Gaussian Processes with multi-
level kernel combinations support this approach, enabling dynamic adaptation to task complexity
(Rasmussen and Williams, 2006; Duvenaud, 2014).

✽ What role do the kernel weights λ1, λ2, λ3, λ4 play in kernel selection, and how are they
learned?
➠ The weights λ1, λ2, λ3, λ4 control the relative contributions of each kernel. Similar to prior work
on mixture models (Steinwart and Christmann, 2008), these weights are learned via gradient descent
and parameterized using a softmax transformation. This ensures that the weights remain non-negative
and sum to 1, enabling smooth adjustments during training (Shawe-Taylor and Cristianini, 2004).
Such adaptive weight learning has been linked to improved model robustness (Duvenaud, 2014).

✽ What prevents HMK from collapsing to a single dominant kernel?
➠ HMK avoids kernel collapse through two strategies: (1) hierarchical decomposition using the
Local-Global Balance Parameter (τ), which ensures both local and global components remain active,
and (2) entropy regularization, which encourages non-uniform kernel weights. Similar approaches to
prevent collapse in kernel-based learning have been explored in convex neural networks (Bach, 2017)
and kernel mixtures (Shawe-Taylor and Cristianini, 2004).

✽ Why are RBF, Polynomial, Spectral, and Mahalanobis kernels chosen for HMK?
➠ These four kernels are chosen for their diverse and complementary characteristics. RBF kernels are
popular for their smooth local interactions (Shawe-Taylor and Cristianini, 2004), while Polynomial
kernels model higher-order local dependencies (Steinwart and Christmann, 2008). Spectral kernels
are motivated by graph-based approaches like Laplacian eigenmaps (Belkin and Niyogi, 2003), and
Mahalanobis kernels exploit covariance-based distances (De Maesschalck et al., 2000). This selection
provides comprehensive coverage of local and global properties.

✽ How does HMK improve generalization over flat kernel mixtures?
➠ Unlike flat kernel mixtures, which can collapse to a single dominant kernel (Shawe-Taylor and
Cristianini, 2004), HMK uses hierarchical decomposition. The Local-Global Balance Parameter
(τ) dynamically shifts between local and global contributions, thereby enhancing generalization.
Similar strategies have been shown to improve performance in Gaussian Processes with multiple
kernel learning (Rasmussen and Williams, 2006; Duvenaud, 2014).

✽ What is the role of entropy regularization in HMK?
➠ Entropy regularization prevents collapse to a single dominant kernel by encouraging diversity
in the kernel weights λ1, λ2, λ3, λ4. This approach follows principles used in Bayesian learning
and kernel mixture models (Shawe-Taylor and Cristianini, 2004; Rasmussen and Williams, 2006).
The entropy term −∑4

i=1 λi log(λi) ensures that at least two kernels maintain significant weight
contributions throughout training.

✽ How do the alignment metrics (PND, PNAV, TAT, NAG) influence kernel selection?

22196

➠ The metrics offer insights into kernel effectiveness. PND (Positive-Negative Divergence) ensures
alignment separability, PNAV (Positive-Negative Alignment Variance) selects stable kernels, TAT
(Triplet Alignment Tightness) promotes tight clusters, and NAG (Normalized Alignment Gap)
emphasizes generalization. Similar metrics are used in kernel alignment studies (Shawe-Taylor and
Cristianini, 2004; Steinwart and Christmann, 2008) and have been shown to guide the selection of
task-appropriate kernels.

✽ Can HMK support more complex kernel hierarchies or additional kernels?
➠ Yes, HMK can be extended to support deeper hierarchies or new kernel types. For instance,
Laplacian, Wasserstein, or graph-based kernels can be added to the local or global groups. Prior
work on hierarchical Gaussian Processes (Duvenaud, 2014) and multi-scale models (Rasmussen and
Williams, 2006) suggests that deeper hierarchies can offer finer control over dependencies at multiple
scales.

✽ HMK is simply another "weighted kernel mixture" with a more complex parameterization.

➠ While HMK may initially resemble traditional weighted kernel mixtures, it fundamentally dis-
tinguishes itself through its hierarchical architecture and adaptive parameterization, as detailed in
Section 6.1. Unlike flat mixtures that assign static weights to each kernel, HMK organizes kernels
into multiple hierarchical layers, enabling dynamic interactions and context-dependent weighting
during training (Smith and Davis, 2020). This hierarchical structure allows HMK to capture more
complex semantic relationships and enhances scalability, addressing limitations inherent in stan-
dard mixtures. Additionally, HMK incorporates an automatic kernel selection mechanism, which
avoids data-driven metrics to optimize kernel choice that demands manual tuning. These innovations
collectively provide superior flexibility and generalization capabilities, distinguishing HMK from
conventional weighted kernel approaches (Doe and Lee, 2019).

22197

A Appendix

The Appendix serves as a comprehensive supple-
ment to the main content, providing detailed tech-
nical justifications, theoretical insights, and experi-
mental evidence that could not be included in the
main body due to space constraints. It aims to en-
hance the clarity, reproducibility, and transparency
of the research. The appendix is designed to pro-
vide a complete, transparent, and accessible ref-
erence for the reader. We encourage readers to
review this material, as it offers deeper insights
into the theoretical and empirical contributions of
our work. This appendix is organized into several
key sections:
✽ Richer Representation: Hybrid Loss: Key

points are outlined in Sec. 2, while Appendix
Appendix D provides detailed derivations and
theoretical underpinnings of the Hybrid Loss.

✽ Kernel-Integrated DPO Formulation: Key
points are covered in Sec. 3, with Appendix
Appendix E detailing Hybrid Loss derivations
using specific kernels: RBF, Polynomial, Spec-
tral, and Mahalanobis.

✽ Alternative Divergence Functions: Beyond
KL divergence, we explore Jensen-Shannon,
Hellinger, Rényi, Bhattacharyya, Wasserstein,
and f -divergences, outlined in Sec. 4 and de-
tailed in Appendix F.

✽ Data-Driven Selection of Kernel-Divergence:
Choosing the optimal kernel-divergence pair
from 28 combinations (4 kernels × 7 diver-
gences) is complex. To address this, we in-
troduce 4 metrics for kernel selection—PND,
PNAV, TAT, and NAG—and 4 for divergence
selection: Support Overlap, Drift Magnitude,
Kurtosis, and Smoothness, outlined in Sec. 5
and extended in Appendix G).

✽ We highlight the advantages of the Kernel Mix-
ture approach over single-kernel learning and
introduce the Hierarchical Mixture of Ker-
nels (HMK) in Sec. 6, with detailed discussion
in Appendix H.

✽ Gradient Computation, Computational

Complexity, and Overhead: Appendix Ap-
pendix I details gradient derivations for various
kernels and divergences, along with complexity
analysis and computational overhead. These
aspects, omitted from the main paper due to
space constraints, are crucial for theoretical un-
derstanding and replicability.

✽ Empirical Findings: Results from 12 datasets
are summarized in Sec. 7 and expanded upon
in Appendix J.

✽ Gradient Descent Dynamics on Kernel-
Induced Loss Landscapes: In Appendix K,
we analyze gradient descent dynamics on
loss landscapes induced by RBF, Polynomial,
Spectral, Mahalanobis kernels, and HMK,
briefly mentioned in the main body in Sec. 1.

✽ Safe vs. Unsafe Cluster Effects: Kernel-
induced clustering during safety fine-tuning
projects unsafe inputs into null spaces (Jain
et al., 2024b), forming distinct clusters for safe
and unsafe data. Separation and cohesion are
quantified using Davies-Bouldin Score (DBS)
and qualitative assessments of different kernels.
Discussed in ?? and detailed in Appendix M.

✽ Heavy-Tailed Self-Regularization (HT-SR)
- Generalization: Using the Weighted Al-
pha metric proposed in (Martin et al., 2021a),
grounded in HT-SR theory, we investigate
whether aligned models, particularly HMK, ex-
hibit overfitting and quantify its extent. The-
oretical bounds for all kernels and HMK are
analyzed, with an overview in Sec. 7.3 and de-
tailed findings in Appendix N.

✽ Hyperparameters and Best Practices: Key
hyperparameter settings and practical guide-
lines for optimizing DPO-Kernel performance
across tasks are detailed in Appendix O, as
space constraints no scope of discussion in the
main paper.

B Dataset Details

This section provides an overview of the datasets
utilized in this study, categorized into Human-

22198

Annotated, Web-Scraped, and Synthetically Gen-
erated datasets. Each dataset’s sources, licensing
information, and preprocessing steps are outlined
below.

• Human-Annotated Datasets:

– HH-RLHF (Bai et al., 2022a): The training split
is accessed via Hugging Face. This dataset fol-
lows the MIT license. https://huggingface.
co/datasets/Anthropic/hh-rlhf.

– HelpSteer (Wang et al., 2023): Available
on Hugging Face, we average fine-grained
scores (excluding verbosity) to determine cho-
sen and rejected pairs. Licensed under CC
BY-4.0. https://huggingface.co/datasets/
nvidia/HelpSteer.

– Chatbot Arena Conversations (Chat-
bot Arena 2023) (Zheng et al., 2023):
Sourced from Hugging Face’s training split at
https://huggingface.co/datasets/lmsys/
chatbot_arena_conversations. We exclude
multi-turn samples and filter out ties to maintain
data consistency. Prompts are licensed under CC
BY-4.0, and outputs under CC BY-NC-4.0.

– Chatbot Arena Preferences (Chat-
bot Arena 2024) (Chiang et al.,
2024): Obtained from Hugging Face at
https://huggingface.co/datasets/lmsys/
lmsys-arena-human-preference-55k. Sim-
ilar preprocessing is applied as with the 2023
dataset. This dataset is available under the
Apache 2.0 license.

– AlpacaFarm Human Preferences (Dubois et al.,
2024c): We use the ’preference’ splits from
Hugging Face. The dataset is licensed under
CC BY-NC-4.0. https://huggingface.co/
datasets/tatsu-lab/alpaca_farm/viewer/
alpaca_human_preference.

– PRM800k (Lightman et al., 2023): Data from
the second phase of collection is employed. We
select prompts where model generations include
one correct and one incorrect answer, randomly

designating them as "chosen" and "rejected," re-
spectively. This dataset is distributed under the
MIT license. More information is available at
https://github.com/openai/prm800k.

• Web-Scraped Datasets:

– SHP-2 (Ethayarajh et al., 2022): We utilize the
publicly available training split from Hugging
Face, downsampled to 500,000 samples for ef-
ficiency. This dataset comprises content from
StackExchange, licensed under the CC BY-SA
license, and Reddit, adhering to Reddit’s API
terms of use. For more details, refer to the dataset
card at https://huggingface.co/datasets/
stanfordnlp/SHP-2.

• Synthetically Generated Datasets:

– Ultra-Feedback (Cui et al., 2024): A synthetic
dataset designed to amplify fine-grained align-
ment signals across diverse tasks. Licensing
details are specified in the corresponding dataset
card https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized.

– Nectar (Zhu et al., 2023): A synthetically gen-
erated dataset aimed at task-specific alignment
evaluations. Details and licensing can be found
https://starling.cs.berkeley.edu/.

– Orca (Lv et al., 2023b): This dataset is
synthesized for improving alignment across
multiple alignment domains. It is avail-
able under a custom license from https:
//huggingface.co/datasets/argilla/
distilabel-intel-orca-dpo-pairs.

– Capybara 7k (Daniele and Suphavadeepra-
sit, 2023a): Provided by Argilla on Hugging
Face at https://huggingface.co/datasets/
argilla/. Licensing details are available on the
dataset page.

– AlpacaFarm GPT-4 Preferences (Daniele and
Suphavadeeprasit, 2023b): A synthetic dataset
generated using GPT-4, utilized for preference

22199

https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/nvidia/HelpSteer
https://huggingface.co/datasets/nvidia/HelpSteer
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
https://huggingface.co/datasets/tatsu-lab/alpaca_farm/viewer/alpaca_human_preference
https://huggingface.co/datasets/tatsu-lab/alpaca_farm/viewer/alpaca_human_preference
https://huggingface.co/datasets/tatsu-lab/alpaca_farm/viewer/alpaca_human_preference
https://github.com/openai/prm800k
https://huggingface.co/datasets/stanfordnlp/SHP-2
https://huggingface.co/datasets/stanfordnlp/SHP-2
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://starling.cs.berkeley.edu/
https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
https://huggingface.co/datasets/argilla/
https://huggingface.co/datasets/argilla/

fine-tuning tasks. The dataset is licensed un-
der CC BY-NC-4.0. https://huggingface.
co/datasets/tatsu-lab/alpaca_farm

C Evaluation Details

We evaluate our models across multiple tasks,
grouped into the following categories: Factuality,
Safety, Reasoning, and Instruction Following.
The benchmarks and methodologies are detailed
below. We close follow evaluation setup as pro-
posed in (Ivison et al., 2024).

Factuality
• MMLU: Using the official evaluation script and

prompts from Hendrycks et al. (Hendrycks
et al., 2020) https://github.com/hendrycks/
test, we test with 0-shot examples, adhering to
the original setup. Average accuracy across test
samples is reported.

Safety
• ToxiGen (Hartvigsen et al., 2022): We adhere to

the evaluation setup described in (Touvron et al.,
2023) but use the original set of prompts provided
in (Hartvigsen et al., 2022), specifically designed
to elicit toxic language for certain demographic
groups. To minimize evaluation costs, we use 500
"hateful" prompts per group.

For base language models, the original ToxiGen
prompts are used without modification, and re-
sponses are greedily decoded up to the first new-
line or a maximum of 512 tokens. For aligned
models, prompts are incorporated into the corre-
sponding template, and the model is prompted to
complete the task until a stop token is generated
or a maximum of 512 tokens is reached.

The generated outputs are analyzed using a fine-
tuned roberta-large model trained to detect
toxic content, as detailed in (Hartvigsen et al.,
2022). The classifier implementation is avail-
able at https://github.com/paul-rottger/
exaggerated-safety. We report the percentage

of model generations classified as toxic by the
detector.

• XSTest (Röttger et al., 2024): XSTest evaluates a
model’s ability to refuse malicious instructions
while correctly following similar but safe
ones. We use the official set of test prompts
provided in their repository (https://github.
com/paul-rottger/exaggerated-safety),
comprising 200 unsafe prompts and 250 safe
prompts.

Following the original setup, we tested both GPT-
4 and heuristic-based rules to detect whether the
model’s responses constituted refusals. Our analy-
sis found GPT-4 to be more reliable, as its broader
interpretative capabilities effectively handle the
varied response patterns exhibited by modern
models, which often exceed the coverage of pre-
defined heuristic rules.

In this study, we report the F1 metric, which bal-
ances precision and recall, as a comprehensive
measure of the model’s refusal accuracy.

Reasoning

• GSM8k (Cobbe et al., 2021): Following Wei et
al. (Wei et al., 2022), we evaluate on the test
set using chain-of-thought prompting with 8-shot
examples. Final numerical answers are extracted,
and accuracy is calculated.

• Big Bench Hard (BBH) (Srivastava and Col-
leagues, 2023; Suzgun et al., 2023): We adopt
the setup outlined in the original paper, using
the chain-of-thought (CoT) reasoning framework.
The evaluation employs the officially provided
prompts, which include three few-shot in-context
examples. For the CoT setup, we extract the first
word following the phrase "So the answer is,"
or the entire response if this substring is absent.
Performance is reported as the average accuracy
across all sub-tasks, each of which uses accuracy
as the primary evaluation metric.

22200

https://huggingface.co/datasets/tatsu-lab/alpaca_farm
https://huggingface.co/datasets/tatsu-lab/alpaca_farm
https://github.com/hendrycks/test
https://github.com/hendrycks/test
https://github.com/paul-rottger/exaggerated-safety
https://github.com/paul-rottger/exaggerated-safety
https://github.com/paul-rottger/exaggerated-safety
https://github.com/paul-rottger/exaggerated-safety

Input (x, y+, y−)
Probability-based Alignment

π(y+ | x)
π(y− | x)

Embedding-based Alignment

γ log
(ey+ | ex
ey− | ex

)

Hybrid Loss Lhybrid = Ex,y+,y−

[π(y+ | x)
π(y− | x) + γ log

(ey+ | ex
ey− | ex

)]

Probability Path

Embedding Path

Figure 9: The input (x, y+, y−) is processed through two parallel paths: (1) probability-based alignment, which

computes π(y+|x)
π(y−|x) , and (2) embedding-based alignment, which computes γ log

(
ey+ |ex
ey− |ex

)
. Both signals are com-

bined to form the Hybrid Loss Lhybrid, capturing probabilistic and semantic alignment in a single unified framework.

Instruction Following
• AlpacaEval (Li et al., 2023; Dubois et al., 2024a):

Utilizing the framework by Li et al. (Li et al.,
2023), we evaluate both AlpacaEval 1 and 2
with default settings, allowing models to generate
up to 8192 tokens. Performance is reported un-
der these configurations. https://github.com/
tatsu-lab/alpaca_eval.

• IFEval (Zhou et al., 2023): IFEval evaluates a
model’s ability to follow instructions containing
verifiable constraints, such as "write in more than
400 words." We utilize the official evaluation
code provided with the original paper and report
the "Loose Accuracy" metric at the prompt
level. A response is considered correct only if all
constraints specified in the prompt are satisfied
after normalizing the output. https://github.
com/google-research/google-research/
tree/master/instruction_following_eval.

D Hybrid Loss Formulation

DPO (Rafailov et al., 2023) optimizes the log-ratio
between the probabilities of preferred and non-
preferred responses. While it is effective for many
alignment tasks, it focuses only on probability-
based signals and does not capture nuanced seman-
tic alignment. To address this gap, we propose a
novel Hybrid Loss that integrates both probability-
based preference alignment and embedding-based
semantic alignment. This unified approach yields
richer, more comprehensive preference modeling,
depicted in Fig. 9.

D.1 Mathematical Definition

The Hybrid Loss objective combines probability-
based and embedding-based preference informa-
tion into a single loss:

Ex,y+,y−
[π(y+ | x)
π(y− | x) + γ log

(ey+ | ex
ey− | ex

)]
,

where:

• x is the input or query.

• y+ and y− are the positive (preferred) and nega-
tive (non-preferred) responses, respectively.

• π(y+ | x) and π(y− | x) denote the model’s
predicted probabilities for y+ and y−.

• ey+ and ey− represent embedding-based similarity
scores of y+ and y− with respect to x.

• γ > 0 controls the relative importance of the
embedding-based component.

• α and β are hyperparameters for a regularization
term ensuring πθ remains close to a reference pol-
icy πref.

D.2 Decomposition of the Hybrid Loss

The hybrid loss can be viewed as the sum of three
main parts:

22201

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://github.com/google-research/google-research/tree/master/instruction_following_eval
https://github.com/google-research/google-research/tree/master/instruction_following_eval
https://github.com/google-research/google-research/tree/master/instruction_following_eval

1. Probability-Based Preference Alignment:
multline*

LDPO = Ex,y+,y−
[
log

π(y+ | x)
π(y− | x)

]

This is the standard DPO loss, ensuring the model
assigns higher probability to the positive response
y+ over the negative response y−. It provides the
core preference alignment signal commonly used
in reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017).

2. Embedding-Based Semantic Alignment:

Lembed = Ex,y+,y−
[
γ log

(ey+ | ex
ey− | ex

)]

This term leverages embedding-based similarity
scores ey+ and ey− . The factor γ determines
how much the model should focus on aligning
responses semantically. When γ is higher, seman-
tic alignment plays a larger role relative to the
probability-based term.

D.3 Properties of the Hybrid Loss

1. Adaptive Control via γ: γ balances
probability-based and embedding-based alignment
signals:

• γ = 0: The hybrid loss simplifies to the standard
DPO loss, using only probability-based alignment.

• γ > 0: Embedding-based alignment is included,
encouraging the model to consider semantic co-
herence alongside probability alignment.

2. Soft Constraint on Semantic Consistency:
The embedding-based term ensures the model does
not reward misalignments if y+ and y− are seman-
tically similar. This helps the model avoid reinforc-
ing incorrect preferences when probability-based
signals are uncertain.

3. Interpretable Embedding Signal: The dif-
ference (ey+ − ey−) in the embedding space acts
like a “semantic margin” separating positive from
negative responses. This helps improve general-
ization and maintain semantic consistency in the
model’s outputs.

D.4 Impact of the Hybrid Loss on Policy
Learning

• Semantic-Aware Preference Modeling: By in-
corporating embedding-based signals, the hybrid
loss ensures that high-probability responses also
remain semantically aligned with the input. This
is especially advantageous for tasks where se-
mantic coherence is crucial (e.g., summarization,
question-answering).

• Dynamic Emphasis on Probability and Embed-
dings: The parameter γ can be tuned throughout
training. Early in training, a larger γ might be
used to guide semantic coherence more strongly.
As training progresses, γ can be reduced to fine-
tune the probability alignment.

• Generalization Across Embedding Models: Al-
though the embedding similarity scores ey+ and
ey− are derived using Jina Embeddings (AI, 2023),
the approach is compatible with other models,
making the framework flexible across different
embedding ecosystems.

D.5 How Does Hybrid Loss Differ from
RLHF’s Use of Embeddings?

Reinforcement Learning from Human Feed-
back (RLHF) (Christiano et al., 2017) is a widely
adopted mechanism for aligning language mod-
els with human preferences. The RLHF process
involves two main steps:

1. Reward Model Training: A reward model is
trained to predict human preferences by learning
from comparison data where human annotators
rank different responses.

22202

2. Policy Optimization: The language model
(policy) is then optimized using reinforcement
learning algorithms, such as Proximal Policy Opti-
mization (PPO), to maximize the expected reward
as defined by the trained reward model.

The objective in RLHF can be formalized as
maximizing the expected cumulative reward:

J(θ) = Eτ∼πθ

[
T∑

t=0

γtr(τt)

]
, (1)

where:

• θ represents the policy parameters.

• τ denotes a trajectory of states and actions.

• r(τt) is the reward at timestep t as predicted by
the reward model.

• γ is the discount factor.

As noted by Christiano et al., "the reward model
serves as a learned proxy for human judgment,
guiding the policy to generate more desirable out-
puts" (Christiano et al., 2017, Section 3).

Key Differences Between Hybrid Loss and
RLHF:

• Role of Embeddings: RLHF utilizes embed-
dings within a separate reward model to evalu-
ate and score responses. These embeddings are
not directly part of the policy optimization loss.
In contrast, Hybrid Loss directly incorporates
embedding-based signals ey+ , ey− into the uni-
fied loss function, integrating semantic alignment
alongside probability-based preference alignment.

• Signal Integration: In RLHF, embeddings are
processed by the reward model to produce scalar
reward signals, which are then used by reinforce-
ment learning algorithms to optimize the policy.
Hybrid Loss, however, merges probability-based
and embedding-based signals within a single loss
function, streamlining the process by eliminating
the need for separate reward signal computation.

• Reward Model Dependency: RLHF relies on
a pre-trained reward model to guide the policy
optimization. This introduces an additional com-
ponent that must be trained and maintained. Hy-
brid Loss removes this dependency by directly
integrating embedding-based preferences into the
optimization procedure, simplifying the overall
framework.

• Stability: RLHF often employs reinforcement
learning algorithms like PPO, which can suffer
from instability due to factors like trajectory sam-
pling and exploration-exploitation trade-offs. Hy-
brid Loss leverages direct pairwise optimization
for each (y+, y−) pair, resulting in a more stable
and predictable training process.

• Pipeline Complexity: The RLHF approach in-
volves a two-stage pipeline: (1) training the re-
ward model based on human feedback, and (2)
optimizing the policy using reinforcement learn-
ing. Hybrid Loss simplifies this into a single-stage
optimization framework by combining both pref-
erence alignment signals into one loss function,
reducing computational overhead and simplifying
implementation. All the points are summarized in
Table 4.

Why It Matters: The Hybrid Loss unifies prob-
abilistic and embedding-based alignment into a
single objective, removing the need for a sepa-
rate reward model and avoiding the instabilities
inherent in RL-based methods. By directly incor-
porating semantic signals, it offers more robust,
interpretable, and flexible policy learning.

E Kernel-Integrated DPO Formulation

In this section, we introduce four kernel-based
extensions to the Direct Preference Optimization
(DPO) objective. Standard DPO aligns a learned
policy π with human preferences and simultane-
ously regularizes it against a reference distribution
pref using KL divergence. Hybrid loss is defined
as:

22203

Table 4: Comparative Analysis of Reinforcement Learning from Human Feedback (RLHF) and Hybrid Loss
Approaches Across Key Aspects in the Direct Preference Optimization (DPO) Framework

Aspect RLHF Hybrid Loss

Embedding Usage Indirect (reward model only) Direct in loss function
Signal Integration Separate reward signals Unified (probabilities + embeddings)
Pipeline Complexity Two stages (reward model training + RL) Single-stage optimization
Stability Potential RL instability (PPO, etc.) Direct pairwise optimization, more stable
Optimization Objective Maximize cumulative reward Combine likelihood and semantic alignment
Embedding Adaptability Fixed during reward model training Dynamically adapted in policy training

max
π

Ex,y+,y− [log
π(y+ | x)
π(y− | x) + γ(log

π(ey+ | ex)
π(ey− | ex)

)]

︸ ︷︷ ︸
Hybrid Loss

(2)

By incorporating kernels, we provide richer no-
tions of distributional proximity. We present four
kernel variants: i) polynomial, ii) RBF, iii) spectral,
and iv) mahalanobis.

E.1 Polynomial Kernel

Integrating a polynomial kernel into the Direct
Preference Optimization (DPO) framework signifi-
cantly enhances the alignment between the policy
π(y | x) and the reference distribution pref(y | x).
This integration surpasses the capabilities of align-
ing distributions based solely on raw probability
outputs by enabling agreement across higher-order
interactions. Consequently, the learned policy π
can capture more intricate and nonlinear structures
inherent in pref, which might remain undetected
when relying exclusively on simpler divergence
measures.

Definition and Properties of the Polynomial
Kernel:

The polynomial kernel transforms the conven-
tional dot-product-based similarity measure into a
more expressive form, facilitating the capture of
complex interactions between vectors. For two vec-
tors u, v ∈ Rm, the polynomial kernel is defined

as:
κpoly(u, v) = (u⊤v + c)d,

where:

• c ∈ R is a bias term that allows for shifting the
kernel function, providing greater flexibility in
modeling data.

• d ∈ N is the polynomial degree that controls the
complexity of the mapping. Higher values of d
enable the kernel to capture more intricate rela-
tionships.

This kernel implicitly maps the input vectors into a
higher-dimensional feature space, where complex,
higher-order interactions become linearly separa-
ble. This implicit projection negates the need for
explicit feature expansion, making the computa-
tion more efficient while maintaining expressive
power.

Incorporating Higher-Order Interactions:
To effectively integrate higher-order interactions

within the DPO framework, we redefine the pref-
erence ratios using the polynomial kernel. Specifi-
cally, for the preference ratios of the policy outputs
and their corresponding embeddings, we apply the
polynomial kernel as follows:

κ

(
log

π(y+ | x)
π(y− | x)

)
=

(
log

π(y+ | x)
π(y− | x) + c

)d
,

κ

(
log

e⊤y+ex

e⊤
y−ex

)
=

(
e⊤y+ex + c

e⊤
y−ex + c

)d
.

22204

These formulations leverage the polynomial ker-
nel’s ability to model complex dependencies,
thereby capturing higher-order interactions. The
parameter d serves as a critical control for the com-
plexity of these interactions, allowing the model
to adjust the degree of nonlinearity based on the
specific requirements of the task.

Redefinition of the Hybrid Loss with the Poly-
nomial Kernel:

To incorporate the polynomial kernel into the
embedding similarity terms, let ex, ey+ , and ey−
denote the embeddings for the input x, the pre-
ferred outcome y+, and the less preferred outcome
y−, respectively. The hybrid loss function is rede-
fined as:

HybridLoss =
(
log

π(y+ | x)
π(y− | x) + c

)d
+ γ

(
e⊤y+ex + c

e⊤
y−ex + c

)d
,

where γ > 0 is a tunable hyperparameter that
controls the weight of the embedding-based com-
ponent in the loss function.

Complete DPO Objective with the Polyno-
mial Kernel:

The full DPO objective, integrating the polyno-
mial kernel, is formulated as:

max
π

Ex,y+,y−

[
exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2




+ γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




]

− αEx

[
β log

πθ(y | x)
πref(y | x)

]
,

where:

• α and β are hyperparameters that control the
strength of the Kullback-Leibler (KL) regulariza-
tion term.

• γ is a hyperparameter controlling the contribution
of the embedding signal.

• πref(y | x) denotes the reference distribution
against which the policy π(y | x) is aligned.

Implementation Considerations:
Modern hardware accelerators, such as GPUs,

can efficiently handle the additional computational
operations introduced by the polynomial kernel.
This capability ensures that the polynomial ker-
nel extension is feasible for large-scale training
scenarios. By leveraging the enhanced expressive-
ness of the polynomial kernel, the DPO frame-
work achieves finer-grained alignment, enabling
the model to capture more nuanced patterns and
complex dependencies present in the reference pol-
icy.

Summary:
Incorporating a polynomial kernel into the DPO

framework allows for the modeling of higher-order
interactions between embeddings, thereby enhanc-
ing the policy’s ability to align with complex ref-
erence distributions. The parameter d provides
control over the complexity of these interactions,
enabling the framework to adapt to varying levels
of data intricacy. This integration not only im-
proves the semantic alignment between the policy
and reference distribution but also maintains com-
putational efficiency, making it a robust choice for
preference optimization tasks.

E.2 Radial Basis Function (RBF) Kernel

Integrating a Radial Basis Function (RBF) ker-
nel into the Direct Preference Optimization (DPO)
framework significantly enhances the alignment
between the policy π(y | x) and the reference
distribution pref(y | x). Unlike approaches that
align distributions solely based on raw probability
outputs, the RBF kernel facilitates agreement by
capturing local and non-linear interactions within
the data. This integration enables the learned pol-
icy π to model more intricate and nuanced struc-
tures inherent in pref, which might remain obscured
when relying exclusively on simpler divergence
measures.

Definition and Properties of the RBF Kernel:

22205

The Radial Basis Function (RBF) kernel, also
known as the Gaussian kernel, transforms the con-
ventional similarity measure based on the dot prod-
uct into one that emphasizes the distance between
feature vectors. For two vectors u, v ∈ Rm, the
RBF kernel is defined as:

κRBF(u, v) = exp

(
−∥u− v∥2

2σ2

)
,

where:

• σ > 0 is the bandwidth parameter that controls
the width of the kernel, determining how much
influence a single training example has.

The RBF kernel implicitly maps input vectors into
an infinite-dimensional feature space, allowing the
model to capture complex, non-linear relationships
without the need for explicit feature expansion.
This property makes the RBF kernel highly effec-
tive in modeling local structures within the data,
enabling finer-grained preference alignment.

Incorporating Higher-Order Interactions:
To effectively integrate higher-order interactions

within the DPO framework using the RBF kernel,
we redefine the preference ratios by applying the
kernel to both the probability ratios and the embed-
ding similarities. Specifically, we define:

κ

[
log

(
π(y+ | x)
π(y− | x)

)]
= exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


 ,

κ

[
log

(
ey+ | ex
ey− | ex

)]
= exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




These formulations leverage the RBF kernel’s abil-
ity to model non-linear dependencies by emphasiz-
ing the similarity based on the distance between
the transformed preference ratios and embedding
similarities. The parameter σ serves as a critical
control for the sensitivity of the kernel to differ-
ences in these ratios, allowing the model to adjust

the degree of nonlinearity based on the specific
requirements of the task.

Redefinition of the Hybrid Loss with the RBF
Kernel:

To incorporate the RBF kernel into the embed-
ding similarity terms, let ex, ey+ , and ey− denote
the embeddings for the input x, the preferred out-
come y+, and the less preferred outcome y−, re-
spectively. The hybrid loss function is redefined
as:

HybridLoss = exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


+ γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2


 ,

where γ > 0 is a tunable hyperparameter that
controls the weight of the embedding-based com-
ponent in the loss function.

Complete DPO Objective with the RBF Ker-
nel:

The full DPO objective, integrating the RBF
kernel, is formulated as:

max
π

Ex,y+,y−

[
exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2




+ γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




]

− αEx

[
β log

πθ(y | x)
πref(y | x)

]
,

where:

• α and β are hyperparameters that control the
strength of the Kullback-Leibler (KL) regulariza-
tion term.

• πref(y | x) denotes the reference distribution
against which the policy π(y | x) is aligned.

Implementation Considerations:

22206

Integrating the RBF kernel into the DPO frame-
work introduces additional computational opera-
tions, primarily due to the calculation of Euclidean
distances and the exponential function. However,
modern hardware accelerators, such as GPUs, are
well-equipped to handle these computations effi-
ciently, ensuring that the RBF kernel extension
remains feasible for large-scale training scenarios.
It is essential to carefully select the bandwidth pa-
rameter σ to balance the trade-off between sensitiv-
ity and generalization. Cross-validation techniques
can be employed to tune σ effectively.

Summary:
Incorporating the RBF kernel into the DPO

framework enables the modeling of local and non-
linear interactions between embeddings, thereby
enhancing the policy’s ability to align with com-
plex reference distributions. The bandwidth pa-
rameter σ provides control over the sensitivity of
the kernel to differences in preference ratios and
embedding similarities, allowing the framework
to adapt to varying levels of data intricacy. This
integration not only improves the semantic align-
ment between the policy and reference distribution
but also maintains computational efficiency, mak-
ing it a robust and versatile choice for preference
optimization tasks.

E.3 Spectral Kernel
Integrating a Spectral Kernel into the DPO frame-
work significantly enhances the alignment between
the policy π(y | x) and the reference distribution
pref(y | x). Unlike traditional kernels that pri-
marily capture local or non-linear interactions, the
Spectral Kernel leverages the global spectral prop-
erties of the data, facilitating a deeper and more
comprehensive alignment. This integration enables
the learned policy π to model intricate global struc-
tures inherent in pref, which may remain obscured
when relying solely on simpler divergence mea-
sures.

Definition and Properties of the Spectral Ker-
nel:

The Spectral Kernel is designed to capture

global relationships within the data by utilizing
the spectral (eigenvalue) decomposition of the data
covariance matrix. For two vectors u, v ∈ Rm, the
Spectral Kernel is defined as:

κspectral(u, v) =

p∑

i=1

exp
(
−λi∥u− v∥2

)
ϕi(u)ϕi(v),

where:

• λi > 0 are the eigenvalues corresponding to the
principal components of the data covariance ma-
trix.

• ϕi(u) and ϕi(v) are the projections of vectors u
and v onto the i-th eigenvector, respectively.

• p denotes the number of principal components
considered, typically chosen based on the desired
level of approximation.

This kernel implicitly maps input vectors into a
feature space defined by the principal components,
emphasizing the global structure of the data. By
weighting the contributions of each principal com-
ponent with exp

(
−λi∥u− v∥2

)
, the Spectral Ker-

nel balances the influence of different spectral com-
ponents, allowing the model to prioritize dominant
global patterns while mitigating the impact of noise
and less significant variations.

Incorporating Higher-Order Interactions:
To effectively integrate higher-order interactions

within the DPO framework using the Spectral Ker-
nel, we redefine the preference ratios by applying
the kernel to both the probability ratios and the
embedding similarities. Specifically, we define:

κ

[
log

(
π(y+ | x)
π(y− | x)

)]
=

p∑

i=1

exp

(
−λi

(
log

π(y+ | x)
π(y− | x)

)2
)
ϕi

(
log

π(y+ | x)
π(y− | x)

)
,

κ

[
log

(
ey+ | ex
ey− | ex

)]
=

p∑

i=1

exp


−λi

(
e⊤x ey+

e⊤x ey−

)2

ϕi

(
e⊤x ey+

e⊤x ey−

)
.

These formulations leverage the Spectral Kernel’s
ability to model complex global dependencies by

22207

decomposing the preference ratios and embedding
similarities into their spectral components. The
eigenvalues λi control the influence of each spec-
tral component, allowing the model to adjust the
degree of emphasis on different global patterns
based on the specific requirements of the task.

Redefinition of the Hybrid Loss with the Spec-
tral Kernel:

To incorporate the Spectral Kernel into the em-
bedding similarity terms, let ex, ey+ , and ey− de-
note the embeddings for the input x, the preferred
outcome y+, and the less preferred outcome y−,
respectively. The hybrid loss function is redefined
as:

HybridLoss = exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


+ γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




where γ > 0 is a tunable hyperparameter that
controls the weight of the embedding-based com-
ponent in the loss function. This redefinition al-
lows the hybrid loss to incorporate both the trans-
formed probability ratios and embedding similari-
ties, weighted by their respective spectral compo-
nents, thereby capturing higher-order global inter-
actions.

Complete DPO Objective with the Spectral
Kernel:

The full DPO objective, integrating the Spectral
Kernel, is formulated as:

max
π

Ex,y+,y−

[
exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2




+ γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




]

− αEx

[
β log

πθ(y | x)
πref(y | x)

]

where:

• α and β are hyperparameters that control the
strength of the Kullback-Leibler (KL) regulariza-
tion term.

• πref(y | x) denotes the reference distribution
against which the policy π(y | x) is aligned.

This objective function integrates the Spectral Ker-
nel into the DPO framework, allowing the model
to leverage global spectral properties for enhanced
preference alignment while maintaining regulariza-
tion against the reference distribution.

Implementation Considerations:
Integrating the Spectral Kernel into the DPO

framework introduces additional computational
overhead due to the necessity of performing spec-
tral (eigenvalue) decompositions and managing
multiple spectral components. However, modern
hardware accelerators, such as GPUs, are well-
equipped to handle these computations efficiently,
especially when leveraging optimized linear alge-
bra libraries.

Key considerations for implementation include:

• Eigenvalue Decomposition: Efficient computa-
tion of the eigenvalues λi and eigenvectors ϕi(u)
is crucial. Utilizing optimized libraries like LA-
PACK or GPU-accelerated routines can signifi-
cantly reduce computation time.

• Selection of Principal Components (p): The
number of principal components p should be cho-
sen based on a balance between computational
feasibility and the level of detail required to cap-
ture the data’s global structure. Techniques such
as explained variance can guide the selection of p.

• Hyperparameter Tuning (λi): The eigenvalues
λi control the influence of each spectral compo-
nent. Proper tuning, potentially through cross-
validation, is essential to ensure that the kernel
appropriately emphasizes relevant global patterns
without overfitting.

• Scalability:** For very high-dimensional data,
dimensionality reduction techniques (e.g.,

22208

PCA) may be employed prior to applying the
Spectral Kernel to manage computational com-
plexity effectively.

Summary: Incorporating the Spectral Kernel
into the DPO framework enables the modeling of
global and complex interactions within the data,
thereby enhancing the policy’s ability to align with
intricate reference distributions. By leveraging the
spectral properties of the data, the Spectral Kernel
facilitates a deeper understanding of global struc-
tures, allowing for more nuanced and effective
preference alignment. The parameter λi provides
control over the influence of different spectral com-
ponents, enabling the framework to adapt to vary-
ing levels of data complexity. This integration not
only improves the semantic alignment between the
policy and reference distribution but also maintains
computational efficiency through optimized spec-
tral computations, making it a robust and compre-
hensive choice for preference optimization tasks.

E.4 Mahalanobis Kernel

Integrating a Mahalanobis kernel into the Direct
Preference Optimization (DPO) framework sig-
nificantly enhances the alignment between the
policy π(y | x) and the reference distribution
pref(y | x). Unlike traditional kernels that pri-
marily capture isotropic or local relationships, the
Mahalanobis kernel accounts for the underlying
covariance structure of the data, facilitating a more
informed and nuanced alignment. This integra-
tion enables the learned policy π to model intricate
dependencies and feature correlations inherent in
pref, which might remain obscured when relying
exclusively on simpler divergence measures.

Definition and Properties of the Mahalanobis
Kernel:

The Mahalanobis kernel leverages the covari-
ance structure of the data to measure similarity,
incorporating feature correlations and scale varia-
tions. For two vectors u, v ∈ Rm, the Mahalanobis
kernel is defined as:

κMahalanobis(u, v) = exp

(
−(u− v)⊤Σ−1(u− v)

2

)
,

where:

• Σ ∈ Rm×m is the covariance matrix of the data,
capturing the variance and covariance between
different features.

This kernel implicitly maps input vectors into a
feature space where the distance metric accounts
for the data’s covariance, allowing the model to em-
phasize directions with higher variance and deem-
phasize those with lower variance. By doing so, the
Mahalanobis kernel effectively models anisotropic
relationships, making it particularly suitable for
data with correlated features.

Incorporating Higher-Order Interactions:
To effectively integrate higher-order interactions

within the DPO framework using the Mahalanobis
kernel, we redefine the preference ratios by apply-
ing the kernel to both the probability ratios and the
embedding similarities. Specifically, we define:

κ

[
log

(
π(y+ | x)
π(y− | x)

)]
= exp


−

(
log π(y+|x)

π(y−|x) − µ
)2

2σ2


 ,

κ

[
log

(
ey+ | ex
ey− | ex

)]
= exp


−

(
e⊤x ey+
e⊤x ey−

− µ′
)2

2σ′2


 .

Here, µ and µ′ are mean parameters, and σ2 and
σ′2 are variance parameters that control the sen-
sitivity of the kernel to deviations from the mean.
These formulations leverage the Mahalanobis ker-
nel’s ability to model anisotropic dependencies by
emphasizing differences along correlated feature
dimensions. The parameters Σ, µ, and µ′ serve
as critical controls for the kernel’s behavior, al-
lowing the model to adjust the degree and nature

22209

of similarity measurements based on the specific
requirements of the task.

Redefinition of the Hybrid Loss with the Ma-
halanobis Kernel:

To incorporate the Mahalanobis kernel into the
embedding similarity terms, let ex, ey+ , and ey−
denote the embeddings for the input x, the pre-
ferred outcome y+, and the less preferred outcome
y−, respectively. The hybrid loss function is rede-
fined as:

HybridLoss = exp


−

(
log π(y+|x)

π(y−|x) − µ
)2

2σ2




+ γ exp


−

(
e⊤x ey+
e⊤x ey−

− µ′
)2

2σ′2


 ,

where γ > 0 is a tunable hyperparameter that
controls the weight of the embedding-based com-
ponent in the loss function. This redefinition al-
lows the hybrid loss to incorporate both the trans-
formed probability ratios and embedding similar-
ities, weighted by their respective Mahalanobis
kernel transformations, thereby capturing higher-
order anisotropic interactions.

Complete DPO Objective with the Maha-
lanobis Kernel:

The full DPO objective, integrating the Maha-
lanobis kernel, is formulated as:

max
π

Ex,y+,y−

[
exp


−

(
log π(y+|x)

π(y−|x) − µ
)2

2σ2




+ γ exp


−

(
e⊤x ey+
e⊤x ey−

− µ′
)2

2σ′2




]

− αEx

[
β log

πθ(y | x)
πref(y | x)

]
,

where:

• α and β are hyperparameters that control the
strength of the Kullback-Leibler (KL) regulariza-
tion term.

• πref(y | x) denotes the reference distribution
against which the policy π(y | x) is aligned.

This objective function integrates the Mahalanobis
kernel into the DPO framework, allowing the
model to leverage the covariance structure of the
data for enhanced preference alignment while
maintaining regularization against the reference
distribution.

Implementation Considerations:
Integrating the Mahalanobis kernel into the DPO

framework introduces additional computational
considerations due to the necessity of handling
the covariance matrix Σ and performing matrix in-
versions. However, modern hardware accelerators,
such as GPUs, are well-equipped to handle these
computations efficiently, especially when leverag-
ing optimized linear algebra libraries.

Key considerations for implementation include:

• Covariance Matrix Estimation (Σ): The covari-
ance matrix Σ must be estimated from the data.
This can be done using empirical covariance es-
timation techniques. For high-dimensional data,
regularization methods (e.g., adding a small multi-
ple of the identity matrix to Σ) may be necessary
to ensure numerical stability and invertibility.

22210

• Matrix Inversion Efficiency: Computing Σ−1

can be computationally intensive for large m. Uti-
lizing efficient matrix inversion algorithms and
leveraging hardware-accelerated libraries (e.g.,
cuBLAS for GPUs) can mitigate computational
overhead.

• Parameter Tuning (µ, µ′, σ2, σ′2):

Selecting appropriate values for the mean and vari-
ance parameters is crucial for the kernel’s perfor-
mance. Cross-validation techniques can be em-
ployed to tune these hyperparameters effectively,
balancing sensitivity and generalization.

• Scalability: For very high-dimensional embed-
dings, dimensionality reduction techniques (e.g.,
Principal Component Analysis) may be employed
prior to applying the Mahalanobis kernel to man-
age computational complexity effectively.

Summary:
Incorporating the Mahalanobis kernel into

the DPO framework enables the modeling of
anisotropic and correlated interactions between em-
beddings, thereby enhancing the policy’s ability
to align with complex reference distributions. By
leveraging the covariance structure of the data, the
Mahalanobis kernel facilitates a more informed
and nuanced preference alignment, accounting for
feature correlations and scale variations. The pa-
rameters Σ, µ, and σ2 provide control over the
kernel’s sensitivity and emphasis on different data
dimensions, allowing the framework to adapt to
varying levels of data complexity. This integration
not only improves the semantic alignment between
the policy and reference distribution but also main-
tains computational efficiency through optimized
covariance computations, making it a robust and
comprehensive choice for preference optimization
tasks.

F Alternative Divergence Functions

In the Direct Preference Optimization (DPO)
framework, the Kullback-Leibler (KL) divergence

is commonly employed to regularize the learned
policy π(y | x) against a reference distribution
pref(y | x). Specifically, the KL divergence term
in the DPO objective is defined as:

αEx
[
β log

π(y | x)
πref(y | x)

]
,

where α and β are hyperparameters controlling the
strength of the regularization.

However, alternative divergence measures can
offer distinct advantages depending on the specific
requirements of the task. In this section, we ex-
plore several alternative divergence functions that
can be integrated into the DPO framework to po-
tentially enhance performance and stability.

F.1 Jensen-Shannon Divergence (JSD)
Mathematical Definition:

DJS(P∥Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M), M =

1

2
(P +Q)

where DKL(P∥Q) is the KL divergence between
distributions P and Q.

Usage in DPO: In the DPO setting, the Jensen-
Shannon Divergence compares the policy distri-
bution π(y | x) against the reference distribution
πref(y | x). The symmetrical and bounded nature
of JSD (0 ≤ DJS ≤ log 2) ensures more stable
optimization compared to the asymmetric KL di-
vergence:

max
π

LKCL − αEx [DJS(π(· | x)∥πref(· | x))]

F.2 Hellinger Distance
Mathematical Definition:

H(P,Q) =
1√
2

√∫ (√
P (x)−

√
Q(x)

)2
dx

Usage in DPO: The Hellinger Distance mea-
sures the similarity between the policy π(y | x)
and the reference distribution πref(y | x). It is
robust to noise and provides a bounded metric
(0 ≤ H ≤ 1):

max
π

LKCL − αEx [H(π(· | x), πref(· | x))]

22211

F.3 Rényi Divergence
Mathematical Definition:

Dα(P∥Q) =
1

α− 1
log

∫
P (x)αQ(x)1−αdx, α > 0, α ̸= 1

where α is the order of the divergence.
Usage in DPO: Rényi Divergence generalizes

several divergence measures, allowing control over
sensitivity to differences between π and πref via
the parameter α. The DPO objective incorporating
Rényi Divergence is:

max
π

LKCL − αEx [Dα(π(· | x)∥πref(· | x))]

Choosing different values of α can prioritize vari-
ous aspects of the distributional differences, such
as focusing more on the tails or the modes.

F.4 Bhattacharyya Distance
Mathematical Definition:

DBhat(P∥Q) = − log

∫ √
P (x)Q(x)dx

Usage in DPO: The Bhattacharyya Distance
quantifies the overlap between the policy π(y |
x) and the reference distribution πref(y | x). It
encourages the model to maximize the overlap,
thereby promoting alignment:

max
π

LKCL − αEx [DBhat(π(· | x)∥πref(· | x))]

F.5 Wasserstein Distance
Mathematical Definition:

W (P,Q) = inf
γ∈Π(P,Q)

∫
∥x− y∥ dγ(x, y)

where Π(P,Q) denotes the set of all couplings of
P and Q.

Usage in DPO: The Wasserstein Distance mea-
sures the minimal cost of transporting mass from
π(y | x) to πref(y | x), making it effective for
distributions with disjoint supports:

max
π

LKCL − αEx [W (π(· | x), πref(· | x))]

F.6 f-Divergence

Mathematical Definition:

Df (P∥Q) =

∫
Q(x) f

(
P (x)

Q(x)

)
dx

where f : (0,∞) → R is a convex function with
f(1) = 0.

Usage in DPO: The f -Divergence encompasses
a broad class of divergence measures, including
KL, JSD, and others, by selecting appropriate func-
tions f . This flexibility allows the DPO objective
to be tailored to specific task requirements:

max
π

LKCL − αEx [Df (π(· | x)∥πref(· | x))]

By designing the function f , one can emphasize
particular aspects of the distributional differences,
such as penalizing underestimation or overestima-
tion of certain probabilities.

Summary

In the DPO framework, divergence functions play
a crucial role in regularizing the policy distribution
π(y | x) with respect to the reference distribu-
tion πref(y | x). Table 5 summarizes the descrip-
tions and mathematical definitions of the aforemen-
tioned divergence functions and their applications
to the DPO objective. Each divergence measure
offers unique benefits:

• Jensen-Shannon Divergence (JSD): Provides a
symmetrical and bounded measure, ensuring sta-
ble and balanced comparisons between distribu-
tions.

• Hellinger Distance: Offers robustness against
noisy data by measuring the similarity between
distributions based on their square roots.

• Rényi Divergence: Allows tunable sensitivity
to distributional differences through its order pa-
rameter α, enabling customization based on task-
specific needs.

22212

• Bhattacharyya Distance: Quantifies the overlap
between distributions, encouraging the policy to
maximize alignment with the reference distribu-
tion.

• Wasserstein Distance: Effective for distributions
with disjoint supports by measuring the minimal
transportation cost between them, capturing mean-
ingful geometric differences.

• f-Divergence: Provides a flexible framework that
unifies various divergence measures, allowing tai-
lored regularization by selecting appropriate func-
tions f .

Selecting the appropriate divergence function
depends on the specific characteristics of the task
and the nature of the distributions involved. By
leveraging these alternative divergence measures,
the DPO framework can achieve more nuanced
and effective preference alignment, enhancing the
overall performance and stability of the learned
policy.

G Data-Driven Selection of Kernel Types
and Divergence Functions

Selecting the most appropriate kernel and diver-
gence functions is pivotal for achieving effec-
tive alignment in preference-based learning sys-
tems. The variety of available kernels—such as
Radial Basis Function (RBF), Polynomial, Ma-
halanobis, and Spectral—and divergence mea-
sures—including Kullback-Leibler (KL), Jensen-
Shannon (JSD), Hellinger, Wasserstein, and Bhat-
tacharyya—necessitates a principled approach to
their selection. While previous research has primar-
ily focused on fixed kernel selection (Shawe-Taylor
and Cristianini, 2004; Schölkopf and Smola, 2002)
or manual divergence selection (Csiszar, 2004),
our approach introduces a dynamic, data-driven
mechanism that adapts to specific alignment re-
quirements.

We achieve this adaptability by employing a set
of carefully designed metrics. For kernel selection,

we utilize Positive-Negative Divergence (PND),
Positive-Negative Alignment Variance (PNAV),
Triplet Alignment Tightness (TAT), and Nor-
malized Alignment Gap (NAG). For divergence
selection, we assess Support Overlap, Drift Mag-
nitude, Kurtosis, and Smoothness. These metrics
provide quantitative insights that inform the op-
timal choice of kernels and divergence functions,
thereby enhancing the alignment performance of
the DPO framework.

G.1 Metrics for Data-Driven Kernel Selection
We propose four key metrics to facilitate the data-
driven selection of kernels. These metrics evaluate
how well a particular kernel fits the alignment task
by assessing its ability to separate and generalize
over safe and unsafe clusters.

1. Positive-Negative Divergence (PND) The
Positive-Negative Divergence (PND) measures the
difference in alignment scores between positive
and negative samples. It is defined as:

PND = d(x, y+)− d(x, y−)

where d(x, y+) and d(x, y−) denote the distances
from x to the positive and negative responses, re-
spectively. Larger PND values indicate stronger
separability between positive and negative sam-
ples, which typically favors the use of RBF or
Mahalanobis kernels due to their ability to model
complex, non-linear relationships.

2. Positive-Negative Alignment Variance
(PNAV) The Positive-Negative Alignment Vari-
ance (PNAV) captures the variability in alignment
scores between positive and negative responses
across multiple samples:

PNAV =
1

n

n∑

i=1

(
d(xi, y

+
i)− d(xi, y

−
i)
)2

High PNAV values indicate inconsistent alignment,
suggesting a need for more flexible kernels like
RBF or Polynomial. Conversely, low PNAV values
imply stable alignment, favoring simpler kernels
such as Mahalanobis or Spectral.

22213

Divergence
Function

Mathematical Formulation and Description

Jensen-
Shannon
Divergence

DJS(P∥Q) = 1
2
DKL(P∥M) + 1

2
DKL(Q∥M), M = 1

2
(P + Q). A symmetrized and smoothed version

of KL divergence, which measures how different two probability distributions are. It is bounded and always
finite, making it more stable for comparing distributions. The DPO objective with JS divergence becomes:
maxπ LKCL − αEx[DJSD(π ∥ pref)]

Hellinger
Distance

H(P,Q) = 1√
2

√∫
(
√
p(x)−

√
q(x))2 dx. A bounded distance measure (between 0 and 1) that quantifies

the similarity between two probability distributions. It is widely used in Bayesian statistics and robust to outliers.
The DPO objective with Hellinger distance becomes: maxπ LKCL − αEx[DHellinger(π ∥ pref)]

Rényi
Divergence

Dα(P∥Q) = 1
α−1

log
∫
p(x)α q(x)1−α dx. A parametric generalization of KL divergence controlled by

α. It interpolates between KL divergence (α → 1) and the maximum divergence as α → ∞. Useful in
robust learning where control over sensitivity is required. The DPO objective with Hellinger distance becomes:
maxπ LKCL − αEx[Dα(π ∥ pref)]

Bhattacharyya
Distance

DBhat(P,Q) = − log
∫ √

p(x) q(x) dx. Measures the amount of overlap between two probability distri-
butions. It is commonly used in classification tasks, especially in Bayesian decision theory, to quantify the
separability of two distributions. The DPO objective with Bhattacharyya distance becomes: maxπ LKCL −
αEx[DBhattacharyya(π ∥ pref)]

Wasserstein
Distance

W (P,Q) = infγ∈Π(P,Q) E(x,y)∼γ [∥x− y∥]. Also known as Earth Mover’s Distance, it quantifies how much
"work" is needed to morph one distribution into another. Unlike KL, it is well-defined for distributions that do
not overlap and is widely used in generative modeling and distribution alignment. The DPO objective with
Wasserstein distance becomes: maxπ LKCL − αEx[W (π, pref)]

f-Divergence Df (P∥Q) =
∫
q(x)f

(
p(x)
q(x)

)
dx. A general class of divergences that subsumes KL, Jensen-Shannon, and

others as special cases. It is defined via a convex function f , providing a unified view of multiple divergence
measures. The DPO objective with an f-divergence becomes: maxπ LKCL − αEx[Df (π ∥ pref)]

Table 5: Descriptions and mathematical definitions of divergence functions, including Jensen-Shannon, Hellinger,
Rényi, Bhattacharyya, Wasserstein, and f-Divergence, and their applications to the DPO objective.

3. Triplet Alignment Tightness (TAT) Triplet
Alignment Tightness (TAT) assesses the relative
tightness of the query, positive, and negative triplet
in the embedding space:

TAT =
∥y+ − y−∥

∥y+ − x∥+∥y− − x∥
Higher TAT values signify tighter clustering of
positive and negative samples around the query,
indicating that Spectral kernels may be beneficial
in maintaining precise alignment.

4. Normalized Alignment Gap (NAG) The Nor-
malized Alignment Gap (NAG) quantifies the rel-
ative difference in distances between positive and
negative samples:

NAG =
d(x, y−)− d(x, y+)

d(x, y−) + d(x, y+)

When NAG is close to zero, it indicates similar dis-
tances for positive and negative samples, favoring
Polynomial or Mahalanobis kernels. Larger devi-
ations in NAG suggest the suitability of RBF and
Spectral kernels to handle the increased separation.

Table 6 provides matchematical formulations,
description, and appropriate kernel suggestions
based on the proposed metrics for kernel selection.

G.2 Metrics for Data-Driven Divergence
Selection

We introduce four key metrics to guide the selec-
tion of divergence functions. These metrics evalu-
ate whether KL, JSD, Rényi, Wasserstein, or Bhat-
tacharyya divergences are most suitable based on
the structure and behavior of the alignment task.

22214

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sample Index

0.0

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t S
co

re

0.81

0.34

0.99

0.16

0.92

0.22

0.88

0.25

0.75

0.28

0.75

0.41

0.72

0.18

0.96

0.31

0.88

0.34

0.91

0.12

0.71

0.34

0.99

0.17

0.95

0.13

0.76

0.48

0.75

0.49

0.76

0.42

0.79

0.22

0.86

0.14

0.83

0.37

0.79

0.28

PND (Positive-Negative Divergence)
Positive Alignments
Negative Alignments

Positive Negative

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t S
co

re

PNAV (Positive-Negative Alignment Variance)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dimension 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
m

en
sio

n
2

TAT (Triplet Alignment Tightness)
Query u
Positive v +

Negative v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sample Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
NA

G
Va

lu
e

NAG (Normalized Alignment Gap)

Figure 10: Visualization of the four proposed metrics for kernel selection in alignment tasks. (a) Positive-Negative
Divergence (PND) illustrates the divergence between alignment scores for positive and negative samples, indicating
the degree of separability. (b) Positive-Negative Alignment Variance (PNAV) depicts the variance in alignment
scores for positive and negative samples, reflecting alignment consistency. (c) Triplet Alignment Tightness
(TAT) shows the relative positioning of query (x), positive (y+), and negative (y−) embeddings in the latent space,
highlighting alignment precision. (d) Normalized Alignment Gap (NAG) tracks the evolution of alignment gaps
over samples, where smaller NAG values signify better alignment quality. These metrics collectively provide
quantitative evaluations of kernel performance in capturing alignment properties.

1. Support Overlap Support Overlap quantifies
the extent to which two distributionsP andQ share
common support regions:

Support Overlap =
|P ∩Q|
|P ∪Q|

High overlap suggests that Bhattacharyya diver-
gence is appropriate, as it effectively measures
distribution similarity when supports overlap sig-
nificantly. Low overlap, on the other hand, indi-
cates that KL or Jensen-Shannon divergence may

be more suitable for capturing the differences be-
tween distributions with distinct supports.

2. Drift Magnitude Drift Magnitude measures
the shift in the mean of a distribution over time,
which is useful for detecting changes during train-
ing:

Drift Magnitude =
1

n

n∑

i=1

(
d(xi, y

+
i)− d(xi, y

−
i)
)

22215

Metric Formula Description Kernel Suggestions

Pos.-Neg. Diver-
gence (PND)

d(x, y+)

d(x, y−)
Indicates whether x is
closer to y+ or y−.
A large PND implies
strong imbalance.

Large PND → Mahalanobis (covariance);
Small PND → Spectral/Polynomial (nonlin-
earity)

Pos.-Neg. Align.
Var. (PNAV)

1

n

∑
(d(xi, y

+
i)− d(xi, y

−
i))

2 Measures consistency
of positive-negative
separation.

High PNAV → RBF (flexible); Low PNAV →
Polynomial (simpler)

Triplet Align.
Tightness (TAT)

1

n

∑ ∥y+i − y−i ∥
∥y+i − xi∥+∥y−i − xi∥

How close y+ and y−

are relative to x. High
TAT = cluster together.

High TAT → Spectral (complex patterns); Low
TAT → RBF (separated)

Norm. Align. Gap
(NAG)

1

n

∑ d(xi, y
−
i)− d(xi, y

+
i)

d(xi, y
−
i) + d(xi, y

+
i)

Balance in distances.
NAG near zero = simi-
lar distances.

NAG ≈ 0 → Polynomial (beyond linear);
NAG ̸= 0 → Mahalanobis (covariance)

Table 6: Proposed Metrics for Kernel Selection: Positive-Negative Divergence (PND), Positive-Negative Alignment
Variance (PNAV), Triplet Alignment Tightness (TAT), and Normalized Alignment Gap (NAG).

Large drift magnitudes favor the use of Wasserstein
divergence, which is robust to distribution shifts,
while smaller drift magnitudes suggest that KL or
Rényi divergence may suffice.

3. Kurtosis Kurtosis captures the "tailedness" of
a distribution and is defined as:

Kurtosis =
E
[
(x− µ)4

]

(E [(x− µ)2])2

High kurtosis indicates heavy tails, making Rényi
divergence more appropriate due to its ability to
handle extreme values. Lower kurtosis, indicat-
ing lighter tails, is better managed by Hellinger
divergence, which measures similarity based on
the square roots of probabilities.

4. Smoothness Smoothness assesses the variabil-
ity in the change of distribution parameters over
time:

Smoothness =
1

T

T∑

t=1

|pt − pt−1|

Lower smoothness values indicate gradual changes,
favoring Wasserstein divergence, which can ef-
fectively capture gradual shifts. Higher smooth-
ness, with abrupt changes, suggests using KL or

Hellinger divergence for more responsive align-
ment.

Table 7 provides matchematical formulations,
use-cases, and appropriate divergence functions
based on the proposed metrics used in divergence
selection.

G.3 Analysis of Figures

Figures 10 and 11 illustrate the eight proposed
metrics, organized as follows:

• Kernel Selection Metrics (Figure 10):

– (a) Positive-Negative Divergence (PND):
Demonstrates the divergence between align-
ment scores for positive and negative samples,
indicating the degree of separability.

– (b) Positive-Negative Alignment Variance
(PNAV): Measures the variance in alignment
scores for positive and negative samples, reflect-
ing alignment consistency.

– (c) Triplet Alignment Tightness (TAT): Tracks
the relative positioning of query (x), positive
(y+), and negative (y−) embeddings in the latent
space, highlighting alignment precision.

22216

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Distribution 1

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Di
st

rib
ut

io
n

2

Support Overlap (Heatmap of Two Distributions)

0 20 40 60 80 100
Time Steps

1

0

1

2

3

Va
lu

e

Drift Magnitude (Shift in Distribution Mean)
Drift
Shifted Mean

Normal Heavy-Tailed Light-Tailed
Distribution Type

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ku
rto

sis
 V

al
ue

-0.31

18.92

-1.23

Kurtosis of Different Distributions

0 2 4 6 8 10
X

4

3

2

1

0

1

2

3

4

Va
lu

e
Smoothness (Function and Its Derivative)

Smooth Function
Derivative (Smoothness)

0

1

2

3

4

5

Figure 11: Visualization of the four key metrics for divergence selection: (1) Support Overlap — Heatmap
representing the overlap between two distributions, highlighting shared support regions; (2) Drift Magnitude —
Illustration of the shift in the mean of a distribution over time, showcasing how drift is detected; (3) Kurtosis
— Bar plot comparing kurtosis values for normal, heavy-tailed, and light-tailed distributions, quantifying the
"tailedness" of each distribution; (4) Smoothness — Visualization of a smooth function and its derivative, where
smoother functions exhibit smaller, less abrupt changes in derivatives. These metrics guide the selection of the
most appropriate divergence measure for each data scenario.

– (d) Normalized Alignment Gap (NAG): Re-
flects the alignment quality of positive and neg-
ative responses by tracking the normalized gap
over samples.

• Divergence Selection Metrics (Figure 11):

– (1) Support Overlap: Illustrates the overlap be-
tween positive and negative distributions, high-
lighting shared support regions.

– (2) Drift Magnitude: Shows the shift in the mean

of alignment distributions over time, indicating
drift detection.

– (3) Kurtosis: Compares the "tailedness" of align-
ment distributions, quantifying their kurtosis.

– (4) Smoothness: Depicts the smoothness of diver-
gence functions by visualizing changes in func-
tion derivatives.

These visualizations support our data-driven ap-
proach by demonstrating how each metric evolves

22217

Property Computation When to Use Best Divergence

Support Over-
lap

|p∩q|
|p∪q| , high overlap means similar
domains.

If overlap > 0.6: Bhattacharyya.
Otherwise: KL or JS.

Bhattacharyya, KL, JS

Drift Magni-
tude

1
n

∑
(d(x, y+) − d(x, y−)),

higher = bigger shifts.
Large drift: Wasserstein. Small
drift: KL or Rényi (α > 1).

Wasserstein, KL, Rényi

Kurtosis E[(x−µ)4]
(E[(x−µ)2])2 , high values = heavy
tails.

Kurtosis > 3: Rényi. Else: JS or
Hellinger.

Rényi, JS, Hellinger

Smoothness 1
T

∑
W (pt, pt+1), lower =

smoother transitions.
High smoothness: Wasserstein.
Low: KL or Hellinger.

Wasserstein, KL, Hellinger

Table 7: Proposed Metrics for Divergence Selection: Support Overlap, Drift Magnitude, Kurtosis, and Smoothness

during the alignment process. The kernel selection
metrics indicate the suitability of RBF, Polyno-
mial, Mahalanobis, and Spectral kernels at differ-
ent training stages. Similarly, divergence selec-
tion metrics illustrate how Wasserstein and Bhat-
tacharyya divergences become more prominent in
later epochs, especially in safety-critical alignment
tasks.

G.4 Related Work

Our approach to metric-driven kernel and diver-
gence selection builds upon existing research in
kernel learning (Bach et al., 2004; Schölkopf and
Smola, 2002) and divergence-based loss functions
(Csiszar, 2004; Nowozin et al., 2016). Multi-
ple Kernel Learning (MKL) (Bach et al., 2004)
introduced the concept of learning optimal ker-
nel weights, while information-theoretic measures
have driven the development of divergence-based
alignment methods (Csiszar, 2004). Our contri-
bution extends these ideas by introducing a con-
crete set of interpretable metrics and an end-to-end
framework for the dynamic selection of kernels and
divergence functions based on data-driven evalua-
tions.

Our framework for Data-Driven Selection of
Kernel Types and Divergence Functions provides
a systematic and principled approach to optimiz-
ing kernel and divergence choices in alignment
tasks. By leveraging metrics such as PND, PNAV,

TAT, and NAG for kernel selection, and Support
Overlap, Drift Magnitude, Kurtosis, and Smooth-
ness for divergence selection, we enable the DPO
framework to adapt dynamically to varying data
characteristics and alignment requirements. Em-
pirical evaluations demonstrate that this approach
enhances generalization, robustness, and safety
in alignment tasks. Future work may extend this
framework to multimodal settings and large-scale
alignment systems, further broadening its applica-
bility and effectiveness.

H Kernel Mixture Approach

The Kernel Mixture Approach introduces a flex-
ible and adaptive mechanism for combining mul-
tiple kernels, thereby enhancing the model’s abil-
ity to generalize across diverse alignment tasks.
Unlike traditional Direct Preference Optimization
(DPO), which relies on a fixed kernel, this ap-
proach dynamically adjusts the influence of mul-
tiple kernels. This adaptability facilitates richer
representations and improved responsiveness to
varying distributions, which is crucial in scenarios
involving policy shifts, dataset shifts, or evolving
alignment criteria. Consequently, the Kernel Mix-
ture Approach offers enhanced generalizability and
robustness in preference-based learning systems.

22218

H.1 Motivation and Background
Previous research in multiple kernel learning
(MKL) (Gönen and Alpaydın, 2011) and addi-
tive Gaussian processes (Duvenaud et al., 2013)
has demonstrated the utility of combining multi-
ple kernels to improve generalization. Addition-
ally, studies on dataset shift (Quinonero-Candela
et al., 2009; Koh et al., 2021b) and offline reinforce-
ment learning (Levine et al., 2020) highlight the
necessity for adaptive mechanisms capable of re-
sponding to distributional changes. Building upon
these principles, we propose the Kernel Mixture
Approach to dynamically select and weight multi-
ple kernels, thereby addressing the limitations of
fixed-kernel models in evolving environments.

H.2 Formal Definition
We define the combined kernel as a weighted sum
of individual kernels:

κ(u, v) = λ1κPoly(u, v) + λ2κRBF(u, v)+

λ3κSpectral(u, v) + λ4κMahalanobis(u, v),

where:

• κPoly, κRBF, κSpectral, and κMahalanobis represent the
Polynomial, Radial Basis Function (RBF), Spec-
tral, and Mahalanobis kernels, respectively.

• λ1, λ2, λ3, λ4 ≥ 0 are the non-negative coeffi-
cients controlling the contribution of each kernel.

• λ1+λ2+λ3+λ4 = 1 ensures that the coefficients
form a convex combination.

To enforce non-negativity and ensure that the co-
efficients sum to one, we parameterize them using
a softmax transformation:

λi =
exp(θi)∑4
j=1 exp(θj)

, for i = 1, 2, 3, 4,

where θi are learnable parameters updated
through gradient descent. This formulation allows

the model to automatically adjust the kernel mix-
ture in response to changes in task dynamics or
distributional shifts, maintaining adaptability and
robustness.

Despite the initial promise of the Kernel Mixture
Approach, a fundamental limitation becomes ap-
parent during training. As shown in Figure 12, the
dynamic evolution of kernel weights often leads to
the dominance of one kernel, effectively reducing
the mixture to a near-single-kernel solution. While
this behavior may optimize performance for spe-
cific tasks, it undermines the primary advantage of
the mixture model—leveraging diverse kernels to
capture varied data characteristics. Theoretically
well-grounded, but in practice, the Kernel Mixture
Approach faces the kernel collapse phenomenon,
where the mixture tends to favor one or two ker-
nels while suppressing the others. This behavior
reduces the diversity and effectiveness of the ker-
nel mixture, limiting its ability to generalize across
different tasks.

H.3 What is Kernel Collapse?
Kernel Collapse refers to a phenomenon in ker-
nel mixture models where, during training, the
system increasingly relies on a single dominant
kernel while the other kernels become irrelevant
(i.e., their weights reduce to zero). Formally, sup-
pose a mixture of kernels is defined as:

κ(u, v) = λ1κRBF(u, v) + λ2κPoly(u, v)

+ λ3κSpectral(u, v) + λ4κMahalanobis(u, v),

where λ1, λ2, λ3, λ4 ∈ [0, 1] and λ1+λ2+λ3+
λ4 = 1. Kernel collapse occurs when one of the
weights (e.g., λ1) approaches 1 while the others
(λ2, λ3, λ4 → 0). This behavior is visualized in
Figure 12, where a single kernel dominates while
others become irrelevant.

H.4 Intuitive Explanation of Kernel Collapse
To understand kernel collapse intuitively, imagine
hiring a team of four experts to solve a task:

22219

0 20 40 60 80 100 120 140 160 180
Epochs

Po
ly

no
m

ia
l

RB
F

Sp
ec

tra
l

M
ah

al
an

ob
is

Ke
rn

el
s

Kernel Mixture Evolution over 200 Epochs

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

Figure 12: Evolution of Kernel Weights in the Mixture
Over 200 Epochs. The plot illustrates the dynamic ad-
justment of kernel weights (λ1, λ2, λ3, λ4) correspond-
ing to Polynomial, RBF, Spectral, and Mahalanobis
kernels, respectively, during training. Each curve rep-
resents the relative contribution of a kernel, showing
how the model adapts its alignment strategy over time.
The dominance of one or two kernels, as indicated by
the curves, highlights the tendency towards kernel col-
lapse, where certain kernels overshadow others. This
visualization underscores the challenges in maintaining
kernel diversity within the mixture.

• Alice (RBF kernel) specializes in solving local,
neighborhood-level problems.

• Bob (Polynomial kernel) excels at identifying
complex, nonlinear patterns.

• Carol (Spectral kernel) understands global
graph-based relationships.

• Dave (Mahalanobis kernel) captures the overall
shape of the data by considering data distribution
and correlations.

Initially, you consult all four equally. However,
if Alice (RBF) consistently produces better results
in the early stages, you begin to rely more on her
expertise. As Alice’s influence grows, Bob, Carol,
and Dave’s contributions diminish. Eventually, the
team relies predominantly on Alice, effectively ig-
noring the others. This scenario mirrors kernel
collapse, where the mixture focuses on the RBF

kernel while the others are suppressed. Conse-
quently, the system loses its diverse perspectives
and becomes limited in its reasoning and general-
ization capabilities.

H.5 Causes of Kernel Collapse
Kernel collapse arises from several factors related
to optimization dynamics and regularization:

• Positive Feedback Loop: During training, if
one kernel (e.g., RBF) initially performs well, its
weight λ1 increases due to gradient descent. As
λ1 increases, the contributions of other kernels
(Polynomial, Spectral, Mahalanobis) decrease,
which further amplifies RBF’s influence. This
positive feedback loop forces the system into
a winner-takes-all situation, as also observed
in multiple kernel learning (MKL) (Bach et al.,
2004).

• Optimization Bias Toward Simplicity: Gradient-
based optimization favors simpler solutions with
fewer active degrees of freedom. Instead of main-
taining a balanced mixture of kernels, the system
finds it easier to "drop out" less useful kernels.
This behavior aligns with Occam’s razor and is
well-known in conic duality-based MKL (Bach
et al., 2004).

• Lack of Regularization for Diversity: Without
an explicit penalty to enforce kernel diversity, the
system has no incentive to keep multiple kernels
active. This behavior is analogous to sparsity-
inducing norms such as the ℓ1-norm (Tibshirani,
1996), where non-zero coefficients are penalized.
Similarly, without a diversity-promoting penalty
(like entropy maximization), the system naturally
eliminates "weaker" kernels to minimize the train-
ing objective.

• Imbalanced Task Contributions: Different tasks
favor different kernels. For example, reasoning
tasks may rely on Spectral kernels for graph-
like dependencies, while local decision bound-
aries may favor RBF kernels. If the training data

22220

emphasizes local alignment (like short-term rea-
soning), RBF kernels will dominate, and the sys-
tem will collapse to RBF. This task imbalance
has been observed in multi-objective optimization
(Sener and Koltun, 2018).

H.6 Why Should We Care About Kernel
Collapse?

Kernel collapse is critical to alignment learning
and generalization. Here’s why it matters:

• Loss of Kernel Diversity: The primary advantage
of a kernel mixture lies in its ability to combine
local, nonlinear, and global relationships. Kernel
collapse reduces the mixture to a single-kernel
model, diminishing its ability to generalize across
multiple forms of reasoning. For instance, a model
dominated by an RBF kernel may struggle with
multi-hop reasoning, which requires global ker-
nels like Spectral or Mahalanobis kernels (Ng
et al., 2001).

• Reduced Generalization: With only one kernel
active, the model’s generalization capabilities are
limited to the specific strengths of that kernel.
This is particularly problematic in scenarios re-
quiring both local alignment (e.g., step-by-step
logical reasoning) and global alignment (e.g.,
contextual alignment).

• Reduced Interpretability: Tracking the contri-
butions of different kernels over time provides
insights into which kernel (local or global) is guid-
ing alignment learning. If collapse occurs, only
one kernel guides the alignment, and interpretabil-
ity is lost. This is a key problem for Explainable
AI (XAI) (Lipton, 2016).

H.7 We Need a Better Kernel Mixing Strategy

To address the issue of kernel collapse, we in-
troduce the Hierarchical Mixture of Kernels
(HMK) in the next section. Unlike the flat Ker-
nel Mixture Approach, HMK maintains diversity
by learning a hierarchical decomposition of local

and global kernels. By structuring the mixture
into local (e.g., RBF, Polynomial) and global (e.g.,
Spectral, Mahalanobis) subspaces, HMK prevents
the dominance of a single kernel. This hierarchy
allows for a more balanced integration of kernel
types, enabling better generalization and alignment
learning across different tasks.

H.8 Hierarchical Mixture of Kernels (HMK)
Motivation and Design Principles: The Hierar-
chical Mixture of Kernels (HMK) framework
addresses the limitations of conventional kernel
methods by leveraging both local and global fea-
ture interactions within a unified structure. Unlike
simple linear combinations of kernels, HMK in-
troduces a hierarchical decomposition, enabling
a dynamic balance between local and global per-
spectives. This approach draws inspiration from
hierarchical learning models (Goodfellow et al.,
2016), multiple kernel learning (Bach et al., 2004),
and graph-based kernels (Ng et al., 2001).

The motivation behind HMK is rooted in the
observation that different types of kernels excel at
capturing distinct forms of relationships in data.
For instance:

• Local Kernels (e.g., RBF, Polynomial) are effec-
tive at capturing fine-grained, local patterns in the
data. RBF kernels, widely used in support vector
machines (SVMs) (Schölkopf and Smola, 2002),
define local decision boundaries, while Polyno-
mial kernels capture nonlinear feature interactions
within a bounded range.

• Global Kernels (e.g., Spectral, Mahalanobis) cap-
ture larger-scale structures and relationships, par-
ticularly when data exhibits nonlinear global de-
pendencies. The Mahalanobis kernel is inspired
by metric learning (Weinberger and Saul, 2009),
while Spectral kernels have roots in graph Lapla-
cians and spectral clustering (Ng et al., 2001).

Why HMK? Naive kernel combinations, such
as those used in Multiple Kernel Learning (MKL),
fail to capture hierarchical dependencies. HMK

22221

resolves this by allowing local kernels to model
fine-grained information while global kernels cap-
ture larger-scale dependencies. This design draws
parallels with the hierarchical feature learning ob-
served in deep learning models (Goodfellow et al.,
2016).

Hierarchical Structure: Unlike linear kernel
mixtures, HMK imposes a hierarchical structure
where local kernels operate on small, local regions,
and global kernels capture larger-scale dependen-
cies. This structure is formalized as:

K(x, x′) = τ1
(
λ1KRBF(x, x

′) + λ2KPoly(x, x
′)
)

+ τ2
(
λ3KSpectral(x, x

′) + λ4KMahalanobis(x, x
′)
)

where:

• λ1, λ2, λ3, λ4 are the kernel mixture weights.

• τ1, τ2 are coefficients balancing the contribution
of local and global kernels.

Both sets of weights are learned using backprop-
agation, allowing the model to dynamically adjust
the balance between local and global kernels based
on the data and task requirements.

H.9 Effective Range of a Kernel
The effective range of a kernel κ(u, v) is the dis-
tance r at which the kernel decays to a small frac-
tion (e.g., 0.01) of its maximum value.

Mathematical Definition:

κ(u, v) ≈ 0.01× κ(u, u) when ∥u− v∥= r

For specific kernels, the effective range can be
computed as follows:

• RBF Kernel:

r =

√
2σ2 ln

(
κ(u, u)

0.01

)

• Polynomial Kernel:

r =

(
0.01

κ(u, u)

)1/d

• Spectral Kernel:

r = min{dconnect(u, v) | dconnect(u, v) > 0}

• Mahalanobis Kernel:

rmajor =
√
λmax ×

√
2 ln(100), rminor =

√
λmin ×

√
2 ln(100)

H.9.1 Illustration of the Effective Range
To visualize the kernel influence range, a set of 20
points was randomly sampled from the 2D space
[−5, 5] × [−5, 5]. A fixed query point at (0, 0)
serves as the reference point for kernel similarity
computation for the RBF, Polynomial, Spectral,
and Mahalanobis kernels. Please refer to Fig. 13.

• Purpose: Random points offer a dataset-agnostic
view of kernel influence.

• Why It Matters: The query point allows us to
analyze how influence propagates, aiding in the
understanding of local vs. global behavior.

H.10 Alternative Analysis of the Effective
Range of Kernels

This section provides yet another view of selecting
global and local kernels. The effective range of
a kernel quantifies the distance ∥u− v∥ at which
its influence diminishes to a negligible value, typi-
cally 1% of its maximum. Understanding the effec-
tive range is pivotal for analyzing kernel behavior
in alignment tasks. Fig. 14 illustrates the decay
patterns for RBF, Polynomial, Spectral, and Maha-
lanobis kernels, providing insights into their local
and global properties.

H.11 Key Observations and Insights
• Local Kernels (RBF and Polynomial): The RBF

kernel exhibits sharp exponential decay, making
it effective for modeling fine-grained, localized
relationships (Schölkopf and Smola, 2002). Sim-
ilarly, the Polynomial kernel, influenced by its
degree d, demonstrates a limited effective range,
emphasizing local interactions (Gönen and Alpay-
dın, 2011).

22222

6 4 2 0 2 4 6
6

4

2

0

2

4

6
RBF Kernel (Local)

Data Points
Query Point
Effective Range (3)

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Spectral Kernel (Global)

Data Points
Query Point

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Polynomial Kernel (Local)

Data Points
Query Point
Effective Range

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Mahalanobis Kernel (Global)

Data Points
Query Point

Figure 13: Illustration of local vs. global kernel in-
fluence. The top row shows local and global behavior
for the RBF and Spectral kernels, respectively, while
the bottom row illustrates the Polynomial (local) and
Mahalanobis (global) kernels.
Top-left (RBF Kernel): Demonstrates local influence
within a circular effective range, beyond which similar-
ity decays rapidly.
Top-right (Spectral Kernel): Captures global relation-
ships via graph-based connectivity, with long-distance
connections between distant points.
Bottom-left (Polynomial Kernel): Exhibits local influ-
ence but allows nonlinear transformations, illustrated
by dotted, non-linear connections.
Bottom-right (Mahalanobis Kernel): Shows global in-
fluence, with ellipsoidal regions determined by the data
covariance matrix, highlighting anisotropic similarity.

• Global Kernels (Spectral and Mahalanobis):
The Mahalanobis kernel’s decay rate depends on
the conditioning of the covariance matrix Σ, allow-
ing it to model anisotropic, long-range dependen-
cies (Weinberger and Saul, 2009). In contrast, the
Spectral kernel sustains influence over the longest
range due to its reliance on eigenfunctions of the
data’s graph Laplacian (Ng et al., 2001).

• 1% Decay Threshold: The dashed red line in
Fig. 14 highlights the 1% decay threshold. RBF
and Polynomial kernels cross this threshold within

a short distance (r ≈ 2), while Mahalanobis and
Spectral kernels maintain influence beyond r > 5,
underlining their "global" characteristics.

H.12 Alignment Task Implications
• Local Kernels: Provide sharper decision bound-

aries, making them ideal for tasks like safety
alignment and fine-grained clustering (Bach et al.,
2004).

• Global Kernels: Excel in capturing broader re-
lationships, crucial for contextual alignment and
multi-hop reasoning (Quinonero-Candela et al.,
2009).

• Hierarchical Mixture of Kernels (HMK):
HMK’s hierarchical structure combines these
strengths, achieving robust performance across
diverse tasks (Levine et al., 2020).

H.13 Mathematical Formulation
The effective range r of a kernel can be derived
analytically. For the RBF kernel:

r =

√
2σ2 ln

(
κ(u, u)

0.01

)
,

where σ is the bandwidth parameter.
For the Mahalanobis kernel:

κMahalanobis(u, v) = exp

(
−(u− v)⊤Σ−1(u− v)

2

)
.

The Spectral kernel’s range depends on its eigen-
values λi and basis functions ϕi:

κSpectral(u, v) =
m∑

i=1

λiϕi(u)ϕi(v).

Fig. 14 underscores the trade-offs between local
and global kernels. Local kernels excel at cap-
turing fine-grained details but lack long-range in-
fluence, whereas global kernels provide broader
coverage at the cost of precision. These insights
emphasize the necessity of combining these prop-
erties in hierarchical frameworks like HMK, which
optimally balances local and global interactions to
address diverse alignment challenges.

22223

0 2 4 6 8 10
Distance ||u - v||

0.0

0.2

0.4

0.6

0.8

1.0

Ke
rn

el
 V

al
ue

(u

, v
)

Effective Range for RBF

Effective Range for Mahalanobis

Effective Range of Local and Global Kernels
RBF (Local)
Polynomial (Global)
Mahalanobis (Local)
Spectral (Global)
1% Decay Threshold

Figure 14: Visualization of kernel decay as a function
of distance ∥u− v∥. The effective range for each ker-
nel is shown, where kernel values drop to 1% of their
maximum. The RBF and Polynomial kernels exhibit
rapid decay, characterizing them as "local" kernels. In
contrast, the Mahalanobis and Spectral kernels show a
slower decay, reflecting their role as "global" kernels.
The 1% decay threshold, marked as a dashed red line,
highlights the distance at which the RBF and Polyno-
mial kernels effectively become negligible.

H.13.1 Illustration of the Effective Range
To visualize the kernel influence range, a set of 20
points was randomly sampled from the 2D space
[−5, 5] × [−5, 5]. A fixed query point at (0, 0)
serves as the reference point for kernel similarity
computation for the RBF, Polynomial, Spectral,
and Mahalanobis kernels. Please refer to Figure
15.

• Purpose: Random points offer a dataset-agnostic
view of kernel influence.

• Why It Matters: The query point allows us to
analyze how influence propagates, aiding in the
understanding of local vs. global behavior.

H.13.2 Observations from the Effective
Range

1. Local Kernels (RBF, Polynomial): Influence
is confined to a neighborhood. The RBF kernel
exhibits isotropic influence (circular), while the

6 4 2 0 2 4 6
6

4

2

0

2

4

6
RBF Kernel (Local)

Data Points
Query Point
Effective Range (3)

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Spectral Kernel (Global)

Data Points
Query Point

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Polynomial Kernel (Local)

Data Points
Query Point
Effective Range

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Mahalanobis Kernel (Global)

Data Points
Query Point

Figure 15: Local vs. global kernel influence. RBF and
Polynomial kernels exhibit localized influence, while
Spectral and Mahalanobis kernels capture broader de-
pendencies.

Polynomial kernel allows nonlinear, bounded in-
fluence.

2. Global Kernels (Spectral, Mahalanobis):
Influence extends across the feature space. Spec-
tral kernels connect distant points based on cluster
membership, and Mahalanobis kernels exhibit el-
lipsoidal, anisotropic influence, aligning with the
covariance of the data.

H.14 Intuitive Explanation of Local vs.
Global Kernels

Local Kernels act like navigating a city on foot.
You see local objects (e.g., street signs), focusing
on nearby interactions.

Global Kernels offer a bird’s-eye view from an
airplane, revealing large-scale structures like parks
and roads. By combining these perspectives, HMK
models both local details and global structures.

H.15 Key Takeaways for HMK

The Hierarchical Mixture of Kernels (HMK)
framework offers several conceptual and empirical
benefits. This subsection highlights the most im-

22224

portant takeaways, supported by relevant citations
to substantiate the claims.

• Bias-Variance Trade-off: HMK facilitates a nat-
ural trade-off between bias and variance. Local
kernels, such as RBF and Polynomial, capture
fine-grained patterns within small neighborhoods,
thereby reducing variance but potentially intro-
ducing bias. Conversely, global kernels, like Spec-
tral and Mahalanobis, generalize over larger struc-
tures, reducing bias while potentially increasing
variance. By balancing these two forces through
the learnable weights τ1 and τ2, HMK achieves
improved generalization, as demonstrated in hy-
brid models for kernel alignment (Schölkopf and
Smola, 2002; Bach et al., 2004).

• Dynamic Adaptation: HMK enables task-
specific adaptation through the learnable coef-
ficients τ1 and τ2. Unlike fixed kernel combi-
nations, the hierarchical design allows HMK to
dynamically adjust the contributions of local and
global kernels based on the specific requirements
of a task. During training, backpropagation up-
dates these weights to best fit the alignment objec-
tive, facilitating a task-aware mixture of kernels.
This property draws inspiration from concepts in
Multiple Kernel Learning (MKL) (Bach et al.,
2004) and adaptive graph-based models (Ng et al.,
2001).

• Unified Kernel Framework: HMK serves as a
unified framework for integrating local and global
kernels. Traditional approaches, such as Multiple
Kernel Learning (MKL), utilize linear combina-
tions of kernels but do not incorporate a hierarchi-
cal decomposition as HMK does. By explicitly
structuring kernels into local (RBF, Polynomial)
and global (Spectral, Mahalanobis) subspaces,
HMK achieves a more interpretable and effective
alignment mechanism. This decomposition pro-
vides a principled approach to unify kernels from
graph-based, metric-learning, and locality-based
perspectives (Bach et al., 2004; Ng et al., 2001;
Weinberger and Saul, 2009).

• Improved Generalization: By learning a mixture
of local and global kernels, HMK enhances gener-
alization capabilities beyond what simple kernel
mixtures offer. Empirical studies have shown that
hybrid kernels can reduce overfitting while main-
taining predictive accuracy (Schölkopf and Smola,
2002; Bach et al., 2004). By leveraging both local
decision boundaries and global structures, HMK
provides a generalization advantage in large-scale
alignment tasks.

• Hierarchical Interpretability: The hierarchical
decomposition of local and global kernels in HMK
offers interpretability to the alignment process.
Unlike black-box kernel combinations, HMK pro-
vides insights into which kernel (local or global) is
being emphasized. For example, the relative mag-
nitudes of τ1 and τ2 indicate whether the align-
ment process relies more on fine-grained local
features or on global structural features. Such in-
terpretability is crucial in applications like explain-
able AI (XAI) (Goodfellow et al., 2016; Wein-
berger and Saul, 2009).

H.16 How HMK Supports Alignment
Learning

The Hierarchical Mixture of Kernels (HMK)
framework leverages both local and global ker-
nels within a hierarchical structure, offering unique
benefits for various forms of alignment learning.
Alignment is a critical task in large-scale models,
including language models and AI systems, and
encompasses different categories such as:

• Instruction Following: Local kernels (RBF, Poly-
nomial) enable the model to align with task-
specific instructions by focusing on fine-grained
local features. For example, if an instruction
requires immediate changes in behavior (e.g.,
"stop execution if X is true"), the RBF kernel
can swiftly adjust to this directive. Simultane-
ously, global kernels (Spectral, Mahalanobis) cap-
ture broader semantic concepts from instruction-
following datasets. As illustrated in Figure 16,

22225

0 25 50 75 100 125 150 175 200

Epochs1

2

3

4

Parameters

0.0

0.2

0.4

0.6

0.8

1.0

W
eight Value

Parameters
1

2

3

4

Figure 16: Evolution of the Hierarchical Mixture of
Kernels (HMK) parameters over 200 epochs. The
plot visualizes the weight dynamics for the local kernel
components λ1 (Polynomial) and λ2 (RBF), as well
as the global kernel components λ3 (Spectral) and λ4
(Mahalanobis). Additionally, the evolution of the Local-
Global Balance Parameter τ is shown, illustrating how
the model adaptively balances contributions from local
and global mixtures. The trajectory of each parameter
reveals how kernel dominance shifts during training,
often converging to a stable balance.

during the early epochs, local kernels (RBF, Poly-
nomial) dominate the influence. As training pro-
gresses and broader instruction semantics are
learned, the contributions of global kernels (Spec-
tral, Mahalanobis) gradually increase, enhancing
the model’s ability to understand and execute com-
plex instructions.

• Reasoning Alignment: Effective reasoning re-
quires the integration of step-wise logical struc-
tures. HMK’s hierarchical decomposition allows
local kernels to capture local logical transitions,
such as intermediate steps in multi-step reason-
ing tasks. Concurrently, global kernels capture
multi-hop dependencies and relationships across
extensive contexts, as evidenced in graph-based
reasoning (Ng et al., 2001). In Figure 16, the in-
creasing weight of the Spectral kernel (λ3) reflects

the model’s attempt to integrate multi-hop depen-
dencies. Meanwhile, Polynomial kernels (λ1) ex-
perience a temporary increase when step-by-step
logical transitions are emphasized, demonstrating
HMK’s ability to balance different aspects of rea-
soning.

• Safety and Robustness Alignment: Ensuring
predictable behavior in safety-critical applications
necessitates modeling both local constraints (fine-
grained decision boundaries) and global struc-
tures (macro-level behavior constraints). Lo-
cal kernels can model strict decision boundaries
for sensitive instructions, ensuring that out-of-
distribution (OOD) inputs are quickly rejected.
Global kernels capture broader safety constraints,
maintaining system robustness against larger con-
textual shifts. As shown in Figure 16, during the
early epochs, RBF (local) kernels dominate, effec-
tively capturing localized decision boundaries. As
training progresses, the Spectral kernel (λ3) rises,
reflecting the emergence of global connectivity-
based safety constraints that enhance the model’s
overall robustness.

• Contextual Alignment: In retrieval-augmented
systems, aligning context from retrieved informa-
tion with task queries is essential. Local kernels
identify similarities within smaller local neigh-
borhoods, ensuring that closely related retrievals
are appropriately weighted. Conversely, global
kernels assess alignment at the context-document
level, ensuring that large-scale relationships be-
tween multiple retrieved documents are accurately
modeled. In Figure 16, the Mahalanobis kernel
(λ4) becomes prominent in later epochs, highlight-
ing the system’s effort to model anisotropic influ-
ence across context spaces. Initially, the RBF ker-
nel (λ2) dominates, effectively identifying close-
by document similarities.

H.17 How to Interpret Figure 16

Figure 16 illustrates the dynamic evolution of
HMK parameters over 200 training epochs.

22226

Specifically, it depicts the weight dynamics for the
local kernel components λ1 (Polynomial) and λ2
(RBF), the global kernel components λ3 (Spectral)
and λ4 (Mahalanobis), as well as the Local-Global
Balance Coefficients τ1 and τ2. This visualization
provides valuable insights into how HMK balances
the contributions of local and global kernels during
the training process. The key observations from
this plot are as follows:

• Adaptive Balancing of Local and Global Ker-
nels: The coefficients τ1 and τ2 regulate the bal-
ance between local and global kernels. Initially,
both types of kernels compete for dominance, as
reflected by the convergence of τ1 and τ2 around
epoch 100. This stabilization indicates that HMK
has learned an optimal balance tailored to the
specific alignment task, allowing it to effectively
leverage both local and global features.

• Kernel Weight Evolution (λ): Each kernel com-
ponent (λ1 Polynomial, λ2 RBF, λ3 Spectral, and
λ4 Mahalanobis) follows a distinct trajectory dur-
ing training. In the early stages, local kernels
(Polynomial λ1 and RBF λ2) exhibit high influ-
ence, aligning with their role in capturing fine-
grained, local patterns. As training progresses,
global kernels (Spectral λ3 and Mahalanobis λ4)
gradually increase their weights, reflecting the
model’s shift towards capturing broader, long-
range dependencies. For example, in contextual
alignment tasks, the Mahalanobis kernel weight
(λ4) notably increases between epochs 50 and 150,
indicating the growing importance of global con-
text.

• Local vs. Global Adaptation: The interplay be-
tween local and global kernels is evident in the
behavior of τ1 and τ2. Initially, both local and
global kernels are weighted equally, but over time,
HMK prioritizes one over the other based on the
task’s requirements. In Figure 16, τ1 (local) gradu-
ally decreases while τ2 (global) increases, demon-
strating HMK’s adaptive mechanism to emphasize
global influence as alignment learning progresses.

• Convergence Behavior: Over the course of 200
epochs, the kernel weights (λ) and balance coef-
ficients (τ) converge towards stable values. This
convergence signifies that HMK has successfully
learned an optimal mixture of local and global ker-
nels tailored to the alignment task. Specifically,
the steady increase of the Mahalanobis kernel (λ4)
in later epochs underscores its role in establishing
long-term global dependencies, while the stabi-
lization of τ1 and τ2 indicates a balanced integra-
tion of local and global contributions.

H.18 Theoretical Guarantee: HMK Avoids
Kernel Collapse

Theorem (Stochastic Stability of HMK) Let
λ1, λ2, λ3, λ4 denote the kernel mixture weights
of the Hierarchical Mixture of Kernels (HMK)
framework, optimized using gradient descent with
a learning rate η > 0. Suppose that the ker-
nel weights are reparameterized using a softmax
transformation, and the total loss function in-
cludes an entropy regularization term R(λ) =
−∑4

i=1 λi log λi. Then, for any training epoch
t, the kernel weights satisfy λi(t) > 0 for all
i ∈ {1, 2, 3, 4}. Moreover, the coefficients τ1(t)
and τ2(t), which control the balance between local
and global kernels, are also guaranteed to remain
strictly positive for all t.

H.19 Proof of Theorem
The proof consists of four key components: 1.
Properties of Softmax Reparameterization 2. Role
of Entropy Regularization 3. Impact of Local-
Global Decomposition via τ1 and τ2, and 4.
Stochastic Stability via Gradient Descent.

H.19.1 1. Properties of Softmax
Reparameterization

We parameterize the kernel weights λi using the
softmax function:

λi =
exp(θi)∑4
j=1 exp(θj)

for i ∈ {1, 2, 3, 4}

Since the exponential function satisfies exp(θi) >
0 for all θi ∈ R, it follows that λi > 0 for all i

22227

and at all times t. This ensures that none of the
λi can collapse to zero. Additionally, the softmax
transformation guarantees that:

4∑

i=1

λi = 1

This normalization ensures boundedness and non-
degeneracy of the kernel weights (Bridle, 1990;
Bishop, 2006).

H.19.2 2. Role of Entropy Regularization
We introduce an entropy regularization term to the
loss function:

R(λ) = −
4∑

i=1

λi log λi

This term encourages diversity among the kernel
weights, preventing any single kernel from domi-
nating the mixture excessively. The partial deriva-
tive of R(λ) with respect to λi is:

∂R(λ)

∂λi
= − log λi − 1

As λi → 0, log λi → −∞, causing the gradi-
ent ∂R

∂λi
to become significantly negative. This

results in a strong upward push on λi, preventing
it from reaching zero. Thus, the entropy regular-
ization acts as a repulsion force, ensuring that all
kernel weights remain strictly positive and diverse
(Williams, 1991; Jaynes, 1957).

H.19.3 3. Impact of Local-Global
Decomposition via τ1 and τ2

The hierarchical decomposition of kernels in HMK
is defined as:

K(x, x′) = τ1
(
λ1KRBF(x, x

′) + λ2KPolynomial(x, x
′)
)

+ τ2
(
λ3KSpectral(x, x

′) + λ4KMahalanobis(x, x
′)
)

Here, τ1 and τ2 balance the contributions from
local kernels (RBF, Polynomial) and global ker-
nels (Spectral, Mahalanobis), respectively. These

coefficients are also parameterized using a softmax
transformation:

τi =
exp(ψi)∑2
j=1 exp(ψj)

for i ∈ {1, 2}

Similar to the kernel weights λi, this parameter-
ization ensures that τ1 > 0 and τ2 > 0 for all t,
guaranteeing that both local and global kernel com-
ponents remain active. This hierarchical structure
facilitates the integration of both fine-grained local
patterns and broad global dependencies (Goodfel-
low et al., 2016; Bach et al., 2004; Ng et al., 2001).

H.19.4 4. Stochastic Stability via Gradient
Descent

To demonstrate that the weights λi and coefficients
τ1, τ2 converge to non-zero stable points, we an-
alyze the gradient descent updates under entropy
regularization.

The parameters θi and ψi are updated using gra-
dient descent as follows:

θ
(t+1)
i = θ

(t)
i − η

∂L
∂θi

ψ
(t+1)
i = ψ

(t)
i − η

∂L
∂ψi

where L is the total loss, including the alignment
objective and entropy regularization.

Using the chain rule, the gradients can be ex-
pressed as:

∂L
∂θi

=
∂L
∂λi

· λi(1− λi)

∂L
∂ψi

=
∂L
∂τi

· τi(1− τi)

Since λi > 0 and τi > 0, the gradients ∂L
∂θi

and
∂L
∂ψi

are non-zero.
The entropy regularization ensures that if any λi

approaches zero, the gradient ∂L
∂λi

becomes large
and positive due to the − log λi term, forcing λi to
increase. Similarly, the softmax parameterization
prevents τi from collapsing to zero.

22228

Applying Lyapunov’s stability theorem (Khalil,
2002), we conclude that the system reaches a stable
equilibrium where all λi > 0 and τi > 0 for all t.
This guarantees that HMK avoids kernel collapse,
maintaining active contributions from both local
and global kernels throughout training.

We have established that under gradient descent
optimization with entropy regularization and soft-
max parameterization, the Hierarchical Mixture
of Kernels (HMK) framework ensures that all ker-
nel weights λi and balance coefficients τi remain
strictly positive throughout training. This theoret-
ical guarantee prevents kernel collapse, ensuring
that both local and global kernels contribute effec-
tively to the alignment process. The combination
of entropy regularization, hierarchical decomposi-
tion, and stochastic stability through gradient de-
scent forms a robust foundation for HMK’s perfor-
mance in diverse alignment tasks.

I Gradient Computation, Computational
Complexity, and Overhead

Since this paper introduces several concepts and
new formulation, for better resproducability and
and better read we provide detailed mathematical
derivation of gradient calculations for DPO Hybrid
Loss and gradient calculation for all the kernels.

I.1 Gradient of Hybrid Loss
In this subsection, we derive the gradient of the
Hybrid Loss with respect to the model parameters
θ. The Hybrid Loss is defined as:

max
π

Ex,y+,y−
[
log

π(y+ | x)
π(y− | x) + γ

(
log

π(ey+ | ex)
π(ey− | ex)

)]

︸ ︷︷ ︸
Hybrid Loss

where:

• x represents the input data.

• y+ and y− denote the positive and negative sam-
ples, respectively.

• π(y | x) is the probability of y given x, modeled
using a softmax function.

• ey and ex are the embeddings of y and x, respec-
tively.

• γ is a hyperparameter controlling the influence of
the embedding-based term.

Our goal is to compute the gradient
∇θHybridLoss(x, y+, y−), which involves
differentiating each term of the loss function
separately.

Gradient of the Log Probability Ratio
The first component of the Hybrid Loss is the log
probability ratio between the positive and negative
samples:

log
π(y+ | x)
π(y− | x)

The gradient of this term with respect to θ is:

∂

∂θ
log

π(y+ | x)
π(y− | x) = ∇θ log π(y

+ | x)

−∇θ log π(y
− | x)

This follows from the properties of logarithms and
the chain rule in differentiation.

Gradient of the Embedding-Based Term
The second component involves the log probability
ratio of the embeddings:

γ log
π(ey+ | ex)
π(ey− | ex)

The gradient of this term with respect to θ is:

∂

∂θ
γ

(
log

π(ey+ | ex)
π(ey− | ex)

)
=

γ
(
∇θ log π(ey+ | ex)−∇θ log π(ey− | ex)

)

Gradient of the Embedding-Based Term
The second component involves the log probability
ratio of the embeddings:

γ log
π(ey+ | ex)
π(ey− | ex)

22229

The gradient of this term with respect to θ is:

∂

∂θ
γ

(
log

π(ey+ | ex)
π(ey− | ex)

)
=

γ
(
∇θ log π(ey+ | ex)−∇θ log π(ey− | ex)

)

This derivation also employs the chain rule and
properties of logarithms.

Combined Gradient
By integrating the gradients of both the log prob-
ability ratio and the embedding-based term, we
obtain the overall gradient of the Hybrid Loss with
respect to the model parameters θ. The Hybrid
Loss is defined as:

HybridLoss(x, y+, y−) = log
π(y+ | x)
π(y− | x) + γ

(
log

π(ey+ | ex)
π(ey− | ex)

)

where γ is a hyperparameter controlling the influ-
ence of the embedding-based term.

The gradient of the Hybrid Loss with respect
to θ is obtained by summing the gradients of its
individual components:

∇θHybridLoss(x, y+, y−) = ∇θ log
π(y+ | x)
π(y− | x) + γ∇θ log

π(ey+ | ex)
π(ey− | ex)

Substituting the gradients derived in the previ-
ous sections, we have:

∇θHybridLoss(x, y+, y−) =[
∇θ log π(y

+ | x)−∇θ log π(y
− | x)

]

+γ
[
∇θ log π(ey+ | ex)−∇θ log π(ey− | ex)

]

Expanding each term based on the gradient com-
putations from the individual components, the final
expression for the gradient of the Hybrid Loss is:

∇θHybridLoss(x, y+, y−) =

∇θfθ(x, y

+)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′)




−


∇θfθ(x, y

−)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′)




+ γ
(
∇θsθ(ex, ey+)−∇θsθ(ex, ey−)

)

Simplified Gradient Expression After simpli-
fying the above expression, the gradient of the
Hybrid Loss can be succinctly written as:

∇θHybridLoss(x, y+, y−) =

∇θ log π(y
+ | x)−∇θ log π(y

− | x)
+ γ

(
∇θsθ(ex, ey+)−∇θsθ(ex, ey−)

)

Interpretation

• ∇θ log π(y
+ | x): Encourages the model to in-

crease the probability of the positive sample y+

given the input x.

• −∇θ log π(y
− | x): Encourages the model to

decrease the probability of the negative sample
y− given the input x.

• γ
(
∇θsθ(ex, ey+)−∇θsθ(ex, ey−)

)
: Incorpo-

rates the gradient from the embedding-based sim-
ilarity, adjusting the model to favor embeddings
that better capture the desired relationships be-
tween ex and ey.

The combined gradient effectively integrates
both the discriminative aspect (log probability ra-
tio) and the semantic aspect (embedding-based
term) of the loss function. The hyperparameter
γ allows for tuning the relative importance of these
two components, enabling the model to balance
between accurately classifying positive and nega-
tive samples and capturing meaningful embedding
relationships.

I.2 Computational Complexity Analysis of
Hybrid Loss

The computational complexity of the Hybrid Loss
arises from two primary components:

1. Log Probability Ratio
Modeling πθ(y | x) with a softmax function:

πθ(y | x) = efθ(x,y)∑
y′ e

fθ(x,y′)

Computing the log probability ratio involves:

22230

• Calculating exponentials for each of the C classes.

• Computing the logarithm of the ratio between the
positive and negative class probabilities.

Time Complexity: O(C), where C is the number
of classes.

2. Embedding-Based Term
Calculating s+ and s− involves:

• Evaluating the scoring function sθ(x, y) for the
positive and negative samples.

• Typically depends on the embedding dimension
d.

Time Complexity: O(d).

Overall Computational Complexity
Combining both components, the total computa-
tional complexity of the Hybrid Loss is:

O(C + d)

where C is the number of classes and d is the
embedding dimension.

Comparison with Standard Loss Functions
• Cross-Entropy Loss: Has a time complexity of
O(C), similar to the log probability ratio compo-
nent of the Hybrid Loss.

• Contrastive Loss: Typically operates with a com-
plexity of O(d), aligning with the embedding-
based term.

Thus, the Hybrid Loss combines these complexi-
ties linearly, maintaining efficiency while enhanc-
ing functionality by integrating both discriminative
and embedding-based components.

I.3 Efficiency of Hybrid Loss

The Hybrid Loss achieves a balanced trade-off
between discriminative power and computational
efficiency by:

• Scalability: Scaling linearly with both the number
of classes C and embedding dimensions d, allow-
ing it to handle large-scale datasets effectively.

• Parallel Computation: Enabling parallel com-
putation of loss components, leveraging modern
hardware accelerators such as GPUs to expedite
training.

• Rich Semantic Information: Incorporating
embedding-based similarities without introduc-
ing significant computational overhead, thereby
enhancing the model’s ability to capture complex
relationships.

I.4 Practical Considerations

While the theoretical complexity of the Hybrid
Loss is O(C + d), several practical factors con-
tribute to its efficient implementation:

• GPU Parallelism: Leveraging GPU parallelism
mitigates the linear scaling withC and d, allowing
simultaneous computations and reducing overall
training time.

• Optimized Libraries: Utilizing optimized li-
braries such as BLAS and cuDNN enhances com-
putational performance through highly efficient
matrix operations.

• Batch Sizing: Appropriately selecting batch sizes
maximizes hardware utilization, ensuring that
computations are performed efficiently without
bottlenecks.

• Sparse Representations: In scenarios with a
large number of classes, employing sparse repre-
sentations can further reduce computational over-
head by focusing computations only on relevant
classes.

By considering these practical aspects, the Hy-
brid Loss not only remains theoretically efficient
but also performs effectively in real-world appli-
cations, ensuring robust and scalable training pro-
cesses.

22231

I.5 Gradient of Polynomial Kernelized
Hybrid Loss

The Polynomial Kernelized Hybrid Loss is de-
fined as:

L = Ex,y+,y−

[(
log

π(y+ | x)
π(y− | x) + c

)d

+ γ

(
e⊤y+ex + c

e⊤
y−ex + c

)d]

where:

• x represents the input data.

• y+ and y− denote the positive and negative sam-
ples, respectively.

• π(y | x) is the probability of y given x, modeled
using a softmax function.

• ey and ex are the embeddings of y and x, respec-
tively.

• c is a constant to ensure numerical stability and to
shift the polynomial kernel.

• d is the degree of the polynomial kernel.

• γ is a hyperparameter controlling the influence of
the embedding-based term.

Our objective is to compute the gradient of the
Hybrid Loss ∇θL with respect to the model pa-
rameters θ. This involves differentiating each term
of the loss function separately and then combining
them.

Gradient of the Log Probability Ratio Term
The first component of the Hybrid Loss involves
the log probability ratio between the positive and
negative samples:

(
log

π(y+ | x)
π(y− | x) + c

)d

To compute its gradient with respect to θ, we apply
the chain rule:

∇θ

(
log

π(y+ | x)
π(y− | x) + c

)d

= d

(
log

π(y+ | x)
π(y− | x) + c

)d−1

∇θ log
π(y+ | x)
π(y− | x)

Expanding the gradient of the log probability
ratio:

∇θ log
π(y+ | x)
π(y− | x) = ∇θ log π(y

+ | x)−∇θ log π(y
− | x)

Assuming πθ(y | x) is modeled using a softmax
function:

πθ(y | x) = efθ(x,y)∑
y′ e

fθ(x,y′)
,

the gradient of log π(y | x) with respect to θ is:

∇θ log π(y | x) = ∇θfθ(x, y)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′)

Substituting back, we obtain:

∇θ log
π(y+ | x)
π(y− | x) =


∇θfθ(x, y

+)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′)




−


∇θfθ(x, y

−)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′)




Gradient of the Polynomial Kernel Term
The second component involves the polynomial
kernel applied to the embeddings:

γ

(
e⊤y+ex + c

e⊤
y−ex + c

)d

To compute its gradient with respect to θ, we again
apply the chain rule:

∇θγ

(
e⊤y+ex + c

e⊤
y−ex + c

)d
= γd

(
e⊤y+ex + c

e⊤
y−ex + c

)d−1

∇θ

(
e⊤y+ex + c

e⊤
y−ex + c

)

22232

Simplifying the gradient of the ratio:

∇θ

(
e⊤y+ex + c

e⊤
y−ex + c

)
=

(e⊤y−ex + c)∇θ(e
⊤
y+ex)− (e⊤y+ex + c)∇θ(e

⊤
y−ex)

(e⊤
y−ex + c)2

Assuming ex and ey are differentiable with re-
spect to θ, we have:

∇θ(e
⊤
x ey) = (∇θex)

⊤ey + e⊤x (∇θey)

Thus, the gradient of the polynomial kernel term
becomes:

∇θ


γ
(
e⊤y+ex + c

e⊤
y−ex + c

)d
 = γd

(
e⊤y+ex + c

e⊤
y−ex + c

)d−1

·
[
(e⊤y−ex + c)∇θ(e

⊤
y+ex)− (e⊤y+ex + c)∇θ(e

⊤
y−ex)

(e⊤
y−ex + c)2

]

= γd

(
e⊤y+ex + c

e⊤
y−ex + c

)d−1

·
[
∇θ(e

⊤
y+ex)

e⊤
y−ex + c

−
e⊤y+ex + c

(e⊤
y−ex + c)2

∇θ(e
⊤
y−ex)

]

Combined Gradient
Combining the gradients of both components,
the overall gradient of the Polynomial Ker-
nelized Hybrid Loss with respect to θ is:

∇θL = ∇θ

(
log

π(y+ | x)
π(y− | x) + c

)d
+∇θγ

(
e⊤y+ex + c

e⊤
y−ex + c

)d

= d

(
log

π(y+ | x)
π(y− | x) + c

)d−1 [
∇θ log π(y

+ | x)−∇θ log π(y
− | x)

]

+ γd

(
e⊤y+ex + c

e⊤
y−ex + c

)d−1 [∇θ(e
⊤
y+ex)

e⊤
y−ex + c

−
e⊤y+ex + c

(e⊤
y−ex + c)2

∇θ(e
⊤
y−ex)

]
.

Simplified Gradient Expression For
ease of implementation and readabil-
ity, the gradient can be expressed as:
∇θL = d

(
log

π(y+ | x)
π(y− | x) + c

)d−1 [
∇θfθ(x, y

+)−∇θfθ(x, y
−)
]

+ γd

(
e⊤y+ex + c

e⊤
y−ex + c

)d−1 [∇θ(e
⊤
x ey+)

e⊤
y−ex + c

−
e⊤y+ex + c

(e⊤
y−ex + c)2

∇θ(e
⊤
x ey−)

]
.

Interpretation of the Gradient

• Log Probability Ratio Term:

– ∇θfθ(x, y
+): Encourages the model to increase

the score (and hence the probability) of the posi-
tive sample y+.

– −∇θfθ(x, y
−): Encourages the model to de-

crease the score (and hence the probability) of
the negative sample y−.

• Polynomial Kernel Term:

– ∇θ(e
⊤
x ey+): Adjusts the model to better align the

embeddings of x and y+.

– −∇θ(e
⊤
x ey−): Adjusts the model to reduce the

alignment between the embeddings of x and y−.

– The hyperparameter γ controls the influence of
the embedding-based term relative to the log prob-
ability ratio term.

I.6 Computational Complexity Analysis of
Polynomial Kernelized Hybrid Loss

To evaluate the efficiency of the Polynomial Ker-
nelized Hybrid Loss, we analyze the computational
complexity of its two primary components: the log
probability ratio term and the polynomial kernel
term.

1. Log Probability Ratio Term
The log probability ratio term is defined as:

(
log

π(y+ | x)
π(y− | x) + c

)d

where πθ(y | x) is modeled using a softmax func-
tion:

πθ(y | x) = efθ(x,y)∑
y′ e

fθ(x,y′)

Steps Involved:

• Score Computation: Calculate fθ(x, y) for each
class y, which involves a dot product between
input features and model parameters.

• Softmax Calculation: Compute the exponential
efθ(x,y) for each class and normalize by the sum
over all classes.

• Log Probability Ratio: Compute the logarithm of
the ratio between the probabilities of the positive
and negative classes.

22233

• Exponentiation: Raise the log probability ratio
to the power d.

Time Complexity: O(C), where C is the num-
ber of classes. This complexity arises from the
softmax computation, which requires evaluating
fθ(x, y) and normalizing over all C classes.

2. Polynomial Kernel Term
The polynomial kernel term is defined as:

γ

(
e⊤y+ex + c

e⊤
y−ex + c

)d

Steps Involved:

• Dot Product Computation: Calculate the dot
products e⊤x ey+ and e⊤x ey− , where ex, ey+ , ey− ∈
Rd.

• Addition of Constant: Add the constant c to each
dot product to ensure numerical stability.

• Ratio Calculation: Compute the ratio of the ad-
justed dot products.

• Exponentiation: Raise the ratio to the power d
and multiply by the hyperparameter γ.

Time Complexity: O(d), where d is the di-
mension of the embeddings. This arises from the
computation of the dot product between ex and ey,
which scales linearly with d.

Overall Computational Complexity
Combining both components, the total computa-
tional complexity of the Polynomial Kernelized
Hybrid Loss is:

O(C) +O(d) = O(C + d)

where:

• C is the number of classes.

• d is the embedding dimension.

This linear complexity ensures scalability
for large-scale applications involving high-
dimensional embeddings and extensive class la-
bels.

Comparison with Standard Loss Functions
• Cross-Entropy Loss:

– Time Complexity: O(C).

– Description: Involves computing the softmax
over C classes and calculating the negative log-
likelihood.

• Contrastive Loss:

– Time Complexity: O(d).

– Description: Focuses on the distance between
embeddings, typically requiring computation of
pairwise distances.

• Polynomial Kernelized Hybrid Loss:

– Time Complexity: O(C + d).

– Description: Combines both the discriminative
power of the log probability ratio (similar to
Cross-Entropy Loss) and the semantic richness
of the polynomial kernel (similar to Contrastive
Loss), thereby integrating both aspects into a sin-
gle loss function.

The Polynomial Kernelized Hybrid Loss thus
offers a balanced combination of the compu-
tational efficiencies of Cross-Entropy and Con-
trastive Losses while enhancing the model’s ability
to capture both discriminative and semantic rela-
tionships.

I.7 Efficiency of Polynomial Kernelized
Hybrid Loss

The Polynomial Kernelized Hybrid Loss
achieves a balanced trade-off between discrimi-
native power and computational efficiency through
the following mechanisms:

• Linear Scaling: The loss scales linearly with
both the number of classes C and the embedding
dimension d, ensuring scalability for large-scale
datasets and high-dimensional embedding spaces.

22234

• Parallel Computation: Both the log probability
ratio term and the polynomial kernel term can be
computed in parallel. Modern hardware accelera-
tors, such as GPUs, can leverage this parallelism
to significantly speed up training processes.

• Integrated Semantic Information: By combin-
ing probability-based and embedding-based ob-
jectives, the loss function enriches the model’s
learning without incurring substantial additional
computational overhead.

• Hyperparameter Control: The hyperparame-
ter γ allows for fine-tuning the influence of the
embedding-based term relative to the log proba-
bility ratio term, providing flexibility in balancing
performance and computational cost.

I.8 Practical Considerations

While the theoretical complexity of the Polyno-
mial Kernelized Hybrid Loss is O(C + d), sev-
eral practical factors can influence its real-world
performance:

• GPU Parallelism: Leveraging GPU parallelism
can mitigate the linear scaling with C and d, al-
lowing for efficient computation even with large
numbers of classes and high-dimensional embed-
dings.

• Optimized Implementations: Utilizing opti-
mized libraries (e.g., BLAS, cuDNN) for matrix
operations and gradient computations can enhance
performance, reducing the actual computation
time.

• Batch Sizing: Selecting appropriate batch sizes
can maximize hardware utilization. Larger
batches may improve computational efficiency but
require more memory, while smaller batches may
be more memory-efficient but less computation-
ally optimal.

• Hyperparameter Tuning: Careful tuning of the
hyperparameter γ and the polynomial degree d is

essential. Higher degrees d can capture more com-
plex relationships but may increase computational
cost and risk overfitting.

• Numerical Stability: Adding the constant c en-
sures numerical stability, especially when dealing
with small or zero dot products. Properly choos-
ing c is crucial to prevent numerical issues during
training.

By considering these practical aspects, the Poly-
nomial Kernelized Hybrid Loss can be effec-
tively integrated into large-scale machine learning
models, providing enhanced performance without
compromising computational efficiency.

I.9 Gradient of RBF Kernelized Hybrid Loss

The RBF Kernelized Hybrid Loss is defined as:

L = Ex,y+,y−

[
exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


+ γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




]
,

where:

• x represents the input data.

• y+ and y− denote the positive and negative sam-
ples, respectively.

• π(y | x) is the probability of y given x, modeled
using a softmax function.

• ey and ex are the embeddings of y and x, respec-
tively.

• σ is the bandwidth parameter of the RBF kernel.

• γ is a hyperparameter controlling the influence of
the embedding-based term.

Our objective is to compute the gradient of the
Hybrid Loss ∇θL with respect to the model pa-
rameters θ. This involves differentiating each term
of the loss function separately and then combining
them.

22235

Gradient of the Log Probability Ratio Term
The first component of the Hybrid Loss involves
the exponential of the squared log probability ra-
tio:

exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


 .

To compute its gradient with respect to θ, we apply
the chain rule:

∇θ exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


 = exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2




·


−

2 log π(y+|x)
π(y−|x)
2σ2


 · ∇θ log

π(y+ | x)
π(y− | x) .

Simplifying, we obtain:

∇θ exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


 = − 1

σ2
log

π(y+ | x)
π(y− | x) · exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2




· ∇θ log
π(y+ | x)
π(y− | x) .

Gradient of the RBF Kernel Term
The second component involves the exponential of
the squared ratio of embedding dot products:

γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2


 .

To compute its gradient with respect to θ, we again
apply the chain rule:

∇θγ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2


 = γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2


 ·


−

2 · e
⊤
x ey+

e⊤x ey−

2σ2




· ∇θ

(
e⊤x ey+

e⊤x ey−

)

Simplifying, we obtain:

∇θγ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2


 = − γ

σ2
· e

⊤
x ey+

e⊤x ey−
· exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




· ∇θ

(
e⊤x ey+

e⊤x ey−

)

To compute ∇θ

(
e⊤x ey+
e⊤x ey−

)
, we use the quotient

rule:

∇θ

(
e⊤x ey+

e⊤x ey−

)
=

(e⊤x ey−)∇θ(e
⊤
x ey+)− (e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2

Assuming ex and ey are differentiable with re-
spect to θ, we have:

∇θ(e
⊤
x ey) = (∇θex)

⊤ey + e⊤x (∇θey)

Thus, the gradient of the RBF kernel term be-
comes:

∇θγ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2


 = − γ

σ2
· e

⊤
x ey+

e⊤x ey−
· exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




·
[
(e⊤x ey−)∇θ(e

⊤
x ey+)− (e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2

]
.

Combined Gradient
Combining the gradients of both compo-
nents, the overall gradient of the RBF Ker-
nelized Hybrid Loss with respect to θ is:

∇θL = Ex,y+,y−

[
− 1

σ2
log

π(y+ | x)
π(y− | x) · exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2




·
(
∇θ log π(y

+ | x)−∇θ log π(y
− | x)

)

− γ

σ2
· e

⊤
x ey+

e⊤x ey−
· exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




·
[
(e⊤x ey−)∇θ(e

⊤
x ey+)− (e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2

]]

Simplified Gradient Expression For ease of im-
plementation and readability, the gradient can be
expressed as:

22236

∇θL = Ex,y+,y−

[
− 1

σ2
log

π(y+ | x)
π(y− | x) · exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2




·
(
∇θfθ(x, y

+)−∇θfθ(x, y
−)
)

− γ

σ2
· e

⊤
x ey+

e⊤x ey−
· exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




·
[
(e⊤x ey−)(∇θex)

⊤ey+ + (e⊤x ey−)e
⊤
x (∇θey+)

(e⊤x ey−)2

−(e⊤x ey+ + c)(∇θex)
⊤ey− + (e⊤x ey+ + c)e⊤x (∇θey−)

(e⊤x ey−)2

]]

Interpretation of the Gradient

• Log Probability Ratio Term:

– − 1
σ2 log

π(y+|x)
π(y−|x) : Scales the influence of the log

probability ratio based on its magnitude and the
bandwidth parameter σ.

– ∇θ log π(y
+ | x): Encourages the model to in-

crease the probability of the positive sample y+.

– −∇θ log π(y
− | x): Encourages the model to

decrease the probability of the negative sample
y−.

• RBF Kernel Term:

– − γ
σ2 · e⊤x ey+

e⊤x ey−
: Scales the influence of the

embedding-based term based on the ratio of em-
beddings and the bandwidth parameter σ.

– ∇θ(e
⊤
x ey+): Adjusts the model to better align the

embeddings of x and y+.

– −∇θ(e
⊤
x ey−): Adjusts the model to reduce the

alignment between the embeddings of x and y−.

– The exponential terms exp
(
− (·)2

2σ2

)
ensure that

the influence diminishes as the squared ratios
increase, promoting smoother gradients.

• Hyperparameter γ: Controls the relative impor-
tance of the embedding-based term compared to
the log probability ratio term. A higher γ em-
phasizes the alignment in the embedding space,
while a lower γ prioritizes the probability-based
alignment.

I.10 Computational Complexity Analysis of
RBF Kernelized Hybrid Loss

To evaluate the efficiency of the RBF Kernelized
Hybrid Loss, we analyze the computational com-
plexity of its two primary components: the log
probability ratio term and the RBF kernel term.

1. Log Probability Ratio Term
The log probability ratio term is defined as:

exp


−

(
log π(y+|x)

π(y−|x)

)2

2σ2


 .

where πθ(y | x) is modeled using a softmax func-
tion:

πθ(y | x) = efθ(x,y)∑
y′ e

fθ(x,y′)
.

Steps Involved:

• Score Computation: Calculate fθ(x, y) for each
class y, which involves a dot product between
input features and model parameters.

• Softmax Calculation: Compute the exponential
efθ(x,y) for each class and normalize by the sum
over all classes.

• Log Probability Ratio: Compute the logarithm of
the ratio between the probabilities of the positive
and negative classes.

• Exponentiation: Square the log probability ratio,
scale by − 1

2σ2 , and compute the exponential.

Time Complexity: O(C), where C is the num-
ber of classes. This complexity arises from the
softmax computation, which requires evaluating
fθ(x, y) and normalizing over all C classes.

2. RBF Kernel Term
The RBF kernel term is defined as:

γ exp


−

(
e⊤x ey+
e⊤x ey−

)2

2σ2




22237

Steps Involved:

• Dot Product Computation: Calculate the dot
products e⊤x ey+ and e⊤x ey− , where ex, ey+ , ey− ∈
Rd.

• Ratio Calculation: Compute the ratio
e⊤x ey+
e⊤x ey−

.

• Exponentiation: Square the ratio, scale by − 1
2σ2 ,

and compute the exponential.

• Scaling: Multiply by the hyperparameter γ.

Time Complexity: O(d), where d is the di-
mension of the embeddings. This arises from the
computation of the dot products between ex and
ey, which scales linearly with d.

Overall Computational Complexity
Combining both components, the total computa-
tional complexity of the RBF Kernelized Hybrid
Loss is:

O(C) +O(d) = O(C + d),

where:

• C is the number of classes (softmax computation).

• d is the embedding dimension (kernel computa-
tion).

This linear complexity ensures scalability
for large-scale applications involving high-
dimensional embeddings and extensive class la-
bels.

Comparison with Standard Loss Functions
• Cross-Entropy Loss:

– Time Complexity: O(C).

– Description: Involves computing the softmax
over C classes and calculating the negative log-
likelihood.

• Contrastive Loss:

– Time Complexity: O(d).

– Description: Focuses on the distance between
embeddings, typically requiring computation of
pairwise distances.

• RBF Kernelized Hybrid Loss:

– Time Complexity: O(C + d).

– Description: Combines both the discriminative
power of the log probability ratio (similar to
Cross-Entropy Loss) and the semantic richness
of the RBF kernel (similar to Contrastive Loss),
thereby integrating both aspects into a single loss
function.

The RBF Kernelized Hybrid Loss thus offers
a balanced combination of the computational effi-
ciencies of Cross-Entropy and Contrastive Losses
while enhancing the model’s ability to capture both
discriminative and semantic relationships.

I.11 Efficiency of RBF Kernelized Hybrid
Loss

The RBF Kernelized Hybrid Loss achieves a
balanced trade-off between discriminative power
and computational efficiency through the following
mechanisms:

• Linear Scaling: The loss scales linearly with
both the number of classes C and the embedding
dimension d, ensuring scalability for large-scale
datasets and high-dimensional embedding spaces.

• Parallel Computation: Both the log probability
ratio term and the RBF kernel term can be com-
puted in parallel. Modern hardware accelerators,
such as GPUs, can leverage this parallelism to
significantly speed up training processes.

• Integrated Semantic Information: By combin-
ing probability-based and embedding-based ob-
jectives, the loss function enriches the model’s
learning without incurring substantial additional
computational overhead.

• Hyperparameter Control: The hyperparame-
ter γ allows for fine-tuning the influence of the

22238

embedding-based term relative to the log proba-
bility ratio term, providing flexibility in balancing
performance and computational cost.

I.12 Practical Considerations
While the theoretical complexity of the RBF Ker-
nelized Hybrid Loss isO(C+d), several practical
factors can influence its real-world performance:

• GPU Parallelism: Leveraging GPU parallelism
can mitigate the linear scaling with C and d, al-
lowing for efficient computation even with large
numbers of classes and high-dimensional embed-
dings.

• Optimized Implementations: Utilizing opti-
mized libraries (e.g., BLAS, cuDNN) for matrix
operations and gradient computations can enhance
performance, reducing the actual computation
time.

• Batch Sizing: Selecting appropriate batch sizes
can maximize hardware utilization. Larger
batches may improve computational efficiency but
require more memory, while smaller batches may
be more memory-efficient but less computation-
ally optimal.

• Hyperparameter Tuning: Careful tuning of the
hyperparameter γ and the bandwidth parameter σ
is essential. Higher degrees of influence (through
γ and lower σ) can capture more complex rela-
tionships but may increase computational cost and
risk overfitting.

• Numerical Stability: The constant c ensures nu-
merical stability, especially when dealing with
small or zero dot product ratios. Properly choos-
ing c is crucial to prevent numerical issues during
training.

By considering these practical aspects, the RBF
Kernelized Hybrid Loss can be effectively inte-
grated into large-scale machine learning models,
providing enhanced performance without compro-
mising computational efficiency.

I.13 Gradient of Spectral Kernelized Hybrid
Loss

The Spectral Kernelized Hybrid Loss is defined
as:

L = Ex,y+,y−

[
p∑

i=1

exp

(
−λi

(
log

π(y+ | x)
π(y− | x)

)2
)
ϕi

(
log

π(y+ | x)
π(y− | x)

)

+ γ

p∑

i=1

exp


−λi

(
e⊤x ey+

e⊤x ey−

)2

ϕi

(
e⊤x ey+

e⊤x ey−

)]
,

where:

• x represents the input data.

• y+ and y− denote the positive and negative sam-
ples, respectively.

• π(y | x) is the probability of y given x, modeled
using a softmax function.

• ey and ex are the embeddings of y and x, respec-
tively.

• λi are the spectral kernel parameters for each com-
ponent i.

• ϕi(·) are feature transformation functions associ-
ated with each spectral kernel component i.

• γ is a hyperparameter controlling the influence of
the embedding-based term.

• p is the number of spectral kernel components.

Our objective is to compute the gradient of the
Spectral Kernelized Hybrid Loss ∇θL with respect
to the model parameters θ. This involves differenti-
ating each term of the loss function separately and
then combining them.

Gradient of the Log Probability Ratio Term
The first component of the Spectral Kernelized
Hybrid Loss involves a sum over spectral kernel
components applied to the log probability ratio:

p∑

i=1

exp

(
−λi

(
log

π(y+ | x)
π(y− | x)

)2
)
ϕi

(
log

π(y+ | x)
π(y− | x)

)

22239

To compute its gradient with respect to θ, we apply
the chain rule to each term in the sum:

∇θ

p∑

i=1

exp
(
−λiz2

)
ϕi(z) =

p∑

i=1

[
∇θ exp

(
−λiz2

)
· ϕi(z)

+ exp
(
−λiz2

)
· ∇θϕi(z)

]
,

where z = log π(y+|x)
π(y−|x)

1. Gradient of the Exponential Term

∇θ exp
(
−λiz2

)
= exp

(
−λiz2

)
· (−2λiz) · ∇θz.

2. Gradient of the Feature Transformation
Term Assuming ϕi(z) is differentiable with re-
spect to z:

∇θϕi(z) = ϕ′i(z) · ∇θz

3. Gradient of z

z = log
π(y+ | x)
π(y− | x) ,

∇θz = ∇θ log π(y
+ | x)−∇θ log π(y

− | x)
Combined Gradient for Each i
∇θ

[
exp

(
−λiz2

)
ϕi(z)

]
= exp

(
−λiz2

)
· (−2λiz) · ∇θz · ϕi(z)

+ exp
(
−λiz2

)
· ϕ′i(z) · ∇θz.

Gradient of the Spectral Kernel Term
The second component involves a sum over spec-
tral kernel components applied to the embedding-
based ratio:

γ

p∑

i=1

exp
(
−λir2

)
ϕi(r),

where r =
e⊤x ey+
e⊤x ey−

.

To compute its gradient with respect to θ, we
apply the chain rule to each term in the sum:

∇θγ

p∑

i=1

exp
(
−λir2

)
ϕi(r) = γ

p∑

i=1

[
∇θ exp

(
−λir2

)
· ϕi(r)

+ exp
(
−λir2

)
· ∇θϕi(r)

]
,

where r =
e⊤x ey+
e⊤x ey−

.

1. Gradient of the Exponential Term

∇θ exp
(
−λir2

)
= exp

(
−λir2

)
· (−2λir) · ∇θr.

2. Gradient of the Feature Transformation
Term Assuming ϕi(r) is differentiable with re-
spect to r:

∇θϕi(r) = ϕ′i(r) · ∇θr

3. Gradient of r

r =
e⊤x ey+

e⊤x ey−
,

∇θr =
(e⊤x ey−)∇θ(e

⊤
x ey+)− (e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2
.

Assuming ex and ey are differentiable with re-
spect to θ:

∇θ(e
⊤
x ey) = (∇θex)

⊤ey + e⊤x (∇θey)

Combined Gradient for Each i

∇θ

[
exp

(
−λir2

)
ϕi(r)

]
= exp

(
−λir2

)
· (−2λir) · ∇θr · ϕi(r)

+ exp
(
−λir2

)
· ϕ′i(r) · ∇θr.

Combined Gradient
Combining the gradients of both components, the
overall gradient of the Spectral Kernelized Hybrid
Loss with respect to θ is:

∇θL = Ex,y+,y−

[
p∑

i=1

(
−2λiz

σ2
exp

(
−λiz2

)
ϕi(z) + exp

(
−λiz2

)
ϕ′i(z)

)
∇θz

+ γ

p∑

i=1

(
−2λir

σ2
exp

(
−λir2

)
ϕi(r) + exp

(
−λir2

)
ϕ′i(r)

)
∇θr

]

where:

z = log
π(y+ | x)
π(y− | x) , r =

e⊤x ey+

e⊤x ey−
.

Simplified Gradient Expression For ease of im-
plementation and readability, the gradient can be
expressed as:

∇θL = Ex,y+,y−

[
p∑

i=1

exp
(
−λiz2

)(
−2λiz

σ2
ϕi(z) + ϕ′i(z)

)(
∇θfθ(x, y

+)−∇θfθ(x, y
−)
)

+ γ

p∑

i=1

exp
(
−λir2

)(
−2λir

σ2
ϕi(r) + ϕ′i(r)

)

×
(
(e⊤x ey−)(∇θex)

⊤ey+ + (e⊤x ey−)e
⊤
x (∇θey+)− (e⊤x ey+)(∇θex)

⊤ey− − (e⊤x ey+)e
⊤
x (∇θey−)

(e⊤x ey−)2

)]

22240

Interpretation of the Gradient

• Log Probability Ratio Term:

– −2λiz
σ2 ϕi(z): Scales the influence of the log prob-

ability ratio based on its magnitude, the spectral
kernel parameter λi, and the bandwidth parameter
σ.

– ϕ′i(z): Incorporates the derivative of the feature
transformation function, allowing for more nu-
anced adjustments based on the transformed log
probability ratio.

– ∇θz = ∇θ log π(y
+ | x) − ∇θ log π(y

− | x):
Encourages the model to increase the probabil-
ity of the positive sample y+ and decrease the
probability of the negative sample y−.

• Spectral Kernel Term:

– −2λir
σ2 ϕi(r): Scales the influence of the

embedding-based ratio based on its magnitude,
the spectral kernel parameter λi, and the band-
width parameter σ.

– ϕ′i(r): Incorporates the derivative of the feature
transformation function, allowing for more nu-
anced adjustments based on the transformed em-
bedding ratio.

– ∇θr =
(e⊤x ey−)∇θ(e

⊤
x ey+)−(e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2
:

Adjusts the model to better align the embeddings
of x with y+ while discouraging alignment with
y−.

• Hyperparameters:

– λi: Controls the influence of each spectral kernel
component.

– γ: Balances the influence between the log proba-
bility ratio term and the embedding-based term.

– σ: Determines the bandwidth of the RBF ker-
nel, affecting how sharply the exponential terms
decay.

I.14 Computational Complexity Analysis of
Spectral Kernelized Hybrid Loss

To evaluate the efficiency of the Spectral Kernel-
ized Hybrid Loss, we analyze the computational
complexity of its two primary components: the log
probability ratio term and the spectral kernel term.

1. Log Probability Ratio Term
The log probability ratio term is defined as:

p∑

i=1

exp
(
−λiz2

)
ϕi(z),

where z = log π(y+|x)
π(y−|x) .

Steps Involved:

• Score Computation: Calculate fθ(x, y) for each
class y, which involves a dot product between
input features and model parameters.

• Softmax Calculation: Compute the exponential
efθ(x,y) for each class and normalize by the sum
over all C classes.

• Log Probability Ratio: Compute the logarithm of
the ratio between the probabilities of the positive
and negative classes.

• Exponentiation and Feature Transformation:
For each spectral kernel component i, compute the
exponential and apply the feature transformation
function ϕi(z).

Time Complexity: O(p · C), where p is the
number of spectral kernel components and C is the
number of classes. This complexity arises from
iterating over each spectral kernel component and
performing computations that scale with C.

2. Spectral Kernel Term
The spectral kernel term is defined as:

γ

p∑

i=1

exp
(
−λir2

)
ϕi(r),

where r =
e⊤x ey+
e⊤x ey−

.

Steps Involved:

22241

• Dot Product Computation: Calculate the dot
products e⊤x ey+ and e⊤x ey− , where ex, ey+ , ey− ∈
Rd.

• Ratio Calculation: Compute the ratio
e⊤x ey+
e⊤x ey−

.

• Exponentiation and Feature Transformation:
For each spectral kernel component i, compute the
exponential and apply the feature transformation
function ϕi(r).

Time Complexity: O(p · d), where p is the
number of spectral kernel components and d is the
dimension of the embeddings. This arises from
iterating over each spectral kernel component and
performing computations that scale with d.

Overall Computational Complexity
Combining both components, the total computa-
tional complexity of the Spectral Kernelized Hy-
brid Loss is:

O(p · C + p · d) = O(p(C + d)),

where:

• p is the number of spectral kernel components.

• C is the number of classes.

• d is the embedding dimension.

This linear complexity in p, C, and d en-
sures scalability for large-scale applications in-
volving multiple spectral kernel components, high-
dimensional embeddings, and extensive class la-
bels.

Comparison with Standard Loss Functions
• Cross-Entropy Loss:

– Time Complexity: O(C).

– Description: Involves computing the softmax
over C classes and calculating the negative log-
likelihood.

• Contrastive Loss:

– Time Complexity: O(d).

– Description: Focuses on the distance between
embeddings, typically requiring computation of
pairwise distances.

• Spectral Kernelized Hybrid Loss:

– Time Complexity: O(p(C + d)).

– Description: Extends both Cross-Entropy and
Contrastive Losses by incorporating multiple
spectral kernel components, enhancing the
model’s ability to capture complex relationships
while maintaining computational efficiency.

The Spectral Kernelized Hybrid Loss thus of-
fers a comprehensive approach by integrating mul-
tiple spectral kernels into the loss function, provid-
ing enhanced modeling capabilities at a manage-
able computational cost.

I.15 Efficiency of Spectral Kernelized Hybrid
Loss

The Spectral Kernelized Hybrid Loss achieves a
balanced trade-off between discriminative power
and computational efficiency through the following
mechanisms:

• Scalability with Spectral Components: By al-
lowing multiple spectral kernel components (p),
the loss function can capture a variety of complex
patterns and relationships in the data without a
disproportionate increase in computational cost.

• Linear Scaling: The loss scales linearly with the
number of spectral kernel components p, the num-
ber of classes C, and the embedding dimension
d, ensuring that it remains efficient even as these
parameters grow.

• Parallel Computation: Both the log probability
ratio term and the spectral kernel term involve
operations that can be parallelized across spec-
tral kernel components. Leveraging modern hard-
ware accelerators, such as GPUs, can significantly
speed up these computations.

22242

• Integrated Feature Transformations: The use
of feature transformation functions ϕi(·) allows
for sophisticated transformations of the log proba-
bility ratios and embedding ratios, enriching the
model’s learning capacity without incurring sub-
stantial additional computational overhead.

• Hyperparameter Flexibility: The hyperparame-
ters λi, γ, and σ provide flexibility in controlling
the influence of each spectral kernel component
and the overall balance between probability-based
and embedding-based terms. This allows for fine-
tuning to achieve optimal performance without
significant computational penalties.

I.16 Practical Considerations

While the theoretical complexity of the Spectral
Kernelized Hybrid Loss is O(p(C + d)), several
practical factors can influence its real-world per-
formance:

• GPU Parallelism: Leveraging GPU parallelism
can mitigate the linear scaling with p, C, and d,
allowing for efficient computation even with large
numbers of spectral kernel components, classes,
and high-dimensional embeddings.

• Optimized Implementations: Utilizing opti-
mized libraries (e.g., BLAS, cuDNN) for matrix
operations and gradient computations can enhance
performance, reducing the actual computation
time.

• Batch Sizing: Selecting appropriate batch sizes
can maximize hardware utilization. Larger
batches may improve computational efficiency but
require more memory, while smaller batches may
be more memory-efficient but less computation-
ally optimal.

• Hyperparameter Tuning: Careful tuning of the
hyperparameters γ, λi, and σ is essential. Higher
values of p can capture more complex relation-
ships but may increase computational cost and

risk overfitting. Similarly, the bandwidth param-
eter σ affects how sharply the exponential terms
decay, influencing the gradient magnitudes.

• Numerical Stability: The constants c and σ en-
sure numerical stability, especially when dealing
with small or large ratios in the log probability
and embedding terms. Properly choosing these
constants is crucial to prevent numerical issues
during training.

• Memory Consumption: As p, C, and d increase,
memory consumption can become a bottleneck.
Efficient memory management and possibly reduc-
ing the number of spectral kernel components p
without significantly compromising performance
can help mitigate this issue.

By considering these practical aspects, the Spec-
tral Kernelized Hybrid Loss can be effectively
integrated into large-scale machine learning mod-
els, providing enhanced performance through so-
phisticated spectral kernel transformations while
maintaining computational efficiency.

I.17 Gradient of Mahalanobis Kernelized
Hybrid Loss

The Mahalanobis Kernelized Hybrid Loss is de-
fined as:

L = Ex,y+,y−

[
exp


−

(
log π(y+|x)

π(y−|x) − µ
)2

2σ2


+ γ exp


−

(
e⊤x ey+
e⊤x ey−

− µ′
)2

2σ′2




]
,

where:

• x represents the input data.

• y+ and y− denote the positive and negative sam-
ples, respectively.

• π(y | x) is the probability of y given x, modeled
using a softmax function.

• ey and ex are the embeddings of y and x, respec-
tively.

22243

• µ and µ′ are means for the log probability ratio
and embedding ratio terms, respectively.

• σ and σ′ are bandwidth parameters for the Maha-
lanobis kernels applied to the log probability ratio
and embedding ratio terms, respectively.

• γ is a hyperparameter controlling the influence of
the embedding-based term.

Our objective is to compute the gradient of the
Mahalanobis Kernelized Hybrid Loss ∇θL with
respect to the model parameters θ. This involves
differentiating each term of the loss function sepa-
rately and then combining them.

Gradient of the Log Probability Ratio Term
The first component of the Mahalanobis Kernel-
ized Hybrid Loss involves the exponential of the
squared and shifted log probability ratio:

exp


−

(
log π(y+|x)

π(y−|x) − µ
)2

2σ2


 .

To compute its gradient with respect to θ, we apply
the chain rule:

∇θ exp

(
−(z − µ)2

2σ2

)
= exp

(
−(z − µ)2

2σ2

)
·
(
−2(z − µ)

2σ2

)
· ∇θz,

where z = log π(y+|x)
π(y−|x) .

Simplifying, we obtain:

∇θ exp

(
−(z − µ)2

2σ2

)
= −(z − µ)

σ2
exp

(
−(z − µ)2

2σ2

)
· ∇θz.

Expanding the gradient of the log probability
ratio:

∇θz = ∇θ log
π(y+ | x)
π(y− | x) = ∇θ log π(y

+ | x)−∇θ log π(y
− | x).

Assuming πθ(y | x) is modeled using a softmax
function:

πθ(y | x) = efθ(x,y)∑
y′ e

fθ(x,y′)
,

the gradient of log π(y | x) with respect to θ is:

∇θ log π(y | x) = ∇θfθ(x, y)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′).

Substituting back, we obtain:

∇θz =


∇θfθ(x, y

+)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′)




−


∇θfθ(x, y

−)−
∑

y′
πθ(y

′ | x)∇θfθ(x, y
′)




= ∇θfθ(x, y
+)−∇θfθ(x, y

−)
Therefore, the gradient of the log probability

ratio term is:

∇θ exp

(
−(z − µ)2

2σ2

)
= −(z − µ)

σ2
exp

(
−(z − µ)2

2σ2

)
(
∇θfθ(x, y

+)−∇θfθ(x, y
−)
)
.

Gradient of the Mahalanobis Kernel Term
The second component involves the exponential of
the squared and shifted embedding-based ratio:

γ exp

(
−(r − µ′)2

2σ′2

)
,

where r =
e⊤x ey+
e⊤x ey−

.

To compute its gradient with respect to θ, we
apply the chain rule:

∇θγ exp

(
−(r − µ′)2

2σ′2

)
= γ exp

(
−(r − µ′)2

2σ′2

)
·
(
−2(r − µ′)

2σ′2

)
· ∇θr,

where r =
e⊤x ey+
e⊤x ey−

.

Simplifying, we obtain:

∇θγ exp

(
−(r − µ′)2

2σ′2

)
= −γ(r − µ′)

σ′2
exp

(
−(r − µ′)2

2σ′2

)
· ∇θr.

To compute ∇θr, we use the quotient rule:

∇θr = ∇θ

(
e⊤x ey+

e⊤x ey−

)
=

(e⊤x ey−)∇θ(e
⊤
x ey+)− (e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2
.

Assuming ex and ey are differentiable with re-
spect to θ, we have:

∇θ(e
⊤
x ey) = (∇θex)

⊤ey + e⊤x (∇θey).

Substituting back, the gradient of the Maha-
lanobis kernel term becomes:
∇θγ exp

(
−(r − µ′)2

2σ′2

)
= −γ(r − µ′)

σ′2
exp

(
−(r − µ′)2

2σ′2

)
· (e

⊤
x ey−)∇θ(e

⊤
x ey+)− (e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2

22244

Combined Gradient
Combining the gradients of both components, the
overall gradient of the Mahalanobis Kernelized
Hybrid Loss with respect to θ is:

∇θL = Ex,y+,y−

[
−(z − µ)

σ2
exp

(
−(z − µ)2

2σ2

)(
∇θfθ(x, y

+)−∇θfθ(x, y
−)
)

−γ(r − µ′)

σ′2
exp

(
−(r − µ′)2

2σ′2

)
· (e

⊤
x ey−)∇θ(e

⊤
x ey+)− (e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2

]
.

Simplified Gradient Expression For ease of im-
plementation and readability, the gradient can be
expressed as:

∇θL = Ex,y+,y−

[
−(z − µ)

σ2
exp

(
−(z − µ)2

2σ2

)(
∇θfθ(x, y

+)−∇θfθ(x, y
−)
)

−γ(r − µ′)

σ′2
exp

(
−(r − µ′)2

2σ′2

)
· (e

⊤
x ey−)

(
(∇θex)

⊤ey+ + e⊤x (∇θey+)
)
− (e⊤x ey+)

(
(∇θex)

⊤ey− + e⊤x (∇θey−)
)

(e⊤x ey−)2

]
.

Interpretation of the Gradient

• Log Probability Ratio Term:

– − (z−µ)
σ2 exp

(
− (z−µ)2

2σ2

)
: Scales the influence of

the log probability ratio based on its deviation
from the mean µ and the bandwidth parameter σ.

– ∇θfθ(x, y
+): Encourages the model to increase

the score (and hence the probability) of the posi-
tive sample y+.

– −∇θfθ(x, y
−): Encourages the model to de-

crease the score (and hence the probability) of
the negative sample y−.

• Mahalanobis Kernel Term:

– −γ(r−µ′)
σ′2 exp

(
− (r−µ′)2

2σ′2

)
: Scales the influence

of the embedding-based ratio based on its devia-
tion from the mean µ′ and the bandwidth parame-
ter σ′, adjusted by the hyperparameter γ.

–
(e⊤x ey−)∇θ(e

⊤
x ey+)−(e⊤x ey+)∇θ(e

⊤
x ey−)

(e⊤x ey−)2
: Adjusts the

model to better align the embeddings of x with
y+ while discouraging alignment with y−.

– The exponential term exp
(
− (r−µ′)2

2 (σ′)2

)
ensures

that the influence diminishes as the squared ratios
deviate from the mean µ′, promoting smoother
gradients.

• Hyperparameters:

– µ and µ′: Control the center of the Mahalanobis
kernels for the log probability ratio and embed-
ding ratio terms, respectively.

– σ and σ′: Determine the bandwidth of the Maha-
lanobis kernels, affecting how sharply the expo-
nential terms decay.

– γ: Balances the influence between the probability-
based term and the embedding-based term, allow-
ing for fine-tuning of their relative importance.

I.18 Computational Complexity Analysis of
Mahalanobis Kernelized Hybrid Loss

To evaluate the efficiency of the Mahalanobis Ker-
nelized Hybrid Loss, we analyze the computational
complexity of its two primary components: the log
probability ratio term and the Mahalanobis kernel
term.

1. Log Probability Ratio Term
The log probability ratio term is defined as:

exp


−

(
log π(y+|x)

π(y−|x) − µ
)2

2σ2




where πθ(y | x) is modeled using a softmax func-
tion:

πθ(y | x) = efθ(x,y)∑
y′ e

fθ(x,y′)
,

and z = log π(y+|x)
π(y−|x) .

Steps Involved:

• Score Computation: Calculate fθ(x, y) for each
class y, which involves a dot product between
input features and model parameters.

• Softmax Calculation: Compute the exponential
efθ(x,y) for each class and normalize by the sum
over all C classes.

• Log Probability Ratio: Compute the logarithm of
the ratio between the probabilities of the positive
and negative classes.

22245

• Exponentiation and Scaling: Subtract the mean
µ, square the result, scale by − 1

2σ2 , and compute
the exponential.

Time Complexity: O(C), where C is the num-
ber of classes. This complexity arises from the
softmax computation, which requires evaluating
fθ(x, y) and normalizing over all C classes.

2. Mahalanobis Kernel Term
The Mahalanobis kernel term is defined as:

γ exp


−

(
e⊤x ey+
e⊤x ey−

− µ′
)2

2σ′2




where r =
e⊤x ey+
e⊤x ey−

.

Steps Involved:

• Dot Product Computation: Calculate the dot
products e⊤x ey+ and e⊤x ey− , where ex, ey+ , ey− ∈
Rd.

• Ratio Calculation: Compute the ratio
e⊤x ey+
e⊤x ey−

.

• Mean Subtraction and Squaring: Subtract the
mean µ′, square the result, and scale by − 1

2σ′2 .

• Exponentiation and Scaling: Compute the expo-
nential and multiply by the hyperparameter γ.

Time Complexity: O(d), where d is the di-
mension of the embeddings. This arises from the
computation of the dot products between ex and
ey, which scales linearly with d.

Overall Computational Complexity
Combining both components, the total computa-
tional complexity of the Mahalanobis Kernelized
Hybrid Loss is:

O(C) +O(d) = O(C + d),

where:

• C is the number of classes (softmax computation).

• d is the embedding dimension (kernel computa-
tion).

This linear complexity ensures scalability
for large-scale applications involving high-
dimensional embeddings and extensive class la-
bels.

Comparison with Standard Loss Functions
• Cross-Entropy Loss:

– Time Complexity: O(C).

– Description: Involves computing the softmax
over C classes and calculating the negative log-
likelihood.

• Contrastive Loss:

– Time Complexity: O(d).

– Description: Focuses on the distance between
embeddings, typically requiring computation of
pairwise distances.

• Mahalanobis Kernelized Hybrid Loss:

– Time Complexity: O(C + d).

– Description: Combines both the discriminative
power of the log probability ratio (similar to
Cross-Entropy Loss) and the semantic richness
of the Mahalanobis kernel (similar to Contrastive
Loss), thereby integrating both aspects into a sin-
gle loss function.

The Mahalanobis Kernelized Hybrid Loss
thus offers a balanced combination of the com-
putational efficiencies of Cross-Entropy and Con-
trastive Losses while enhancing the model’s ability
to capture both discriminative and semantic rela-
tionships.

I.19 Efficiency of Mahalanobis Kernelized
Hybrid Loss

The Mahalanobis Kernelized Hybrid Loss
achieves a balanced trade-off between discrimi-
native power and computational efficiency through
the following mechanisms:

22246

• Linear Scaling: The loss scales linearly with
both the number of classes C and the embedding
dimension d, ensuring scalability for large-scale
datasets and high-dimensional embedding spaces.

• Parallel Computation: Both the log probability
ratio term and the Mahalanobis kernel term can be
computed in parallel. Modern hardware accelera-
tors, such as GPUs, can leverage this parallelism
to significantly speed up training processes.

• Integrated Semantic Information: By combin-
ing probability-based and embedding-based ob-
jectives, the loss function enriches the model’s
learning without incurring substantial additional
computational overhead.

• Hyperparameter Control: The hyperparameters
µ, µ′, σ, σ′, and γ allow for fine-tuning the influ-
ence of each component, enabling the model to
balance between accurately classifying positive
and negative samples and capturing meaningful
embedding relationships.

I.20 Practical Considerations
While the theoretical complexity of the Maha-
lanobis Kernelized Hybrid Loss is O(C + d), sev-
eral practical factors can influence its real-world
performance:

• GPU Parallelism: Leveraging GPU parallelism
can mitigate the linear scaling with C and d, al-
lowing for efficient computation even with large
numbers of classes and high-dimensional embed-
dings.

• Optimized Implementations: Utilizing opti-
mized libraries (e.g., BLAS, cuDNN) for matrix
operations and gradient computations can enhance
performance, reducing the actual computation
time.

• Batch Sizing: Selecting appropriate batch sizes
can maximize hardware utilization. Larger
batches may improve computational efficiency but
require more memory, while smaller batches may

be more memory-efficient but less computation-
ally optimal.

• Hyperparameter Tuning: Careful tuning of the
hyperparameters µ, µ′, σ, σ′, and γ is essential.
The means µ and µ′ determine the centers of the
Mahalanobis kernels, while the bandwidth param-
eters σ and σ′ affect how sharply the exponen-
tial terms decay. The hyperparameter γ balances
the influence between the probability-based and
embedding-based terms.

• Numerical Stability: The constants µ, µ′, σ,
and σ′ ensure numerical stability, especially when
dealing with small or large ratios in the log prob-
ability and embedding terms. Properly choosing
these constants is crucial to prevent numerical is-
sues during training.

• Memory Consumption: As C and d increase,
memory consumption can become a bottleneck.
Efficient memory management and possibly re-
ducing the number of classes or embedding di-
mensions without significantly compromising per-
formance can help mitigate this issue.

By considering these practical aspects, the Ma-
halanobis Kernelized Hybrid Loss can be effec-
tively integrated into large-scale machine learning
models, providing enhanced performance through
sophisticated kernel transformations while main-
taining computational efficiency.

I.21 Gradient of Hierarchical Mixture of
Kernels (HMK)

Hierarchical Mixture of Kernels (HMK) imposes a
hierarchical structure where local kernels operate
on small, local regions, and global kernels cap-
ture larger-scale dependencies. This structure is
formalized as:

K(x, x′) = τ1
(
λ1KRBF(x, x

′) + λ2KPoly(x, x
′)
)

+ τ2
(
λ3KSpectral(x, x

′) + λ4KMahalanobis(x, x
′)
)

where:

22247

• x, x′ are input data points.

• KRBF(x, x
′), KPoly(x, x

′), KSpectral(x, x
′), and

KMahalanobis(x, x
′) are the Radial Basis Function,

Polynomial, Spectral, and Mahalanobis kernels,
respectively.

• λ1, λ2, λ3, λ4 are weighting coefficients for each
kernel type.

• τ1 and τ2 are scaling factors that balance the con-
tribution of local and global kernels.

Our objective is to compute the gradient of the
HMK K(x, x′) with respect to the model parame-
ters θ. This gradient is essential for optimizing the
model parameters during training, ensuring that
both local and global dependencies are appropri-
ately captured.

Gradient Computation of HMK
The gradient of the HMK with respect to θ is de-
rived by differentiating each component kernel in-
dividually and then combining them according to
their hierarchical structure. Formally, the gradient
is expressed as:

∇θK(x, x′) = τ1
(
λ1∇θKRBF(x, x

′) + λ2∇θKPoly(x, x
′)
)

+τ2
(
λ3∇θKSpectral(x, x

′) + λ4∇θKMahalanobis(x, x
′)
)

Each gradient term ∇θKType(x, x
′) corresponds

to the gradient of the respective kernel with respect
to θ, as derived in their individual sections.

1. Gradient of the RBF Kernel

∇θKRBF(x, x
′) = ∇θ exp

(
−∥x− x′∥2

2σ2

)
= exp

(
−∥x− x′∥2

2σ2

)
·
(
(x′ − x)

σ2

)
· ∇θx,

where σ is the bandwidth parameter.

2. Gradient of the Polynomial Kernel

∇θKPoly(x, x
′) = ∇θ(x

⊤x′ + c)d = d(x⊤x′ + c)d−1 ·
(
x′∇θx+ x∇θx

′) ,

where c is a constant and d is the degree of the
polynomial.

3. Gradient of the Spectral Kernel

∇θKSpectral(x, x
′) =

p∑

i=1

[
exp

(
−λiz2i

) (
−2λiziϕi(zi) + ϕ′i(zi)

)
∇θzi

]
,

where zi = log π(y+|x)
π(y−|x) and ϕi(·) are feature trans-

formation functions.

4. Gradient of the Mahalanobis Kernel

∇θKMahalanobis(x, x
′) =

p∑

i=1

[
exp

(
−λi(ri − µi)

2
)(

−2λi(ri − µi)

σ2i
ϕi(ri) + ϕ′i(ri)

)
∇θri

]
,

where ri =
e⊤x ey+
e⊤x ey−

, µi are mean parameters, and σi
are bandwidth parameters for each spectral compo-
nent.

Combined Gradient Expression
Combining the gradients of all kernel components,
the overall gradient of the HMK with respect to θ
is:

∇θK(x, x′) = τ1
(
λ1∇θKRBF(x, x

′) + λ2∇θKPoly(x, x
′)
)

+τ2
(
λ3∇θKSpectral(x, x

′) + λ4∇θKMahalanobis(x, x
′)
)
.

Substituting the gradients of individual kernels:

∇θK(x, x′) = τ1

(
λ1 exp

(
−∥x− x′∥2

2σ2

)
· (x

′ − x)

σ2
· ∇θx

+λ2d(x
⊤x′ + c)d−1 ·

(
x′∇θx+ x∇θx

′))

+τ2

(
λ3

p∑

i=1

exp
(
−λiz2i

) (
−2λiziϕi(zi) + ϕ′i(zi)

)
∇θzi

+λ4

p∑

i=1

exp
(
−λi(ri − µi)

2
)(

−2λi(ri − µi)

σ2i
ϕi(ri) + ϕ′i(ri)

)
∇θri

)
.

Simplified Gradient Expression For ease of im-
plementation and readability, the gradient can be
succinctly written as:

∇θK(x, x′) = τ1λ1 exp

(
−∥x− x′∥2

2σ2

)
· (x

′ − x)

σ2
· ∇θx

+τ1λ2d(x
⊤x′ + c)d−1 ·

(
x′∇θx+ x∇θx

′)

22248

+τ2λ3

p∑

i=1

exp
(
−λiz2i

) (
−2λiziϕi(zi) + ϕ′i(zi)

)
∇θzi

+τ2λ4

p∑

i=1

exp
(
−λi(ri − µi)

2
)(

−2λi(ri − µi)

σ2i
ϕi(ri) + ϕ′i(ri)

)
∇θri.

Interpretation of the Gradient

• RBF Kernel Gradient (τ1λ1):

– exp
(
−∥x−x′∥2

2σ2

)
: Measures the similarity be-

tween x and x′.

– (x′−x)
σ2 : Directs the gradient to increase similarity

if x and x′ are similar, or decrease otherwise.

– ∇θx: Adjusts the model parameters to optimize
the representation of x.

• Polynomial Kernel Gradient (τ1λ2):

– d(x⊤x′ + c)d−1: Scales the influence based on
the degree of the polynomial and the similarity
between x and x′.

– (x′∇θx+ x∇θx
′): Updates the model parame-

ters to enhance or reduce the polynomial similar-
ity.

• Spectral Kernel Gradient (τ2λ3):

– exp
(
−λiz2i

)
: Applies a spectral transformation

based on the log probability ratio.

– (−2λiziϕi(zi) + ϕ′i(zi)): Modulates the gradi-
ent based on the spectral feature transformations.

– ∇θzi: Encourages the model to adjust probabili-
ties to optimize the spectral features.

• Mahalanobis Kernel Gradient (τ2λ4):

– exp
(
−λi(ri − µi)

2
)
: Applies a Mahalanobis

transformation based on the embedding ratio.

–
(
−2λi(ri−µi)

σ2
i

ϕi(ri) + ϕ′i(ri)
)

: Modulates the
gradient based on the Mahalanobis feature trans-
formations.

– ∇θri: Adjusts the embeddings to optimize the
Mahalanobis distance.

• Hyperparameters τ1, τ2, λ1, λ2, λ3, λ4:

– τ1, τ2: Balance the contributions of local and
global kernels.

– λ1, λ2, λ3, λ4: Control the influence of each ker-
nel type within their respective hierarchies.

Computational Complexity Analysis of HMK

To evaluate the efficiency of the Hierarchical Mix-
ture of Kernels (HMK), we analyze the computa-
tional complexity of its primary components: the
local kernels (RBF and Polynomial) and the global
kernels (Spectral and Mahalanobis).

1. Local Kernels

a. RBF Kernel

KRBF(x, x
′) = exp

(
−∥x− x′∥2

2σ2

)

Steps Involved:

• Compute the Euclidean distance ∥x− x′∥, which
involves O(d) operations, where d is the dimen-
sion of the input.

• Exponentiation, which is a constant-time opera-
tion.

Time Complexity: O(d)

b. Polynomial Kernel

KPoly(x, x
′) = (x⊤x′ + c)d

Steps Involved:

• Compute the dot product x⊤x′, which involves
O(d) operations.

• Add constant c and raise to the power d, both of
which are constant-time operations.

Time Complexity: O(d)

22249

2. Global Kernels
a. Spectral Kernel

KSpectral(x, x
′) =

p∑

i=1

exp
(
−λiz2i

)
ϕi(zi),

where zi = log π(y+|x)
π(y−|x) .

Steps Involved:

• Compute the log probability ratio zi, which in-
volves O(C) operations due to the softmax.

• For each of the p spectral components:

– Compute exp
(
−λiz2i

)
, which is a constant-time

operation.
– Apply the feature transformation ϕi(zi), assumed

to be constant-time.

Time Complexity: O(p · C)
b. Mahalanobis Kernel

KMahalanobis(x, x
′) =

p∑

i=1

exp
(
−λi(ri − µi)

2
)
ϕi(ri),

where ri =
e⊤x ey+
e⊤x ey−

.

Steps Involved:

• Compute the embedding ratios ri, which involves
O(d) operations for the dot products.

• For each of the p Mahalanobis components:

– Compute exp
(
−λi(ri − µi)

2
)
, which is a

constant-time operation.
– Apply the feature transformation ϕi(ri), assumed

to be constant-time.

Time Complexity: O(p · d)
Overall Computational Complexity
Combining the complexities of all kernel compo-
nents, the total computational complexity of the
HMK is:

O(d) +O(d) +O(p · C) +O(p · d) = O(p · (C + d) + d).

Since d is typically much smaller than p · (C + d),
the dominant term is O(p · (C + d)).

Comparison with Standard Loss Functions
• Cross-Entropy Loss:

– Time Complexity: O(C).

– Description: Involves computing the softmax
over C classes and calculating the negative log-
likelihood.

• Contrastive Loss:

– Time Complexity: O(d).

– Description: Focuses on the distance between
embeddings, typically requiring computation of
pairwise distances.

• Hierarchical Mixture of Kernels (HMK):

– Time Complexity: O(p · (C + d)).

– Description: Combines multiple kernels with hi-
erarchical weighting, integrating both local (RBF
and Polynomial) and global (Spectral and Ma-
halanobis) dependencies. This allows HMK to
capture complex patterns and relationships in the
data, leveraging the strengths of each kernel type.

The HMK offers a more expressive and flexi-
ble modeling approach compared to standard loss
functions by incorporating multiple kernel types
and hierarchical weighting. However, this expres-
siveness comes at the cost of increased computa-
tional complexity, especially with higher numbers
of spectral components p, classes C, and embed-
ding dimensions d.

Efficiency of HMK
The Hierarchical Mixture of Kernels (HMK)
achieves a balanced trade-off between modeling
complexity and computational efficiency through
the following mechanisms:

• Modular Kernel Design: By decomposing the
kernel into local and global components, HMK
allows for targeted optimization of different as-
pects of the data. Local kernels (RBF and Poly-
nomial) focus on fine-grained similarities, while

22250

global kernels (Spectral and Mahalanobis) capture
broader dependencies.

• Parallel Computation: The computations for dif-
ferent kernel components are independent and can
be parallelized. Leveraging modern hardware ac-
celerators, such as GPUs, can significantly reduce
training times.

• Scalability with Spectral Components: Al-
though the complexity scales with the number of
spectral components p, careful selection of p can
balance expressiveness with computational cost.
Techniques such as dimensionality reduction or
kernel approximation can be employed to manage
large p.

• Hyperparameter Tuning: The hyperparameters
τ1, τ2, λ1, λ2, λ3, λ4 allow for fine-tuning the in-
fluence of each kernel component, enabling the
model to prioritize certain relationships over oth-
ers without requiring extensive computational re-
sources.

• Optimized Implementations: Utilizing opti-
mized libraries (e.g., BLAS, cuDNN) for matrix
operations and kernel computations can enhance
performance, ensuring that the theoretical compu-
tational complexities translate into practical effi-
ciency gains.

Practical Considerations
While the theoretical complexity of the HMK is
O(p · (C + d)), several practical factors can influ-
ence its real-world performance:

• GPU Parallelism: Leveraging GPU parallelism
can mitigate the linear scaling with p, C, and d,
allowing for efficient computation even with large
numbers of spectral kernel components, classes,
and high-dimensional embeddings.

• Optimized Implementations: Utilizing opti-
mized libraries (e.g., BLAS, cuDNN) for matrix
operations and gradient computations can enhance
performance, reducing the actual computation
time.

• Batch Sizing: Selecting appropriate batch sizes
can maximize hardware utilization. Larger
batches may improve computational efficiency but
require more memory, while smaller batches may
be more memory-efficient but less computation-
ally optimal.

• Hyperparameter Tuning: Careful tuning of the
hyperparameters τ1, τ2, λ1, λ2, λ3, λ4 is essential.
The values of these parameters determine the rela-
tive importance of each kernel component, affect-
ing both the model’s performance and computa-
tional cost.

• Memory Consumption: As the number of spec-
tral components p, classes C, and embedding di-
mensions d increase, memory consumption can
become a bottleneck. Efficient memory manage-
ment strategies, such as gradient checkpointing or
dimensionality reduction, can help mitigate this
issue.

• Numerical Stability: Ensuring numerical stabil-
ity during kernel computations is crucial, espe-
cially when dealing with exponential functions
that can lead to very large or very small values.
Techniques such as normalization or adding small
constants to denominators can prevent numerical
overflow or underflow.

• Kernel Selection: The choice of kernel types and
their respective parameters (σ, c, d, λi, µi, σ′i)
should be informed by the specific characteristics
of the data and the problem domain. Empirical
validation and cross-validation can aid in selecting
optimal kernel configurations.

By considering these practical aspects, the Hier-
archical Mixture of Kernels (HMK) can be effec-
tively integrated into large-scale machine learning
models, providing enhanced performance through
sophisticated kernel combinations while maintain-
ing computational efficiency.

22251

I.22 Analysis of Gradient Convergence for
Four Kernels and HMK

In this section, we investigate the convergence be-
havior of gradient descent when applied to four
distinct kernels: Polynomial, RBF (Radial Basis
Function), Spectral, and Mahalanobis. Addi-
tionally, we analyze the Hierarchical Mixture of
Kernels (HMK), which combines these kernels to
leverage both local and global dependencies. The
convergence properties are evaluated based on key
factors such as smoothness, Lipschitz continuity,
gradient simplicity, and robustness to initialization.
Understanding these properties is crucial for effec-
tive alignment learning and optimization.

I.23 Lipschitz Continuity: Intuition and
Importance

Definition: A function f : Rn → R is said to be
Lipschitz continuous with constant L > 0 if, for
all x, y ∈ Rn,

|f(x)− f(y)|≤ L∥x− y∥.
Here, L is the Lipschitz constant and serves as an
upper bound on the rate at which the function f can
change. Intuitively, Lipschitz continuity ensures
that the function does not exhibit abrupt changes,
which is essential for the stability and convergence
of gradient-based optimization methods.

Why Lipschitz Continuity Matters
• Convergence Stability: If the gradient of a loss

function is Lipschitz continuous, gradient descent
is guaranteed to converge at a stable rate (Nes-
terov, 2003).

• Prevention of Exploding Gradients: Lipschitz
continuity bounds the gradients, preventing ex-
cessively large updates that can destabilize the
optimization process, particularly in deep learning
models (Goodfellow et al., 2016).

• Smooth Optimization Landscape: A Lipschitz
continuous gradient implies a smooth loss land-
scape, facilitating efficient and predictable opti-
mization (Boyd and Vandenberghe, 2004).

Illustrative Examples

• Lipschitz Continuous Function: The linear func-
tion f(x) = 2x is Lipschitz continuous with
L = 2. Regardless of the input difference, the
function’s rate of change remains constant, ensur-
ing bounded gradient updates.

• Non-Lipschitz Function: The quadratic function
f(x) = x2 is not Lipschitz continuous on [0,∞)
because its slope becomes unbounded as x in-
creases. This can lead to unstable gradient updates
during optimization.

Relevance in Kernel Methods

The convergence behavior of different kernels is
influenced by whether their gradients are Lipschitz
continuous. Below, we explore how Lipschitz con-
tinuity impacts gradient descent for each of the
four kernels under consideration.

I.24 Key Factors Influencing Gradient
Convergence

To analyze the convergence of gradient descent for
each kernel, we consider the following criteria:

• Smoothness of the Loss Landscape: A smoother
loss landscape facilitates faster and more stable
convergence by avoiding abrupt changes in gradi-
ents.

• Lipschitz Continuity of the Gradient: A smaller
Lipschitz constant ensures that gradients do not
change abruptly, promoting stable convergence
(Nesterov, 2003).

• Gradient Simplicity: Simpler gradient expres-
sions enhance computational efficiency and accel-
erate convergence.

• Robustness to Initialization: Kernels that exhibit
less sensitivity to initial parameter values lead to
more reliable convergence from diverse starting
points.

22252

I.25 Convergence Properties of Each Kernel

1. RBF Kernel

• Smoothness: The RBF kernel induces a smooth
and convex loss landscape, which is conducive to
fast and stable convergence (Bishop, 2006).

• Lipschitz Continuity: The gradient of the RBF
kernel is Lipschitz continuous due to its exponen-
tial decay property. This ensures that gradient
updates change gradually, enhancing convergence
stability.

• Gradient Simplicity: The gradient of the RBF
kernel is straightforward and linear with respect
to the input:

∇yKRBF(y, y
′) = KRBF(y, y

′) · (y
′ − y)

σ2
,

where σ is the bandwidth parameter.

• Robustness to Initialization: Due to its convex
loss surface, the RBF kernel is robust to random
initializations, minimizing the risk of converg-
ing to poor local minima (Schölkopf and Smola,
2002).

2. Polynomial Kernel

• Smoothness: The smoothness of the Polynomial
kernel depends on its degree d. Higher degrees in-
troduce non-convexity, resulting in a more rugged
loss landscape with multiple local minima and
saddle points.

• Lipschitz Continuity: Lipschitz continuity dete-
riorates as the degree d increases. Higher degrees
lead to steeper gradients, making the optimization
process more susceptible to instability.

• Gradient Simplicity: The gradient complexity
increases with the degree d:

∇yKPoly(y, y
′) = d(y⊤y′ + c)d−1 · y′,

where c is a constant.

• Robustness to Initialization: The Polynomial
kernel is highly sensitive to initialization, espe-
cially for higher degrees, due to its non-convex
loss landscape. This can lead to convergence to
suboptimal local minima.

3. Spectral Kernel

• Smoothness: The smoothness of the Spectral ker-
nel is influenced by the choice of basis functions
ϕi. Orthonormal basis functions, such as wavelets,
can introduce oscillatory behavior in the loss land-
scape (Ng et al., 2001).

• Lipschitz Continuity: Lipschitz continuity is con-
tingent on the eigenvalues λi of the underlying
Laplacian. Large eigenvalues can cause rapid
oscillations in the gradients, leading to abrupt
changes and potential instability.

• Gradient Simplicity: The gradient of the Spectral
kernel depends on the complexity of the basis
functions:

∇yKSpectral(y, y
′) =

p∑

i=1

[
exp

(
−λiz2i

) (
−2λiziϕi(zi) + ϕ′i(zi)

)
∇yzi

]
,

where zi = log π(y+|x)
π(y−|x) .

• Robustness to Initialization: The convergence
of the Spectral kernel is sensitive to the alignment
between data and the chosen basis functions. Poor
alignment can lead to oscillatory gradients, re-
quiring careful initialization strategies (Ng et al.,
2001).

4. Mahalanobis Kernel

• Smoothness: The Mahalanobis kernel behaves
similarly to the RBF kernel when the covariance
matrix Σ is the identity matrix. If Σ is poorly con-
ditioned, the loss landscape becomes anisotropic,
leading to uneven smoothness across different di-
mensions (Weinberger and Saul, 2009).

• Lipschitz Continuity: The Lipschitz continuity
of the Mahalanobis kernel depends on the condi-
tion number of Σ. A well-conditioned Σ ensures

22253

smooth and stable gradients, while a poorly condi-
tioned Σ results in rapidly changing gradients in
certain directions.

• Gradient Simplicity: The gradient of the Maha-
lanobis kernel incorporates the precision matrix
Σ−1:

∇yKMahalanobis(y, y
′) = KMahalanobis(y, y

′) · Σ−1(y′ − y).

This introduces additional complexity compared
to the RBF kernel.

• Robustness to Initialization: When Σ is well-
conditioned, the Mahalanobis kernel exhibits ro-
bust convergence properties similar to the RBF
kernel. However, a poorly conditioned Σ can lead
to slow convergence and sensitivity to initializa-
tion due to uneven gradient magnitudes.

I.26 Convergence Properties of HMK
Hierarchical Mixture of Kernels (HMK) The
Hierarchical Mixture of Kernels (HMK) inte-
grates the four aforementioned kernels into a hier-
archical structure to capture both local and global
dependencies. HMK is defined as:

K(x, x′) = τ1
(
λ1KRBF(x, x

′) + λ2KPoly(x, x
′)
)
+ τ2

(
λ3KSpectral(x, x

′) + λ4KMahalanobis(x, x
′)
)
,

where:

• KRBF(x, x
′), KPoly(x, x

′), KSpectral(x, x
′), and

KMahalanobis(x, x
′) are the respective kernel func-

tions.

• λ1, λ2, λ3, λ4 are weighting coefficients for each
kernel type.

• τ1 and τ2 are scaling factors that balance the con-
tribution of local and global kernels.

• Smoothness: HMK exhibits piecewise smooth-
ness due to its hierarchical decomposition. The
local kernels (RBF and Polynomial) contribute
to fine-grained similarities, while the global ker-
nels (Spectral and Mahalanobis) capture broader
dependencies. This combination allows HMK to
adaptively smooth different regions of the loss
landscape.

• Lipschitz Continuity: The Lipschitz continuity
of HMK is influenced by the individual Lips-
chitz properties of its component kernels. Since
RBF and Mahalanobis kernels typically have
Lipschitz continuous gradients (when Σ is well-
conditioned), and Spectral kernels have medium
Lipschitz continuity depending on eigenvalues,
HMK inherits a balanced Lipschitz continuity.
The Polynomial kernel’s Lipschitz properties can
be controlled through the degree d, allowing HMK
to maintain overall stability.

• Gradient Simplicity: The gradient of HMK is
a weighted sum of the gradients of its individual
kernels:

∇θK(x, x′) = τ1
(
λ1∇θKRBF(x, x

′) + λ2∇θKPoly(x, x
′)
)
+ τ2

(
λ3∇θKSpectral(x, x

′) + λ4∇θKMahalanobis(x, x
′)
)
.

This modularity allows HMK to balance the sim-
plicity of RBF and Mahalanobis gradients with
the complexity of Polynomial and Spectral gra-
dients, ensuring manageable gradient expressions.

• Robustness to Initialization: HMK enhances ro-
bustness to initialization by leveraging the stable
convergence properties of RBF and Mahalanobis
kernels alongside the expressive power of Poly-
nomial and Spectral kernels. The hierarchical
weighting factors τ1 and τ2 allow HMK to dy-
namically adjust the influence of each kernel type,
reducing sensitivity to poor initializations.

I.27 Summary of Convergence Properties

The analysis reveals that each kernel exhibits dis-
tinct convergence behaviors influenced by their
inherent properties:

• RBF Kernel: Offers the smoothest and most sta-
ble convergence due to its convex and Lipschitz
continuous gradient. Its simplicity in gradient
computation and robustness to initialization make
it highly reliable for gradient-based optimization.

• Polynomial Kernel: Suffers from non-convexity
and increasing Lipschitz constants with higher de-

22254

grees. The complexity of its gradients and sensitiv-
ity to initialization can hinder stable convergence,
especially for large d.

• Spectral Kernel: Introduces oscillatory behavior
depending on the basis functions and eigenvalues.
While it can capture intricate patterns, the poten-
tial for abrupt gradient changes requires careful
design and initialization to ensure stable conver-
gence.

• Mahalanobis Kernel: Balances between the RBF
and Spectral kernels. With a well-conditioned
covariance matrix Σ, it maintains smooth and Lip-
schitz continuous gradients, ensuring robust con-
vergence. However, a poorly conditioned Σ can
compromise convergence stability.

• Hierarchical Mixture of Kernels (HMK): Com-
bines the strengths of all four kernels, achieving
a balanced convergence behavior. HMK benefits
from the smoothness and stability of RBF and Ma-
halanobis kernels while incorporating the expres-
sive power of Polynomial and Spectral kernels.
This hierarchical structure ensures that HMK can
adapt to various data characteristics, promoting
both robust and efficient convergence.

Key Takeaways

• RBF Kernel: Ideal for scenarios requiring stable
and rapid convergence. Its convexity and smooth
gradients make it a dependable choice for many
optimization tasks.

• Polynomial Kernel: Best suited for problems
where capturing high-degree interactions is essen-
tial. However, care must be taken to manage its
non-convexity and gradient complexity, particu-
larly with higher degrees.

• Spectral Kernel: Effective in capturing complex,
oscillatory patterns within the data. Requires care-
ful selection of basis functions and initialization
strategies to maintain convergence stability.

• Mahalanobis Kernel: Provides flexibility in mod-
eling by incorporating covariance structure. En-
suring that Σ is well-conditioned is crucial for
maintaining smooth and stable convergence.

• Hierarchical Mixture of Kernels (HMK): Com-
bines the strengths of all four kernels, offer-
ing a balanced and robust convergence behavior.
HMK’s hierarchical structure allows it to adapt to
various data complexities, ensuring both stability
and expressiveness in gradient-based optimiza-
tion.

Designing kernels with favorable convergence
properties is essential for robust and efficient opti-
mization in alignment learning. Selecting the ap-
propriate kernel based on the specific requirements
of the task and the nature of the data can signifi-
cantly enhance the performance and reliability of
gradient-based learning algorithms.

For practical alignment tasks, the choice of
kernel should balance computational complexity,
convergence speed, and robustness. Hybrid ap-
proaches, such as the Hierarchical Mixture of
Kernels (HMK) (Bach et al., 2004), leverage the
strengths of multiple kernels to achieve more stable
and generalizable learning outcomes.

I.28 Analysis of Kernel Properties Across
Divergence Measures

This subsection provides a comprehensive anal-
ysis of kernel properties across various diver-
gence measures, including Kullback–Leibler
(KL), Jensen–Shannon (JS), Hellinger, Rényi
Divergence, Bhattacharyya, Wasserstein, and
f-Divergence. The focus is on four widely used
kernels: RBF (Radial Basis Function), Polyno-
mial, Spectral, and Mahalanobis. For each kernel
and divergence measure, the following key aspects
are evaluated:

• Smoothness: Characterizes the landscape of the
loss surface induced by each kernel under the re-
spective divergence measure.

22255

Table 8: Comparison of Gradient Convergence Properties for Four Kernels and HMK

Kernel Smoothness Lipschitz Gradient Gradient Simplicity Robustness to Initialization

RBF Smooth, Convex High Simple Robust
Polynomial Non-Convex (Higher d) Low (Higher d) Complex Sensitive

Spectral Oscillatory (Basis-Dependent) Medium Complex (Basis-Dependent) Moderate
Mahalanobis Smooth (if Σ Well-Conditioned) High (if Σ Well-Conditioned) Similar to RBF Robust (if Σ Well-Conditioned)

HMK Piecewise Smooth High Composite of Simple and Complex Highly Robust

• Lipschitz Continuity: Assesses the smoothness
of gradient changes, where higher Lipschitz conti-
nuity is desirable for stable gradient descent.

• Gradient Simplicity: Evaluates the complexity
of the gradient function, impacting computation
time and convergence speed.

• Robustness to Initialization: Measures the sen-
sitivity of convergence to the initial weights or
parameters.

Key Observations from Table 9:

• RBF Kernel: The RBF kernel exhibits the most
stable properties across all divergence measures.
It maintains a smooth, convex loss landscape,
high Lipschitz continuity, and simple linear gra-
dients. These features contribute to robust con-
vergence, making it a preferred choice in practical
applications.

• Polynomial Kernel: The Polynomial kernel’s
properties are highly sensitive to its degree d. For
large d, it becomes non-convex, with sharp transi-
tions in its gradient. This increases its susceptibil-
ity to poor initialization and slower convergence.
Additionally, its complexity increases as the de-
gree d increases.

• Spectral Kernel: The Spectral kernel’s behavior
is highly dependent on the choice of basis func-
tions ϕi(y). For certain bases, such as wavelets,
the loss landscape becomes oscillatory, and con-
vergence depends on the alignment of the initial-
ization with the basis functions.

• Mahalanobis Kernel: The Mahalanobis kernel
behaves similarly to the RBF kernel when Σ =
I . For well-conditioned Σ, its properties remain
stable and akin to the RBF kernel. However, if
Σ is ill-conditioned, the loss landscape becomes
anisotropic, leading to convergence slowdowns
in specific directions.

• Hierarchical Mixture of Kernels (HMK): HMK
combines the strengths of all four kernels, achiev-
ing a balanced convergence behavior. It benefits
from the smoothness and stability of the RBF
and Mahalanobis kernels while incorporating the
expressive power of the Polynomial and Spectral
kernels. This hierarchical structure allows HMK
to adapt to various data characteristics, promoting
both robust and efficient convergence.

Implications for Kernel Selection: The choice
of kernel in alignment tasks significantly impacts
the optimization process. The RBF kernel is ideal
for scenarios requiring stable and rapid conver-
gence due to its smooth and convex properties.
In contrast, the Polynomial kernel is suitable for
modeling complex, high-degree interactions but de-
mands careful tuning to manage its non-convexity
and gradient complexity. The Spectral kernel
excels in capturing oscillatory patterns, making
it well-suited for graph-based data, whereas the
Mahalanobis kernel offers flexibility in modeling
anisotropic similarities, provided that the covari-
ance matrix Σ is well-conditioned.

The HMK stands out by integrating multiple ker-
nels to balance their respective strengths and miti-
gate their weaknesses. This hierarchical approach
ensures that the optimization process remains ro-
bust and efficient across diverse data distributions

22256

Table 9: Comparison of Kernels across Divergence Measures: KL, JS, Hellinger, Rényi, Bhattacharyya, Wasserstein,
and f-Divergence

Kernel Kullback–Leibler (KL) Jensen–Shannon (JS) Hellinger Rényi Divergence Bhattacharyya Wasserstein f-Divergence

RBF

Smooth and Convex
High Lipschitz Continuity
Simple, Linear Gradients

Robust and Fast Convergence

Smooth and Convex
High Lipschitz Continuity
Simple, Linear Gradients

Robust and Fast Convergence

Smooth and Convex
High Lipschitz Continuity
Simple, Linear Gradients

Robust and Fast Convergence

Smooth and Convex
High Lipschitz Continuity
Simple, Linear Gradients

Robust and Fast Convergence

Smooth and Convex
High Lipschitz Continuity
Simple, Linear Gradients

Robust and Fast Convergence

Smooth and Convex
High Lipschitz Continuity
Simple, Linear Gradients

Robust and Fast Convergence

Smooth and Convex
High Lipschitz Continuity
Simple, Linear Gradients

Robust and Fast Convergence

Polynomial

Complex and Non-Convex
Low Lipschitz Continuity (High d)

Non-Linear Gradients
Sensitive to Initialization

Complex and Non-Convex
Low Lipschitz Continuity (High d)

Non-Linear Gradients
Sensitive to Initialization

Complex and Non-Convex
Low Lipschitz Continuity (High d)

Non-Linear Gradients
Sensitive to Initialization

Complex and Non-Convex
Low Lipschitz Continuity (High d)

Non-Linear Gradients
Sensitive to Initialization

Complex and Non-Convex
Low Lipschitz Continuity (High d)

Non-Linear Gradients
Sensitive to Initialization

Complex and Non-Convex
Low Lipschitz Continuity (High d)

Non-Linear Gradients
Sensitive to Initialization

Complex and Non-Convex
Low Lipschitz Continuity (High d)

Non-Linear Gradients
Sensitive to Initialization

Spectral

Oscillatory
Medium Lipschitz Continuity (Basis-Dependent)

Complex Gradients
Moderate Sensitivity

Oscillatory
Medium Lipschitz Continuity (Basis-Dependent)

Complex Gradients
Moderate Sensitivity

Oscillatory
Medium Lipschitz Continuity (Basis-Dependent)

Complex Gradients
Moderate Sensitivity

Oscillatory
Medium Lipschitz Continuity (Basis-Dependent)

Complex Gradients
Moderate Sensitivity

Oscillatory
Medium Lipschitz Continuity (Basis-Dependent)

Complex Gradients
Moderate Sensitivity

Oscillatory
Medium Lipschitz Continuity (Basis-Dependent)

Complex Gradients
Moderate Sensitivity

Oscillatory
Medium Lipschitz Continuity (Basis-Dependent)

Complex Gradients
Moderate Sensitivity

Mahalanobis

Smooth (like RBF)
High Lipschitz Continuity (like RBF)

Similar to RBF Gradients
Robust (Well-Conditioned Σ)

Smooth (like RBF)
High Lipschitz Continuity (like RBF)

Similar to RBF Gradients
Robust (Well-Conditioned Σ)

Smooth (like RBF)
High Lipschitz Continuity (like RBF)

Similar to RBF Gradients
Robust (Well-Conditioned Σ)

Smooth (like RBF)
High Lipschitz Continuity (like RBF)

Similar to RBF Gradients
Robust (Well-Conditioned Σ)

Smooth (like RBF)
High Lipschitz Continuity (like RBF)

Similar to RBF Gradients
Robust (Well-Conditioned Σ)

Smooth (like RBF)
High Lipschitz Continuity (like RBF)

Similar to RBF Gradients
Robust (Well-Conditioned Σ)

Smooth (like RBF)
High Lipschitz Continuity (like RBF)

Similar to RBF Gradients
Robust (Well-Conditioned Σ)

HMK

Piecewise Smooth
High Lipschitz Continuity

Composite Gradients
Highly Robust

Piecewise Smooth
High Lipschitz Continuity

Composite Gradients
Highly Robust

Piecewise Smooth
High Lipschitz Continuity

Composite Gradients
Highly Robust

Piecewise Smooth
High Lipschitz Continuity

Composite Gradients
Highly Robust

Piecewise Smooth
High Lipschitz Continuity

Composite Gradients
Highly Robust

Piecewise Smooth
High Lipschitz Continuity

Composite Gradients
Highly Robust

Piecewise Smooth
High Lipschitz Continuity

Composite Gradients
Highly Robust

and divergence measures.

Recommendations for Kernel Selection:

• RBF Kernel: Use when stability and simplic-
ity are paramount, and the data exhibits smooth,
isotropic patterns.

• Polynomial Kernel: Opt for when modeling high-
degree interactions is essential, keeping in mind
the need for careful parameter tuning.

• Spectral Kernel: Choose for applications involv-
ing graph-based data or scenarios requiring the
capture of oscillatory relationships.

• Mahalanobis Kernel: Select when anisotropic
similarity measures are necessary, ensuring that
the covariance matrix is well-conditioned.

• HMK: Employ when leveraging the strengths of
multiple kernels is advantageous, providing a bal-
anced approach to handle both local and global
dependencies in the data.

Designing kernels with favorable properties
across different divergence measures is essential
for robust and efficient optimization in alignment
learning. Selecting the appropriate kernel based on
the specific requirements of the task and the nature
of the data can significantly enhance the perfor-
mance and reliability of gradient-based learning
algorithms.

I.29 Computational Overhead of
DPO-Kernels

The computational complexity of DPO-Kernels
stems from the integration of diverse kernels and
divergence measures, each introducing unique bot-
tlenecks and computational demands. This section
provides an analysis of these costs based on kernel
and divergence characteristics, as summarized in
Tables 10 and 11.

Kernels: Balancing Flexibility and Cost The
use of kernelized representations significantly en-
hances alignment flexibility but incurs varying de-
grees of computational and memory overhead:

• RBF Kernel: With a linear time and memory
complexity of O(m), the RBF kernel is efficient
and widely applicable. It incurs a relative cost of
1.3× compared to standard DPO while maintain-
ing high generalization. This makes it the default
choice for tasks requiring fine-grained, local align-
ment.

• Polynomial Kernel: The computational cost of
this kernel increases with its degree d, resulting
in O(md) complexity. While its relative cost
ranges from 1.2–1.5×, its susceptibility to overfit-
ting limits its generalizability, making it suitable
for datasets with nonlinear dependencies.

• Spectral Kernel: Leveraging eigen decomposi-
tion or the Nyström method, this kernel achieves
global structural alignment at the expense of
O(m2) time and memory complexity. With a rel-
ative cost of 2–3×, it is ideal for tasks requiring

22257

Kernel Time Complexity Memory Complexity Key Bottleneck Relative Cost (vs. DPO) Generalization Use Case

RBF O(m) O(m) Euclidean distance computation Low (1.3x) High Default Choice

Polynomial O(md) O(m) Computation of (u⊤v + c)d Low (1.2-1.5x) Risk of Overfitting Nonlinear Datasets

Spectral O(m2) O(m2) Eigen decomposition (or Nyström) Medium (2-3x) High Global Structure

Mahalanobis O(m3) O(m2) Inverting Σ and projection High (3-5x) High Correlated Data

HMK Depends on # of Kernels Sum of each kernel’s cost Linear combination of kernels Very High (3-4x) Best General Purpose

Table 10: Summary of Kernel Characteristics: Time Complexity, Memory Complexity, Bottleneck, Computational
Cost, Generalization, and Use Cases.

Divergence Time Complexity Memory Com-
plexity

Key Bottleneck Relative Cost

KL Divergence O(m) O(m) Logarithm and division on
elements.

Low (1x)

Jensen-Shannon O(m) O(m) Compute average distribu-
tion and KL.

Low (1.2x)

Wasserstein O(m3) O(m2) Optimal transport
(Sinkhorn) computa-
tion.

High (3-4x)

Rényi O(m) O(m) Powers and divisions for
each element.

Low (1.5x)

Bhattacharyya O(m) O(m) Logarithmic computation
of coefficient.

Low (1.3x)

Hellinger O(m) O(m) Square root on probability
elements.

Low (1.3x)

f-Divergence O(m) O(m) Apply any convex func-
tion f to the ratio p

q .
Low (1.2x)

Table 11: Computational Cost Analysis for Divergence Functions.

broad, global relationships.

• Mahalanobis Kernel: The most computationally
expensive kernel, with O(m3) time complexity,
stems from the inversion of the covariance matrix.
Its 3-5× relative cost is offset by robust general-
ization in tasks involving highly correlated data.

• Hierarchical Mixture of Kernels (HMK): HMK
dynamically combines local and global kernels,
accumulating the individual costs of its compo-
nents. While offering the best generalization,
its computational demands are 3–4× higher than
DPO for simple configurations, with costs esca-
lating further depending on the number of kernels
used.

Divergence Measures: Stability vs. Complex-
ity The divergence regularizers integrated into
DPO-Kernels introduce additional computational
overhead, but they are generally less intensive than

kernel operations:

• Low-Cost Divergences: KL divergence, Jensen-
Shannon, Bhattacharyya, Rényi, and Hellinger di-
vergences exhibit linear time complexity (O(m)),
with relative costs ranging from 1× to 1.5×. These
measures are efficient and versatile, suitable for
most alignment tasks.

• High-Cost Divergences: Wasserstein divergence,
requiring O(m3) time and O(m2) memory com-
plexity, is the most computationally intensive due
to optimal transport calculations. Despite its rel-
ative cost of 3–4×, it is highly effective for tasks
involving significant distributional shifts.

Key Insights and Recommendations

• Balancing Cost and Performance: For resource-
constrained settings, RBF and Polynomial kernels
combined with low-cost divergences like KL or

22258

Jensen-Shannon offer a pragmatic trade-off be-
tween computational efficiency and alignment per-
formance.

• Scalability of HMK: The significant overhead of
HMK necessitates exploration of approximation
techniques like Random Fourier Features (RFF)
or Nyström methods to reduce computational de-
mands while preserving performance.

• Task-Specific Optimization: Divergence selec-
tion should align with task complexity, leverag-
ing efficient measures like Hellinger for standard
alignment and Wasserstein for complex distribu-
tional shifts.

Addressing these computational challenges is
critical for scaling DPO-Kernels to real-world,
multimodal, and large-scale alignment tasks (Ta-
bles 10 and 11).

J Results & Analysis

This section provides a detailed analysis of the per-
formance of our proposed approach, focusing on
the efficacy of Hybrid Loss, the role of Divergence-
based regularizers, and the impact of Safety Fine-
Tuning. Each subsection delves into the quantita-
tive and qualitative aspects of the proposed meth-
ods, supported by theoretical analysis and empiri-
cal results.

J.1 Efficacy of Hybrid Loss

Motivation and Design: The Hybrid Loss is de-
signed to combine the benefits of probability-based
loss (which focuses on probability alignment) and
embedding-based loss (which captures structural
alignment). By leveraging both perspectives, the
Hybrid Loss aims to achieve better generalization,
especially in tasks where alignment requires multi-
scale adaptation.

Theoretical Justification: The Hybrid Loss
LHybrid is defined as:

LHybrid = αLProbability + (1− α)LEmbedding

where α ∈ [0, 1] is a learnable coefficient that con-
trols the balance between the two components. The
probability-based loss is effective for fine-grained
preference alignment, while the embedding loss
captures semantic structure.

Empirical Evidence: We conduct experiments
across 13 datasets with varying levels of com-
plexity (e.g., factuality, reasoning, and safety).
Fig. 18 shows the performance of Hybrid Loss
compared to baseline methods. The Hybrid Loss
consistently outperforms both standalone proba-
bility and embedding losses, with an average rela-
tive improvement of 9.2%. This demonstrates the
complementary nature of the two loss components.
Fig. 18 shows the F1 scores of the RBF kernel with
divergence-based regularizers across key tasks.

J.2 Efficacy of Divergence-Based
Regularizers

Overview: Divergence-based regularizers are cru-
cial in aligning model-generated distributions with
human-preferred distributions. We explore several
divergence measures, including Kullback-Leibler
(KL), Jensen-Shannon (JS), Hellinger, Rényi, Bhat-
tacharyya, and Wasserstein divergences.

Mathematical Formulation: Given two distri-
butions P and Q, the divergence-based regulariza-
tion term RDivergence is defined as:

RDivergence =
n∑

i=1

D(Pi∥Qi)

where D(P∥Q) can be any of the aforementioned
divergence measures.

Empirical Analysis: To evaluate the efficacy of
each divergence, we measure the alignment score
(AS) on multiple datasets. Fig. 20 illustrates that
Wasserstein divergence achieves the best perfor-
mance due to its ability to consider distance in
the probability space, unlike KL or JS which may
suffer from zero-probability issues.

Takeaway: Wasserstein divergence offers the
most consistent performance gains across datasets.
This supports the claim that Wasserstein’s ability to

22259

1
0

1 2
0

2

0

2

Epoch 0
DPO-Probability

1
0

1 2
0

2

0

2

Epoch 0
DPO-Hybrid

1
0

1 2
0

2

0

2

Epoch 0
DPO-Hybrid (RBF Kernel)

1
0

1 10
1

1
0
1

Epoch 40
DPO-Probability

1
0

1 1
0

1
2

1
0

1

Epoch 40
DPO-Hybrid

1
0

1
2 0

1
2

1
0
1

Epoch 40
DPO-Hybrid (RBF Kernel)

2
0

2 2
1

0
1

1
0
1
2

Epoch 80
DPO-Probability

1
0

12 1
0

1
2

1

0

1

Epoch 80
DPO-Hybrid

0
2 0

2

1

0

1

Epoch 80
DPO-Hybrid (RBF Kernel)

1
0

1 1
0

1

1
0
1

Epoch 120
DPO-Probability

0
1 0

1

0

1

Epoch 120
DPO-Hybrid

0
1

2 0
1

2

0

1

Epoch 120
DPO-Hybrid (RBF Kernel)

2
0

2 2
0

2

1
0
1

Epoch 160
DPO-Probability

0
1

2 1
0

1

1
0
1

Epoch 160
DPO-Hybrid

0
1

2 0
1

2

1
0
1

Epoch 160
DPO-Hybrid (RBF Kernel)

1
0

1 1
0

1

0

2

Epoch 200
DPO-Probability

0
1

2 0
1

2

1
0
1

Epoch 200
DPO-Hybrid

0
1

2 01
2

1
0
1

Epoch 200
DPO-Hybrid (RBF Kernel)

Rejected Selected

Figure 17: Evolution of LLM Logits Across Epochs for DPO-Probability Loss, DPO-Hybrid Loss, and DPO-
Hybrid (RBF Kernel) Loss. This figure presents the evolution of logits, treated as embeddings, at six key epochs
(0, 40, 80, 120, 160, 200) for three alignment methods: DPO-Probability Loss, DPO-Hybrid Loss, and DPO-Hybrid
(RBF Kernel) Loss. The logits are projected into a 3D space using t-SNE (van der Maaten and Hinton, 2008)
applied to the alignment space, where red points represent rejected samples and green points represent selected
samples. At epoch 0, all methods share identical embeddings. As training progresses, DPO-Probability Loss shows
modest clustering improvements. In contrast, DPO-Hybrid Loss achieves better separation between selected and
rejected samples, with notable improvements after epoch 80. The DPO-Hybrid (RBF Kernel) Loss achieves the
most pronounced clustering, with significantly tighter and more distinct groupings of red and green points due to
the enhanced capacity of RBF kernels to model nonlinear separations. This visualization highlights the superior
alignment capabilities of DPO-Hybrid (RBF Kernel) Loss compared to DPO-Hybrid Loss and DPO-Probability
Loss.

22260

DPO (Cons. Loss)

DPO (Hybrid Loss)

Polynomial (Cons. Loss)

Polynomial (Hybrid Loss)

RBF (Cons. Loss)

RBF (Hybrid Loss)

Spectral (Cons. Loss)

Spectral (Hybrid Loss)

Mahalanobis (C
ons. Loss)

Mahalanobis (H
ybrid Loss)

Kernel Mixture (Cons. Loss)

Kernel Mixture (Hybrid Loss)

HMK (Cons. Loss)

HMK (Hybrid Loss)

Fa
ct

ua
lit

y
Re

as
on

in
g

Tr
ut

hf
ul

ne
ss

Sa
fe

ty
In

st
r.

Fo
llo

wi
ng

Ov
er

al
l

0.57 0.60 0.62 0.66 0.73 0.68 0.71 0.63 0.65 0.73 0.66 0.73 0.78 0.80

0.55 0.58 0.60 0.62 0.68 0.72 0.66 0.69 0.61 0.63 0.68 0.72 0.72 0.75

0.74 0.77 0.79 0.82 0.86 0.89 0.86 0.88 0.80 0.83 0.86 0.89 0.91 0.94

0.92 0.95 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99

0.54 0.57 0.59 0.61 0.66 0.69 0.65 0.68 0.60 0.62 0.66 0.69 0.71 0.74

0.66 0.69 0.71 0.74 0.78 0.79 0.77 0.77 0.73 0.76 0.78 0.79 0.82 0.85

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

Figure 18: Heatmap depicting F1 scores across various kernels and loss functions for alignment tasks. The yellow
borders indicate the best-performing kernels for each task, while blue borders highlight the second-best performers.
Scores are evaluated for tasks such as Factuality, Reasoning, Truthfulness, Safety, and Instruction Following, with
an overall assessment summarized in the last row. The HMK (Hybrid Loss) kernel consistently demonstrates top
performance in multiple tasks.

RBF +
 KL

RBF +
 JS

D

RBF +
 H

ell
ing

er

RBF +
 Rén

yi

RBF +
 Bha

tta
ch

ar
yy

a

RBF +
 W

as
se

rst
ein

RBF +
 f-

div
er

ge
nc

e

Divergence Functions

Factuality

Reasoning

Truthfulness

Safety

Instruction Following

Overall

Al
ig

nm
en

t A
xi

om
s

0.68 0.70 0.69 0.70 0.70 0.68 0.69

0.72 0.73 0.74 0.73 0.73 0.72 0.72

0.89 0.91 0.90 0.92 0.89 0.88 0.89

0.98 0.98 0.98 0.98 0.98 0.98 0.98

0.69 0.68 0.68 0.70 0.71 0.68 0.68

0.79 0.80 0.80 0.81 0.80 0.79 0.79

RBF Kernel with Divergence-Based Hybrid Loss

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 (F

1
Sc

or
e)

Figure 19: F1 scores of the RBF kernel with divergence-
based regularizers across key tasks. Results for all
kernel-divergence combinations are detailed in Ap-
pendix J.

model the "distance" between distributions makes
it more suitable for alignment tasks than the KL or
JS divergences.

K Gradient Descent Dynamics on
Kernel-Induced Loss Landscapes

In this section, we analyze the gradient descent dy-
namics on loss landscapes induced by four widely-
used kernels: RBF, Polynomial, Spectral, and
Mahalanobis. Using gradient vector fields and

contour plots, we highlight the key optimization be-
haviors associated with each kernel. These insights
elucidate why certain kernels are more effective
for stable and efficient optimization in machine
learning tasks.

K.1 Visualization of Gradient Fields and
Contour Plots

Figure 21 illustrates the gradient fields overlaid on
the contour plots for the loss landscapes induced
by the four kernels. The following observations
provide insights into the behavior of each kernel:

• RBF Kernel:

– Smoothness: The contours are isotropic, forming
circular basins of attraction.

– Gradient Behavior: Gradients guide the parame-
ters steadily toward the global minimum, promot-
ing stable and fast convergence.

– Suitability: Ideal for tasks with smooth and con-
vex loss landscapes, as supported by theoreti-
cal guarantees for convergence (Schölkopf and
Smola, 2002).

• Polynomial Kernel:

22261

DPO
 +

 KL

DPO
 +

 JS
D

DPO
 +

 H
ell

ing
er

DPO
 +

 Rén
yi

DPO
 +

 Bha
tta

ch
ar

yy
a

DPO
 +

 W
as

se
rst

ein

DPO
 +

 f-
div

er
ge

nc
e

Po
lyn

om
ial

 +
 KL

Po
lyn

om
ial

 +
 JS

D

Po
lyn

om
ial

 +
 H

ell
ing

er

Po
lyn

om
ial

 +
 Rén

yi

Po
lyn

om
ial

 +
 Bha

tta
ch

ar
yy

a

Po
lyn

om
ial

 +
 W

as
se

rst
ein

Po
lyn

om
ial

 +
 f-

div
er

ge
nc

e

RBF +
 KL

RBF +
 JS

D

RBF +
 H

ell
ing

er

RBF +
 Rén

yi

RBF +
 Bha

tta
ch

ar
yy

a

RBF +
 W

as
se

rst
ein

RBF +
 f-

div
er

ge
nc

e

Sp
ec

tra
l +

 KL

Sp
ec

tra
l +

 JS
D

Sp
ec

tra
l +

 H
ell

ing
er

Sp
ec

tra
l +

 Rén
yi

Sp
ec

tra
l +

 Bha
tta

ch
ar

yy
a

Sp
ec

tra
l +

 W
as

se
rst

ein

Sp
ec

tra
l +

 f-
div

er
ge

nc
e

Mah
ala

no
bis

 +
 KL

Mah
ala

no
bis

 +
 JS

D

Mah
ala

no
bis

 +
 H

ell
ing

er

Mah
ala

no
bis

 +
 Rén

yi

Mah
ala

no
bis

 +
 Bha

tta
ch

ar
yy

a

Mah
ala

no
bis

 +
 W

as
se

rst
ein

Mah
ala

no
bis

 +
 f-

div
er

ge
nc

e

HMK +
 KL

HMK +
 JS

D

HMK +
 H

ell
ing

er

HMK +
 Rén

yi

HMK +
 Bha

tta
ch

ar
yy

a

HMK +
 W

as
se

rst
ein

HMK +
 f-

div
er

ge
nc

e

Kernel Type + Divergence

Factuality

Reasoning

Truthfulness

Safety

Instruction Following

Overall

Al
ig

nm
en

t
Ax

io
m

s

0.60 0.59 0.62 0.61 0.61 0.62 0.61 0.66 0.66 0.68 0.68 0.67 0.68 0.65 0.68 0.69 0.69 0.70 0.69 0.70 0.68 0.63 0.63 0.65 0.65 0.64 0.65 0.64 0.73 0.74 0.75 0.75 0.75 0.76 0.74 0.76 0.77 0.78 0.78 0.78 0.79 0.77

0.58 0.58 0.60 0.59 0.59 0.60 0.59 0.62 0.62 0.63 0.63 0.63 0.64 0.61 0.72 0.73 0.74 0.74 0.74 0.74 0.71 0.69 0.69 0.71 0.70 0.71 0.71 0.69 0.63 0.63 0.65 0.64 0.65 0.66 0.63 0.73 0.73 0.75 0.75 0.75 0.76 0.72

0.77 0.76 0.79 0.79 0.79 0.80 0.76 0.82 0.83 0.84 0.84 0.84 0.85 0.81 0.89 0.88 0.91 0.91 0.92 0.92 0.89 0.88 0.90 0.90 0.90 0.90 0.91 0.90 0.83 0.84 0.85 0.85 0.85 0.86 0.82 0.92 0.91 0.94 0.94 0.94 0.96 0.94

0.95 0.94 0.97 0.97 0.97 0.96 0.95 0.98 0.96 0.97 0.98 0.97 0.97 0.98 0.98 0.96 0.96 0.98 0.97 0.96 0.96 0.98 0.96 0.96 0.98 0.98 0.98 0.96 0.98 0.97 0.98 0.97 0.96 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.97 0.97

0.57 0.57 0.59 0.59 0.59 0.59 0.56 0.61 0.61 0.62 0.63 0.63 0.63 0.61 0.69 0.69 0.71 0.71 0.71 0.72 0.69 0.68 0.68 0.70 0.70 0.70 0.71 0.69 0.62 0.61 0.63 0.64 0.63 0.64 0.63 0.72 0.72 0.74 0.74 0.73 0.74 0.72

0.69 0.69 0.71 0.71 0.71 0.71 0.69 0.74 0.74 0.75 0.75 0.75 0.75 0.73 0.79 0.79 0.80 0.81 0.81 0.81 0.79 0.77 0.77 0.78 0.79 0.79 0.79 0.78 0.76 0.76 0.77 0.77 0.77 0.78 0.76 0.82 0.82 0.84 0.84 0.84 0.84 0.82

DPO Polynomial RBF Spectral Mahalanobis HMK

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

DPO
 +

 KL

DPO
 +

 JS
D

DPO
 +

 H
ell

ing
er

DPO
 +

 Rén
yi

DPO
 +

 Bha
tta

ch
ar

yy
a

DPO
 +

 W
as

se
rst

ein

DPO
 +

 f-
div

er
ge

nc
e

Po
lyn

om
ial

 +
 KL

Po
lyn

om
ial

 +
 JS

D

Po
lyn

om
ial

 +
 H

ell
ing

er

Po
lyn

om
ial

 +
 Rén

yi

Po
lyn

om
ial

 +
 Bha

tta
ch

ar
yy

a

Po
lyn

om
ial

 +
 W

as
se

rst
ein

Po
lyn

om
ial

 +
 f-

div
er

ge
nc

e

RBF +
 KL

RBF +
 JS

D

RBF +
 H

ell
ing

er

RBF +
 Rén

yi

RBF +
 Bha

tta
ch

ar
yy

a

RBF +
 W

as
se

rst
ein

RBF +
 f-

div
er

ge
nc

e

Kernel Type + Divergence

Factuality

Reasoning

Truthfulness

Safety

Instruction Following

Overall

Al
ig

nm
en

t
Ax

io
m

s

0.60 0.60 0.62 0.61 0.61 0.62 0.61 0.66 0.65 0.68 0.68 0.67 0.69 0.65 0.68 0.69 0.70 0.69 0.70 0.70 0.67

0.58 0.57 0.59 0.60 0.60 0.60 0.58 0.62 0.62 0.63 0.63 0.64 0.64 0.61 0.72 0.72 0.74 0.74 0.74 0.74 0.73

0.77 0.77 0.79 0.79 0.79 0.79 0.77 0.82 0.83 0.84 0.84 0.84 0.84 0.83 0.89 0.88 0.91 0.91 0.90 0.93 0.87

0.95 0.96 0.97 0.98 0.97 0.96 0.94 0.98 0.98 0.97 0.96 0.97 0.96 0.96 0.98 0.97 0.98 0.96 0.96 0.98 0.97

0.57 0.58 0.58 0.58 0.59 0.59 0.58 0.61 0.62 0.63 0.62 0.62 0.63 0.61 0.69 0.70 0.70 0.71 0.70 0.72 0.70

0.69 0.70 0.71 0.71 0.71 0.71 0.70 0.74 0.74 0.75 0.75 0.75 0.75 0.73 0.79 0.79 0.81 0.80 0.80 0.81 0.79

DPO Polynomial RBF
Kernel Performance: DPO, Polynomial, RBF

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

Sp
ec

tra
l +

 KL

Sp
ec

tra
l +

 JS
D

Sp
ec

tra
l +

 H
ell

ing
er

Sp
ec

tra
l +

 Rén
yi

Sp
ec

tra
l +

 Bha
tta

ch
ar

yy
a

Sp
ec

tra
l +

 W
as

se
rst

ein

Sp
ec

tra
l +

 f-
div

er
ge

nc
e

Mah
ala

no
bis

 +
 KL

Mah
ala

no
bis

 +
 JS

D

Mah
ala

no
bis

 +
 H

ell
ing

er

Mah
ala

no
bis

 +
 Rén

yi

Mah
ala

no
bis

 +
 Bha

tta
ch

ar
yy

a

Mah
ala

no
bis

 +
 W

as
se

rst
ein

Mah
ala

no
bis

 +
 f-

div
er

ge
nc

e

HMK +
 KL

HMK +
 JS

D

HMK +
 H

ell
ing

er

HMK +
 Rén

yi

HMK +
 Bha

tta
ch

ar
yy

a

HMK +
 W

as
se

rst
ein

HMK +
 f-

div
er

ge
nc

e

Kernel Type + Divergence

Factuality

Reasoning

Truthfulness

Safety

Instruction Following

Overall

Al
ig

nm
en

t
Ax

io
m

s

0.63 0.64 0.65 0.64 0.65 0.66 0.62 0.73 0.72 0.75 0.75 0.75 0.76 0.72 0.76 0.76 0.78 0.78 0.78 0.78 0.75

0.69 0.68 0.71 0.70 0.71 0.72 0.68 0.63 0.62 0.64 0.65 0.65 0.65 0.64 0.73 0.74 0.75 0.75 0.74 0.76 0.72

0.88 0.89 0.91 0.90 0.91 0.90 0.86 0.83 0.83 0.85 0.85 0.85 0.86 0.83 0.92 0.91 0.94 0.95 0.94 0.95 0.93

0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.97 0.98 0.97 0.97 0.96 0.96 0.98 0.98 0.98 0.96

0.68 0.67 0.69 0.70 0.70 0.70 0.68 0.62 0.61 0.64 0.63 0.63 0.64 0.63 0.72 0.72 0.74 0.74 0.74 0.75 0.72

0.77 0.77 0.79 0.78 0.79 0.79 0.76 0.76 0.75 0.77 0.77 0.77 0.78 0.76 0.82 0.82 0.83 0.84 0.84 0.84 0.82

DPO Polynomial RBF
Kernel Performance: Spectral, Mahalanobis, HMK

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

Figure 20: Heatmaps illustrating the performance of kernel-divergence combinations across alignment tasks. The
first heatmap presents the complete view, showcasing all kernels (DPO, Polynomial, RBF, Spectral, Mahalanobis,
HMK) paired with divergences (KL, JSD, Hellinger, Rényi, Bhattacharyya, Wasserstein, f-divergence). The second
and third heatmaps split the data for clarity, focusing on the first three kernels (DPO, Polynomial, RBF) and the
last three kernels (Spectral, Mahalanobis, HMK), respectively. Each row represents a task (Factuality, Reasoning,
Truthfulness, Safety, Instruction Following), while the "Overall" row aggregates average performance. Yellow and
blue borders highlight the best and second-best-performing kernel-divergence combinations for each task.

22262

– Non-Convexity: The contours exhibit sharp tran-
sitions and irregular regions, creating multiple
local minima.

– Gradient Behavior: Gradients are chaotic in
regions with high curvature, causing sensitivity
to initialization.

– Suitability: Effective for problems requiring
higher-order feature interactions, though sensitive
to hyperparameter choices like degree d (Shawe-
Taylor and Cristianini, 2004).

• Spectral Kernel:

– Oscillatory Nature: The contours are highly de-
pendent on the choice of basis functions ϕi, re-
sulting in oscillations.

– Gradient Behavior: Gradients exhibit abrupt
changes in direction, slowing convergence in re-
gions of high oscillation.

– Suitability: Useful for data with inherent period-
icity or hierarchical structures (Ng et al., 2001).

• Mahalanobis Kernel:

– Anisotropy: The contours are elongated along
certain directions, determined by the covariance
matrix Σ.

– Gradient Behavior: Gradients are well-aligned
with the anisotropic structure, ensuring robust
convergence when Σ is well-conditioned.

– Suitability: Well-suited for tasks with correlated
features or structured data distributions (Wein-
berger and Saul, 2009).

K.2 Insights from Gradient Fields
• Smoothness and Stability: RBF and Maha-

lanobis kernels provide smooth and stable land-
scapes, favoring robust and fast convergence.
Polynomial and Spectral kernels introduce non-
convexity and oscillations, requiring careful ini-
tialization and hyperparameter tuning.

• Directional Dependencies: The Mahalanobis
kernel adapts to feature correlations through Σ,

Figure 21: Contour plots overlaid with gradient descent
fields for different kernels. Each plot illustrates the
gradient dynamics and loss landscape for the respec-
tive kernels: (Top-left) RBF Kernel, showing smooth,
isotropic gradients guiding efficient convergence; (Top-
right) Polynomial Kernel, exhibiting sharp transitions
and chaotic gradients in non-convex regions; (Bottom-
left) Spectral Kernel, characterized by oscillatory con-
tours and abrupt gradient changes aligned with basis
functions; (Bottom-right) Mahalanobis Kernel, demon-
strating anisotropic gradients aligned with the covari-
ance structure, ensuring robust optimization when Σ
is well-conditioned. Red arrows represent the gradient
vectors, highlighting the direction and intensity of opti-
mization steps across the loss landscape.

whereas the RBF kernel provides isotropic behav-
ior. Spectral kernel gradients align with the chosen
basis functions, offering flexibility at the cost of
stability.

• Optimization Challenges: Polynomial and Spec-
tral kernels require additional regularization or
initialization strategies to mitigate sensitivity to
local minima and oscillations.

The contour plots and gradient fields reveal how
kernel-induced loss landscapes shape gradient de-
scent dynamics. The RBF and Mahalanobis ker-
nels are robust choices for stable optimization,
while Polynomial and Spectral kernels provide
flexibility at the expense of increased sensitivity

22263

and potential instability. These insights underscore
the importance of kernel selection in achieving
efficient and effective optimization for diverse ma-
chine learning tasks.

L Mechanism of Safety Fine-Tuning:
Safe vs. Unsafe Cluster Effects

Jain et al. (2024b) demonstrate that safety fine-
tuning (alignment) minimally adjusts MLP weights
in LLMs to project unsafe inputs into the null space
of weight matrices, inducing distinct clustering of
inputs based on safety status. We analyze the evo-
lution of these clusters during training and evaluate
their separation using the Davies-Bouldin Score
(DBS), where lower values indicate better cluster-
ing with compact intra-cluster distances and large
inter-cluster separations.

Definition: For k clusters {C1, C2, . . . , Ck},
DBS (Davies and Bouldin, 1979) is defined as:

DBS =
1

k

k∑

i=1

max
j ̸=i

(
Si + Sj
Dij

)
,

where:

• Si = 1
|Ci|
∑

x∈Ci
∥x− µi∥: Average intra-cluster

distance for cluster Ci, with µi as its centroid.

• Dij = ∥µi − µj∥: Distance between centroids of
clusters Ci and Cj .

Lower DBS values in alignment learning indi-
cate:

• Clearer Decision Boundaries: Better separation
of safe and unsafe clusters for precise behavior
control.

• Improved Generalization: Enhanced perfor-
mance on unseen data through well-separated clus-
ters.

• Increased Robustness: Compact clusters with
strong separation reduce sensitivity to noise and
outliers. cf. sec:appendix:safe_unsafe_cluster.

?? visualizes the kernel embeddings after 200
epochs across different kernels: Polynomial, Spec-
tral, RBF, Mahalanobis, and HMK. Green points
represent selected samples, while red points indi-
cate rejected samples, illustrating how each kernel
processes the data. The RBF and HMK kernels
demonstrate strong separation between selected
and rejected samples, highlighting their superior
alignment performance. In contrast, the Polyno-
mial and Mahalanobis kernels exhibit less distinct
separation.

M Score-Based Analysis of Cluster
Separation

Jain et al. (2024b) show that safety fine-tuning
aka alignment minimally adjusts MLP weights in
LLMs to project unsafe inputs into the null space
of the weight matrices. This process induces a dis-
tinct clustering of inputs, separating them based
on safety status. Our analysis focuses on how
these clusters evolve during training and evaluates
their separation using the Davies-Bouldin Score
(DBS), a standard metric for cluster quality. Lower
DBS values indicate better clustering, character-
ized by compact intra-cluster distances and large
inter-cluster separations.

M.1 Introduction to Davies-Bouldin Score
(DBS)

The Davies-Bouldin Score (DBS) is a widely
adopted metric in unsupervised and semi-
supervised learning for evaluating clustering per-
formance (Davies and Bouldin, 1979). It effec-
tively measures the balance between intra-cluster
compactness and inter-cluster separation. A lower
DBS is preferable, as it implies that clusters are
both tightly packed and well-separated.

M.1.1 Definition
For a set of k clusters {C1, C2, . . . , Ck}, the DBS
is mathematically defined as:

DBS =
1

k

k∑

i=1

max
j ̸=i

(
Si + Sj
Dij

)

22264

where:

• Si: Average intra-cluster distance for cluster Ci,
given by:

Si =
1

|Ci|
∑

x∈Ci

∥x− µi∥

where µi is the centroid of cluster Ci.

• Dij : Distance between the centroids of clusters
Ci and Cj , calculated as:

Dij = ∥µi − µj∥

M.1.2 Intuition Behind DBS
The DBS provides key insights into the clustering
process:

• Diffuse Clusters: A high intra-cluster scatter (Si)
results in a high DBS, penalizing poorly formed
clusters.

• Cluster Overlap: A low inter-cluster distance
(Dij) increases the DBS, penalizing clusters that
are too close to one another.

In the context of alignment learning, a lower
DBS is critical for achieving:

• Clearer Decision Boundaries: Better separation
between safe and unsafe clusters enables more
precise behavior control.

• Improved Generalization: Well-separated clus-
ters reduce ambiguities, enhancing model perfor-
mance on unseen data.

• Increased Robustness: Compact and well-
separated clusters are less sensitive to outliers and
noisy data.

M.1.3 Results Analysis
The evaluation of the three alignment
approaches—DPO-Probability Loss, DPO-
Hybrid Loss, and DPO-Hybrid (RBF Kernel)
Loss—shows distinct cluster behaviors across

training epochs. The results are quantified
using DBS and reported in Table 12, Figure 17
visually summarizes clustering effect accross
DPO-Probability Loss, DPO-Hybrid Loss, and
DPO-Hybrid (RBF Kernel) Loss. As training
progresses, the DPO-Hybrid (RBF Kernel)
achieves the lowest DBS, reflecting its superior
ability to distinguish between safe and unsafe
clusters.

Table 12: Cluster Separation Measured by Davies-
Bouldin Score for DPO Methods (Lower is Better).

Epochs DPO-Probability DPO-Hybrid DPO-Hybrid (RBF Kernel)
0 2.15 2.08 2.01
40 1.94 1.84 1.75
80 1.75 1.62 1.43

120 1.62 1.43 1.20
160 1.45 1.26 1.10
200 1.32 1.15 0.92

To further assess the generalization capabilities,
we analyzed five kernel types—Polynomial, Spec-
tral, RBF, Mahalanobis, and Hierarchical Mixture
of Kernels (HMK)—across epochs. Table 13 cap-
tures the DBS results for each kernel, highlight-
ing the exceptional performance of HMK, which
consistently achieves the lowest scores, signifying
compact and well-separated clusters. THe Find-
ings is visually summarized in Figure 22.

Table 13: Cluster Separation Measured by Davies-
Bouldin Score for Kernel Methods (Lower is Better).

Epochs Polynomial Spectral RBF Mahalanobis HMK
0 2.25 2.10 2.01 2.02 1.90
40 2.12 1.95 1.84 1.85 1.65
80 1.95 1.80 1.65 1.63 1.28

120 1.85 1.65 1.45 1.40 1.05
160 1.72 1.50 1.25 1.20 0.95
200 1.60 1.35 1.10 1.05 0.80

N Heavy-Tailed Self-Regularization
(HT-SR) Theory and Generalization

The Heavy-Tailed Self-Regularization (HT-SR)
theory provides a statistical mechanics framework
to analyze the weight matrices of Deep Neural
Networks (DNNs). It demonstrates that the eigen-
value spectra of the weight matrices often follow

22265

1
0

1 2
1

0
1

2

1
0
1
2

Epoch 0
Polynomial Kernel

1
0

1 2
1

0
1

2

1
0
1
2

Epoch 0
Spectral Kernel

1
0

1 2
1

0
1

2

1
0
1
2

Epoch 0
RBF Kernel

1
0

1 2
1

0
1

2

1
0
1
2

Epoch 0
Mahalanobis Kernel

1
0

1 2
1

0
1

2

1
0
1
2

Epoch 0
HMK

1
0

1 1
0

1
2

1

0

1

Epoch 40
Polynomial Kernel

1
0

1
1

0
1

2

1

0

1

Epoch 40
Spectral Kernel

1
0

1
2

0
1

2

1

0

1

Epoch 40
RBF Kernel

1
0

1 1
0

1
2

1

0

1

Epoch 40
Mahalanobis Kernel

0
1

2
0

1
2

1.0
0.5

0.0
0.5
1.0

Epoch 40
HMK

1
0

1
2 1

0
1

2

1.0
0.5

0.0
0.5
1.0

Epoch 80
Polynomial Kernel

1
0

1
2 1

0
1

2

1.0
0.5

0.0
0.5
1.0

Epoch 80
Spectral Kernel

0
1

2
3 1

0
1

2

1.0
0.5

0.0
0.5
1.0

Epoch 80
RBF Kernel

1 0 1 2 1
0

1
2

1.0
0.5

0.0
0.5
1.0

Epoch 80
Mahalanobis Kernel

0 1 2 3
0

1
2

3

1.0
0.5

0.0
0.5
1.0

Epoch 80
HMK

1
0

1
1

0
1

0.5
0.0
0.5
1.0

Epoch 120
Polynomial Kernel

1
0

1
2

0
1

2

0.5
0.0
0.5
1.0

Epoch 120
Spectral Kernel

0
1

2 0
1

2

0.5
0.0
0.5
1.0

Epoch 120
RBF Kernel

1
0

1 1
0

1

1

0

1

Epoch 120
Mahalanobis Kernel

0
1

2 0
1

2

0.5
0.0
0.5
1.0

Epoch 120
HMK

0
1

1
0

1

1

0

1

Epoch 160
Polynomial Kernel

0
1

2 1
0

1

1

0

1

Epoch 160
Spectral Kernel

0
1

2 0
1

2

1

0

1

Epoch 160
RBF Kernel

1
0

1 1
0

1

1
0

1

Epoch 160
Mahalanobis Kernel

0
1

2 0
1

2

1
0

1

Epoch 160
HMK

0
1

2
0

1
2

1

0

1

Epoch 200
Polynomial Kernel

0
1

2 0
1

2

1

0

1

Epoch 200
Spectral Kernel

0
1

2 0
1

2

1
0

1

Epoch 200
RBF Kernel

0
1 1

0
1

1
0
1

Epoch 200
Mahalanobis Kernel

0 1
2 0

1
2

3

1
0

1

Epoch 200
HMK

Figure 22: Visualization of the embedding evolution of five kernel types—Polynomial, Spectral, RBF, Mahalanobis,
and Hierarchical Mixture of Kernels (HMK)—over six training epochs (0, 40, 80, 120, 160, and 200). Each
row represents the clustering progression for a specific kernel, with the red points indicating rejected samples
and the green points representing selected samples. The HMK demonstrates superior clustering capabilities
compared to the other kernels, exhibiting more compact and well-separated clusters. This visualization highlights
the relative clustering effectiveness of each kernel across epochs, with HMK achieving the most distinct and
organized separation.

22266

heavy-tailed distributions, which are indicative of
self-organized criticality and implicit regulariza-
tion during optimization. This behavior suggests
that the weight matrices capture correlations across
multiple scales, which is a key factor in enhancing
generalization capabilities (Martin et al., 2021b).

N.1 Core Insights of HT-SR Theory
1. Empirical Spectral Density (ESD): The eigen-
value distribution ρ(λ) of a weight matrix W is
given by:

ρ(λ) =
1

N

N∑

i=1

δ(λ− λi), (3)

where {λi} are the eigenvalues of W⊤W. HT-SR
theory posits that ρ(λ) often follows a truncated
power law:

ρ(λ) ∝ λ−α, for λmin ≤ λ ≤ λmax. (4)

The exponent α characterizes the tail behavior,
with smaller α values (α ∈ [2, 4]) correlating with
better generalization.

2. Weighted Alpha Metrics: HT-SR introduces
the Weighted Alpha, computed as:

αw =

∑N
i=1 λ

−α
i log(λi)∑N
i=1 λ

−α
i

, (5)

and the Log α-Norm:

Log-α =
1

N

N∑

i=1

log(λi). (6)

These metrics serve as robust predictors of model
quality, outperforming traditional norm-based mea-
sures, especially in differentiating well-trained ver-
sus poorly trained models.

3. Correlation Flow: Stable α values across
network layers suggest "Correlation Flow," where
features propagate effectively through the network.
For weight matrices Wl at layer l, HT-SR ensures
αl remains within the optimal range, preserving
consistent feature extraction:

αl ≈ constant, ∀l ∈ {1, . . . , L}. (7)

N.2 Implications for Generalization

HT-SR theory highlights that well-trained models
exhibit eigenvalue spectra with heavy-tailed distri-
butions. Models with excessively large α values
may be over-parameterized or poorly trained, as
their weight matrices lack the desired multi-scale
correlation structure. In contrast, weight matrices
with optimal α values achieve better generaliza-
tion by implicitly balancing expressiveness and
complexity.

N.3 Empirical Validation in DNNs

Empirical studies on architectures like ResNet,
DenseNet, and GPT validate HT-SR theory: -
ResNet: Deeper models exhibit smaller and
more stable α values, which correlate strongly
with improved test accuracy and generalization.
- **DenseNet:** The excessive connectivity in
DenseNet models leads to less favorable spectral
properties, with higher α values indicating subop-
timal performance.

For instance, models with α ≈ 2.5 consistently
outperform those with α ≥ 5 on tasks requiring
robust generalization.

N.4 Applications in Pretrained Models

HT-SR metrics enable model quality assessments
without training or test data by analyzing eigen-
value spectra. This is particularly valuable for
pretrained models, allowing: - Detection of "Scale
Collapse," where spectral norms deviate anoma-
lously. - Fine-tuning guidance based on layer-wise
spectral analysis.

N.5 Conclusion and Future Directions

HT-SR theory bridges the gap between statistical
mechanics and machine learning by linking im-
plicit regularization to generalization. Future re-
search could explore: - Extending HT-SR to un-
supervised and reinforcement learning settings. -
Refining HT-SR metrics for real-time model diag-
nostics and training stabilization.

22267

O Hyperparameters and Best Practices

This section summarizes the hyperparameters used
in our approach and provides best practices for
their configuration. Table 14 outlines the recom-
mended ranges, descriptions, and practical guide-
lines for each hyperparameter. These recommen-
dations are derived from empirical experiments
and theoretical insights, aiming to optimize perfor-
mance across diverse alignment tasks.

The hyperparameters are categorized based on
their roles, such as kernel configuration, regular-
ization, and alignment strategies. For instance,
α and β control the trade-off between alignment
robustness and regularization strength, while τ
determines the balance between local and global
kernel contributions in HMK. Proper tuning of
these hyperparameters is crucial for achieving com-
pact and well-separated clusters, as evidenced by
the Davies-Bouldin score analysis in previous sec-
tions.

O.1 Approaches for Hyperparameter
Selection

Effective hyperparameter selection is crucial for
ensuring the optimal performance of DPO-Kernels
and Hierarchical Mixture of Kernels (HMK). Key
hyperparameters include the RBF bandwidth σ,
Polynomial degree d, Mahalanobis covariance Σ,
and mixture weights λi. Below, we outline practi-
cal approaches for hyperparameter selection and
tuning.

O.1.1 1. Random Search and Grid Search
Random search and grid search are standard ap-
proaches for hyperparameter tuning (Bergstra and
Bengio, 2012). While grid search explores a fixed
set of values, random search samples from a dis-
tribution, often achieving better results with fewer
trials.

Best Practices:

• **RBF Bandwidth σ**: Sample σ from a loga-
rithmic scale, e.g., σ ∈ [10−3, 103], as sensitivity
to changes in σ is non-linear.

• **Polynomial Degree d**: Use small integer de-
grees d ∈ {2, 3, 4, 5} to avoid excessive non-
convexity.

• **Mixture Weights λi**: Use Dirichlet-
distributed samples to ensure

∑
i λi = 1.

O.1.2 2. Bayesian Optimization
Bayesian optimization (BO) models the loss as a
Gaussian process and efficiently balances explo-
ration and exploitation (Snoek et al., 2012). BO
identifies the optimal hyperparameters by maxi-
mizing the Expected Improvement (EI).

Mathematical Formulation:

λ∗ = argmax
λ

EI(λ),

where EI(λ) is the expected improvement over the
best observed loss. Bayesian optimization is useful
for tuning computationally expensive hyperparam-
eters like Mahalanobis covariance Σ.

Best Practices:

• Use multi-fidelity optimization to reduce compu-
tational costs (Li et al., 2018).

• Apply BO for **non-differentiable hyperparame-
ters** (e.g., Polynomial degree d and kernel mix-
ture weights λ).

O.1.3 3. Cross-Validation
Cross-validation is a robust strategy to tune hyper-
parameters, especially for ensuring generalization
(Koh et al., 2021b). For each hyperparameter con-
figuration, k-fold cross-validation partitions the
data into k folds, trains on k − 1 folds, and evalu-
ates on the remaining fold.

Mathematical Formulation:

λ∗ = argmin
λ

1

k

k∑

i=1

L(λ,Di),

where L(λ,Di) is the loss on the i-th fold. Cross-
validation is particularly effective for selecting
global hyperparameters like kernel types and mix-
ture coefficients λi.

22268

Table 14: Summary of Hyperparameters and Best Practices

Hyperparameter Description Recommended Range Best Practices
α (Alpha) Controls the strength of the regulariza-

tion (alignment with reference policy).
0.1 ≤ α ≤ 1.0 Start with α = 0.5 for balanced flexibil-

ity and conservativeness. Lower values
allow greater personalization.

β (Beta) Scaling factor for divergence-based reg-
ularizers.

0.5 ≤ β ≤ 2.0 Increase β for stronger penalization of
distributional deviations; tune based on
task complexity.

γ (Gamma) Weight for embedding-based alignment
signals.

0.1 ≤ γ ≤ 1.0 Use γ > 0.5 for semantic alignment;
lower values emphasize probability-
based preferences.

Kernel Mixture Weights Weights for Polynomial, RBF, Spectral,
and Mahalanobis kernels.

Sum to 1.0, individually >
0.1

Initialize evenly (0.25 each) or based
on data insights. Dynamically learned
during training.

σ (Sigma) Bandwidth parameter for RBF kernel. 0.1 ≤ σ ≤ 2.0 Lower σ sharpens RBF locality. Tune
with cross-validation based on data den-
sity.

d (Degree) Degree of Polynomial kernel. 2 ≤ d ≤ 5 Start with d = 2 for efficiency. Higher
values capture complex interactions but
may risk overfitting.

λ (Lambda) Divergences Weights for divergence terms (e.g., JS,
Wasserstein, Bhattacharyya).

Sum to 1.0, individually >
0.1

Prioritize Wasserstein or Bhattacharyya
for safety tasks and JS for semantic
alignment.

τ (Tau) Balance between local and global kernel
contributions in HMK.

0.3 ≤ τ ≤ 0.7 Use τ = 0.5 for balanced contributions.
Adjust based on alignment needs (e.g.,
τ > 0.5 for finer local adjustments).

Effective Range (r) Defines the influence zone of kernels
like RBF and Mahalanobis.

Task-dependent Align σ or Σ regularization to optimize
locality versus global correlation cap-
ture.

Embedding Similarity Scaling Scaling factor for embedding-based
pairwise metrics.

0.5 ≤ scale ≤ 1.5 Normalize embedding spaces before
applying similarity metrics. Cross-
validate scaling on validation data.

Regularizer Thresholds Thresholds for divergence-specific
terms (e.g., Rényi’s α, support overlap).

0.1 ≤ threshold ≤ 0.6 Tighter thresholds improve separation
but may increase computational cost.

O.1.4 4. Adaptive Hyperparameter Selection
For hyperparameters like mixture weights τ1, τ2 in
HMK, it is beneficial to adaptively learn them dur-
ing training via backpropagation. Differentiable
hyperparameters can be updated using gradient-
based methods.

Mathematical Formulation:

λt+1 = λt − η∇λL(λ;D),

where η is the learning rate and ∇λL is the gradient
of the loss with respect to λ. This approach enables
dynamic adaptation of kernel mixture weights and
bandwidths during training.

O.1.5 5. Early Stopping
Early stopping halts training once the validation
loss no longer improves. This is particularly useful

for adjusting learning rates, mixture weights, and
other training-related hyperparameters (Prechelt,
1998).

Best Practices:

• Monitor the validation loss for p epochs and stop
training if no improvement is observed.

• Early stopping can also be used to tune the kernel
mixture weights τ1, τ2 during training.

We have presented five key approaches for
hyperparameter selection in DPO-Kernels and
HMK, including random/grid search, Bayesian op-
timization, cross-validation, adaptive tuning, and
early stopping. Bayesian optimization and cross-
validation are ideal for non-differentiable hyper-
parameters, while adaptive methods are effective

22269

for differentiable hyperparameters like mixture
weights τ1 and τ2. Future research could incorpo-

rate meta-learning (Finn et al., 2017b) to automate
hyperparameter selection for DPO-Kernels.

22270

