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Abstract

Masked language modeling has become a
widely adopted unsupervised technique to pre-
train large language models (LLMs). However,
the process of selecting tokens for masking is
random, and the percentage of masked tokens
is typically fixed for the entire training process.
In this paper, we propose to adjust the mask-
ing ratio and to decide which tokens to mask
based on a novel task-informed anti-curriculum
learning scheme. First, we harness task-specific
knowledge about useful and harmful tokens in
order to determine which tokens to mask. Sec-
ond, we propose a cyclic decaying masking
ratio, which corresponds to an anti-curriculum
schedule (from hard to easy). We exemplify
our novel task-informed anti-curriculum by
masking (TIACBM) approach across three di-
verse downstream tasks: sentiment analysis,
text classification by topic, and authorship at-
tribution. Our findings suggest that TIACBM
enhances the ability of the model to focus on
key task-relevant features, contributing to sta-
tistically significant performance gains across
tasks. We release our code at https://github.
com/JarcaAndrei/TIACBM.

1 Introduction
Nowadays, masked language modeling (MLM)
(Devlin et al., 2019) is one of the most popular
frameworks used to pre-train language models, as
it enables the use of vast amounts of unlabeled data.
However, the process of selecting tokens for mask-
ing is generally based on random selection, while
the percentage of masked tokens is typically fixed
for the entire training process (Wettig et al., 2023).
To the best of our knowledge, there are only two
studies attempting to dynamically adapt the mask-
ing ratio (Ankner et al., 2024; Yang et al., 2023).
These studies concur that the optimal schedule is to
use a decaying masking ratio during training. Inter-
estingly, we find that this observation is deeply con-

*Corresponding author: raducu.ionescu@gmail.com.

nected to the curriculum learning paradigm. Cur-
riculum learning is a training strategy formulated
by Bengio et al. (2009), where neural models learn
the data in a systematic manner, starting with easy
samples and gradually adding more difficult sam-
ples as the learning progresses. Intuitively, using a
higher masking ratio makes the learning task more
difficult. Hence, employing a decaying masking ra-
tio corresponds to an anti-curriculum strategy (Liu
et al., 2022; Soviany et al., 2022).

In this paper, we further develop and explore
anti-curriculum learning based on MLM to fine-
tune pre-trained models on downstream tasks. We
propose a novel task-informed anti-curriculum by
masking (TIACBM) scheme, which employs a
cyclic decaying masking ratio and relies on task-
specific knowledge to decide which tokens to mask.
Our most important contribution is to harness task-
specific knowledge about useful and harmful to-
kens in order to select tokens for masking. For
example, in sentiment analysis, the masking proba-
bility of a token is determined based on its polarity
scores recorded in SentiWordNet 3.0 (Baccianella
et al., 2010). In text categorization by topic and au-
thorship attribution, masking a token is conditioned
by its part-of-speech tag. While content words re-
ceive higher masking probabilities for text catego-
rization by topic, function words and punctuation
tokens are more likely to be masked in authorship
attribution (Kestemont, 2014).

We conduct fine-tuning experiments on four data
sets: SST-2 (Socher et al., 2013), 20 Newsgroups
(Lang, 1995), Reuters-21578 (Lewis, 1987), and
PAN 2019 Cross-Domain Authorship Attribution
(Kestemont et al., 2019). Our experiments cover
a diverse set of downstream tasks, including sen-
timent analysis, text classification by topic, and
authorship attribution. We compare with several
baselines, including conventional fine-tuning and
standard MLM, and state-of-the-art training strate-
gies based on anti-curriculum learning (Ankner
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et al., 2024) as well as curriculum learning (Poesina
et al., 2024). The results show that our strategy
outperforms its competitors across all data sets.
Moreover, TIACBM brings statistically significant
performance gains, showing that harnessing task
knowledge to mask tokens during fine-tuning is
beneficial for multiple downstream tasks.

In summary, our contribution is threefold:

• We propose to leverage task-specific knowl-
edge to determine the probability distribution
used to mask input tokens in MLM.

• We introduce a cyclic decaying masking ra-
tio that boosts performance over existing anti-
curriculum learning strategies for MLM.

• We apply a dynamic MLM strategy to fine-
tune pre-trained models on downstream tasks,
showing that MLM is not only beneficial for
pre-training, but also for the fine-tuning stage.

2 Related Work
Our framework is mostly related to work on cur-
riculum learning (Bengio et al., 2009). Soviany
et al. (2022) divide curriculum learning methods
into data-level (Chang et al., 2021; Gong et al.,
2021; Kocmi and Bojar, 2017; Liu et al., 2018; Na-
gatsuka et al., 2023), model-level (Croitoru et al.,
2025; Sinha et al., 2020), task-level (Liu et al.,
2020a; Narvekar et al., 2016), and objective-level
(Pathak and Paffenroth, 2019) strategies. Most of
existing studies focus on computer vision (Croitoru
et al., 2025; Huang et al., 2020; Sinha et al., 2020)
and reinforcement learning (Fang et al., 2019; Flo-
rensa et al., 2017). Methods in these domains are
vaguely related to our approach, with some ex-
ceptions that employ curriculum based on masked
image modeling (MIM) (Jarca et al., 2024; Madan
et al., 2024). In the image domain, the MIM ap-
proach was explored from multiple perspectives,
which led to the development of adaptive masking
strategies based on curriculum learning (Madan
et al., 2024), that can produce more robust repre-
sentations. A notable finding is that an easy-to-
hard curriculum works generally well for image
masking (Jarca et al., 2024). In contrast, analogous
studies focusing on text (Ankner et al., 2024; Yang
et al., 2023) suggest that a hard-to-easy curriculum,
i.e. using a decaying masking ratio, is more appro-
priate for text. Our results confirm the observations
of Ankner et al. (2024) and Yang et al. (2023), al-
though we reset the masking ratio during training,
resulting in a cyclic decaying masking ratio.

Curriculum learning methods specifically de-
signed for text (Gong et al., 2021; Kocmi and Bojar,
2017; Liu et al., 2018, 2020b; Zhan et al., 2021)
are also related to our work. Some of the most
popular approaches rely on text length (Nagatsuka
et al., 2023) and model competence (Platanios et al.,
2019) to organize the samples from easy to hard.
Recent approaches are based on more complex
strategies. For instance, the state-of-the-art cur-
riculum learning method proposed by Poesina et al.
(2024) employs data cartography (Swayamdipta
et al., 2020) while training a baseline model to ob-
tain the variability and confidence of each sample.
The training data is further mapped as easy, am-
biguous or hard. The model is then retrained via
an easy-to-hard curriculum. To boost performance,
the method employs stratified sampling as well as
a continuous function to map the data points, re-
sulting in a method called Cart-Stra-CL++.

Different from related curriculum and anti-
curriculum learning methods (Ankner et al., 2024;
Poesina et al., 2024; Yang et al., 2023), we design
an anti-curriculum strategy for the fine-tuning stage
of pre-trained language models, leveraging knowl-
edge about the downstream tasks. Moreover, our
novel design leads to superior performance on a
range of downstream tasks.

3 Method
We propose a novel task-informed anti-curriculum
by masking to fine-tune pre-trained language mod-
els. Specifically, we employ a cyclic decaying
masking ratio which encourages a progressive adap-
tation of the model over time. In addition, we har-
ness task-specific knowledge to determine which
tokens need to be masked, ensuring that the model
focuses on the most relevant words in a sentence.
By combining a dynamic masking ratio with se-
lective token masking, our strategy can boost per-
formance on complex downstream tasks. We em-
phasize that relevant words are those that lead to
discriminative features. However, deep neural net-
works can learn co-adapted features, which affects
generalization capacity. Masking some of the dis-
criminative features prevents feature co-adaptation
(Hinton et al., 2012). TIACBM achieves this effect
in a targeted manner, by strategically starting with
a higher masking ratio and gradually reducing it,
which aligns with theories of curriculum learning
and adversarial training.

Prior to the start of the training, we create a
vector r = {r1 ≥ · · · ≥ rK} ∈ [0, 1]K contain-
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Algorithm 1: TIACBM
Input: x – training sequence of tokens;
r = {r1, . . . , rK} – decaying masking ratio schedule;
task_relevance – function that computes the

task-specific importance of a word;
t – current training iteration.
Output: x̂ – masked sequence of tokens.
/* 1: Determine the number of masked tokens. */

1. rt ← r[t mod K];
N ← ⌊|x| · rt⌋;
/* 2: Compute the task-specific importance and normalize

the values to obtain a probability distribution over all
tokens. */

2. s← {si = task_relevance(xi,x), ∀i = 1, . . . , |x|};
p←

{
pi =

si

Σ
|s|
j=1sj

, ∀i = 1, . . . , |s|
}

/* 3: Mask the tokens. */
3. n← 0;

x̂← x;
while n < N do

i ∼ Categorical(|x| ,p);
if x̂i /∈ {[MASK], [SEP], [CLS]} then

x̂i ← [MASK];
n← n+ 1;

end
end

4. return x̂

ing K masking ratios, which represents the anti-
curriculum schedule. Note that K ≪ T , where
T is the total number of training iterations. Thus,
after every K iterations, we reuse the masking ra-
tios starting with r1. In Algorithm 1, we formally
present how the masking is performed for a train-
ing text sample, given as a sequence of tokens x.
In the first step, we compute the number of tokens
to be masked N , based on the sequence length and
the masking ratio rt of the current training iteration
t. In the second step, for each token xi, we call a
task-specific function to compute its importance,
taking into account the token and the surrounding
text. Additionally, in this step, we also normalize
the importance scores to obtain probability values.
Finally, in the third and last step, we build a cat-
egorical distribution from these probabilities and
sample N tokens to mask. We further describe and
motivate the task_relevance function for each
task.
Sentiment analysis. For polarity classification, we
hypothesize that the most subjective words repre-
sent the most important features, and masking them
will result in a hard-to-easy curriculum. The core
foundation of this approach lies in using the Senti-
WordNet 3.0 sentiment lexicon (Baccianella et al.,
2010). For each sentence, we analyze the most
probable synset of each word, using a generic Lesk
algorithm, and search for it in the lexicon. This
process aims to determine the most likely positive

(
spos

)
and negative scores

(
sneg

)
for the current

word. Both scores range from 0 to 1, with higher
values indicating stronger positive or negative con-
notations, respectively. We emphasize that these
scores are linked together and their sum is lower
or equal to 1. Based on these values, Baccianella
et al. (2010) determine the objectivity score for
each word as:

o = 1− (spos + sneg). (1)

In contrast, we leverage the subjectivity score as
an importance measure to form the vector s for a
given input x in Algorithm 1. Accordingly, we
compute the importance score si for each token xi
as follows:

si = (sipos + sineg),∀i = 1, . . . , |x| . (2)

Text categorization. For text categorization, we
hypothesize that content words (nouns, verbs, ad-
jectives, adverbs, and proper names) are more rele-
vant. Consequently, we assign an importance score
of 0 to every other part of speech. To compute
the importance scores for content words of a given
sequence, we also draw upon the knowledge of the
pre-trained language model. Before fine-tuning, we
extract the attention weights from each attention
block and each attention head, given by:

Ah
b = softmax

(
Qh

b · (Kh
b )

⊤
√
d

)
, (3)

where b iterates over the self-attention blocks, h
iterates over the attention heads, and Qh

b ∈ R|x|×d

and Kh
b ∈ R|x|×d are the query and key matrices

of the attention block b and head h. The result,
Ah

b ∈ R|x|×|x|, is a square matrix containing the
similarity between each token found in the input
sequence x and all the other tokens. We further
compute an importance vector a by averaging the
attention matrices, as follows:

a =
1

B ·H · |x|
H∑

h=1

B∑

b=1

|x|∑

j=1

Ah
b,j , (4)

where B is the number of attention blocks and H is
the number of heads. The final importance scores
s employed in Algorithm 1 are computed as:

si=

{
ai, if xi is a content word
0, otherwise

, ∀i=1, ...,|x| .

(5)
Authorship attribution. For the authorship at-
tribution task, we compute the importance score
vector s using a procedure similar to the one de-
scribed for text classification. However, instead
of using the content words for masking, we mask
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functional words, such as adpositions, determiners,
conjunctions, symbols, particles, and punctuation.
Authors exhibit consistent writing style patterns,
which are reflected in their use of these functional
words (Kestemont, 2014). Consequently, Eq. (5) is
modified as follows:

si=

{
ai, if xi is a functional word
0, otherwise

, ∀i=1, ...,|x| ,

(6)
where ai is computed as in Eq. (4).

4 Experiments and Results

4.1 Data sets
We evaluate TIACBM on the three tasks, namely
sentiment analysis, text categorization and author-
ship attribution.
Reuters-21578. Reuters-21578 (Lewis, 1987) is a
multi-label text categorization data set containing
12,449 training and 5,458 test instances. The data
set gathers documents from 90 categories.
20 Newsgroups. 20 Newsgroups (Lang, 1995) is a
multi-class data set for text categorization, which
comprises 11,314 training instances and 7,532 test
instances belonging to 20 classes.
SST2. The SST2 data set (Socher et al., 2013) is
a popular benchmark for sentiment analysis, com-
prising 67,349 training and 872 validation samples,
which are labeled either as positive or negative.
PAN19. For authorship attribution, we use the
PAN19 (Kestemont et al., 2019) data set. We re-
port results for Problem 0001 (P1) and Problem
0005 (P5). We discard the unknown files when
computing the evaluation metrics. Both problems
have 9 authors, with 7 training files each. There are
561 test files for P1, and 264 test files for P5.

4.2 Baselines
We compare TIACBM with five fine-tuning strate-
gies, which are described in detail below.
Conventional. This is the standard fine-tuning
approach, which does not involve MLM. It uses
the CB-NTR loss (Huang et al., 2021) for Reuters-
21578, due to its long-tail distribution.
Constant. This fine-tuning strategy uses a constant
masking ratio to mask input tokens. The masking
ratio is set to 15%, following Devlin et al. (2019).
Cart-Stra-CL++. This is a state-of-the-art easy-to-
hard curriculum approach introduced by Poesina
et al. (2024). This method needs to perform data
cartography for the baseline fine-tuned with the

conventional regime, before employing the curricu-
lum. This essentially doubles the training time.
Decaying Masking Ratio. The decaying mask-
ing ratio, a.k.a. anti-curriculum by masking, is
proposed by Ankner et al. (2024). This training
strategy can be seen as an ablated version of our ap-
proach, which is obtained by dropping the cyclical
regime (K = T ) and by discarding task-specific
information.
Cyclic Decaying Masking Ratio. This is an ab-
lated version of our approach, which simply dis-
cards the task-specific information.

4.3 Experimental Setup
We employ two pre-trained masked language
models, BERTbase (Devlin et al., 2019) and
RoBERTabase (Liu et al., 2019), in order to eval-
uate the various fine-tuning strategies. We also
experiment with GPT-2 (Radford et al., 2019) to
show that TIACBM can be applied beyond masked
language models.

We run all experiments three times and report
the mean and standard deviation for each experi-
ment. We execute the fine-tuning for 15 epochs
for sentiment analysis, using a learning rate of
5 · 10−5, a batch size of 64 and a max token length
of 100. For text categorization, we train for 30
epochs, using a learning rate of 10−4, a batch size
of 32 and a max token length of 512. For author-
ship attribution, we use 30 epochs, a batch size
of 8 and a max token length of 512. For PAN19-
P1, we use a learning rate of 10−4 for BERT and
10−5 for RoBERTa and GPT-2. For PAN19-P5,
we set the learning rate to 5 · 10−5 for all lan-
guage models. We use the cross-entropy loss for
all data sets, except on Reuters-21578. In this case,
the baseline language model is fine-tuned with the
CB-NTR loss (Huang et al., 2021). We keep the
same loss for all fine-tuning strategies on Reuters-
21578. In terms of optimizers, we use Adamax
for the sentiment analysis task, and AdamW for
the others. We keep these parameters consis-
tent across all baseline methods and TIACBM.
We release our code to reproduce the results at
https://github.com/JarcaAndrei/TIACBM.

4.4 Results
We compare our approach against the competing
fine-tuning strategies in Table 1. Our method im-
proves performance across all downstream tasks,
while exhibiting lower variability. Moreover,
TIACBM brings significant gains across both
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Model Fine-Tuning Reuters 20 News SST2 PAN19-P1 PAN19-P5
Strategy Micro F1 Accuracy Accuracy Macro F1 Accuracy Macro F1

BERTbase

Conventional 90.61±0.28 84.63±0.28 93.38±0.14 69.76±15.11 58.24±6.06 66.10±1.56 36.10±4.22

Constant 90.81±0.24 84.98±0.12 93.94±0.15 63.70±9.96 47.50±7.26 65.76±2.92 36.30±4.56

Poesina et al. (2024) 90.72±0.13 82.30±0.25 94.00±0.14 55.23±3.48 44.76±2.56 68.66±2.00 40.72±2.64

Ankner et al. (2024) 90.99±0.05 85.39±0.23 93.83±0.20 54.38±16.10 46.03±8.53 65.55±0.85 36.60±4.28

Cyclic Decaying 90.96±0.12 84.88±0.08 94.10±0.20 50.56±15.22 51.94±8.99 69.28±3.27 42.94±2.45

TIACBM (ours) 91.20±0.20 85.65±0.10 94.61±0.08 77.32±9.33 60.60±7.37 69.94±1.98 44.20±2.67

RoBERTabase

Conventional 90.55±0.18 84.49±0.11 94.56±0.09 89.20±3.01 76.92±4.64 67.42±2.90 38.30±4.32

Constant 90.49±0.11 85.10±0.30 94.88±0.26 92.44±0.51 78.84±2.61 64.00±4.33 33.62±5.41

Poesina et al. (2024) 90.52±0.14 79.89±0.34 94.81±0.23 90.18±1.03 78.70±2.13 65.16±1.26 33.36±0.95

Ankner et al. (2024) 90.42±0.09 85.33±0.17 94.24±0.19 91.76±1.53 80.50±2.07 65.10±0.49 37.64±2.78

Cyclic Decaying 90.70±0.14 84.74±0.20 94.70±0.14 91.36±1.24 78.84±2.21 67.80±2.89 39.36±2.63

TIACBM (ours) 91.06±0.19 85.93±0.18 95.04±0.18 93.98±0.70 83.78±2.55 68.38±1.53 41.86±2.15

Table 1: Results on text classification (Reuters-21578, 20 Newsgroups), sentiment analysis (SST2) and authorship
attribution (PAN19), with BERT and RoBERTa. Cochran’s Q testing confirms that the results of TIACBM are
always statistically better than conventional fine-tuning (p-value< 0.001). The top scores for each architecture and
metric are highlighted in bold.

Model Fine-Tuning Strategy SST2 PAN19-P1 PAN19-P5
Accuracy Accuracy Macro F1 Accuracy Macro F1

GPT-2

Conventional 92.35±0.30 82.78±3.06 67.96±3.98 62.88±3.64 38.16±3.93

Constant 92.54±0.43 59.10±1.81 41.58±0.76 54.54±6.95 32.08±2.30

Poesina et al. (2024) 92.27±0.21 72.44±6.97 57.60±7.02 59.54±6.95 32.86±2.94

Ankner et al. (2024) 92.60±0.09 83.76±1.46 68.70±2.13 62.42±0.39 36.90±2.40

Cyclic Decaying 92.74±0.05 82.38±3.51 67.34±4.57 65.00±3.92 36.46±2.81

TIACBM (ours) 92.96±0.14 85.90±1.96 73.44±3.81 68.20±2.25 42.90±2.56

Table 2: Results on sentiment analysis (SST2) and authorship attribution (PAN19), with GPT-2. Cochran’s Q testing
confirms that the results of TIACBM are always statistically better than conventional fine-tuning (p-value< 0.001).
The top score for each metric is highlighted in bold.

BERT and RoBERTa. On SST2, TIACBM pro-
vides an increase of 1.23% over the baseline, and
0.61% over the state-of-the-art method of Poesina
et al. (2024), suggesting that masking the harder
(subjective) words towards the easier (objective)
words, in a cyclic fashion, improves the perfor-
mance of the model on sentiment analysis. On
Reuters-21578, our approach boosts the micro F1

score by 0.59%, reaching a top result of 91.48%,
surpassing the state-of-the-art model based on CB-
NTR (Huang et al., 2021). On 20 Newsgroups,
TIACBM outperforms the baseline by 1.44% and
Cart-Stra-CL++ (Poesina et al., 2024) by 6.04%,
highlighting the effectiveness of content word
masking. For PAN19, TIACBM increases both ac-
curacy and macro F1 score by 2.36% and 15.84%,
respectively, demonstrating robust generalization
even with limited training data. Compared with the
approach of Ankner et al. (2024), we observe that
TIACM brings higher performance gains across all
tasks, mainly due to the task-specific information
harnessed by our approach.

We present additional experiments with GPT-
2 in Table 2. The results obtained with GPT-2
are consistent with those obtained with BERT and
RoBERTa, confirming that TIACBM leads to sig-
nificant performance gains. Hence, the results re-

ported in Table 2 indicate that TIACBM is not lim-
ited to masked language models, being a generic
approach that can be applied to any LLM.

5 Conclusion
We proposed a novel task-informed anti-curriculum
by masking approach (TIACBM), and we evaluated
its effectiveness on three tasks: sentiment analy-
sis, text categorization by topic, and authorship
attribution. The proposed method leverages in-
formation about the downstream tasks to decide
which tokens to select for masking in a novel anti-
curriculum by masking framework. On all the three
tasks, our method achieved better results across
all experiments, outperforming both baselines and
state-of-the-art methods. Moreover, our method
performed well on both multi-label and multi-class
classification, while also proving resilience against
imbalanced data sets, such as Reuters-21578. Addi-
tionally, we also showed that TIACBM is effective
in scenarios with a low number of training samples,
as in the case of PAN19.
Acknowledgments. This research is supported by
the project “Romanian Hub for Artificial Intelli-
gence - HRIA”, Smart Growth, Digitization and
Financial Instruments Program, 2021-2027, MyS-
MIS no. 334906.
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6 Limitations

We present a novel method to consistently improve
the performance of language models on down-
stream tasks. However, there is no universal anti-
curriculum (masking ratio) schedule that can work
for all models or data sets, representing an impor-
tant parameter to be optimized by the user. Still, a
general empirical statement proven in our work is
that cycling anti-curriculum schedulers are superior
in NLP, when it comes to curriculum by masking.
Additionally, our method computes token relevance
using a task-specific approach and this can be chal-
lenging to design for some tasks. We show on two
tasks that attention weights can effectively serve
this purpose.

7 Ethics Statement

To our knowledge, the proposed method poses no
immediate risk. However, it can be adapted for
generative modeling, which raises concerns about
its potential misuse for malicious purposes, such as
fake content generation.
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dor Ionescu, and Nicu Sebe. 2025. Learning rate cur-
riculum. International Journal of Computer Vision,
133(1):291–314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 4171–4186. As-
sociation for Computational Linguistics.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and
Zhengyou Zhang. 2019. Curriculum-guided Hind-
sight Experience Replay. In Proceedings the 33rd
International Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 12623–12634. Cur-
ran Associates, Inc.

Carlos Florensa, David Held, Markus Wulfmeier,
Michael Zhang, and Pieter Abbeel. 2017. Reverse
curriculum generation for reinforcement learning.
In Proceedings of the 1st Annual Conference on
Robot Learning (CoRL), volume 78, pages 482–495.
PMLR.

Yantao Gong, Cao Liu, Jiazhen Yuan, Fan Yang, Xun-
liang Cai, Guanglu Wan, Jiansong Chen, Ruiyao Niu,
and Houfeng Wang. 2021. Density-based dynamic
curriculum learning for intent detection. In Proceed-
ings of the 30th ACM International Conference on In-
formation & Knowledge Management (CIKM), pages
3034–3037.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Yi Huang, Buse Giledereli, Abdullatif Köksal, Arzucan
Özgür, and Elif Ozkirimli. 2021. Balancing meth-
ods for multi-label text classification with long-tailed
class distribution. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8153–8161. Association
for Computational Linguistics.

Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu,
Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue
Huang. 2020. CurricularFace: Adaptive Curricu-
lum Learning Loss for Deep Face Recognition. In
Proceedings of IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5900–
5909. IEEE.

Andrei Jarca, Florinel-Alin Croitoru, and Radu Tudor
Ionescu. 2024. CBM: Curriculum by Masking. In
Proceedings of the 27th European Conference on
Artificial Intelligence (ECAI), volume 392, pages 314–
321. IOS Press.

Mike Kestemont. 2014. Function Words in Author-
ship Attribution. From Black Magic to Theory? In
Proceedings of the 3rd Workshop on Computational
Linguistics for Literature (CLFL), pages 59–66. As-
sociation for Computational Linguistics.

2197

https://aclanthology.org/2024.eacl-short.42/
https://aclanthology.org/2024.eacl-short.42/
https://aclanthology.org/L10-1531/
https://aclanthology.org/L10-1531/
https://aclanthology.org/L10-1531/
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.18653/v1/2021.eacl-main.61
https://doi.org/10.18653/v1/2021.eacl-main.61
https://doi.org/10.18653/v1/2021.eacl-main.61
https://doi.org/10.1007/s11263-024-02186-5
https://doi.org/10.1007/s11263-024-02186-5
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2019/file/83715fd4755b33f9c3958e1a9ee221e1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/83715fd4755b33f9c3958e1a9ee221e1-Paper.pdf
http://proceedings.mlr.press/v78/florensa17a/florensa17a.pdf
http://proceedings.mlr.press/v78/florensa17a/florensa17a.pdf
https://doi.org/10.1145/3459637.3482082
https://doi.org/10.1145/3459637.3482082
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://doi.org/10.18653/v1/2021.emnlp-main.643
https://doi.org/10.18653/v1/2021.emnlp-main.643
https://doi.org/10.18653/v1/2021.emnlp-main.643
https://doi.org/10.1109/CVPR42600.2020.00594
https://doi.org/10.1109/CVPR42600.2020.00594
https://doi.org/10.3233/FAIA240503
https://doi.org/10.3115/v1/W14-0908
https://doi.org/10.3115/v1/W14-0908


Mike Kestemont, Efstathios Stamatatos, Enrique Man-
javacas, Walter Daelemans, Martin Potthast, and
Benno Stein. 2019. Overview of the Cross-domain
Authorship Attribution Task at PAN 2019. In Work-
ing Notes Papers of the CLEF 2019 Evaluation Labs,
volume 2380 of CEUR Workshop Proceedings.
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Model Data Set r1 rK K

BERT

Reuters 0.15 0.09 3
20 News 0.15 0.09 3
SST2 0.15 0.09 3
PAN19-P1 0.35 0.00 3
PAN19-P5 0.30 0.00 3

RoBERTa

Reuters 0.15 0.09 3
20 News 0.15 0.00 3
SST2 0.15 0.09 3
PAN19-P1 0.35 0.00 3
PAN19-P5 0.30 0.00 3

GPT-2
SST2 0.15 0.09 3
PAN19-P1 0.35 0.00 3
PAN19-P5 0.30 0.00 3

Table 3: Masking ratios used in our experiments.
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A Hyperparameter Setup

We fix the decaying masking ratio schedule r =
{r1, . . . , rK}, that is employed in Algorithm 1,
through validation. For each architecture, we men-
tion the maximum and minimum masking ratios in
Table 3, as well as the length K. We cycle through
the schedules every K epochs. We emphasize that
the number of masking ratios K determines the
cycle length, i.e. the masking ratios represent the
curriculum probabilities that are cycled. In other
words, the length of the masking ratio vector is
equal to the cycle length.

B Ablation Studies

Ablating the masking ratios. In Tables 4 and
5, we ablate the interval of masking ratios r1-rK ,
while maintaining the cycle length K = 3. The

Model r1-rK
SST2

Accuracy

BERTbase

0.13-0.11 94.27±0.12

0.14-0.10 94.53±0.09

0.15-0.09 94.61±0.08

0.16-0.08 94.58±0.06

RoBERTabase

0.13-0.11 94.82±0.18

0.14-0.10 94.95±0.21

0.15-0.09 95.04±0.18

0.16-0.08 95.06±0.17

Table 4: Ablation study for intervals of masking ratios
between r1 and rK on SST2. The top score for each
architecture is highlighted in bold.

Data Model r1-rK Accuracy Macro F1Set

PA
N

19
-P

1 BERTbase

0.35-0.00 77.32±9.33 60.60±7.37

0.37-0.02 76.99±8.83 58.89±7.64

0.33-0.02 77.62±8.21 59.94±7.23

0.30-0.05 68.52±15.72 57.01±8.81

RoBERTabase

0.35-0.00 93.98±0.70 83.78±2.55

0.37-0.02 93.23±1.36 82.83±2.66

0.33-0.02 92.74±1.01 83.15±3.21

0.30-0.05 91.23±1.06 81.51±2.32
PA

N
19

-P
5 BERTbase

0.30-0.00 69.94±1.98 44.20±2.67

0.32-0.02 69.45±1.83 43.33±2.76

0.28-0.02 68.92±2.12 44.02±2.34

0.35-0.05 68.84±2.67 42.20±2.05

RoBERTabase

0.30-0.00 68.38±1.53 41.86±2.15

0.32-0.02 69.84±1.54 42.23±5.71

0.28-0.02 68.72±1.89 41.33±2.48

0.35-0.05 67.61±2.55 42.33±6.03

Table 5: Ablation study for intervals of masking ratios
between r1 and rK on PAN19. The top scores for each
architecture and metric are highlighted in bold.

reported results indicate that TIACBM maintains
its performance gains for various intervals. This ob-
servation suggests that suboptimal hyperparameter
choices can still lead to considerable improvements,
attesting the robustness of TIACBM.
Ablating the cycle length. We perform additional
experiments by ablating the cycle length K be-
tween 2 and 5, while keeping the minimum and
maximum masking ratios fixed. The corresponding
results are shown in Table 6. While there are signs
of sensitivity to the value of K, the results are gen-
erally above the conventional fine-tuning strategy.
We conclude that K should be carefully tuned for
optimal results.

C Curriculum versus Anti-Curriculum

In Tables 7 and 8, we compare our anti-curriculum
method (TIACBM) with a reversed masking ratio
schedule, which implements an easy-to-hard cur-
riculum learning. Both approaches benefit from a
cyclic schedule and task-specific information. The
anti-curriculum approach consistently outperforms
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Model K
SST2 PAN19-P1 PAN19-P5

Accuracy Accuracy Macro F1 Accuracy Macro F1

BERTbase

2 93.97±0.11 66.68±14.06 55.52±5.95 66.28±1.13 42.64±1.51

3 94.61±0.08 77.32±9.33 60.60±7.37 69.94±1.98 44.20±2.67

4 94.28±0.22 73.40±10.04 59.87±6.97 69.17±1.94 43.99±1.89

5 94.55±0.12 72.80±8.24 58.80±8.92 68.78±4.10 41.24±5.21

RoBERTabase

2 94.68±0.16 93.37±1.18 81.93±3.63 67.89±2.32 40.98±3.31

3 95.04±0.18 93.98±0.70 83.78±2.55 68.38±1.53 41.86±2.15

4 94.91±0.21 92.85±1.20 83.41±2.30 71.30±3.66 45.97±3.15

5 95.02±0.16 92.62±1.39 82.38±1.56 68.93±2.14 41.50±1.89

Table 6: Ablation study for the hyperparameter K on SST2 and PAN19. The top scores for each architecture and
metric are highlighted in bold.

Model Fine-Tuning Reuters 20 News SST2 PAN19-P1 PAN19-P5
Strategy Micro F1 Accuracy Accuracy Macro F1 Accuracy Macro F1

BERTbase
TICBM 90.53±0.15 85.38±0.08 94.03±0.16 64.43±3.19 52.17±8.35 63.90±2.51 35.23±3.56

TIACBM 91.20±0.20 85.65±0.10 94.61±0.08 77.32±9.33 60.60±7.37 69.94±1.98 44.20±2.67

RoBERTabase
TICBM 90.35±0.09 85.45±0.13 94.92±0.14 90.93±1.22 78.83±0.98 67.92±0.95 39.26±1.61

TIACBM 91.06±0.19 85.93±0.18 95.04±0.18 93.98±0.70 83.78±2.55 68.38±1.53 41.86±2.15

Table 7: Comparison between curriculum (easy-to-hard) and anti-curriculum (hard-to-easy) approaches applied to
BERT and RoBERTa. Both methods benefit from a cyclic schedule and task-specific information. The top score for
each metric is highlighted in bold.

its counterpart, validating our choice based on hard-
to-easy curriculum.

D TIACBM without Linguistic Priors

Transferring task heuristics. To show that the
domain-specific heuristics can generalize across
domains, we conduct experiments with the sen-
timent heuristic (originally applied on SST2) on
authorship attribution. In Table 9, we show the
corresponding results with BERT and RoBERTa.
We observe that the sentiment heuristic is either
close to the authorship heuristic, or even surpasses
it in performance. This can be seen in the case
of PAN19-P5, where the sentiment heuristic cap-
italizes on the data set design (fandom creative
writing) and benefits from the numerous subjective
words. Overall, the empirical evaluation indicates
that the proposed task-specific heuristics can gener-
alize across tasks. Furthermore, we observe that the
sentiment heuristic consistently outperforms the
conventional fine-tuning regime, suggesting that
TIACBM can bring performance gains even when
its heuristic is not aligned with the downstream
task.
Generic versus task-specific heuristics. We next
employ a generic task-agnostic heuristic, solely
based on the attention scores of the fine-tuned
model. The generic heuristic masks a number of to-
kens at each epoch, where the probability of mask-
ing a token is proportional to its average weight.
We only utilize the attention weights from the first
epoch, storing and loading them in later epochs.

As shown in Table 10, the generic attention-based
approach provides competitive results with our
task-specific approaches, even surpassing them in
a few cases. Task-specific heuristics provide better
overall results for specific tasks, while the generic
attention-based heuristic excels in some areas and
lacks in others. The generic approach represents an
alternative when there are no task-specific priors
that can be leveraged.
Overall assessment. In summary, the experiments
presented in Table 9 and 10 show that our text-
based anti-curriculum by masking does not neces-
sarily depend on prior task-specific information.

E Computational Resources

The experiments are carried out on a machine
with 64GB of RAM, an AMD Ryzen 7 7800X3D
CPU, and an Nvidia GeForce RTX 4090 GPU. Our
most expensive experiments are performed on 20
Newsgroups, with 112 mins (3 mins per epoch)
for TIACBM, and about 180 mins for decaying
runs, due to the need of masking at every epoch.
The masking step takes between 2-3 mins. In the
case of SST2, the experiments require 6 mins per
epoch, while the masking step requires 0.5 mins.
The timetable for PAN19 varies from 0.5 mins per
epoch to 1 min per epoch, regardless of the ap-
proach, while the masking takes roughly 3-4 secs.
Finally, the masking step on Reuters-21578 takes
between 1-3 mins, depending if non-content words
need to be discarded or not. An average epoch
takes 1.5 mins.
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Model Fine-Tuning Strategy SST2 PAN19-P1 PAN19-P5
Accuracy Accuracy Macro F1 Accuracy Macro F1

GPT-2 TICBM 92.71±0.28 83.62±3.73 70.86±5.36 66.54±3.14 40.28±4.53

TIACBM 92.96±0.14 85.90±1.96 73.44±3.81 68.20±2.25 42.90±2.56

Table 8: Comparison between curriculum (easy-to-hard) and anti-curriculum (hard-to-easy) approaches applied to
GPT-2. The top score for each metric is highlighted in bold.

Model Method PAN19-P1 PAN19-P5
Accuracy Macro F1 Accuracy Macro F1

BERTbase

Conventional 69.76±15.11 58.24±6.06 66.10±1.56 36.10±4.22

Sentiment Heuristic 76.62±8.05 59.44±3.48 70.20±0.36 45.33±2.90

Authorship Heuristic (Original) 77.32±9.33 60.60±7.37 69.94±1.98 44.20±2.67

RoBERTabase

Conventional 89.20±3.01 76.92±4.64 67.42±2.90 38.30±4.32

Sentiment Heuristic 92.06±1.52 81.72±1.81 69.68±5.50 46.40±5.71

Authorship Heuristic (Original) 93.98±0.70 83.78±2.55 68.38±1.53 41.86±2.15

Table 9: Results obtained by transferring our sentiment heuristic (originally applied on SST2) to authorship
attribution (PAN19-P1 and PAN19-P5), for both BERT and RoBERTa. The task-specific heuristics used by
TIACBM can be applied across tasks. The top scores for each architecture and metric are highlighted in bold.

Model Heuristic SST2 PAN19-P1 PAN19-P5
Accuracy Accuracy Macro F1 Accuracy Macro F1

BERTbase

Conventional 93.38±0.14 69.76±15.11 58.24±6.06 66.10±1.56 36.10±4.22

Generic 94.07±0.18 69.78±16.83 58.24±11.61 71.06±2.46 47.14±3.75

Task-specific 94.61±0.08 77.32±9.33 60.60±7.37 69.94±1.98 44.20±2.67

RoBERTabase

Conventional 94.56±0.09 89.20±3.01 76.92±4.64 67.42±2.90 38.30±4.32

Generic 94.83±0.16 91.73±0.56 80.75±1.06 71.96±0.61 42.96±2.97

Task-specific 95.04±0.18 93.98±0.70 83.78±2.55 68.38±1.53 41.86±2.15

Table 10: Results with the generic (task-agnostic) attention-based heuristic versus task-specific heuristics. The
task-agnostic heuristic can be effective when task-specific information is not available. The top scores for each
architecture and metric are highlighted in bold.
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