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Abstract

Prompts serve as a critical instruction inter-
face to unlock the diverse capabilities of Large
Language Models (LLMs), thus directly in-
fluencing the quality of their outputs. While
prompt engineering has shown great promise,
identifying optimal prompts remains a signif-
icant challenge, particularly for low-resource
languages, which often face higher compu-
tational costs due to increased token gen-
eration and limited gold standard task data.
In response, we propose MutantPrompt: a
framework that leverages multi-armed ban-
dit algorithms to efficiently identify optimal
prompts tailored to low-resource languages.
By framing prompt selection as an exploration-
exploitation problem under a fixed computa-
tional budget, the framework dynamically bal-
ances exploring new prompts with exploiting
known high-performing ones. We demon-
strate the framework’s effectiveness across
multiple low-resource Indic language tasks, in-
cluding classification, question-answering and
causal reasoning using three small parameter-
size LLMs. The results highlight the cost ef-
ficiency of the search method in finding op-
timal prompts and resulting performance im-
provements. Our codes are publicly avail-
able at https://github.com/NLPatCNERG/
MutantPrompt.

1 Introduction

Large Language Models (LLMs) (OpenAl et al.,
2023; Touvron et al., 2023; Dubey et al., 2024;
Chowdhery et al., 2022) have revolutionized nat-
ural language processing (NLP), enabling state-
of-the-art performance across various tasks, from
text generation to complex reasoning. However,
LLMs’ effectiveness heavily depends on the qual-
ity of the prompts used to interact with them.
Prompt engineering—the practice of crafting ef-
fective input instructions to elicit high-quality
outputs—has gained considerable attention as a
means to optimize LLM performance. Despite its
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potential, identifying the most effective prompts
remains a challenging problem, particularly in low-
resource language (LRL) settings, perhaps widen-
ing the performance gap between LRLs and HRLs
(high-resource languages) (Hendy et al., 2023; Jiao
etal., 2023; Bangetal., 2023; Toraman et al., 2023;
Fujii et al., 2023).

Low-resource languages face unique obstacles
when interacting with LLMs. These languages
often have limited annotated datasets, making it
difficult to fine-tune models effectively. In ad-
dition, due to differences in tokenization (Muller
et al., 2021; Rust et al., 2021; Ahia et al., 2023;
Petrov et al., 2023) and linguistic structures, they
frequently incur higher computational costs (Ahia
et al., 2023; Petrov et al., 2023; Nag et al., 2024)
as LLMs generate more tokens to process input
and produce output with slow inference (Petrov
et al., 2023; Hofmann et al., 2022). A naive ap-
proach of finding optimal prompts using a trial-
and-error method can be costly in such settings,
as the higher number of token generations results
in a significantly increased budget requirement.
Furthermore, compared to HRL tasks, LRL tasks
have less available gold standard data (Ulmer et al.,
2022; Ko et al., 2021; Zhou et al., 2022), necessi-
tating prompt optimization methods that rely less
on such data to be effective.

This paper introduces MutantPrompt, a novel
framework that addresses these challenges by
leveraging multi-armed bandit (MAB) algorithms
to optimize prompt selection for LRLs. By fram-
ing prompt selection as an exploration-exploitation
problem, the framework strategically balances the
discovery of new prompts with the utilization of
previously identified high-performing ones under
a fixed computational budget. This approach en-
ables efficient search and selection of effective
prompts without exhaustive manual tuning or ex-
pensive computational resources.

We evaluate MutantPrompt across multiple
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NLP tasks in 11 low-resource Indic languages,
including classification, question-answering, and
causal reasoning using three recent small-size (2b-
7b parameters) LLMs, namely Llama-3.2 (Dubey
et al., 2024), Mistral-3 (Jiang et al., 2023) and
Gemma-2 (Gemma Team et al., 2024). Our ex-
perimental results demonstrate the cost efficiency
of the search methodology in identifying optimal
prompts while improving task performance. The
findings underscore the importance of intelligent
prompt selection mechanisms in promoting equi-
table and efficient LLM applications, ensuring that
LRL users benefit from the advancement of NLP.

2 Related work

Continuous prompt-based methods (Li and Liang,
2021; Liu et al.,, 2023; Zhang et al., 2022a),
which tune the parameters of specific input to-
kens, have demonstrated effectiveness but is costly
and less interpretable (Lester et al., 2021), while
discrete prompt optimization, using task-specific
instructions or keywords, is more interpretable
and user-friendly (Schick and Schiitze, 2021; Liu
et al., 2021). Various methods for automatic dis-
crete prompt search and generation have been ex-
plored (Zhang et al., 2022b; Shin et al., 2020;
Shi et al., 2022; Wallace et al., 2021; Deng et al.,
2022; Chen et al., 2023; Yang et al., 2024; Lin
et al., 2024). However, many rely on model gra-
dients or token probabilities, which may not suit
all models. Others select the best prompts through
enumeration, re-sampling, or iterative edits (Zhou
et al., 2023; Jiang et al., 2020; Zhang et al., 2022b;
Prasad et al., 2023; Sclar et al., 2024). While
effective, these methods can be computationally
expensive or converge to suboptimal solutions.
Recently, EvoPrompt (Guo et al., 2024) demon-
strates the effectiveness of genetic and evolution-
ary algorithms to give optimal prompts without
the need for model parameter tuning and is doing
better than recent pseudo-gradient (Pryzant et al.,
2023) and model token probability-based meth-
ods (Zhou et al., 2023). While their method pro-
vides valuable insights, it relies on extensive infer-
ence budgets due to longer instructions and full de-
velopment data for scoring prompts, which can be
costly. In contrast, MutantPrompt uses a budget-
constrained MAB approach, exploiting and mutat-
ing the best-performing prompt using simple in-
structions and a dynamic mutation rate while us-
ing a small subset of data for scoring. We compare

MutantPrompt with EvoPrompt to demonstrate
performance and cost improvements.

Algorithm 1 MutantPrompt.

Inputs:

*  Seed prompt pseeq, Instruction pi, s¢-, Budget B

¢ Max mutation rate R,,q., Min mutation rate R,;n

* Decay rate Rgecay, Decay step Dsiep

¢ Dev dataset Dg4..,, Batch size b
P+ {pseed}
<+ % /* Total iterations */
2 Countsuce < {} /% Success counts, empty dictionary */
: Countyray < {} /* Failure counts, empty dictionary */
: fori € [0,7) do
for p; € P do

L Oli] + Bi(Countsuccli] + 1, Count sair[i] + 1)

/* Prompt pool */

e

/* Sample prompt s success probability from Beta
distribution */
Peurr < argmaxpep C"‘)[p]
9: batchsuce, batch fqai = evaluate_prompt(peurr,
Ddev, b) /* Evaluate the prompt on a batch
of dev set and return the success and failure count */
10: Countsyce[peurr] + = batch_succ
11: Count fait[Peurr] + = batch_fail

o)
12: Rcurr = maX(Rmin7 Rmaz . Rdizt;p
mutation rate */
13: Probmut ~ U(0,1) /* Generate random probability
of mutation from uniform distribution */
14: if Probmui < Reyrr then

o

)/* Update

15: Phest = AIGMAXpEP (Gt oty o]

16: Drew = refine_prompt(Dinstr, Pvest )/ Gen-
erate new prompt from ppest */

17: P~ PUDpnew

18: Oountsuce[ new] =0

19: | Count fait[Prew] = 0

o (Countguece[p])
202 pinal <= AGMAXpEP (Gount, oo [pl+ Countsan o))

21: return psina /* Best performing prompt */

3 Proposed method: MutantPrompt

In this work, given a task and a budget, we frame
the search for an optimal prompt as a Multi-Armed
Bandit (MAB) problem where each arm repre-
sents a prompt (we use Thompson Sampling to
implement MAB). In addition, we want to extend
the prompt pool by mutating the best-performing
prompt after each iteration. We describe Mutant-
Prompt in Algorithm 1. At the start of each it-
eration, we sample the probability of success of
each prompt p; denoted by ©;, from a beta distri-
bution with the parameter «; and 3; as the number
of successes and a number of failures correspond-
ingly till now for the prompt (line 7). Initially,
they are set to zero, making it a uniform distribu-
tion. Next, we take the prompt with the highest
success probability (line 8) and explore it by eval-
uating it on a small test set, and update the success
and failure count of the prompt (lines 9—11). Sub-
sequently, we probabilistically mutate the prompt
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Task| | Lang— Method as

hi

pa

avg.

Pseea(lLllama-3.2) | 57.60
Pfinar(Llama-3.2) | 85.10
Pseed(Gemma-2) | 89.00
Prinal(Gemma-2) | 89.80
Pseed(Mistral-3) | 64.70
Prinal(Mistral-3) | 75.90

IndicSentiment

54.40
92.00
96.70
96.90
86.70
91.80

59.80
90.40
90.30
91.10
56.00
62.90

49.54
88.32
90.79
91.20
64.19
74.18

Pseed(Llama-3.2) |33.90
Pfrina(Llama-3.2) | 36.35
Pseeca(Gemma-2) |45.35
Prinal(Gemma-2) | 52.40
Pseea(Mistral-3) | 35.05
Prinal(Mistral-3) | 43.00

IndicXNLI

46.80
46.80
58.85
64.85
45.45
55.30

28.55
43.40
48.55
56.65
35.80
49.30

32.37
41.91
49.59
56.43
37.07
46.13

Pseca(Llama-3.2) | 33.45
Pfina(Llama-3.2) | 61.85
Pseed(Gemma-2) | 60.00
Prinat(Gemma-2) | 69.45
Pseea(Mistral-3) | 63.40
Dfinal(Mistral-3) | 62.55

IndicXParaphrase

36.95
49.95
83.70
94.50
92.50
93.40

46.40
59.81
53.40
56.16
52.25
53.35

31.45
60.43
65.87
74.31
64.82
66.49

Pseed(Llama-3.2) | 54.20
Prinar(llama-3.2) | 57.20
Pseea(Gemma-2) | 58.20
Pfinal(Gemma-2) | 60.60
Pseed(Mistral-3) | 55.00
Prinal(Mistral-3) | 55.00

IndicCOPA

72.16
72.16
70.60
69.27
73.05
73.27

58.00
57.60
59.60

58.40
65.00
58.60
60.00
57.60
61.40

60.80
62.80
59.60
62.80
61.80
60.80

58.79
61.13
59.11
61.32
58.86
61.41

Pseed(Llama-3.2) | 29.66
Pfinai(Llama-3.2) | 35.50
Pseed(Gemma-2) | 32.15
Prinat(Gemma-2) | 34.28
Pseea(Mistral-3) | 26.46
Prinal(Mistral-3) |26.16

CSQA

38.57
47.52
38.72
42.47
19.76
22.06

32.68
41.04
37.29
37.39
21.72
27.83

32.48
39.49
21.97
26.23
22.22
26.93

31.55
33.35
31.40
35.15
20.50
25.80

29.36
36.80
30.47
36.46
22.24
26.52

Table 1: Performance comparison of seed prompt (psecq) and the optimal prompt (p finq1) generated by Mutant-
Prompt for different tasks, languages and LLMs. On the right, we report the average performance across languages
for a particular task and LLM. Best performances are marked in Bold and underlined.

with the best performance and add it to the prompt
pool (line 14-19) (Appendix A Figure 1 shows the
instruction p;ys used for this). By mutating the
best prompt, we expect another reasonably effec-
tive prompt to be added to the pool, making the
prompt pool rich. We also exponentially reduce
the mutation rate (line 12) as we move forward
before it saturates to the minimum mutation rate.
There are two motivations for doing this — first, as
we start with a single prompt, it is essential to mu-
tate more frequently in the beginning to increase
the prompt pool. Second, if we keep mutating at a
higher rate throughout iterations, the prompt pool
will explode, not converging the beta distributions
as exploration outweighs exploitation. After the
entire budget is consumed, we select the prompt
with the best success ratio as the optimal prompt
(line 20).

In summary, starting with a single seed prompt,
the algorithm iteratively evaluates its performance
and refines the prompt pool. At each iteration,
Thompson Sampling is used to estimate the suc-
cess probabilities of all prompts in the pool, select-
ing the most promising one for evaluation. The
success and failure counts of the selected prompt
are updated based on its performance. To expand
the pool, the algorithm probabilistically mutates

the best-performing prompt into a new one using
a dynamic mutation rate that decreases over time,
ensuring a balance between exploration (discover-
ing new prompts) and exploitation (exploring ex-
isting prompts to build confidence). This iterative
process continues until the computational budget
is exhausted, after which the prompt with the high-
est success rate is selected as the optimal solution.
Details of algorithm parameters are in Appendix B
(Table 5).

4 Experiment and results

To check the effectiveness of MutantPrompt,
we experiment with five datasets, of which four
are from IndicXTREME (Doddapaneni et al.,
2023) — IndicSentiment (sentiment classification),
IndicXNLI (natural language inference), Indic-
COPA (commonsense causal reasoning), IndicX-
Paraphrase (paraphrase detection) and one from
IndicGLUE (Kakwani et al., 2020) — CSQA
(multiple-choice QA) covering 11 Indian lan-
guages. We use three recent small parameter
size LLMs (2B-7B parameters) to show the tech-
nique’s effectiveness in resource-constrained set-
up. The LLMs are Mistral-3(7B), Llama-3.2(3B)
and Gemma-2(2B). For performance metrics, we
use exact match accuracy for all the tasks. Details
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Task| | Lang— Method as bn gu hi kn ml mr or pa ta te avg.
IndicSentiment EvoPrompt 84.50 83.80 87.84 80.88 84.30 83.60 86.20 45.65 84.10 81.50 89.10|81.04
MutantPrompt | 85.10 89.60 89.40 92.00 87.20 87.20 90.20 76.20 90.40 92.30 91.90 | 88.32
IndicXNLI EvoPrompt 35.10 35.70 33.60 47.60 37.05 39.15 42.60 36.70 35.85 30.25 32.25|36.90
MutantPrompt | 36.35 41.50 36.75 46.80 43.10 45.30 45.55 37.65 43.40 47.20 37.40 | 41.91
IndicXParaphrase EvoPrompt 56.80 65.95 52.40 7520 46.35 51.25 59.70 57.95 54.00 - 57.00 | 57.66
MutantPrompt | 61.85 73.60 52.55 49.95 60.20 67.20 66.35 49.30 59.81 - 63.45|60.43
IndicCOPA EvoPrompt 52.40 66.40 60.49 72.61 56.00 59.20 59.69 47.60 60.80 62.40 57.60[59.56
MutantPrompt | 57.20 67.80 59.60 72.16 62.20 57.40 59.91 49.00 65.00 62.80 59.40 |61.13
CSQA EvoPrompt 33.72 3575 24.20 38.87 33.13 35.55 32.25 30.76 33.63 36.30 33.75[33.45
MutantPrompt | 35.50 36.50 32.30 47.52 41.04 33.20 41.10 31.68 39.49 33.35 33.15|36.80

Table 2: Performance comparison of MutantPrompt with EvoPrompt for the Lamma-3.2(3B) model. On the
right, we report the average performance across languages for the tasks. Best performances are marked in Bold
and underlined.

of model parameters are in Appendix B (Table 6).

Lang p}seed — p}'inal pgeed — p?‘inal Pgeed — p:;inal
as 3535—35.09| 32.50—36.82| 29.56—35.50
bn 36.70—36.45 34.55—37.25 33.05—36.50
gu 21.50—33.60 17.45—25.35 13.90—32.30
hi 44.42—42.42 | 40.82—42.02| 38.57—47.52
kn 37.57—37.12| 35.37—38.62| 32.68—41.04
ml 32.35—31.00| 29.10—29.65 26.65—33.20
mr 37.90—36.10| 35.25—36.70| 33.50—41.10
or 26.86—27.77 22.11—28.23 19.13—31.68
pa 37.82—39.37| 34.82—34.72| 32.48—39.49
ta 35.95—36.30| 33.60—34.20| 31.55—33.35
te 35.00—33.20| 33.90—35.15 31.75—33.15
avg. 34.67—35.31| 31.77—34.43] 29.35—36.80

Table 3: Performance comparison between different
seed prompt (pi_,) to their final optimal prompt
(p?maz) for the CSQA dataset using Llama-3.2(3B).
The last row shows the average performance across lan-
guages for p’_.; and p,,, ;. Here, the performances of

p'..q degrade as i increases, but p} inql TEMAINS in a sim-
ilar range, showing the robustness of MutantPrompt.

4.1 Generated prompt is better than seed

In Table 1, we compare the performance of pgeeq
with that of p f;,,; for different tasks and languages.
We observe that p ¢;,,4; always performs better than
Dseed, irrespective of the LLMs used. The perfor-
mance gain is as high as 90% for Llama-3.2 and
25% for Gemma-2 and Mistral-3, which shows the
effectiveness of our approach. The huge gain for
Llama-3.2 is possibly due to its ability to respond
better to optimally designed prompts. Overall, the
generation of a more elaborate prompt can be one
of the reasons behind the performance improve-
ment (details are in Figure 2 of the Appendix).

4.2 Our method beats recent baseline

In Table 2, we compare the performance of the
final optimal prompt generated (for our case it is
Pfinal) by MutantPrompt and the recent prompt
generation technique EvoPrompt starting from
same seed prompt (pseeq) for all the tasks using the
Llama-3.2 model (results with other LLMs are in
Appendix Table 8 & 7). Here, we see that most

of the time, MutantPrompt shows better perfor-
mance than EvoPrompt. Although there are cases
where MutantPrompt lags behind or gives similar
results compared to EvoPrompt, MutantPrompt
proves to be more cost-effective (detailed discus-
sion in Section 4.4).

Task Method Tokeninstr | [Prew]
tndicsentiment |\ e 263|129
mdieXNLL |\ gt | 293|130
tndicXParaphrase |\ | 23| 116
ndicCOPA | \il Wptompt| 332 114
csQa MutantPrompt| 303|142

Table 4: Here, we compare the token length of the in-
struction prompts (Token;,s:) between EvoPrompt
and MutantPrompt for different tasks using Llama-
3.2(3B) (other LLM results are in Appendix Table 9
& 10). We also compare the average number of new
prompts (preqw) €xplored by both techniques.

4.3 Robustness of generated prompt

In Table 3, we check the robustness of the gener-
ated prompt pf;,q for MutantPrompt. Here, we
take the task as CSQA, Llama-3.2 as the LLM, and
use three different seed prompts denoted by p;e cd>
p?e g and pg’e q- We see the seed prompts perform
differently and, on average, follow the p! , >
pgeed > pg’eed. But if we check the final prompt
performances generated from each of these three
seed prompts, they all give performance improve-
ment but, more importantly, show similar perfor-
mance. It shows MutantPrompt is not very de-
pendent on the starting seed prompts, which makes
it very practical in real-world use cases where the
user does not need to worry much about designing
the seed prompt.

4.4 Cost-effective and explores more

In Table 4, we analyze the token count (a proxy
for incurred cost) of the instruction prompt that di-
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rects the LLM to generate a new prompt for Mu-
tantPrompt alongside EvoPrompt. We find that
the EvoPrompt instruction prompt results in 3X-
4X more tokens than MutantPrompt, making it
more cost-effective. Also, we compare the to-
tal number of new prompts (ppew) explored be-
tween the two techniques, given the same budget
(here, we use 4000 as the total budget). It shows
MutantPrompt explores 15%-40% more prompts
throughout its journey, making it more probable to
find the optimal prompt.

5 Conclusion

This paper presents a framework leveraging multi-
armed bandit algorithms to generate and search
for optimal prompts for low-resource language
tasks. By framing the prompt selection process as
an exploration-exploitation problem under a fixed
computational budget, the proposed approach ef-
ficiently balances the discovery of new prompts
with the exploitation of known high-performing
ones. This method addresses the unique chal-
lenges faced by low-resource language tasks, in-
cluding limited gold standard data, high compu-
tational costs due to increased token generation,
and the need to optimize prompts without over-
whelming smaller LLMs with overly complex in-
structions. Our experimental evaluations on var-
ious NLP tasks in low-resource Indic languages
demonstrate the effectiveness and cost-efficiency
of this approach. Moving forward, we want to ex-
plore the proposed framework for more complex
tasks and other LRLs, fostering more inclusive and
efficient LLM querying.

6 Limitations

While our proposed framework using the multi-
armed bandit for prompt optimization demon-
strates effectiveness in low-resource language set-
tings, there are several limitations that we want to
work on in future.

Generalization across languages: While the
framework shows promise for low-resource Indic
languages, its generalization to other low-resource
languages with vastly different linguistic struc-
tures remains untested. Further evaluations are
needed to understand its effectiveness across di-
verse language families.

Dependency on LLM quality: The effectiveness
of the optimized prompts is inherently tied to the
capabilities and limitations of the underlying LLM.

In low-resource settings, smaller or less powerful
models may still struggle with nuanced tasks, even
with optimized prompts.

Scalability to complex tasks: The framework
has been evaluated on classification, question-
answering, and causal reasoning tasks. However,
its scalability and effectiveness on more complex
NLP tasks, such as generative tasks or tasks requir-
ing multi-step reasoning, remain to be explored.
Exploration-exploitation trade-off: Although
the framework dynamically balances exploration
and exploitation using simple heuristics, finding
the optimal balance is challenging, especially in
low-resource settings where computational bud-
gets are limited. An inappropriate balance may
lead to either premature convergence to subop-
timal prompts or excessive exploration, wasting
computational resources. We need to devise a con-
crete approach that can decide the balance based on
task quality and the available development dataset.
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MutantPrompt: Prompt Optimization via Mutation

Under a Budget on Modest-sized LMs
(Appendix)

A Supplementary results

Below is a description of a task and a sample prompt to query a LLM system to perform the tasks. You
need to generate a new prompt to solve the task. Please use the given sample prompt as a reference for
designing the new propmt, keeping the underlying theme intact try to improve it by adding variation in
phrasing, structure, or style. Like the given sample prompt that assumes inputs are already available in the
prompt, the new prompt also should not ask for user inputs(avoid word/phrase like as e.g., 'provide a',
'‘provide the') or keep placeholders for user inputs and should be phrased in the second person (e.g., 'you',
'your') when asking for correct alternative. The prompt should explicitly mention that only the correct option
should be the output. Write the prompt in such a way that a user will use this generated prompt to query a
LLM system to solve the task. Output the new prompt directly without starting with phrases like 'Here's is a
new prompt...".

Task description: "A paragraph contains a word denoted by '<MASK>'. The task is to guess the correct
alternatives to replace the '<MASK>' word out of the four words given as options."

Sample prompt: "In the given text, you'll find a blank represented by '<MASK>'. From the provided
choices, select the word that, when inserted, would render the sentence grammatically correct and
coherent within the given context. Your response should solely contain the appropriate word.

Example:

Text: | went to the <MASK> and bought a new book.
Options: store, library, market, park

Correct Answer: store

Paragraph: {paragraph}

Options: {option_a}, {option_b}, {option_c}, {option_d}"

New prompt:

Figure 1: Template for generating new prompt (ppe.) in the Re fine_prompt function described in Algorithm 1.

B Experimental settings

We run all the experiments on a single RTX A6000 GPU with 48GB RAM. To save GPU hour and cost,
we run all the inference and prompt generation experiments one time (except for Table 3, where we do it
with 3 different seeds), and to make them reproducible, we fix the LLM seed value to 42. To run Mutant-
Prompt, it took around 2 hr for a task and language with a budget of 4000 on a single 48GB RTXA6000
GPU. For zero-shot inference, for each task, we select 2000 random instances for each language (For
IndicSentiment and IndicXParaphrase, we use 500 data as data is limited). For EvoPrompt, we use a
development dataset size of 50 for prompt optimization.
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Parameter | Value

B [400-4000]

Rax 1.0

Rpin 0.1

Rdecay 0.9

Dstep [155]

b [3,5]

Table 5: Algorithm 1 parameter details.

Parameter Value
LLM LLama-3.2(3B), Gemma-2(2B), Mistral-3(7B)
LLM parameter size 2-7 Billion
LLM model type Instruction tuned
LLM temperature 0.5 (for prompt generation), 0.01(for evaluation)
LLM top p 0.95
LLM max token length | 512(for prompt generation), 64(for prediction)
Seed 42

Table 6: LLM parameter details.

Task| | Lang— Method as bn gu hi kn ml mr  or pa ta te avg.
IndicSentiment EvoPrompt 88.90 95.70 93.80 93.60 93.30 93.80 93.90 72.10 90.20 95.20 92.60 |91.19
MutantPrompt | 89.80 95.50 94.80 96.90 92.50 93.30 95.20 65.40 91.10 95.50 93.20 | 91.20
IndicXNLI EvoPrompt 51.05 58.10 56.45 58.75 47.20 45.10 54.05 40.40 50.80 52.05 54.10|51.64
MutantPrompt | 52.40 58.80 58.35 64.85 57.00 56.25 57.75 41.65 56.65 59.35 57.70 | 56.43
IndicXParaphrase EvoPrompt 68.40 80.50 72.95 92.75 69.95 81.45 78.95 53.20 53.10 - 73.85172.51
MutantPrompt | 69.45 91.95 71.50 94.50 73.60 76.30 84.40 50.15 56.16 - 75.10 | 74.31
IndicCOPA EvoPrompt 58.00 61.80 53.35 65.92 52.00 59.80 60.58 47.60 55.40 58.60 59.40 |57.50
MutantPrompt | 60.6  65.00 62.50 69.27 58.00 60.80 60.36 51.20 60.00 62.80 64.00 | 61.32
CSOA EvoPrompt 31.89 32.00 31.70 38.12 35.84 29.00 31.15 27.47 25.58 33.35 31.95|31.64
MutantPrompt | 34.28 38.30 58.30 42.47 37.39 32.25 37.05 28.39 26.23 35.15 31.30|36.46

Table 7: Performance comparison between MutantPrompt technique with EvoPrompt for the generated optimal
prompt (pfinar) on Gemma-2(2B) model. On the right, we report the average performance across languages for
the tasks. Best performances are marked in Bold and underlined.

Task| | Lang— Method as bn gu hi kn ml mr  or pa ta te avg.
IndicSentiment EvoPrompt 7490 86.40 72.20 91.90 77.10 63.10 77.70 68.90 62.50 72.90 63.60|73.75
MutantPrompt | 75.90 86.40 73.00 91.80 77.50 64.60 78.10 67.30 62.90 73.30 65.20| 74.18
IndicXNLI EvoPrompt 42.10 50.15 37.15 52.55 42.80 41.85 48.20 43.90 42.75 47.00 40.30 |44.43
MutantPrompt | 43.00 49.95 46.10 55.30 45.65 45.25 44.70 44.05 49.30 44.85 39.25| 46.13
IndicXParaphrase EvoPrompt 68.05 88.50 52.50 92.10 64.50 66.20 72.45 52.05 57.91 - 55.50 | 66.98
MutantPrompt | 62.55 86.10 53.55 93.40 67.80 66.75 74.55 50.70 53.35 - 56.10 | 66.49
IndicCOPA EvoPrompt 45.40 50.20 49.11 55.68 49.60 48.80 53.45 49.60 40.40 51.40 49.60 |49.39
MutantPrompt | 55.00 63.40 57.37 73.27 59.60 61.00 63.03 53.00 61.40 60.80 67.60| 61.41
CSQA EvoPrompt 2991 26.75 23.55 32.67 25.63 31.70 26.35 30.07 20.32 29.25 23.35| 27.23
MutantPrompt | 26.16 24.35 36.50 22.06 27.83 26.30 23.00 28.69 26.93 25.80 24.15|26.52

Table 8: Performance comparison between MutantPrompt technique with EvoPrompt for the generated optimal
prompt (p finq:) on Mistral-3(7B) model. On the right, we report the average performance across languages for the
tasks. Best performances are marked in Bold and underlined.

Task Method Tokeninstr | [Pnew|
aseniment | SpoPromtt e
dieXNLE | e tompt| 296|130
tndicXParaphrase| \ii oW pe| 275 | i16
waccons | Darrmt |1z
csea MutntPrompt| 316|142

Table 9: Here, we compare the token length of the instruction prompts (Token;,st) between EvoPrompt and
MutantPrompt for different tasks using Gemma-2(2B). We also compare the average number of new prompts
(Pnew) explored by both techniques.
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Task: CSQA

Seed prompt: "The paragraph below includes a gap indicated by <MASK>. From the given options, choose the word that accurately fills the gap.
Answer with only the correct word:

Paragraph: {paragraph}

Options: {option_a}, {option_b}, {option_c}, {option_d}"

Generated prompt: "In the given text, there is a word signified by '<MASK>', and the objective is to select the appropriate word from the provided
options that, when inserted, will result in a sentence that is both grammatically correct and logically sensible. Please identify the word that fits
seamlessly into the sentence without any additional information:

Example:

Text: The child <MASK> the toy.
Options: broke, played, laughed, held
Correct answer: played

In this case, you are required to find the word that, when inserted into the text, creates a grammatically sound and logically consistent sentence.
Provide the suitable word without any extra details:

Example:

Text: The bird <MASK> the nest.

Options: built, sang, flew, hatched

Correct answer: built

Paragraph: {paragraph}

Options: {option_a}, {option_b}, {option_c}, {option_d}"

Task: IndicXNLI

Seed prompt: "ldentify the relation('neutral’/'contradiction’/'entailment’) between Premise and Hypothesis. Output only the correct relation.
Premise: {premise}
Hypothesis: {hypothesis}"

Generated prompt: "Determine the nature (‘Neutral', '‘Contradiction’, or 'Entailment') of the relationship that exists between the presented statement
(Premise) and the following statement (Hypothesis). Your response should clearly illustrate the connection between the two statements.

For example, if the Premise is "The cat is on the mat" and the Hypothesis is "The cat is not on the mat", the relationship is 'Contradiction’.
Please provide the exact relationship for the given Premise and Hypothesis.

Premise: {premise}
Hypothesis: {hypothesis}"

Task: IndicXParaphrase

Seed prompt: "ldentify if the Sentence2 is a paraphrase of Sentence1. Output only either 'yes' or 'no'.
Sentence1: {sentence1}
Sentence2: {sentence2}"

Generated prompt: "Analyze each pair of sentences and determine if Sentence2 is a paraphrase of Sentence1. For each pair, you should provide a
clear "yes" or "no" response indicating whether Sentence?2 is a paraphrase of Sentence1. Your response should only include the correct answer.
Sentence1: {sentence1}

Sentence2: {sentence2}"

Task: IndicCOPA

Seed prompt: "Given the Premise, Question and two choices(‘Choice1'/'Choice2'), return the correct choice that answer the question for the premise.
Output only 'Choice1' or 'Choice2', no need to output the whole sentence.

Premise: {premise}

Choice1: {choice1}

Choice2: {choice2}

Question: {question}"

Generated prompt: "Given a scenario described by a premise and a question about either 'cause' or 'effect’, and presented with two possible answers
(‘Choice1'/'Choice?2'), kindly determine the response that accurately answers the question within the context of the premise. Simply provide 'Choice1' or
'Choice2' as your answer, without including the question or the premise in your response.

Premise: {premise}

Choice1: {choice1}

Choice2: {choice2}

Question: {question}"

Task: IndicSentiment

Seed prompt: "Given the Sentence, predict the correct sentiment('positive'/'negative') of the sentence. Output only the correct sentiment class.
Sentence: {sentence}"

Generated prompt: "Determine the sentiment of the given statement, categorizing it as 'positive’ or 'negative'. Kindly provide the sentiment category
as your response.

Example:
Statement: | absolutely love this movie!

Sentiment: positive
Sentence: {sentence}"

Figure 2: Sample seed prompt (psceq) and generated optimal prompt (p fr,q:) for all the tasks.
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Task Method Tokeninstr | [Prew|
e I
IndicXNLI ﬁ/lvl?tl;:l(;glrl:)tmpt lggg igg
tndicXParaphrase | iR e 209|116
ndicCOPA | il btompt| 370|114
€sQA ﬁ/l‘]l?tl‘:l;(igll}:)tmpt %gg % 22

Table 10: Here, we compare the token length of the instruction prompts (T'oken;,s+) between EvoPrompt and
MutantPrompt for different tasks using Mistral-3(7B). We also compare the average number of new prompts
(Pnew) explored by both techniques.
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