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Abstract
Despite a growing literature finding that large
language models (LLMs) exhibit demographic
biases, reports with whom they align best are
hard to generalize or even contradictory. In this
work, we examine the alignment of LLMs with
human annotations in five offensive language
datasets, comprising approximately 220K an-
notations. While demographic traits, particu-
larly race, influence alignment, these effects
vary across datasets and are often entangled
with other factors. Confounders introduced
in the annotation process—such as document
difficulty, annotator sensitivity, and within-
group agreement—account for more variation
in alignment patterns than demographic traits.
Alignment increases with annotator sensitiv-
ity and group agreement, and decreases with
document difficulty. Our results underscore
the importance of multi-dataset analyses and
confounder-aware methodologies in develop-
ing robust measures of demographic bias.

1 Introduction

A growing body of literature explores LLMs as a
quick, inexpensive, and reliable alternative to hu-
man annotators (Chiang and Lee, 2023; Törnberg,
2023; Zhu et al., 2023; Gilardi et al., 2023). The
eventuality of annotating data with LLMs is more
than speculation: crowdworkers, who are often
key to data annotation, already rely on LLMs for
efficiency (Veselovsky et al., 2023). Since data an-
notations are a primary concern for any machine
learning application, it is essential to assess the
quality of LLM-generated annotations.

In particular, tasks that reflect annotators’ sub-
jectivity, such as the perceived offensiveness of a
message (Davani et al., 2023), raise the question of
which subjectivities are reflected in LLM-generated
annotations. Recent research finds evidence of de-
mographic bias, that is, systematic alignment be-
tween LLMs’ annotations and those from select de-
mographic groups of human annotators. If LLMs

replicate the views of one demographic group over
others, downstream applications risk perpetuating
structural harms like marginalizing minority views.

Although LLMs’ demographic bias has been
identified for a variety of subjective constructs, in-
cluding resumé screening (Wilson and Caliskan,
2024; Dammu et al., 2024), healthcare (Jiang et al.,
2024; Zack et al., 2023), political opinions (Motoki
et al., 2024), and offensiveness (Sun et al., 2023;
Santy et al., 2023), we know little about whether
such bias is consistent, since many of these studies
focus on different NLP tasks and datasets. Even
within the same dataset and task, the identified
biases are unclear or even seemingly contradic-
tory. For example, for offensiveness annotations
in the POPQUORN dataset, Sun et al. find that
LLMs align most with white and female annotators,
while Schäfer et al. do not find such alignment. Us-
ing a different dataset, Santy et al. find alignment
is highest with Asian Americans. Understanding
which demographic biases are consistent in LLM
annotations is fundamental to tackling them. Our
work fills this gap with a systematic study of LLM
alignment on offensiveness labeling with different
genders and ethnicities across five datasets. We
further investigate factors beyond annotator demo-
graphics that might drive human-LLM misalign-
ment.

First, to exclude that LLM bias may simply be
attributed to low performance, we verify RQ1: to
what extent LLMs can substitute human annotators
in detecting offensive language. Indeed, LLMs are
strong performers: correlations with aggregate hu-
man labels are positive and significant—ranging
from 0.2 to 0.8. Through permutation and boot-
strapping tests, we show that LLMs match human
performance in all datasets and surpass it in three.

Next, we test RQ2: which demographic biases
are consistently reproduced in LLM-generated an-
notations across datasets. Demographic biases
exist within each dataset; however, most of these
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biases lack consistency. We find that only the
difference in bias between the White and Black
demographics remained consistent across all five
datasets. Other biases appeared inconsistently or
even showed opposite results across datasets.

To unpack such differences between datasets, we
therefore explore RQ3: to what extent confound-
ing factors explain demographic bias. We consider
three hypotheses about the dataset annotation pro-
cess: HPa) documents that are difficult to annotate
may be assigned unevenly across demographics;
HPb) annotators may show strong individual rather
than demographic preferences in their annotation;
and HPc) the disagreement between annotators of a
same demographic group may affect the measures
of alignment. We find that confounders explain
a large fraction of the variance of LLM–human
alignment, and thus can help us unpack cases when
demographic bias is inconsistent.

Overall Contributions and Novelty. Prior
studies on human-LLM alignment rely on single
datasets, leading to non-generalizable findings. We
conduct the first large-scale, multi-dataset analysis
across five NLP datasets and uncover inconsistent
alignments, despite prior claims (Sun et al., 2023;
Santy et al., 2023). However, we show that demo-
graphic factors alone do not explain misalignment.
Through a robust regression framework, we iden-
tify key confounders that drive alignment patterns,
a crucial aspect overlooked in past research. Fi-
nally, we provide actionable recommendations for
bias estimation and contribute a harmonized dataset
of 220k offensive language annotations, enabling
more rigorous bias assessment in future studies.1

2 Related Work

Our work assesses one aspect of alignment—
demographics—within the context of LLM label-
ing. Therefore, it lies at the intersection of using
LLMs for annotation, annotation subjectivity, and
demographic bias in LLMs.

2.1 Using LLMs for Data Annotation

Recent work has focused on using generative
LLMs, such as Flan-T5 and GPT for data label-
ing for various social constructs like offensive
language (Zampieri et al., 2023), stance detec-
tion (Aiyappa et al., 2024), hate speech (Huang
et al., 2023), and framing (Gilardi et al., 2023).

1https://github.com/shayanalipour/
llm-alignment-bias

However, there is contention about the quality of
LLM-generated annotations. Since ChatGPT’s re-
lease, some studies have claimed it outperforms
human annotators (Gilardi et al., 2023; Wu et al.,
2023; Chiang and Lee, 2023; Törnberg, 2023; Zhu
et al., 2023), while others find LLMs do not reach
human-level performance (Kristensen-McLachlan
et al., 2023).

2.2 Subjectivity and Demographic Factors in
Human Annotations

Ground-truth labels for an instance are often ag-
gregated from the ratings from multiple annotators.
Yet, annotation is often an interpretive task that
depends on the annotator’s positionality, social sit-
uation, and lived experiences (Paullada et al., 2021;
Santy et al., 2023), which challenges the assump-
tion of the existence of such a single true label. Re-
cent work in NLP has recognized that such aggrega-
tion can squash the opinions and views of marginal-
ized populations (Davani et al., 2022, 2023). This
is particularly pertinent for subjective tasks such as
detecting offensive, abusive, or toxic content. Here,
an annotator’s demographic identity (Al Kuwatly
et al., 2020), attitudes (Sap et al., 2021), and per-
sonal experiences (Sang and Stanton, 2022) affect
the perception of toxicity—together with artifacts
of the annotation process such as the annotation
instructions and interface (Kern et al., 2023). To ac-
count for this variance in annotation distributions,
researchers recommend explicitly factoring in di-
mensions that would lead to disagreement, even
before the annotation task (Fleisig et al., 2024).

2.3 Demographic Alignment of LLMs for
Annotation

A growing body of work examines LLM alignment
with human annotators in content analysis (Sun
et al. 2023; Santy et al. 2023, inter alia; see Ta-
ble 3). Default prompting is particularly relevant
for real-world applications, where demographic in-
formation is rarely available when deploying LLMs
for content analysis. Unlike sociodemographic
prompting, which artificially steers model behav-
ior, default prompting reveals biases that emerge
naturally. Prior work has explored the effects of
explicit demographic cues (Beck et al., 2023; Sun
et al., 2023; Schäfer et al., 2024), but most LLM
benchmarking studies use default prompting (Gi-
lardi et al., 2023; Ziems et al., 2024). By focus-
ing on this setup, we ensure our findings reflect
how LLMs align with human annotators in practice

22026

https://github.com/shayanalipour/llm-alignment-bias
https://github.com/shayanalipour/llm-alignment-bias


while validating patterns across datasets.
Most work assesses default prompting on one

dataset, often different from those of comparable
works, leading to unclear overall findings. For
example, for offensiveness and politeness, Sun
et al. find that LLMs align best with White women.
Schäfer et al. use the same dataset and find that
LLMs align better with White people, but not
women. Differing from both of these, Santy et al.
find that for hate speech detection, models align
best with Asian Americans. Our work unpacks
these seemingly contradictory findings by conduct-
ing a systematic study across several datasets.

Closest to our work, Hu and Collier tests the
demographic alignment of multiple LLMs across
different datasets and tasks. The present work
takes this direction further and tests the robust-
ness of such alignment. Like Hu and Collier, our
work shows that beyond demographic variables,
the characteristics of the annotation process itself
are correlated with model alignment: we lay out
confounding factors in the annotation process that
may explain inconsistencies in existing literature.

3 Data

To fully understand how LLM annotations align
with human opinions, we leverage five datasets en-
coding annotators’ perceptions of offensiveness—a
construct that has been proven to vary according
to annotators’ sociodemographic characteristics.
Specifically, we use the following datasets: Annota-
tor with Attitudes (AwA) dataset (Sap et al., 2021),
UC Berkeley’s Measuring Hate Speech Corpus
(MHSC) (Kennedy et al., 2020), NLPositionality
(NLPos) dataset (Santy et al., 2023), POPQUORN
dataset (POPQ) (Pei and Jurgens, 2023), and Social
Bias Inference Corpus (SBIC) (Sap et al., 2020).2

For AwA, MHSC, and SBIC, participants were
recruited from Amazon Mechanical Turk, while
for POPQ, they were recruited through Prolific.
Only Sap et al. (SBIC) mention that they restricted
the annotator pool to people from the US and
Canada, while Santy et al. (NLPos) explicitly re-
cruited a diverse pool of annotators from over 80

2Three of the five datasets (AwA, POPQ, and SBIC) focus
on offensiveness, while the remaining two datasets (NLPos
and MHSC) focus on hate speech. Past research has looked
into the association between offensiveness language and hate
speech, concluding that both constructs, while not identical,
are often similarly perceived (Davidson et al., 2017; Founta
et al., 2018; Fortuna and Nunes, 2018). Offensive language
can be considered a superset of hate speech, where the latter
is offensive language targeting protected groups or minorities.

countries.
We use the annotator backgrounds in these

datasets to consider the potential alignment be-
tween LLMs’ responses and those of annotators
in specific demographic groups (Table 1). Follow-
ing past research (Sap et al., 2021, 2019), we focus
on annotators’ ethnicity and gender as major fac-
tors in demographic alignment. Although age is a
sociodemographic trait present in all of the datasets
included in this study, gender and ethnicity have the
advantages that they are coded harmonically across
datasets, and that their empirical distributions are
such that they are likely to provide sufficient sta-
tistical power for analyses. More details about the
datasets can be found in the appendix A.

Demographic AwA MHSC NLPos POPQ SBIC

Man 56.32 43.07 43.02 48.53 48.08
Woman 43.68 56.93 56.98 51.47 51.92

Asian - 5.95 20.92 7.85 6.73
Black 33.83 8.64 7.34 13.11 4.10
Hispanic - 4.01 9.40 - 6.54
White 66.17 81.40 62.35 79.04 82.63

Table 1: Demographic distributions across five datasets
shown as percentages.

4 Methods

Next, we outline the models used for annotation,
explain our approach to prompting, and describe
how we operationalize our research questions.

4.1 Models
We conduct our experiments with three state-of-the-
art models — GPT4o mini (Achiam et al., 2023),
Gemini 1.5 Flash (Team et al., 2024), and Solar-
10.7B-Instruct (Kim et al., 2023) — to identify
consistent trends in detecting offensive and hateful
language and explore any inter-model variations.
Recent studies show that while GPT models per-
form well on hate speech detection (Huang et al.,
2023), they may exhibit inherent demographic bi-
ases (Zack et al., 2024; Wang et al., 2023; Tao
et al., 2023). Similarly, Gemini 1.5 Flash, a dis-
tilled version of Gemini 1.5 Pro, has been reported
to achieve near parity with OpenAI’s models across
many benchmarks (Team et al., 2024). However,
extensive studies, similar to those conducted for
GPT models, have not been carried out for open-
source models to evaluate their suitability for text
annotation tasks. Therefore, we include in our anal-
ysis Solar-10.7B-Instruct, an open-source model
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praised for its performance and reportedly capable
of outperforming larger models, including Mistral
8X7B (Kim et al., 2023).

4.2 Prompting Strategies

We designed a scoring system that matches the
questions asked to human annotators across various
datasets for evaluating offensive or toxic content.
Following the approach in Wei et al., we required
the model to not only rate the comments but also
justify its scores. The wording of the prompts was
the same as that used for human annotators, with
an additional instruction: “Begin your response by
mentioning one of the valid options, then provide a
concise explanation for your rating.” Our prompts
are included in Table 10 in the appendix. We used
regular expressions to extract final labels from the
models’ responses.

4.3 RQ1: LLMs as Annotators

To evaluate LLM performance in offensive lan-
guage detection, we compared their labels with
human annotators’ ground-truth labels, calculated
using two methods: rounded average and majority.
We report results using rounded average, while the
majority-label results are detailed in the appendix.
We calculated the Pearson correlation coefficients
between the model and human labels, performed
t-tests to assess statistical significance, and calcu-
lated 95% confidence intervals (CI) using boot-
strapping with 1,000 samples. To further test the
robustness of the correlations, we ran permutation
tests by shuffling demographic information and re-
calculating correlations for 1,000 iterations.
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Figure 1: Comparison of model correlations with human
annotators against human agreement

To measure agreement among human annotators,
we used a leave-one-out approach. For each anno-
tator, we excluded their label from each post and
recalculated the ground truth from the remaining
labels. This was repeated for every post that the

annotator labeled. We then measured the correla-
tion between the annotator’s labels and the recalcu-
lated ground truth. By averaging these correlations
across all annotators, we determined overall human
agreement. To evaluate the robustness, we applied
bootstrapping (1,000 samples) to this correlation
distribution to estimate 95% confidence intervals.

4.4 RQ2: Demographic Bias Robustness
To analyze demographic biases in LLM-generated
annotations, we calculate the ground truth for each
demographic by filtering the annotations for that
group and aggregating them per post. We then com-
pute the Pearson correlation r between the model’s
predictions and the demographic-specific ground
truth. We also apply the aforementioned robustness
checks, including t-tests, confidence interval esti-
mation using bootstrapping, and permutation tests
on the demographic labels.

To assess whether the model consistently aligns
better with one demographic than another, we use
Steiger’s Z test (Steiger, 1980; Hoerger, 2013) to
determine if the difference between correlations ∆r
is statistically significant. To account for multiple
comparisons, we adjust p-values using the Holm-
Bonferroni correction. Additionally, we compute
confidence intervals for the difference in correla-
tions using bootstrapping. In particular, we mea-
sured ∆r = r(P,D1)− r(P,D2) where P repre-
sents the model’s predictions, D1 and D2 are two
demographic groups. This involves resampling the
annotations for each demographic pair and recal-
culating the difference over 1,000 iterations. If the
95% CI for the bootstrapped distribution includes
zero, this suggests that the observed difference in
correlations may be due to random variation in the
sample distribution.

4.5 RQ3: Demographic Bias Confounders
We consider alternative hypotheses for the align-
ment between the LLMs and humans, beyond de-
mographic bias. We use individual annotations
as observations and operationalize alignment as
an indicator variable set to 1 when LLM and hu-
man annotations coincide. While considering exact
alignment does not capture the direction and mag-
nitude of the differences in annotations, this operal-
ization is practically useful since alignment is high
overall (~60% of annotations align perfectly). We
model alignment via logistic regression with anno-
tators’ demographic traits as independent variables.
Next, we develop additional hypotheses for factors
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Figure 2: Pearson correlation coefficients between model outputs and human annotator labels, broken down by
gender (a) and ethnicity (b) across five datasets. The ground truth for each post is determined by averaging the labels
from annotators belonging to the target demographic. Darker shades indicate stronger correlations. Confidence
intervals and p-values for statistical significance are reported in Table 6 in the appendix.

that may confound demographic alignment, which
we include as additional independent variables.

HPa: difficulty. Documents that are difficult
to annotate may be assigned unevenly across de-
mographics, which may in turn negatively affect
LLM’s alignment. We measure difficulty as the
negative Kullback-Leibler divergence between a
document’s labels and the uniform distribution. In-
tuitively, the more diverse the annotators’ labels,
the more difficult the document is to annotate.

HPb: sensitivity. Since few annotators partake in
most annotation tasks, some annotators contribute
more labels than others, and the representation of
demographic traits is unequal, individual annotator
factors may dominate the apparent demographic
biases. At its simplest, some annotators may sys-
tematically label documents as more offensive than
other annotators, irrespective of their demographic
or a document’s aggregate label. To measure sensi-
tivity, we rank annotators of a document based on
their labels. The higher the annotators’ rank, the
more likely they align with LLMs tuned to discour-
age offensive content.

HPc: agreement. Although alignment is typi-
cally measured with a whole demographic group
of annotators, different groups may have varying
levels of internal agreement. When a group inter-
nally disagrees, alignment with it is more complex
(and arguably, less meaningful). We operationalize
agreement as the negative absolute difference be-
tween the individual annotators’ labels and the av-
erage label of their demographic groups, therefore
computing distinct agreement values for gender and
ethnicity. The more annotators behave similarly to
their reference group, the higher the agreement.

In addition to confounders, we include the docu-
ment’s offensiveness label as a control variable to
account for skews in the LLMs’ annotations, since
we aim at measuring whether LLMs replicate de-
mographics’ annotations of individual documents
rather than generic similarity in label distributions.
LLMs may prefer to label documents as offensive,
given their terms of service and training for gen-
eral, safe-for-work applications. We also control
for dataset-specific levels of the dependent and in-
dependent variables by including corresponding
intercepts. We center all binary variables, and stan-
dardize confounders and labels within each dataset
by centering them and dividing their values by two
standard deviations to make their scales compara-
ble and interpretable (Gelman, 2008).

5 Results

In this section, we address three questions about
the capabilities of LLMs in simulating human judg-
ment when annotating offensive language. First
(RQ1), we examine the extent to which LLMs
can accurately replicate human annotations overall.
Second (RQ2), we investigate the alignment be-
tween these models and the annotations of sociode-
mographic subgroups of annotators and whether
these alignments are consistent across datasets.
Third (RQ3), we model the alignment behavior
by considering potential confounding factors.

5.1 RQ1: Viability of LLMs as Annotators

Our results demonstrate that LLMs closely mirror
human annotations. Figure 1 shows that the correla-
tions between LLM labels and ground truth labels
are strong, positive, and significant, measured us-
ing both rounded averages and majority votes.
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To put the models’ performance into perspec-
tive, we compare it with the performance that in-
dividual human annotators achieved compared to
the remaining annotators. In three datasets—AwA,
POPQ, and NLPos—LLMs surpass individual hu-
man annotators. In the other two datasets (SBIC
and MHSC), LLMs perform competitively. The
lower performance of the SOLAR model on the
NLPos dataset can be attributed to the dataset’s in-
herent difficulty (e.g., sarcam, inclusion of contro-
versial and implicit hate examples) and the signifi-
cantly smaller size of the SOLAR model compared
to other models, which arguably limits its ability to
handle such nuanced tasks.

5.2 RQ2: Robustness of Demographic Bias
Figure 2 shows the correlation r between LLM
labels and the labels of annotators from each de-
mographic group. In Figure 2.a, all three models
show similar patterns as they align more closely
with women’s annotations in the AwA, MHSC,
NLPos, and POPQ datasets, while aligning bet-
ter with men’s annotations in SBIC. For ethnicity,
Figure 2.b shows that models align better with the
White demographic, except in SBIC, where GPT-
4o and Gemini achieve a higher r with the Hispanic
demographic. Across datasets, the Black demo-
graphic generally shows the lowest correlations,
except in MHSC, where it surpasses the Asian de-
mographic. The correlations for high performing
models, as summarized in Table 6, are significant
and not due to chance, as confirmed by permutation
tests (see Figures 6 and 9 in the appendix).

However, echoing Movva et al., statistical signif-
icance alone does not guarantee consistent align-
ment across demographic groups. To assess
whether these differences are robust, we examine
the correlation differences using Steiger’s Z test
and bootstrapping. Without this additional analy-
sis, there is a risk of over-interpreting the corre-
lations, which might reflect dataset-specific varia-
tions rather than true alignment. Figure 3 displays
the results for demographic pair comparisons when
using the rounded average aggregation method.
Some comparisons reveal no significant or robust
differences. For example, in the POPQ dataset,
the correlation difference between men and women
changes sign depending on the sample. We ob-
serve that the models align slightly better with the
Hispanic demographic than with the White demo-
graphic in SBIC, but this trend reverses in MHSC
and NLPos. The only consistent finding across

all datasets is the Black-White pair, where models
show lower correlations with the Black people.

Results from Figure 3 highlight a general lack
of robustness indicating that demographic annota-
tions are influenced by many factors beyond demo-
graphic identity, such as individual interpretation or
dataset composition. While the correlation values
r between models and annotator groups are statis-
tically significant, testing the robustness of corre-
lation differences shows that demographic identity
alone does not consistently explain the observed
variance in model alignment.

We also examine intersectional cases, consid-
ering race and gender together. For brevity, we
present these findings in the appendix (Figures 13
and 14). The overall patterns remain consistent
with our main conclusions. Specifically, in RQ2,
we observe higher variability when considering
race and gender jointly. This variability suggests
that LLMs do not align consistently with a single
race-gender demographic across all datasets.

5.3 RQ3: Significant Confounders of
Demographic Alignment

We now explore potential confounders that may
account for inconsistencies in RQ2. Table 2 shows
the summary statistics of the logistic regressions of
the alignment between LLM and human labels (1
only if they use the same label). The first regres-
sion (on the left in the table) explains the relation-
ship between LLM alignment and the annotator’s
gender and ethnicity, controlling for per-dataset
differences. As for our previous analyses, align-
ment is higher for White than for Black annotators,
with marginally significant differences between
women and men. This demographic-only model ex-
plains little variance in the LLM-human alignment
(pseudo-R2 = 0.015). The second model (on the
right in the table) attempts to explain the remaining
variance by accounting for confounding factors. In-
deed, modeling confounders substantially improves
model fit (pseudo-R2 = 0.213). While most con-
founders show statistically significant coefficients,
the Hispanic demographic stands as an exception.
This insignificance may partially stem from the His-
panic demographic not being present in all datasets,
which could dilute the coefficient’s impact. This
behavior aligns with our broader findings that so-
ciodemographic strata, including ethnicity, may not
be the primary sources of bias once confounders
and between-dataset variations are accounted for.

First, the more difficult it is to label a document,
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Figure 3: The 95% confidence intervals (CI) for the difference in correlation between the model’s predictions and
two demographic groups, computed as: ∆r = r(P,D1)− r(P,D2), where P represents the model’s predictions,
and D1 and D2 are two demographic groups. The intervals are derived from 1,000 bootstrap samples. If the CI
includes zero, the difference is not statistically significant. See Table 8 in the appendix for further details.

i.e., the more diversity in the annotators’ labels
regardless of their demographics, the lower the
alignment with the LLM. Conversely, the higher
the agreement between annotators of the same de-
mographic on a document, the higher the likelihood
of alignment. Additionally, the more sensitive one
annotator is to offensiveness compared to other
annotators of the same document, the higher the
alignment, which remains true even when control-
ling for the overall label of the document, irrespec-
tive of the annotators’ demographics. In fact, the
largest coefficients are associated with confounders
at the level of the document—its label and anno-
tation difficulty—which do not directly model the
preference of individuals or groups of annotators.

Yet, these confounders do not fully mediate de-
mographic alignment: when explicitly modeled,
we see increased rather than decreased significance
of demographic coefficients. Additionally, even
with the confounders, the overall explanation for
the variance in annotations is moderate (pseudo-R2

= 0.213), indicating that other hidden confounders
need to be accounted for to explain (mis)alignment,
e.g., social media usage or attitudes towards free
speech (Fleisig et al., 2023; Sap et al., 2021).

In summary, we find that LLMs’ demographic
bias is at least partially explained by confound-
ing factors. Especially, LLMs’ overall tendency to
rate documents as offensive matches demographic
s that are assigned more, more clearly offensive
documents and/or include more sensitive, mutu-
ally agreeing individual annotators. Since the pro-
cedures of annotator recruitment and document
assignment for a demographic vary between an-
notation tasks, LLMs may appear biased toward
different demographics in the resulting datasets.
Thus, by resorting to factors at the document, indi-

vidual annotator, and annotator sample levels, we
can reconcile inconsistencies in the demographic
bias observed across datasets—that would other-
wise contradict the assumption that LLMs replicate
certain demographics’ annotations.

D.V.: alignment model 1 model 2
dataset=popq −0.320∗∗∗ −0.410∗∗∗

dataset=nlpos 1.075∗∗∗ 1.547∗∗∗

dataset=sbic 0.802∗∗∗ 1.018∗∗∗

dataset=mhsc 0.843∗∗∗ 1.055∗∗∗

gender=woman −0.021∗ −0.036∗∗∗

ethnicity=asian −0.175∗∗∗ −0.127∗∗∗

ethnicity=black −0.071∗∗∗ −0.118∗∗∗

ethnicity=hispanic 0.049∗ −0.045
difficulty −1.747∗∗∗

sensitivity 0.499∗∗∗

agreementethnicity 0.251∗∗∗

agreementgender 0.208∗∗∗

label 1.788∗∗∗

intercept 0.439∗∗∗ 0.545∗∗∗

observations 219359 219359
pseudo R2 0.015 0.213

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 2: Logistic regression of LLM–human alignment.
Model 1 (left) explains whether an LLM chooses the
same label as a human annotator by regressing over the
annotator’s gender (vs. man as the reference level), eth-
nicity (vs. White), and the annotated document’s dataset
(vs. AwA), encoded as indicator variables. Model 2
(right) additionally accounts for potential confounders:
the document’s difficulty, the annotator’s sensitivity, and
the agreement of the annotator with other annotators of
the same gender and ethnicity, as well as the annotator’s
label as a control variable to account for the LLM’s
overall label skew.

6 Discussion and Conclusions

Our findings corroborate some of the previous re-
sults on demographic biases in LLMs’ offensive-
ness ratings. In line with Sun et al. and Schäfer
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et al., LLMs consistently align better with White
than Black annotators. This bias replicates across
datasets and is measurable even when accounting
for several confounders. However, our system-
atic analysis offer a nuanced picture compared
to past single-dataset studies. Apparent demo-
graphic biases such as those based on annotators’
gender (Sun et al., 2023) or the Asian American
demographic (Santy et al., 2023), are statistically
significant but contradictory in different datasets.
We show that LLM–human alignment may appear
associated with annotators’ demographics, when
in fact it may be due to factors that are distributed
inconsistently across demographics and datasets.

Implications for Demographic Alignment in
Data Annotation. LLMs showed consistently
worse alignment with Black people’s annotations
of offensiveness. Therefore, we echo the warn-
ings about the potential negative consequences of
using LLM-generated annotations without under-
standing whose points of view they reinforce or
neglect (Santy et al., 2023). However, given in-
consistent alignment with any other demographic
factor, we caution against narratives that anthropo-
morphize LLMs and essentialize annotators.

Recommendations for Measuring Misalign-
ment. Our results show that measuring demo-
graphic biases in a single dataset can produce un-
reliable results. Systematic benchmarking across
multiple datasets, coupled with replication and
meta-analytical studies, is essential to support gen-
eral claims about demographic bias. Moreover,
including confounding variables in analyses is cru-
cial to distinguish between demographic bias and
other sources of LLM-human alignment.

The heterogeneity of results also underscores the
need for datasets with greater demographic repre-
sentation, more redundant labeling, and increased
data diversity (Fleisig et al., 2024). While acknowl-
edging the practical and financial constraints of
building such datasets, our research provides in-
sights into strategic approaches for enhancing data
quality. Specifically, we emphasize the importance
of accounting for confounders, such as document
difficulty and the sensitivity of individual annota-
tors, in their interplay with annotator demographics.
Since, at present, such confounders only emerge
at the end of the annotation process, we see an op-
portunity for developing annotation solutions that
dynamically adjust annotator recruitment and docu-
ment assignment in response to emerging patterns.

Finally, while sociodemographic prompting has

had some success in simulating human samples (Ar-
gyle et al., 2023), it might not have the same suc-
cess in simulating human annotators. But, this is
not necessarily an indication of unrepresentativity
of LLMs (though it is possible LLMs are, in fact,
unrepresentative). In line with past research on
demographic variation in annotation (Orlikowski
et al., 2023), it is crucial to explore whether dif-
ferent demographics correlate with confounding
factors, as humans do not conduct content analysis
solely driven by their demographic identity. This
leads to unexplained variation and misalignment
with LLM labels when sociodemographic variables
are the only ones considered.

7 Limitations

Our study has several limitations that point to op-
portunities for future work. The analysis is re-
stricted to the English language, which limits the
applicability of our findings across languages with
different cultural nuances and linguistic structures.
Additionally, our focus on demographic factors
like gender and race provides only a partial view of
potential biases, possibly overlooking other demo-
graphic characteristics that may influence align-
ment patterns. Our analysis is limited to three
models consisting of two proprietary one (GPT-4o
mini and Gemini 1.5 Flash) and one open-source
model (Solar 10.7b-instruct), due to the budget and
resource constraints in an academic setting. To
address the need for broader model coverage, we
extended the analysis by testing three additional
models—Claude 3.5 Sonnet, Mistral 7b-instruct,
and Llama 3.1 8b-instruct—on two of the five
datasets, AwA and POPQ. The results, presented
in the appendix, align closely with the patterns ob-
served in our main analysis. Further exploration of
additional models or alternative configurations of
the same models, such as different hyperparameter
settings (e.g., temperature), could provide deeper
insights into alignment patterns. Regarding con-
founders, although we accounted for factors such
as document difficulty and annotator sensitivity,
other factors like the target of offensive language,
could further enhance our model. Finally, we only
assess the biases associated with default prompting,
i.e., prompting without sociodemographic signals.
While other researchers have looked into sociode-
mographic prompting (Beck et al., 2023; Sun et al.,
2023; Schäfer et al., 2024), it is important to con-
sider the default case in detail since in real-world
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settings, all relevant demographic variables may
not be known a priori. Indeed, most recent work
benchmarking the use of LLMs for content labeling
do so without sociodemographic prompting (Gi-
lardi et al., 2023; Ziems et al., 2024).

8 Ethics Statement

As language technologies become widely used
for algorithmic decision-making, such as using
NLP techniques for detecting offensive content
as a type of content moderation tool, there are
growing concerns about these technology’s biases
against marginalized populations; populations who
are themselves most susceptible to receiving of-
fensive attacks on platforms. In this work, we as-
sess one aspect of such bias in the latest genera-
tion of language technology — demographic mis-
alignment in prompt-based Large Language Mod-
els. Our findings across multiple datasets show
that current LLMs have varying and inconsistent
alignment with different demographics, but have
especially lower alignment with Black people, and
for offensive and potentially offensive content.

While current work has assessed the utility of
including demographic information in prompts to
induce personas (“demographic steering”) (San-
turkar et al., 2023), also in the context of data an-
notation (Sun et al., 2023; Beck et al., 2023), the
preliminary results indicate that this type of steer-
ing does not improve alignment. Therefore, we
need to assess further strategies such as fine-tuning
(instruction or otherwise), Retrieval Augmented
Generation, or even pre-training to address this
misalignment.

We use five openly available datasets in our ex-
periments, where the creators of these datasets
made annotator demographics available along with
the distribution of annotator labels (Sun et al., 2023;
Sap et al., 2020; Kennedy et al., 2020). All of
the annotator data released by these authors are
anonymized and we do not attempt to deanonymize
any of the annotators. While we attempted to in-
clude understudied demographic identities in this
work, we only consider men and women within
our gender variables. This is because the annota-
tions of other genders (non-binary people) were
significantly fewer and could not be quantitatively
modeled. However, it is important to represent
gender minorities when assessing the alignment
of LLMs, especially when they are used to label
offensive content targeting these groups. We hope

to address this in future work by having a larger
and more diverse pool of annotators.

While the results of our work indicate the need
for strategies to improve alignment, there are also
concerns of demographic essentialization and eco-
logical fallacies (Orlikowski et al., 2023); their
demographic identity could be one of the many
factors affecting an annotator’s perception of offen-
siveness. Other important factors to consider could
be lived experiences, particularly past experiences
with harassment. In future work, we hope to disen-
tangle demographic and individual patterns when
annotating content and devise ways of incorporat-
ing these into LLMs.

Not least, the premise for demographic analyses
is the categorization of humans into demographic
groups. These groups afford comparisons between
individuals and data collections—and indeed, the
harmonization of demographic descriptors of an-
notators across multiple datasets is one of the con-
tributions of the present work. Yet, we stress that
the choice of how to categorize humans into demo-
graphic groups is subjective, culturally dependent,
and ultimately the outcome of a construction pro-
cess; demographic grouping necessarily overlooks
an irreducible variety of identities and experiences.
The outlook of this work is to not to reinforce the
validity of the demographic categories included in
this study, but to problematize general claims made
about them.

8.1 Reproducibility
Our analysis relies on five distinct datasets, with
four freely accessible through public repositories.
The fifth dataset AwA (Annotators with Attitude)
can be obtained through a formal request to the
original authors. We used three proprietary models
gpt-4o-mini-2024-07-18 (temperature 1.0), gemini-
1.5-flash-002 (temperature 1.0), and claude-3-5-
sonnet-20240620 (temperature 1.0), all of which
can be accessed from OpenAI, Google and An-
thropic’s APIs. Regarding the open-source models,
we used solar:10.7b instruct-v1-q8_0, mistral:7b-
instruct-fp16, and llama3.1:8b-instruct-q8_0 (tem-
perature 0.8) through Ollama and then run the in-
ference on a Linux 64-bit system equipped with
an NVIDIA GeForce RTX 3090 GPU. The exact
prompts that we used for all LLMs are included
in the appendix (Table 10). The code to run the
experiments is available at llm-demographic-bias
repository on Github.
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A Dataset Details and Demographic
Distribution

Here, we provided a more detailed summary of the
5 different datasets used in this work.

The “Annotator with Attitudes” (AwA)
dataset (Sap et al., 2021) curates a dataset on poten-
tially offensive content targeting Black people. We
use their Breadth-of-Posts dataset, which contains
626 posts annotated by 177 annotators, totaling
3,349 annotations from different genders, ethnici-
ties, and political backgrounds. Annotators were
asked to rate how much they perceived each post
as toxic, hateful, disrespectful, or offensive on a

5-point Likert scale, ranging from 1 (not at all)
to 5 (very much so). To remain consistent across
datasets, we use the annotators’ gender and ethnic-
ity as demographic variables.

UC Berkeley’s Measuring Hate Speech Cor-
pus (MHSC) (Kennedy et al., 2020) contains
90,174 annotations from 7,725 annotators on
39,263 online comments. The metric used for com-
parison was the “hatespeech” ordinal label of each
comment measuring the identified severity on a
three-level scale: yes, no, and unclear.

We used the NLPositionality (NLPos)
dataset (Santy et al., 2023), which was originally
used for the hate speech detection task in their
paper. This dataset contains annotations from 412
annotators on 299 posts, totaling 4,417 annotations.
Annotators were asked to evaluate an instance
using a 3-point scale.

The POPQUORN dataset (Pei and Jurgens,
2023) (POPQ) contains 12,088 annotations on
1,500 online comments from 243 annotators from
a sample of the US adult population that was repre-
sentative based on age, gender, and ethnicity. An-
notators were asked to provide an offensiveness
score of each text sample on a 1-5 scale, from “Not
offensive at all” to “Very offensive”, gathered from
annotators through a multiple-choice task.

The Social Bias Inference Corpus (Sap et al.,
2020), referred to as SBIC, contains 109,349 anno-
tations on 44,232 online posts from 280 annotators.
The dataset is acknowledged by its creators to be
racially skewed, with a vast majority of annotators
being White and nearly none being both Black and
male. Annotators were asked to evaluate whether
each post could be considered offensive, disrespect-
ful, or toxic to anyone/someone, with the following
valid response options: 1 (Yes, this could be of-
fensive), 2 (Maybe, I’m not sure), 3 (No, this is
harmless), and 4 (I don’t understand the post).

Naturally, a major factor determining the sub-
jective offensiveness of a particular statement is
the group or individual targeted by said statement.
Therefore, we reasoned that demographic factors
most frequently targeted by offensive statements
were likely to have major effects on the perception
of offensiveness, providing valuable insights in de-
termining potential alignment. Considering avail-
able annotator data regarding targeted groups, it be-
came clear that ethnicity and gender were the two
most significant factors represented in targeted lan-
guage. 11.7% and 7.6% of SBIC annotations noted
targeted language towards Black folks and women
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respectively - figures around twice those corre-
sponding to any other group. In MHSC, 35.7%
of annotations indicated offensive language target-
ing a racial group and 29.8% targeted a gender,
with 20.6% targeting women and 16.9% targeting
Black people specifically. In contrast, age groups
were targeted to a much lesser degree (1.5% of
Hate Speech annotations), displaying less evidence
supporting its status as a largely influential factor.
Overall, offensive language was shown to target
racial and gender demographic groups, specifically
Black people and women, indicating a high like-
lihood that annotator ethnicity and gender would
have significant influences on the variable percep-
tion of offensive statements.
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Figure 4: (Majority vote) Comparison of model correla-
tions with human annotators against human agreement
(individual annotators with their peers). The ground
truth for each post is determined by the majority vote of
annotators’ labels. For human agreement, correlations
are measured by leaving out one annotator and compar-
ing their labels to the ground truth from the remaining
annotators. Error bars represent 95% CIs.
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Figure 5: (Average vote) Comparison of model correla-
tions with human annotators against human agreement
(individual annotators with their peers). The ground
truth for each post is determined by the average vote of
annotators’ labels. For human agreement, correlations
are measured by leaving out one annotator and compar-
ing their labels to the ground truth from the remaining
annotators. Error bars represent 95% CIs.
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Paper Models Datasets Tasks Demog. Prompt Findings for Default Prompting

Beck et al. (2023) G3, T5,
O, P

several se, st,
ol, hs

g, r, a, e,
p

def+dem does not test default alignment

Giorgi et al. (2024) L3, P,
S10, St

MHSC hs g, r, a, e,
re, s, i

dem N/A

Hu and Collier
(2024)

G4, G35,
L2, T

several se, st,
ol, hs,
sa

g, r, l, e,
n, a, re,
p

def+dem does not test default alignment

Movva et al. (2024) G4 D st r, g def no clear alignment
Santy et al. (2023) G4 NLPos hs, sa g, r, l, e,

n, a, re
def for hate speech: better alignment

with Asian-Americans than White
Schäfer et al. (2024) G4o, C POPQ ol, po r, g, a, e,

o
def+dem better alignment with White than

Black people
Sun et al. (2023) FT, FU,

G35, G4
POPQ ol, po r, g def+dem best alignment with White people

and women

Ours G4o, G,
SI

several ol, hs r, g def better alignment with White than
Black people

Table 3: Summary of recent research on LLMs’ annotations and their demographic alignment with hu-
mans. Model abbreviations: L2=LlaMa-2, L3=Llama-3, P=Phi-3, St=Starling-LM, T=Tulu, FU=FLAN-UL2,
FT=FLAN-T5-XXL, G3=GPT-3, G35=GPT-3.5, G4=GPT-4, G4o=GPT4o, C=Claude, T5=T5, O=OPT, P=Pythia,
S10=SOLAR-10, SI=Solar-Instruct. Dataset abbreviation: MHSC=Measuring Hate Speech, POPQ=POPQUORN,
NLPos=NLPositionality, D=DICES. Task abbreviations: se=sentiment, st=stance, ol=offensive language, hs=hate
speech, sa=social acceptability, po=politeness, st=safety. Demographic variable abbreviations: g=gender, r=race,
l=location, e=education, n=native language, a=age, re=religion, p=political leaning, s=sexuality, i=ideology,
o=occupation. Prompt abbreviations: def=default, dem=demographic prompting.
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Figure 6: (Average vote) Results of a permutation test comparing Pearson correlation coefficients between model
outputs and human annotator labels across demographic groups and datasets. Ground truth labels are based on the
average of annotations from people in the target demographic. Each row shows results for a model, with observed
correlations marked as red crosses and the null distribution from 1,000 random label permutations shown as scatter
points. For the Solar model in the NLPos dataset, a few cases in the Asian, Black, and Hispanic demographics
have higher correlations in the null distribution than the observed ones. In all other cases, observed correlations are
consistently higher than shuffled ones.
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Figure 7: (Majority vote) Pearson correlation coefficients between model outputs and human annotator labels,
broken down by gender (a) and ethnicity (b) across five datasets.The ground truth for each post is determined by the
majority vote of annotators from the target demographic. Darker shades indicate stronger correlations. Confidence
intervals and p-values for statistical significance are reported in Table 7 in the appendix.
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Figure 8: (Majority vote) The 95% confidence intervals (CI) for the difference in correlation between the model’s
predictions and two demographic groups, computed as: ∆r = r(P,D1)−r(P,D2), where P represents the model’s
predictions, and D1 and D2 are two demographic groups. Ground truth for each post is determined by the majority
vote of annotators’ labels. The intervals are derived from 1,000 bootstrap samples. If the CI includes zero, the
difference is not statistically significant. See table 9 in the appendix for further details.
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Figure 9: (Majority vote) Results of a permutation test comparing Pearson correlation coefficients between model
outputs and human annotator labels across demographic groups and datasets. Ground truth is determined by the
majority vote of annotators’ labels. Each row shows results for a model, with observed correlations marked as
red crosses and the null distribution from 1,000 random label permutations shown as scatter points. For the Solar
model in the NLPos dataset, a few cases in the Asian, Black, and Hispanic demographics have higher correlations in
the null distribution than the observed ones. In all other cases, observed correlations are consistently higher than
shuffled ones.
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Figure 10: Pearson correlation coefficients between model outputs and human annotator labels, broken down by
gender (a) and ethnicity (b) across two datasets.The ground truth for each post is determined by the average vote of
annotators from the target demographic. Darker shades indicate stronger correlations. Confidence intervals and
p-values for statistical significance are reported in Table 11 in the appendix.
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Figure 11: The 95% confidence intervals (CI) for the difference in correlation between the model’s predictions and
two demographic groups, computed as: ∆r = r(P,D1)− r(P,D2), where P represents the model’s predictions,
and D1 and D2 are two demographic groups. The intervals are derived from 1,000 bootstrap samples. If the CI
includes zero, the difference is not statistically significant. See table 12 for further details.
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GPT model 1 model 2

dataset=popq −0.320∗∗∗ −0.407∗∗∗

dataset=nlpos 1.075∗∗∗ 1.560∗∗∗

dataset=sbic 0.802∗∗∗ 1.025∗∗∗

dataset=mhsc 0.843∗∗∗ 1.062∗∗∗

gender=woman −0.021∗ −0.042∗∗∗

ethnicity=asian −0.175∗∗∗ −0.111∗∗∗

ethnicity=black −0.071∗∗∗ −0.104∗∗∗

ethnicity=hispanic 0.049∗ −0.028
difficulty −1.870∗∗∗

sensitivity 0.566∗∗∗

agreementethnicity 0.276∗∗∗

agreementgender 0.136∗∗∗

label 1.851∗∗∗

intercept 0.439∗∗∗ 0.559∗∗∗

observations 219359 219359
pseudo R2 0.015 0.213

Gemini

dataset=popq −0.220∗∗∗ −0.269∗∗∗

dataset=nlpos 1.062∗∗∗ 1.418∗∗∗

dataset=sbic 0.473∗∗∗ 0.545∗∗∗

dataset=mhsc 0.711∗∗∗ 0.847∗∗∗

gender=woman −0.032∗∗∗ −0.053∗∗∗

ethnicity=asian −0.183∗∗∗ −0.106∗∗∗

ethnicity=black −0.035∗ −0.030
ethnicity=hispanic 0.031 −0.001
difficulty −1.751∗∗∗

sensitivity 0.522∗∗∗

agreementethnicity 0.099∗∗∗

agreementgender −0.002
label 1.400∗∗∗

intercept 0.268∗∗∗ 0.297∗∗∗

observations 219359 219359
pseudo R2 0.010 0.166

Solar

dataset=popq −0.956∗∗∗ −1.175∗∗∗

dataset=nlpos 0.436∗∗∗ 0.414∗∗∗

dataset=sbic 0.532∗∗∗ 0.810∗∗∗

dataset=mhsc 0.512∗∗∗ 0.890∗∗∗

gender=woman 0.026∗∗ −0.014
ethnicity=asian −0.215∗∗∗ −0.106∗∗∗

ethnicity=black −0.073∗∗∗ −0.135∗∗∗

ethnicity=hispanic 0.102∗∗∗ 0.046
difficulty −1.211∗∗∗

sensitivity 0.454∗∗∗

agreementethnicity 0.206∗∗∗

agreementgender 0.101∗∗∗

label 2.853∗∗∗

intercept −0.308∗∗∗ −0.370∗∗∗

observations 219359 219359
pseudo R2 0.016 0.286

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 4: (Majority vote) Logistic regression of align-
ment for all three models using the methodology de-
scribed in 4.5. The results indicate a similar trend, where
confounders explain more variation in alignment pat-
terns compared to demographic traits alone.

Gemini model 1 model 2
dataset=popq −0.220∗∗∗ −0.269∗∗∗

dataset=nlpos 1.062∗∗∗ 1.418∗∗∗

dataset=sbic 0.473∗∗∗ 0.546∗∗∗

dataset=mhsc 0.711∗∗∗ 0.848∗∗∗

gender=woman −0.032∗∗∗ −0.048∗∗∗

ethnicity=asian −0.183∗∗∗ −0.103∗∗∗

ethnicity=black −0.035∗ −0.025
ethnicity=hispanic 0.031 0.002
difficulty −1.692∗∗∗

sensitivity 0.513∗∗∗

agreementethnicity 0.058∗∗∗

agreementgender 0.105∗∗∗

label 1.390∗∗∗

intercept 0.268∗∗∗ 0.295∗∗∗

observations 219359 219359
pseudo R2 0.010 0.166

Solar
dataset=popq −0.956∗∗∗ −1.164∗∗∗

dataset=nlpos 0.436∗∗∗ 0.427∗∗∗

dataset=sbic 0.532∗∗∗ 0.807∗∗∗

dataset=mhsc 0.512∗∗∗ 0.885∗∗∗

gender=woman 0.026∗∗ −0.010
ethnicity=asian −0.215∗∗∗ −0.149∗∗∗

ethnicity=black −0.073∗∗∗ −0.177∗∗∗

ethnicity=hispanic 0.102∗∗∗ −0.006
difficulty −0.999∗∗∗

sensitivity 0.448∗∗∗

agreementethnicity 0.351∗∗∗

agreementgender 0.256∗∗∗

label 2.848∗∗∗

intercept −0.308∗∗∗ −0.386∗∗∗

observations 219359 219359
pseudo R2 0.016 0.288

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 5: (Average vote) Logistic regression of LLM–
human alignment for Gemini (top) and Solar (bottom).
For each LLM, model 1 (left) explains whether the LLM
chooses the same label as a human annotator by regress-
ing over the annotator’s gender (vs. man as the refer-
ence level ), ethnicity (vs. White), and the annotated
document’s dataset (vs. AwA), encoded as indicator
variables. Model 2 (right) additionally accounts for
potential confounders: the document’s difficulty, the an-
notator’s sensitivity, and the agreement of the annotator
with other annotators of the same gender and ethnicity,
as well as the annotator’s label as a control variable to
account for the LLM’s overall label skew.
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Demo. Model
AwA MHSC NLPos POPQ SBIC

Corr. 95% CI Corr. 95% CI Corr. 95% CI Corr. 95% CI Corr. 95% CI

Overall
GPT 0.83∗ (0.80, 0.85) 0.47∗ (0.46, 0.48) 0.70∗ (0.64, 0.76) 0.67∗ (0.64, 0.70) 0.60∗ (0.59, 0.60)
Gemini 0.85∗ (0.82, 0.87) 0.47∗ (0.46, 0.47) 0.65∗ (0.57, 0.71) 0.60∗ (0.56, 0.63) 0.49∗ (0.48, 0.49)
Solar 0.79∗ (0.76, 0.82) 0.45∗ (0.44, 0.46) 0.24∗ (0.13, 0.34) 0.48∗ (0.43, 0.53) 0.59∗ (0.58, 0.60)

Man
GPT 0.76∗ (0.72, 0.79) 0.44∗ (0.43, 0.45) 0.63∗ (0.56, 0.69) 0.58∗ (0.55, 0.61) 0.59∗ (0.58, 0.60)
Gemini 0.78∗ (0.74, 0.81) 0.43∗ (0.42, 0.44) 0.55∗ (0.47, 0.63) 0.49∗ (0.46, 0.53) 0.48∗ (0.47, 0.49)
Solar 0.69∗ (0.64, 0.73) 0.41∗ (0.40, 0.42) 0.26∗ (0.15, 0.36) 0.40∗ (0.35, 0.46) 0.58∗ (0.57, 0.59)

Woman
GPT 0.77∗ (0.74, 0.80) 0.46∗ (0.45, 0.47) 0.67∗ (0.60, 0.73) 0.61∗ (0.58, 0.64) 0.56∗ (0.55, 0.57)
Gemini 0.80∗ (0.77, 0.83) 0.45∗ (0.44, 0.46) 0.60∗ (0.52, 0.67) 0.52∗ (0.48, 0.56) 0.45∗ (0.45, 0.46)
Solar 0.73∗ (0.69, 0.77) 0.44∗ (0.43, 0.45) 0.27∗ (0.16, 0.37) 0.42∗ (0.36, 0.47) 0.55∗ (0.55, 0.56)

Asian
GPT – – 0.39∗ (0.36, 0.41) 0.65∗ (0.57, 0.71) 0.48∗ (0.42, 0.53) 0.49∗ (0.48, 0.51)
Gemini – – 0.38∗ (0.36, 0.41) 0.55∗ (0.46, 0.63) 0.41∗ (0.35, 0.47) 0.38∗ (0.36, 0.41)
Solar – – 0.38∗ (0.36, 0.41) 0.18∗ (0.06, 0.29) 0.30∗ (0.21, 0.38) 0.48∗ (0.46, 0.50)

Black
GPT 0.72∗ (0.68, 0.76) 0.42∗ (0.40, 0.44) 0.41∗ (0.28, 0.53) 0.42∗ (0.37, 0.47) 0.45∗ (0.43, 0.47)
Gemini 0.76∗ (0.72, 0.79) 0.41∗ (0.40, 0.43) 0.35∗ (0.22, 0.48) 0.36∗ (0.30, 0.41) 0.37∗ (0.35, 0.40)
Solar 0.69∗ (0.65, 0.73) 0.40∗ (0.38, 0.42) 0.13 (−0.01, 0.27) 0.27∗ (0.19, 0.34) 0.44∗ (0.42, 0.47)

Hispanic
GPT – – 0.43∗ (0.40, 0.46) 0.59∗ (0.50, 0.67) – – 0.61∗ (0.60, 0.63)
Gemini – – 0.41∗ (0.38, 0.44) 0.50∗ (0.39, 0.59) – – 0.50∗ (0.48, 0.52)
Solar – – 0.41∗ (0.39, 0.44) 0.16∗ (0.03, 0.28) – – 0.58∗ (0.57, 0.60)

White
GPT 0.80∗ (0.78, 0.83) 0.47∗ (0.46, 0.48) 0.66∗ (0.59, 0.72) 0.67∗ (0.65, 0.70) 0.59∗ (0.59, 0.60)
Gemini 0.82∗ (0.79, 0.84) 0.46∗ (0.45, 0.47) 0.62∗ (0.54, 0.68) 0.59∗ (0.56, 0.62) 0.48∗ (0.48, 0.49)
Solar 0.76∗ (0.72, 0.79) 0.44∗ (0.44, 0.45) 0.27∗ (0.16, 0.37) 0.48∗ (0.42, 0.52) 0.59∗ (0.58, 0.59)

Table 6: (Average vote) Correlation results across datasets, models, and demographics, with ground truth determined
by averaging labels from annotators within the target demographic. ∗ indicates statistical significance at p-value <
0.05 (corrected for multiple comparisons).

Demo. Model
AwA MHSC NLPos POPQ SBIC

Corr. 95% CI Corr. 95% CI Corr. 95% CI Corr. 95% CI Corr. 95% CI

Overall
GPT 0.83∗ (0.80, 0.86) 0.47∗ (0.46, 0.48) 0.70∗ (0.64, 0.76) 0.55∗ (0.51, 0.59) 0.59∗ (0.58, 0.60)
Gemini 0.86∗ (0.84, 0.88) 0.44∗ (0.44, 0.45) 0.60∗ (0.52, 0.67) 0.46∗ (0.41, 0.50) 0.47∗ (0.46, 0.48)
Solar 0.78∗ (0.75, 0.82) 0.43∗ (0.42, 0.44) 0.15∗ (0.04, 0.27) 0.39∗ (0.33, 0.45) 0.58∗ (0.58, 0.59)

Man
GPT 0.80∗ (0.76, 0.83) 0.44∗ (0.43, 0.45) 0.67∗ (0.60, 0.73) 0.54∗ (0.50, 0.58) 0.60∗ (0.60, 0.61)
Gemini 0.82∗ (0.79, 0.85) 0.42∗ (0.41, 0.43) 0.58∗ (0.50, 0.65) 0.44∗ (0.40, 0.49) 0.49∗ (0.48, 0.50)
Solar 0.73∗ (0.68, 0.77) 0.41∗ (0.40, 0.42) 0.18∗ (0.06, 0.29) 0.41∗ (0.34, 0.47) 0.59∗ (0.58, 0.60)

Woman
GPT 0.81∗ (0.77, 0.84) 0.47∗ (0.46, 0.48) 0.68∗ (0.61, 0.74) 0.55∗ (0.51, 0.59) 0.57∗ (0.56, 0.58)
Gemini 0.83∗ (0.80, 0.86) 0.45∗ (0.44, 0.46) 0.61∗ (0.53, 0.68) 0.43∗ (0.38, 0.47) 0.46∗ (0.45, 0.47)
Solar 0.76∗ (0.72, 0.80) 0.43∗ (0.42, 0.44) 0.17∗ (0.05, 0.28) 0.37∗ (0.30, 0.44) 0.56∗ (0.56, 0.57)

Asian
GPT – – 0.39∗ (0.37, 0.41) 0.70∗ (0.63, 0.76) 0.46∗ (0.40, 0.52) 0.49∗ (0.48, 0.51)
Gemini – – 0.39∗ (0.36, 0.41) 0.64∗ (0.55, 0.71) 0.38∗ (0.32, 0.45) 0.38∗ (0.36, 0.40)
Solar – – 0.38∗ (0.36, 0.41) 0.20∗ (0.07, 0.32) 0.30∗ (0.21, 0.39) 0.48∗ (0.46, 0.50)

Black
GPT 0.81∗ (0.77, 0.84) 0.42∗ (0.40, 0.44) 0.46∗ (0.32, 0.58) 0.43∗ (0.37, 0.49) 0.45∗ (0.43, 0.48)
Gemini 0.85∗ (0.81, 0.88) 0.42∗ (0.40, 0.44) 0.42∗ (0.28, 0.54) 0.34∗ (0.27, 0.40) 0.37∗ (0.35, 0.40)
Solar 0.76∗ (0.71, 0.80) 0.40∗ (0.38, 0.42) 0.15 (−0.01, 0.30) 0.26∗ (0.17, 0.34) 0.45∗ (0.42, 0.47)

Hispanic
GPT – – 0.43∗ (0.40, 0.46) 0.65∗ (0.56, 0.72) – – 0.62∗ (0.60, 0.63)
Gemini – – 0.41∗ (0.38, 0.44) 0.51∗ (0.40, 0.61) – – 0.50∗ (0.49, 0.52)
Solar – – 0.41∗ (0.39, 0.44) 0.17∗ (0.03, 0.30) – – 0.59∗ (0.57, 0.60)

White
GPT 0.84∗ (0.81, 0.86) 0.47∗ (0.46, 0.48) 0.69∗ (0.62, 0.75) 0.56∗ (0.52, 0.59) 0.60∗ (0.59, 0.61)
Gemini 0.84∗ (0.81, 0.87) 0.45∗ (0.44, 0.46) 0.60∗ (0.51, 0.67) 0.46∗ (0.42, 0.50) 0.48∗ (0.47, 0.49)
Solar 0.78∗ (0.74, 0.82) 0.43∗ (0.42, 0.44) 0.21∗ (0.09, 0.32) 0.39∗ (0.33, 0.45) 0.59∗ (0.59, 0.60)

Table 7: (Majority vote) Correlation results across datasets, models, and demographics, with ground truth determined
by the majority vote of annotators’ labels. ∗ indicates statistical significance at p-value < 0.05 (corrected for multiple
comparisons).
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Demo. Pair Model AwA MHSC NLPos POPQ SBIC

Man - Woman
GPT (-0.06, 0.02) (-0.04, -0.01)∗∗ (-0.11, 0.03) (-0.07, 0.01) (0.02, 0.03)∗∗

Gemini (-0.07, 0.01) (-0.04, -0.01)∗∗ (-0.13, 0.03) (-0.07, 0.02) (0.02, 0.03)∗∗

Solar (-0.09, -0.01)∗ (-0.05, -0.02)∗∗ (-0.09, 0.07) (-0.07, 0.04) (0.01, 0.03)∗∗

Black - White
GPT (-0.12, -0.05)∗∗ (-0.09, -0.04)∗∗ (-0.34, -0.09)∗∗ (-0.29, -0.19)∗∗ (-0.13, -0.09)∗∗

Gemini (-0.10, -0.01)∗∗ (-0.08, -0.03)∗∗ (-0.38, -0.10)∗∗ (-0.29, -0.18)∗∗ (-0.10, -0.06)∗∗

Solar (-0.11, -0.02)∗∗ (-0.06, -0.02)∗∗ (-0.28, -0.05) (-0.28, -0.14)∗∗ (-0.13, -0.09)∗∗

Asian - Black
GPT – (-0.18, -0.01)∗ (0.09, 0.38)∗∗ (0.03, 0.23)∗ (0.04, 0.16)∗

Gemini – (-0.18, -0.01) (0.08, 0.39)∗∗ (0.00, 0.19) (-0.02, 0.09)
Solar – (-0.14, -0.01) (-0.08, 0.20) (-0.07, 0.16) (0.03, 0.15)

Asian - Hispanic
GPT – (-0.16, 0.03) (-0.01, 0.20) – (-0.12, -0.03)∗∗

Gemini – (-0.19, 0.03) (0.03, 0.26)∗ – (-0.14, -0.06)∗∗

Solar – (-0.20, 0.03) (-0.11, 0.12) – (-0.13, -0.04)∗∗

Asian - White
GPT – (-0.11, -0.05)∗∗ (-0.10, 0.06) (-0.27, -0.14)∗∗ (-0.07, -0.05)∗∗

Gemini – (-0.09, -0.02)∗∗ (-0.15, 0.02) (-0.26, -0.13)∗∗ (-0.08, -0.05)∗∗

Solar – (-0.08, -0.03)∗∗ (-0.19, -0.00) (-0.26, -0.08)∗∗ (-0.06, -0.04)∗∗

Black - Hispanic
GPT – (-0.11, 0.05) (-0.36, -0.02) – (-0.25, -0.12)∗∗

Gemini – (-0.12, 0.06) (-0.34, 0.01) – (-0.19, -0.08)∗∗

Solar – (-0.12, 0.02) (-0.22, 0.14) – (-0.23, -0.09)∗∗

Hispanic - White
GPT – (-0.08, -0.01)∗ (-0.15, 0.07) – (0.02, 0.04)∗∗

Gemini – (-0.08, -0.01) (-0.23, -0.00) – (0.02, 0.04)∗∗

Solar – (-0.06, 0.00) (-0.23, -0.01) – (-0.01, 0.02)

Table 8: (Average vote) The 95% confidence intervals (CI) for the difference in correlation between the model’s
predictions and two demographic groups, computed as: ∆r = r(P,D1)−r(P,D2), where P represents the model’s
predictions, and D1 and D2 are two demographic groups. Ground truth for each post is determined by averaging
the labels from annotators in the target demographic. The CIs are based on 1000 bootstrap samples. p-values were
computed using Steiger’s Z test and corrected for multiple comparisons with Holm’s method. Significance levels
are indicated by asterisks: *p < 0.1, **p < 0.05
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Demo. Pair Model AwA MHSC NLPos POPQ SBIC

Man - Woman
GPT (-0.06, 0.02) (-0.04, -0.01)∗∗ (-0.08, 0.07) (-0.05, 0.07) (0.02, 0.03)∗∗

Gemini (-0.08, 0.02) (-0.04, -0.01)∗∗ (-0.12, 0.03) (-0.02, 0.09) (0.02, 0.03)∗∗

Solar (-0.09, 0.00) (-0.04, -0.02)∗∗ (-0.06, 0.08) (-0.01, 0.13) (0.02, 0.03)∗∗

Black - White
GPT (-0.07, 0.00)∗ (-0.07, -0.02)∗∗ (-0.31, -0.01)∗ (-0.19, -0.03)∗∗ (-0.10, -0.06)∗∗

Gemini (-0.07, 0.00)∗ (-0.05, -0.00) (-0.27, 0.03) (-0.19, -0.05)∗∗ (-0.07, -0.03)∗∗

Solar (-0.07, 0.00) (-0.03, 0.01) (-0.21, 0.04) (-0.24, -0.05)∗ (-0.10, -0.05)∗∗

Asian - Black
GPT – (-0.18, -0.02)∗ (0.06, 0.42)∗∗ (0.00, 0.23) (0.03, 0.16)∗

Gemini – (-0.20, -0.02) (0.01, 0.38) (-0.01, 0.21) (-0.03, 0.08)
Solar – (-0.14, -0.00) (-0.05, 0.25) (-0.06, 0.23) (0.02, 0.14)∗

Asian - Hispanic
GPT – (-0.17, 0.05) (-0.04, 0.20) – (-0.12, -0.04)∗∗

Gemini – (-0.20, 0.02) (0.06, 0.29)∗∗ – (-0.14, -0.06)∗∗

Solar – (-0.19, 0.01) (-0.09, 0.12) – (-0.13, -0.04)∗∗

Asian - White
GPT – (-0.09, -0.03)∗∗ (-0.09, 0.08) (-0.16, 0.01) (-0.03, -0.01)∗

Gemini – (-0.07, -0.01) (-0.05, 0.12) (-0.18, -0.02) (-0.03, -0.01)∗

Solar – (-0.06, -0.00) (-0.12, 0.03) (-0.20, 0.01) (-0.04, -0.01)∗

Black - Hispanic
GPT – (-0.11, 0.05) (-0.37, 0.03) – (-0.23, -0.11)∗∗

Gemini – (-0.11, 0.06) (-0.26, 0.15) – (-0.19, -0.06)∗∗

Solar – (-0.11, 0.02) (-0.25, 0.10) – (-0.22, -0.09)∗∗

Hispanic - White
GPT – (-0.07, 0.00) (-0.11, 0.12) – (0.04, 0.06)∗∗

Gemini – (-0.06, 0.01) (-0.15, 0.09) – (0.04, 0.07)∗∗

Solar – (-0.04, 0.03) (-0.13, 0.06) – (0.01, 0.04)∗∗

Table 9: (Majority vote) The 95% confidence intervals (CI) for the difference in correlation between the model’s
predictions and two demographic groups, computed as: ∆r = r(P,D1)−r(P,D2), where P represents the model’s
predictions, and D1 and D2 are two demographic groups. Ground truth for each post is determined by the majority
vote of annotators’ labels. The CIs are based on 1000 bootstrap samples. p-values were computed using Steiger’s Z
test and corrected for multiple comparisons with Holm’s method. Significance levels are indicated by asterisks: *p
< 0.1, **p < 0.05
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Dataset Prompt

AwA How much could this post be seen as
toxic/hateful/disrespectful or offensive to anyone,
on a scale from 1 (not at all) to 5 (very much so)?
Valid options: 1, 2, 3, 4, 5. Begin your response
by selecting one of the valid options, then pro-
vide a concise explanation for your rating.

MHSC Does this comment contain hate speech, defined
as “bias-motivated, hostile and malicious lan-
guage targeted at a person/group because of their
actual or perceived innate characteristics, espe-
cially when the group is unnecessarily labeled
(e.g., “jew bankers”, “nâĂŞ hooligans”).” The
comment contains hate speech if slurs or deroga-
tory language are used toward any person or
group regardless of whether or not the target is
a member of the slur-target group. (e.g. a com-
ment calling Trump a faggot or a n***** still
contains hate speech). Valid options are 1 (Yes),
2 (Unclear), 3 (No). Begin your response by men-
tioning one of the valid options, then provide a
concise explanation for your rating.

NLPos Do you think this post is hateful speech? Valid
options are 1 (Yes), 2 (Not sure), 3 (No). Begin
your response by mentioning one of the valid
options, then provide a concise explanation for
your rating.

POPQ Consider you read the above comment on Reddit.
How offensive do you think it is, on a scale from
1 (not offensive at all) to 5 (very offensive)? Valid
options: 1, 2, 3, 4, 5. Begin your response by
selecting one of the valid options, then provide a
concise explanation for your rating.

SBIC Could this post be considered offensive, disre-
spectful, or toxic to anyone/someone? Valid
options are: 1 (Yes, this could be offensive), 2
(Maybe, I’m not sure), 3 (No, this is harmless),
4 (I don’t understand the post). Begin your re-
sponse by mentioning one of the valid options,
then provide a concise explanation for your rat-
ing.

Table 10: Prompts used for inference to annotate com-
ments and posts, based on the original questions and
wording provided to human annotators in each dataset.

Demo. Model
AwA POPQ

Corr. 95% CI Corr. 95% CI

Overall
Claude 0.84∗ (0.82, 0.86) 0.64∗ (0.61, 0.67)
Mistral 0.44∗ (0.37, 0.51) 0.47∗ (0.42, 0.51)
Llama 0.67∗ (0.62, 0.71) 0.44∗ (0.40, 0.48)

Man
Claude 0.78∗ (0.75, 0.81) 0.55∗ (0.51, 0.58)
Mistral 0.40∗ (0.33, 0.47) 0.42∗ (0.37, 0.47)
Llama 0.60∗ (0.55, 0.65) 0.40∗ (0.36, 0.44)

Woman
Claude 0.77∗ (0.74, 0.80) 0.58∗ (0.54, 0.61)
Mistral 0.43∗ (0.35, 0.49) 0.41∗ (0.36, 0.46)
Llama 0.62∗ (0.57, 0.67) 0.38∗ (0.34, 0.43)

Asian
Claude – – 0.45∗ (0.39, 0.50)
Mistral – – 0.34∗ (0.27, 0.41)
Llama – – 0.32∗ (0.25, 0.39)

Black
Claude 0.75∗ (0.72, 0.78) 0.40∗ (0.35, 0.45)
Mistral 0.39∗ (0.32, 0.46) 0.29∗ (0.23, 0.35)
Llama 0.58∗ (0.53, 0.63) 0.29∗ (0.24, 0.35)

White
Claude 0.81∗ (0.78, 0.84) 0.64∗ (0.61, 0.67)
Mistral 0.42∗ (0.34, 0.48) 0.45∗ (0.41, 0.50)
Llama 0.65∗ (0.60, 0.69) 0.44∗ (0.40, 0.48)

Table 11: Correlation results between model predictions
and average votes within each target demographic. ∗

denotes p-values < 0.05 (corrected for multiple compar-
isons).

Demo. Pair Model AWA POPQ

Man - Woman
Claude (-0.03, 0.05) (-0.08, 0.02)
Llama (-0.09, 0.01) (-0.03, 0.06)
Mistral (-0.08, 0.03) (-0.04, 0.06)

Black - White
Claude (-0.10, -0.02)∗∗ (-0.32, -0.20)∗∗

Llama (-0.12, -0.03)∗∗ (-0.21, -0.10)∗∗

Mistral (-0.09, 0.03) (-0.21, -0.08)∗∗

Asian - Black
Claude – (-0.02, 0.19)
Llama – (0.01, 0.20)
Mistral – (0.01, 0.22)

Asian - White
Claude – (-0.27, -0.12)∗∗

Llama – (-0.20, -0.07)∗∗

Mistral – (-0.19, -0.04)∗

Table 12: The 95% confidence intervals (1000 boot-
strap samples) for the difference in correlation between
the model’s predictions and two demographic groups.
p-values were computed using Steiger’s Z test and cor-
rected for multiple comparisons with Holm’s method.
Significance levels are indicated by asterisks: *p < 0.1,
**p < 0.05
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Figure 12: Results of a permutation test comparing Pear-
son correlation coefficients between model outputs and
human annotator labels across demographic groups and
datasets. Ground truth is determined by the majority
vote of annotators’ labels. Each row shows results for a
model, with observed correlations marked as red crosses
and the null distribution from 1,000 random label per-
mutations shown as scatter points.

Claude model 1 model 2

dataset=popq −0.063 −0.074
gender=woman 0.073∗ 0.049
ethnicity=asian −0.036 −0.107
ethnicity=black −0.262∗∗∗ −0.288∗∗∗

difficulty −1.539∗∗∗

sensitivity 0.347∗∗∗

agreementethnicity 0.722∗∗∗

agreementgender 0.981∗∗∗

label −0.242∗∗∗

intercept −0.164∗∗∗ −0.253∗∗∗

observations 15437 15437
pseudo R2 0.002 0.201

Mistral

dataset=popq −0.636∗∗∗ −0.650∗∗∗

gender=woman 0.084∗ 0.038
ethnicity=asian 0.160 0.132
ethnicity=black 0.203∗∗∗ 0.063
difficulty −1.137∗∗∗

sensitivity 0.498∗∗∗

agreementethnicity 0.147∗

agreementgender 0.289∗∗∗

label 1.371∗∗∗

intercept −1.488∗∗∗ −1.675∗∗∗

observations 15437 15437
pseudo R2 0.015 0.108

Llama

dataset=popq −0.724∗∗∗ −0.829∗∗∗

gender=woman −0.059 −0.118∗

ethnicity=asian −0.017 −0.080
ethnicity=black 0.148∗∗ −0.054
difficulty −0.185∗∗∗

sensitivity 0.830∗∗∗

agreementethnicity 0.093
agreementgender 0.288∗∗∗

label 1.278∗∗∗

intercept −1.658∗∗∗ −1.893∗∗∗

observations 15437 15437
pseudo R2 0.018 0.128

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 13: Logistic regression of LLM–human alignment
for Claude, Mistral, and Llama, using the methodology
described in 4.5. The results indicate a similar trend,
where confounders explain more variation in alignment
patterns compared to demographic traits alone.

22046



As
ia

n 
m

an

As
ia

n 
wo

m
an

Bl
ac

k 
m

an

Bl
ac

k 
wo

m
an

Hi
sp

an
ic 

m
an

Hi
sp

an
ic 

wo
m

an

W
hi

te
 m

an

W
hi

te
 w

om
an

AwA
MHSC
NLPos
POPQ
SBIC

0.62 0.71 0.75 0.76
0.4 0.38 0.4 0.42 0.43 0.43 0.44 0.46

0.62 0.56 0.38 0.4 0.58 0.54 0.55 0.64
0.5 0.43 0.28 0.48 0.56 0.58

0.52 0.44 0.45 0.61 0.62 0.59 0.56

GPT-4o mini

As
ia

n 
m

an

As
ia

n 
wo

m
an

Bl
ac

k 
m

an

Bl
ac

k 
wo

m
an

Hi
sp

an
ic 

m
an

Hi
sp

an
ic 

wo
m

an

W
hi

te
 m

an

W
hi

te
 w

om
an

0.68 0.72 0.75 0.78
0.4 0.38 0.4 0.42 0.41 0.41 0.43 0.45

0.54 0.53 0.31 0.35 0.52 0.41 0.47 0.59
0.42 0.36 0.23 0.45 0.5 0.51
0.39 0.35 0.37 0.48 0.51 0.48 0.45

Gemini 1.5 Flash

As
ia

n 
m

an

As
ia

n 
wo

m
an

Bl
ac

k 
m

an

Bl
ac

k 
wo

m
an

Hi
sp

an
ic 

m
an

Hi
sp

an
ic 

wo
m

an

W
hi

te
 m

an

W
hi

te
 w

om
an

0.58 0.67 0.68 0.71
0.38 0.39 0.4 0.4 0.39 0.44 0.41 0.44
0.14 0.17 0.2 0.12 0.16 0.18 0.25 0.25
0.28 0.33 0.16 0.32 0.42 0.38
0.53 0.41 0.43 0.6 0.56 0.57 0.56

Solar-instruct

Figure 13: Pearson correlation coefficients between model outputs and human annotator labels. Confidence intervals
and p-values for statistical significance are reported in study’s Github repository.
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Figure 14: The 95% confidence intervals for the difference in correlation between the model’s predictions and two
intersectional demographic groups. Confidence intervals and p-values for statistical significance are reported in
study’s Github repository.
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