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Abstract

Pre-trained language models have achieved suc-
cess in many natural language processing tasks,
whereas they are trapped by the time-agnostic
setting, impacting the performance in auto-
matic text dating. This paper introduces TicTac,
a supervised fine-tuning model for automatic
text dating. Unlike the existing models that
always ignore the temporal relatedness of doc-
uments, TicTac has the ability to learn tempo-
ral semantic information, which is helpful for
capturing the temporal implications over long-
time span corpora. As a fine-tuning framework,
TicTac employs a contrastive learning-based
approach to model two types of temporal re-
lations of diachronic documents. TicTac also
adopts a metric learning approach, and the tem-
poral distance between a historical text and its
category label is estimated, which is beneficial
to learning temporal semantic information on
texts with temporal ordering. Experiments on
two diachronic corpora show that our model ef-
fectively captures the temporal semantic infor-
mation and outperforms state-of-the-art base-
lines.1

1 Introduction

The temporal dimension of texts is essential to
many time-sensitive tasks, such as question answer-
ing (Shang et al., 2022; Son and Oh, 2023), natural
language inference (Vashishtha et al., 2020; Liu
et al., 2021), event detection (Hettiarachchi et al.,
2022), and text generation (Cao and Wang, 2022;
Pratapa et al., 2023). Time-based reasoning in these
tasks benefits from timestamps or temporal meta-
data of documents, which, however, are not always
available (Chambers, 2012). One way to tackle this
issue is automatic text dating (ATD), which refers
to the task of identifying when a document was
written according to its content (Dalli, 2006).

1Our code is available at: https://github.com/gdufslec/Tic
tac.

A straightforward way of ATD is to find tempo-
ral clues within texts. For example, an article with a
sentence the novel was published in 2021 suggests
that it was written no earlier than 2021. However,
it is more challenging when explicit temporal men-
tions do not appear. To address it, research on
ATD focuses on representation learning, trying to
find temporal clues from diachronic changes in lan-
guage. This work has a wide range of application
scenarios in the digital humanities (Baledent et al.,
2020). One example is to identify the dates of
historical documents in digital libraries where tem-
poral metadata are missing, which is also known
as historical text dating (Popescu and Strapparava,
2015; Boldsen and Wahlberg, 2021).

Current studies on historical text dating usually
adopt pre-trained language models (PLMs) to rep-
resentation learning (Tian and Kübler, 2021; Li
et al., 2023). Although such models have achieved
success in many natural language processing tasks,
they are trapped by the time-agnostic setting, im-
pacting the performance in time-sensitive down-
stream tasks, including text dating (Röttger and
Pierrehumbert, 2021; Su et al., 2022). To address
it, recent efforts on diachronic text modeling either
train large language models on diachronic corpora
(Wang et al., 2023, 2024), trying to improve their
performances on time-sensitive tasks, or employ
sophisticated learning models to capture lexical se-
mantic changes over time (Ren et al., 2023; Wei
et al., 2025). However, the prominent limitation
of the former is the limited task data, high train-
ing costs, and the risk of catastrophic forgetting,
while the latter ignores the temporal relatedness of
diachronic documents, which may be helpful for
capturing temporal semantic variations. Besides,
temporal categories in most studies are viewed as
independent from each other rather than sequen-
tially related, impacting the ability of temporal-
based text modeling.

In this paper, we propose TicTac, a supervised
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fine-tuning model for ATD. This work attempts to
tackle three aforementioned issues in current stud-
ies: 1) how to develop a method to learn temporal
semantic information at low training costs; 2) how
to capture language evolution features based on
temporal-related documents and; 3) how to model
the sequential relatedness of temporal categories
for ATD. To this end, our model firstly adopts a
supervised fine-tuning framework to learn from
diachronic documents, which avoids high compu-
tational costs caused by training from scratch and
offers boarder applicability to downstream tasks as
well. Secondly, we propose a contrastive learning-
based diachronic document modeling approach, try-
ing to capture temporal implications in temporal-
related documents. For example, two documents
discussing different technological advances of spin-
ning machines and the Internet suggest that they
may be written in different eras. Specifically, we
define two types of temporal relations: one is rel-
ative temporal relations between documents, and
the other is absolute temporal relations between
documents and temporal category labels. This
idea contributes to a better understanding of the
relationship between time and language evolution.
Thirdly, we treat ATD as an ordinal classification
task and propose a corresponding approach to im-
prove the performances by appropriately correcting
prediction errors of different degrees. In this ap-
proach, the ordinal relationship between temporal
categories is considered, which helps to promote
evaluation accuracy and thus benefits the modeling
of diachronic documents with temporal ordering.
Our contributions are summarized as follows:

• We propose TicTac, a fine-tuning model for
ATD, to learn temporal semantic information
from diachronic documents in a supervised
way.

• We propose a contrastive learning-based time-
ordered document modeling approach from
two temporal perspectives, trying to capture
temporal implications in temporal-related doc-
uments.

• We propose an ordinal classification approach
for the ATD task, where the ordering of tem-
poral categories is considered for the classifi-
cation task.

• Experiments on two diachronic datasets show
that our model effectively captures the tem-

poral semantic information and outperforms
state-of-the-art baselines.

2 Related Work

2.1 Automatic Text Dating

Early studies on ATD either rely on manually ex-
tracted temporal features to identify explicit tempo-
ral expressions (Dalli, 2006; Kanhabua and Nørvåg,
2008; Niculae et al., 2014) or employ traditional
machine learning methods to explore statistical fea-
tures for temporal classification models (Garcia-
Fernandez et al., 2011; Ciobanu et al., 2013; Bold-
sen and Wahlberg, 2021), whereas most of them
suffer from low generalization ability and are in-
sufficient to capture implicit temporal clues within
texts.

Deep learning methods help to learn implicit
temporal features from texts, improving the per-
formance in the ATD task (Ray et al., 2018; Yu
and Huangfu, 2019a). Large pre-trained language
models such as SentenceBERT (Massidda, 2020;
Tian and Kübler, 2021) and RoBERTa (Li et al.,
2023) significantly promote ATD by leveraging on
training with large-scale data. However, these mod-
els often ignore the dynamic temporal attributes
of word meanings, limiting the ability to detect se-
mantic distinctions between documents of different
periods. To address it, Ren et al. (2023) proposed
a time-aware language model (TALM), aiming to
capture implicit temporal information to acquire
better word representations. However, they over-
look the temporal relatedness between diachronic
documents, which may help to capture temporal
semantic variations.

2.2 Ordinal Classification

Ordinal Classification (OC) aims to categorize data
according to a predefined sequence of ordered or
ranked labels. Unlike general classification tasks,
which treat categories as independent ones, OC
considers the ordering between categories (Amigo
et al., 2020). Methods on OC tasks often model
the relationships between categories, including
their order and distance. They usually employ
metric losses to represent the distances between
categories. For example, Hou et al. (2016) pro-
posed Squared Earth Mover’s Distance-based Loss
(EMD), which quantified inter-category differences
and was particularly effective for tasks with ordinal
relations. Torre et al. (2018) introduced Weighted
Kappa Loss (WKL), a loss function grounded in
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the weighted kappa coefficient, for multi-class clas-
sification with ordered labels. Diaz and Marathe
(2019) developed a soft-label (SOFT) approach,
where labels were represented as probability dis-
tributions, enabling the model to learn the ordinal
relations without changing the network architec-
ture when combined with standard classification
losses (e.g., cross-entropy). Castagnos et al. (2022)
introduced Ordinal Log Loss (OLL), a method to
address the limitations of traditional cross-entropy
loss in ordered text classification tasks. Kasa
et al. (2024) proposed Multi-task log loss function
(MLL), which integrated OLL with cross-entropy
(CE), optimizing a hybrid loss function to more
effectively capture the ordinal information across
categories. Given that temporal categories in the
ATD task have the characteristics of ordering, it
is more suitable to model temporal ordering of di-
achronic documents for a better ATD performance.

3 Methodology

3.1 Task Formulation

ATD aims to assign a temporal label to each data.
Given a document d = {w1, w2, . . . , wl}, where
wi denotes the i-th word and l represents the doc-
ument length, the task is to predict a temporal
label t from a predefined set of time categories
T = {t1, t2, . . . , tn}, each of which is a time pe-
riod. Such task can be viewed as a classification
problem, and the objective is to minimize the cross-
entropy loss:

LCE = −
N∑

i=1

yi log(ŷi), (1)

where ŷi represents the predicted probability for
the i-th document, and yi the true label of it. By
minimizing the cross-entropy loss function LCE,
the model is trained to identify temporal semantics
within texts, thereby predicting temporal categories
to each document.

3.2 Overall Architecture

This section provides a detailed description of the
overall architecture of the proposed method TicTac,
as illustrated in Figure 1. Our model fine-tunes
PLMs on the ATD task. Specifically, it learns the
representations by capturing temporal information
via two parts: time-aware contrastive learning and
time-aware ordinal classification.

3.3 Time-aware Contrastive Learning
Contrastive learning in our model aims to cap-
ture temporal implications within diachronic doc-
uments. We define a fine-tuning framework for
contrastive learning, and the input documents are
first tokenized and processed by a PLM encoder to
get contextualized representations:

H = BERT(X) = {h[CLS], h1, h2, . . . , hl}, (2)

where h[CLS] serves as a global representation of
an input document.

The objective of the fine-tuning process is to
model similarities and differences among texts,
thereby enhancing the model’s capacity to capture
temporal semantic relations within them. To this
end, we propose a supervised contrastive learning
process (Gunel et al., 2020) to learn the semantic
association of diachronic documents. Such associ-
ation can be decomposed as two types of relations:
relative temporal relation and absolute temporal
relation. The former represents local relations be-
tween documents, while the latter denotes global
ones between documents and temporal categories.

3.3.1 Contrastive Learning via Relative
Temporal Relation

To capture relative temporal relations between texts
from different diachronic contexts, we introduce a
supervised contrastive learning approach that clus-
ters samples(i.e., documents) with the same tempo-
ral categories while separating those from different
categories. This approach enables the model to
learn local semantic relations within documents.

Specifically, for each document i, we define a
positive sample set Pi, which consists of docu-
ments from the same temporal category, and a can-
didate sample set Ai, which includes all the other
samples in the batch, excluding i. The learning
objective is formulated as:

LCLR =
1

N

∑

i∈I

1

|Pi|
∑

p∈Pi

− log
exp (zi · zp/τ)∑

a∈Ai
exp (zi · za/τ)

,

(3)

where N is the number of documents in the batch,
I is the index set of all batch documents, and τ
is the temperature parameter that adjusts the sen-
sitivity of the contrastive loss. The terms zi and
zp represent the CLS embeddings of the anchor
sample i and its positive sample p, respectively.

By optimizing this objective, the model captures
similarities within documents of the same temporal
categories and differences within documents from
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Figure 1: An overall architecture of TicTac.

different ones to gain representations with relative
temporal semantics.

3.3.2 Contrastive Learning via Absolute
Temporal Relation

The temporal relationship between documents and
temporal categories regarded as the absolute tem-
poral relation provides an alternative perspective
to the relative temporal relation for illustrating the
semantic association between diachronic data. To
this end, we firstly propose to learn a label repre-
sentation for each time category. Then, we max-
imize the distance between documents and their
corresponding category labels while minimizing
the distance between documents and the categories
they do not belong to. By this approach, documents
are encouraged to cluster around their respective
temporal category centers.

To learn label embeddings, we introduce a learn-
able weight matrix Wlabel, which stores the embed-
ding vectors corresponding to each label. For a
given temporal category t, the label embedding zl

is obtained by a lookup operation on the matrix
Wlabel, retrieving the appropriate embedding for
that category. It guarantees that each temporal la-
bel is uniquely represented in the high-dimensional
embedding space.

Formally, the label embedding for each temporal

category t is defined as:

zl = Wlabel[t], (4)

where Wlabel denotes the learnable matrix of label
embeddings, and t represents the index of the tem-
poral category. This lookup operation retrieves the
corresponding label embedding zl, which is sub-
sequently utilized within the contrastive learning
framework. The label-centered contrastive learning
objective is thus formulated as:

LCLA =
1

N

∑

i∈I

1

|Pi|
∑

p∈Pi

− log
exp (zl · zp/τ)∑

a∈Ai
exp (zl · za/τ)

.

(5)

3.4 Time-aware Ordinal Classification for
ATD

Cross-entropy is a common loss function that fo-
cuses on achieving an exact match between pre-
dicted and true labels. However, it may neglect the
ordinality of temporal categories. Consider a docu-
ment actually written between 1800-1820: a mis-
classification to 1820-1840 should incur a smaller
penalty than a more distant error (e.g., 1840-1860),
as the former has a better temporal approximation.

To overcome the limitation, we propose to adopt
Earth Mover’s Distance (EMD) as a distribution-
based evaluation metric. By utilizing the cumula-
tive distribution function (CDF), EMD more accu-
rately measures the divergence between predicted
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and ground-truth temporal distributions. This ap-
proach provides a more sophisticated character-
ization of ordinal relationships among temporal
categories compared to conventional metrics.

Specifically, we define the predicted CDF,
CDFpred(k, i), as the cumulative sum of the pre-
dicted probabilities for sample i up to class k. The
CDF effectively captures the distribution of tempo-
ral probabilities across the classes, as shown in the
equation:

CDFpred(k, i) =
k∑

j=1

ŷi,j , k = 1, . . . , |T |, (6)

where ŷi,j is the predicted probability that sample
i belongs to class j, and |T | represents the total
number of temporal categories. In contrast, the true
CDF, CDFtrue(k, i), is determined by the ground-
truth temporal label, yi, and is defined as:

CDFtrue(k, i) =

{
0, if k ≤ yi

1, if k > yi,
(7)

where yi ∈ {1, . . . , |T |} is the true temporal label
for sample i.

To minimize the difference between the pre-
dicted and true temporal distributions, we compute
the EMD loss as follows:

LTOC =
1

N

N∑

i=1

|T |∑

k=1

(
CDFpred(k, i)− CDFtrue(k, i)

)2

.

(8)

3.5 Training Objective
The overall optimization objective L is a combina-
tion of multiple loss functions to concern different
aspects of the ATD task mentioned above. Specifi-
cally, it is formalized as:

L = LCE + LCLR + LCLA + LTOC . (9)

Through the joint optimization, our model si-
multaneously achieves three key objectives: (1)
accurate temporal label classification, (2) preserva-
tion of ordinal relationships between time periods,
and (3) improved quality of learned temporal em-
beddings.

4 Experiments

4.1 Datasets and Metrics
We evaluate the performance of our model on two
diachronic datasets: Twenty-Four Histories Corpus

(Zinin and Xu, 2020) and Royal Society Corpus
(Kermes et al., 2016). The Twenty-Four Histo-
ries Corpus is a Chinese historical corpus span-
ning from 2500 B.C. to 1600 A.D., consisting of
2,647 volumes covering a wide range of topics
related to ancient China. Each volume contains
approximately 8,000 characters, resulting in a to-
tal of around 40 million characters. Since some
of these texts are compiled by later authors rather
than direct accounts from the periods they describe,
timestamps are assigned based on the documents’
publishing dates. The corpus has been divided into
discrete historical periods, with each time category
corresponding to a fixed time span determined by
historical conventions. The Royal Society Corpus
is an English-language collection with 9,779 doc-
uments covering the period from 1660 to 1880.
However, the data collection does not contain pre-
defined periodization. Following Ren et al. (2023),
we divide it into 11 categories, each covering a
distinct time span of 20 years.

In our experiment, texts from both datasets are
segmented into text blocks of approximately 420
characters. Documents with insufficient text con-
tents are removed to ensure the quality of the train-
ing data. Following Ren et al. (2023), we split each
dataset into training, validation, and test sets in an
8:1:1 ratio. For evaluation, we adopt five metrics:
precision (P), recall (R), F1 score, classification
accuracy (C-acc), and adjacent accuracy (A-acc).

4.2 Baselines
The baseline models employed in the experiments
include non-pretrained models (LSTM, TALM),
pretrained models (BERT, RoBERTa, SBERT), or-
dinal classification models (WKL, OLL), and large
language models (Qwen2.5, Baichuan2, GPT-4o-
mini). The selection of pretrained models follows
the same configuration as Ren et al. (2023) for a
fair and consistent comparison. The prompts used
for large language models are detailed in Table 4
in Appendix A.

We gives a brief overview of the baseline mod-
els employed in this study a follows: (1) LSTM
(Yu and Huangfu, 2019b): a widely used recurrent
neural network designed to effectively handle time-
series data and sequential dependencies, making it
suitable for ATD task. (2) TALM (Ren et al., 2023):
incorporates a temporal alignment and adaptation
module, optimizing the model’s performance in
ATD task by better capturing temporal dynamics.
(3) BERT (Devlin, 2018): a Transformer-based
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pre-trained language model that has become a stan-
dard in natural language processing, demonstrating
strong performance across a range of tasks. (4)
SBERT (Tian and Kübler, 2021): an extension of
BERT that utilizes a twin network architecture to
optimize sentence-level embeddings, significantly
improving performance in period classification of
Chinese historical texts. (5) RoBERTa (Li et al.,
2023): an enhanced version of BERT, trained on
a larger dataset with extended training time, re-
sulting in improved performance for chronological
classification of ancient Chinese texts. (6) WKL
(Torre et al., 2018): an ordinal classification ap-
proach that leverages KL divergence to measure
the differences among temporal categories, with
BERT serving as the underlying model architecture
in this study. (7) OLL (Castagnos et al., 2022): an
ordinal classification approach that enhances tra-
ditional classification loss functions by explicitly
accounting for the ordinal relationships between
categories by using BERT as the model architec-
ture in the experiment. (8) Qwen2.5 (Yang et al.,
2024): a powerful generative language model, ca-
pable of addressing complex natural language rea-
soning tasks, particularly effective for analyzing
historical texts, with a 7B parameter model used
in this study. (9) Baichuan2 (Yang et al., 2023):
trained on a high-quality dataset consisting of 2.6
trillion tokens, with a 7B parameter model selected
for this study. (10) GPT-4o-mini (OpenAI, 2024):
a compact variant of the GPT-4 architecture, de-
signed for efficient text comprehension and gen-
eration, particularly suited for classification tasks
requiring detailed text representations.

4.3 Implementation Details

During the training stage, both the dimensions of
the BERT model and the label embedding zl are
set to 768-dimensional vectors. The dropout rate is
0.5, the learning rate is 1× 10−5, and the AdamW
optimizer is employed. The batch size for the train-
ing, validation, and test sets is 32. Early stopping
is applied with a patience of 5 epochs. In both
contrastive learning modules, τ is set to 0.1. The
training is performed on a single RTX 4090 GPU
with 24 GB of memory, and the CPU configuration
includes 10 vCPUs.

4.4 Overall Results

Table 1 shows the performance of the proposed
model TicTac and baseline models on two di-
achronic datasets, namely the Twenty-Four Histo-

ries Corpus and the Royal Society Corpus. TicTac
outperforms baseline models in almost all evalua-
tion metrics on both datasets, illustrating a strong
benchmark for the ATD task.

The results also reveal some findings. First of
all, non-pretrained models including LSTM and
TALM do not perform well. Specifically, two mod-
els achieve an F1 score of 72.59% and 73.91%
on the Twenty-Four Histories Corpus, and an F1
score of 52.91% and 55.76% on the Royal Society
Corpus, respectively. Such performances are signif-
icantly lower than TicTac, showing the insufficient
ability for ATD without work on the time-aware
fine-tuning paradigm.

Secondly, PLMs illustrate superior performances
in most cases. Specifically, RoBERTa achieves
the highest F1 score of 87.94%, closely followed
by SBERT (87.56%) and BERT (86.32%) on the
Twenty-Four Histories Corpus. The superior per-
formance of RoBERTa can be attributed to its ex-
tensive pre-training and optimized training strategy,
enabling it to capture nuanced contextual informa-
tion in historical texts more effectively. On the
other hand, PLMs do not achieve as good perfor-
mance increase on the Royal Society Corpus as the
Twenty-Four Histories Corpus, compared to non-
pretrained models. It is mainly because ancient
English words occur in the Royal Society Corpus
while they do not appear in the modern English
data employed for pre-training by PLMs, thereby
the impact on PLM performances may be derived
from unknown words.

Moreover, ordinal classification models includ-
ing WKL and OLL exhibit unsatisfying perfor-
mances, particularly with respect to C-accuracy
and A-accuracy. Specifically, WKL records a rela-
tively low F1 score of 53.35% and a C-accuracy of
63.74% on the Twenty-Four Histories Corpus. Al-
though OLL shows slight improvements, it still un-
derperforms in comparison with PLMs. It indicates
that it may be necessary to introduce appropriate
learning objectives for the ATD task.

Finally, sophisticated large language models
show very limited ability on the ATD task. Despite
their strong generative capabilities, they face signif-
icant challenges in the ATD task: Qwen2.5 attains
an F1 score of only 8.46% and a C-accuracy of
7.81%, while other LLMs similarly underperform.
It shows the limitation of large language models in
tasks that require the ability of deep understanding
and analysis, emphasizing the advantage of task-
specific architectures like TicTac in this domain.
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Method Twenty-Four Histories Corpus Royal Society Corpus
P R F1 C-acc A-acc P R F1 C-acc A-acc

LSTM (Yu and Huangfu, 2019b) 74.13 71.70 72.59 76.70 87.92 55.17 54.48 52.91 58.60 87.52
TALM (Ren et al., 2023) 77.50 71.81 73.91 78.64 90.36 57.04 55.78 55.76 59.28 85.48
BERT (Devlin, 2018) 87.26 85.76 86.32 88.57 93.03 59.87 57.95 58.14 62.49 89.17
SBERT (Tian and Kübler, 2021) 87.72 87.74 87.56 89.41 94.23 61.24 58.34 58.68 62.72 90.19
RoBERTa (Li et al., 2023) 88.11 88.06 87.94 89.39 94.08 60.07 60.15 59.96 63.34 89.02
WKL (Torre et al., 2018) 51.50 61.43 53.35 63.74 92.59 44.45 46.86 44.40 51.58 89.40
OLL (Castagnos et al., 2022) 86.51 85.22 85.73 87.95 93.65 59.91 59.22 59.37 61.37 90.63
Qwen2.5 (Yang et al., 2024) 9.18 11.62 8.46 7.81 58.83 30.07 14.87 12.21 13.55 30.91
Baichuan2 (Yang et al., 2023) 4.09 5.22 3.74 3.90 52.05 31.71 15.15 16.74 16.13 37.47
GPT-4o-mini (OpenAI, 2024) 9.94 10.82 6.81 6.79 48.62 26.22 18.95 16.14 17.16 35.31
TicTac (ours) 89.17 87.67 88.36 90.18 95.01 64.14 62.43 62.60 67.66 91.95

Table 1: Performance comparison between TicTac (our model) and baseline models on the Twenty-Four Histories
corpus and the Royal Society Corpus. The baseline models include non-pretrained models (LSTM, TALM), PLMs
(BERT, SBERT, RoBERTa), ordinal classification models (WKL, OLL), and large language models (Qwen2.5,
Baichuan2, GPT-4o-mini). Evaluation metrics include precision (P), recall (R), F1 score, C-accuracy (C-acc), and
A-accuracy (A-acc).

Dataset Model P R F1

Twenty-Four
Histories Corpus

TicTac (ours) 89.17 87.67 88.36
w/o CLR 88.22 87.89 87.98
w/o CLA 88.32 86.86 87.37
w/o TOC 88.31 86.35 87.19

Royal Society
Corpus

TicTac (ours) 64.14 62.43 62.60
w/o CLR 63.90 61.37 61.93
w/o CLA 62.65 61.43 61.53
w/o TOC 62.89 61.85 61.88

Table 2: The results of the ablation study on the Twenty-
Four Histories Corpus and Royal Society Corpus. CLR
refers to the Contrastive Learning via Relative Temporal
Relation module, CLA refers to the Contrastive Learn-
ing via Absolute Temporal Relation module, and TOC
refers to the Time-aware Ordinal Classification for ATD
module.

In summary, TicTac outperforms all state-of-the-
art baselines, illustrating its effectiveness in the
ATD task. It represents the significance of model-
ing temporal relationships for temporal texts, which
is a critical issue for the ATD task.

4.5 Ablation Study

Table 2 shows the results of the ablation study
on the two datasets, revealing the contribution of
each module in our proposed model. It clearly
demonstrates that each module contributes posi-
tively to the model’s overall performance. Specifi-
cally, removing the CLR module leads to a slight
performance decrease in both datasets, with the F1
score on the Twenty-Four Histories Corpus drop-
ping from 88.36% to 87.98%. Likewise, removing
the CLA and the TOC modules results in further
performance declines, with F1 scores decreasing to

87.37% and 87.19%, respectively. Similar perfor-
mance results are observed on the Royal Society
Corpus, where removing each module causes a re-
duction in precision and F1 score. On the other
hand, the observed performance degradation is
more gentle. For example, the w/o CLR variant ex-
periences a drop in F1 from 62.60% to 61.93%, and
the removal of CLA and TOC similarly results in
modest performance decreases. It indicates that the
Royal Society Corpus presents a relatively more
challenging benchmark dataset for the ATD task
than the other one, partly because of the shorter
time span for each category in it.

Overall, the results highlight the significant con-
tribution of all three modules in effectively mod-
eling temporal relationships within the diachronic
documents. The CLR and the CLA module en-
hance the model’s ability to capture temporal impli-
cations by leveraging relative and absolute tempo-
ral relations, respectively, while the TOC module
strengthens the model’s ability to learn ordinal re-
lations within diachronic documents. Since the
performance decreases when these modules are
removed, it indicates the critical role these compo-
nents play in achieving the superior results.

4.6 Comparison of Ordinal Classification
Losses

Table 3 compares the performances of models by
leveraging on different ordinal classification loss
functions, based on TicTac. It can be seen from the
table that, TicTac achieves the highest F1 scores,
with 88.36% on the Twenty-Four Histories Corpus
and 62.60% on the Royal Society Corpus, showing
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Model Twenty-Four Histories Corpus Royal Society Corpus
P R F1 P R F1

EMD (TicTac) 89.17 87.67 88.36 64.14 62.43 62.60
OLL (Castagnos et al., 2022) 86.54 86.08 86.22 62.47 60.22 60.71
WKL (Torre et al., 2018) 87.64 87.31 87.38 62.66 61.22 61.33
SOFT (Diaz and Marathe, 2019) 88.25 88.31 88.21 62.94 61.38 61.84

Table 3: Comparison of different ordinal classification losses on the Twenty-Four Histories Corpus and the Royal
Society Corpus. For the OLL method, α is set to 1.5, and for SOFT method, β is set to 3, as these parameter settings
achieved the best performance on the Amazon reviews dataset (Castagnos et al., 2022).

its capacity in capturing complex temporal rela-
tions by employing the Earth Mover’s Distance
(EMD) loss for ordinal classification.

OLL underperforms on both two datasets,
achieving a 2.14% and a 1.89% F1 score lower than
TicTac, respectively. Although WKL performs bet-
ter than OLL, it still has a 0.98% and a 1.27% F1
score lower than TicTac, respectively. Such results
suggest the insufficient ability of these two models
in modeling temporal ordinality in the ATD task.

SOFT employs soft labels to represent ordi-
nal relationships, yielding a better performance in
comparison with OLL and WKL. Specifically, it
achieves an F1 score of 88.21% and 61.84% on the
Twenty-Four Histories and Royal Society corpora,
respectively. However, SOFT essentially forces
models to make a regularization process rather than
to learn temporal semantic relations between di-
achronic documents. Hence it cannot enable mod-
els to have the capacity of capturing temporal im-
plications on temporal data.

4.7 Visualization Analysis

We display t-SNE visualizations of the CLS embed-
dings learned by our proposed model and the BERT
model on both two datasets, shown in Figures 2
and 3 in the Appendix A.

We can find two points from the figures. First
of all, there are more local clusters of document
representations on the Twenty-Four Histories Cor-
pus than the Royal Society Corpus, no matter what
model the experiment conducts, suggesting that
the clustering performances of all models on the
Twenty-Four Histories Corpus are better than those
on the Royal Society Corpus. It is mainly because
that documents in a corpus with long time span
have better discrimination on temporal semantic
relations. For another thing, the overlapping de-
gree of document representation clusters of BERT
is more than that of TicTac on both corpora. For
example, the margin of the cluster Northern Qi,

Southern Liang, and Tang by BERT is not as much
clear as that by TicTac, which produces a tighter
grouping of categories and clearer margins. Such
visualization results illustrate the efficiency of Tic-
Tac in temporal category discrimination.

4.8 Case Study

We compare TicTac with RoBERTa which achieves
the best performance among all baseline systems.
Specifically, we can observe the fine-grained perfor-
mances of the two models by temporal category on
the two datasets by means of evaluation metrics on
each category. Table 5 in Appendix A displays the
performances of the two models on each category.

It can be seen from the table that, in the Royal So-
ciety Corpus, TicTac outperforms RoBERTa across
most temporal categories except for the period
1680–1800. It is worth noting that, TicTac achieves
the highest F1 score of 76.47% during 1860–1880.
On the other hand, in the Twenty-Four Histories
Corpus, the performance gap between the two mod-
els is more distinct. For example, RoBERTa outper-
forms TicTac in the temporal category of Western
Han, Southern Liang, and Northern Qi. However,
TicTac outperforms RoBERTa in other periods. For
example, in the period Eastern Han and Southern
Song, TicTac achieves an F1 score increase by
4.62% and 6.81% in comparison with RoBERTa,
respectively. To sum up, TicTac demonstrates a
more stable performance on the Royal Society Cor-
pus, while its effectiveness on the Twenty-Four
Histories Corpus is more dependent on the specific
temporal categories.

Figure 4 in Appendix A displays the confusion
matrices of TicTac on the test sets of the two cor-
pora. In the Twenty-Four Histories Corpus, TicTac
performs well on some temporal categories such
as Western Jin, Tang, and Later Jin, with the ac-
curacy scores exceeding 85% in most cases. We
also notice that, higher confusion rates occur at
categories like Southern Song and Southern Liang
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with Northern Qi, probably due to unclear seman-
tic intervals from these short time-span and adja-
cent periods. In the Royal Society Corpus, TicTac
shows superior performances on the 1660–1680
and 1860–1880 periods, probably because they are
respectively the start and the end of the temporal
class sequences that are easier to be identified than
the other categories. On the other hand, TicTac has
lower performances on the period 1680–1700 and
1720–1740, possibly due to the limited data scale
on these temporal categories.

5 Conclusion

In this paper, we propose TicTac, a novel approach
to the ATD task that integrates time-aware con-
trastive learning and time-aware ordinal classifica-
tion to jointly model ordinally relative and absolute
temporal relationships in long time-span texts. Ex-
periments on two diachronic corpora show that Tic-
Tac outperforms state-of-the-art baselines, demon-
strating its effectiveness in capturing temporal im-
plications. TicTac also shows the limitations on
short time-span texts, and further evaluation on
multilingual datasets is needed to assess its gener-
alization ability.

Limitations

This study acknowledges two primary limitations.
First, due to the limited availability of text-dating
datasets, experiments were conducted exclusively
on Chinese and English datasets, and the model’s
performance remains untested on datasets in other
languages. To fully assess the generalizability of
the model, further validation on datasets from ad-
ditional languages is necessary. Second, the pro-
posed method encounters difficulties when applied
to tasks involving texts with minimal or no tempo-
ral span. This challenge stems from the model’s
reliance on the evolutionary properties of language
for its modeling, a characteristic that becomes less
pronounced in datasets with shorter or absent tem-
poral spans. Future work should aim to refine the
model to more effectively capture lexical changes
in such datasets.
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ral classification for historical Romanian texts. In
Proceedings of the 7th Workshop on Language Tech-
nology for Cultural Heritage, Social Sciences, and
Humanities, pages 102–106. Association for Compu-
tational Linguistics. Place: Sofia, Bulgaria.

Angelo Dalli. 2006. Temporal classification of text
and automatic document dating. In Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers, pages
29–32.

21914

https://doi.org/10.18653/v1/2020.acl-main.363
https://doi.org/10.18653/v1/2020.acl-main.363
https://doi.org/10.18653/v1/2020.acl-main.363
https://aclanthology.org/2021.nodalida-main.15
https://aclanthology.org/2021.nodalida-main.15
https://aclanthology.org/2021.nodalida-main.15
https://aclanthology.org/2022.coling-1.407
https://aclanthology.org/2022.coling-1.407
https://aclanthology.org/W13-2714
https://aclanthology.org/W13-2714


Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Raul Diaz and Amit Marathe. 2019. Soft labels for or-
dinal regression. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 4738–4747.

Anne Garcia-Fernandez, Anne-Laure Ligozat, Marco
Dinarelli, and Delphine Bernhard. 2011. When was
it written? Automatically determining publication
dates. In String Processing and Information Re-
trieval: 18th International Symposium, SPIRE 2011,
Pisa, Italy, October 17-21, 2011. Proceedings 18,
pages 221–236. Springer.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-
anov. 2020. Supervised contrastive learning for pre-
trained language model fine-tuning. arXiv preprint
arXiv:2011.01403.

Hansi Hettiarachchi, Mariam Adedoyin-Olowe, Jagdev
Bhogal, and Mohamed Medhat Gaber. 2022. Em-
bed2Detect: Temporally Clustered Embedded Words
for Event Detection in Social Media. Machine Learn-
ing, (2022)111:49–87. Type: Journal Article.

Le Hou, Chen-Ping Yu, and Dimitris Samaras. 2016.
Squared earth mover’s distance-based loss for
training deep neural networks. arXiv preprint
arXiv:1611.05916.

Nattiya Kanhabua and Kjetil Nørvåg. 2008. Improving
temporal language models for determining time of
non-timestamped documents. In International con-
ference on theory and practice of digital libraries,
pages 358–370. Springer.

Siva Rajesh Kasa, Aniket Goel, Karan Gupta, Sumegh
Roychowdhury, Anish Bhanushali, Nikhil Pattisapu,
and Prasanna Srinivasa Murthy. 2024. Exploring Or-
dinality in Text Classification: A Comparative Study
of Explicit and Implicit Techniques. arXiv preprint
arXiv:2405.11775.

Hannah Kermes, Stefania Degaetano-Ortlieb, Ashraf
Khamis, Jörg Knappen, and Elke Teich. 2016. The
royal society corpus: From uncharted data to corpus.
In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 1928–1931.

Meiwei Li, Yunhui Qin, and Wei Huangfu. 2023.
RoBERTa: An Efficient Dating Method of An-
cient Chinese Texts. In Chinese Lexical Semantics,
pages 293–301. Springer Nature Switzerland. Place:
Cham.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang.
2021. Natural Language Inference in Context - In-
vestigating Contextual Reasoning over Long Texts.
In Proceedings of The Thirty-Fifth AAAI Conference
on Artificial Intelligence, Series Natural Language
Inference in Context - Investigating Contextual Rea-
soning over Long Texts, pages 13388–13396. Type:
Conference Paper.

Riccardo Massidda. 2020. rmassidda@ DaDoEval:
Document dating using sentence embeddings at
EVALITA 2020. EVALITA Evaluation of NLP and
Speech Tools for Italian-December 17th, 2020, page
403.

Vlad Niculae, Marcos Zampieri, Liviu P Dinu, and
Alina Maria Ciobanu. 2014. Temporal text rank-
ing and automatic dating of texts. In Proceedings of
the 14th Conference of the European Chapter of the
Association for Computational Linguistics, volume 2:
Short Papers, pages 17–21.

OpenAI. 2024. GPT-4o mini: advancing cost-efficient
intelligence.

Octavian Popescu and Carlo Strapparava. 2015. Se-
mEval 2015, Task 7: Diachronic Text Evaluation. In
Proceedings of the 9th International Workshop on Se-
mantic Evaluation(SemEval), Series SemEval 2015,
Task 7: Diachronic Text Evaluation, pages 870–878.
Type: Conference Paper.

Adithya Pratapa, Kevin Small, and Markus Dreyer.
2023. Background Summarization of Event Time-
lines. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
Series Background Summarization of Event Time-
lines, pages 8111–8136. Type: Conference Paper.

Swayambhu Nath Ray, Shib Sankar Dasgupta, and
Partha Talukdar. 2018. AD3: Attentive Deep Docu-
ment Dater. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1871–1880, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Han Ren, Hai Wang, Yajie Zhao, and Yafeng Ren. 2023.
Time-Aware Language Modeling for Historical Text
Dating. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 13646–
13656. Association for Computational Linguistics.
Place: Singapore.

Paul Röttger and Janet Pierrehumbert. 2021. Tempo-
ral Adaptation of BERT and Performance on Down-
stream Document Classification: Insights from Social
Media. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2400–2412,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Chao Shang, Guangtao Wang, Peng Qi, and Jing Huang.
2022. Improving Time Sensitivity for Question An-
swering over Temporal Knowledge Graphs. In Pro-
ceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics(ACL), Series
Improving Time Sensitivity for Question Answering
over Temporal Knowledge Graphs, pages 8017–8026.
Type: Conference Paper.

Jungbin Son and Alice Oh. 2023. Time-Aware Repre-
sentation Learning for Time-Sensitive Question An-
swering. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Series Time-Aware
Representation Learning for Time-Sensitive Question
Answering. Type: Conference Paper.

21915

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://doi.org/10.18653/v1/D18-1213
https://doi.org/10.18653/v1/D18-1213
https://doi.org/10.18653/v1/2023.findings-emnlp.911
https://doi.org/10.18653/v1/2023.findings-emnlp.911
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://doi.org/10.18653/v1/2021.findings-emnlp.206


Zhaochen Su, Zecheng Tang, Xinyan Guan, Lijun Wu,
Min Zhang, and Juntao Li. 2022. Improving Tempo-
ral Generalization of Pre-trained Language Models
with Lexical Semantic Change. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 6380–6393, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Zuoyu Tian and Sandra Kübler. 2021. Period Classifica-
tion in Chinese Historical Texts. In Proceedings of
the 5th Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social Sciences,
Humanities and Literature, pages 168–177. Associ-
ation for Computational Linguistics. Place: Punta
Cana, Dominican Republic (online).

Jordi de La Torre, Domenec Puig, and Aida Valls. 2018.
Weighted kappa loss function for multi-class clas-
sification of ordinal data in deep learning. Pattern
Recognition Letters, 105:144–154. Publisher: Else-
vier.

Siddharth Vashishtha, Adam Poliak, Yash Kumar Lal,
Benjamin Van Durme, and Aaron Steven White. 2020.
Temporal Reasoning in Natural Language Inference.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, Series Temporal Reasoning
in Natural Language Inference. Type: Conference
Paper.

Jiexin Wang, Adam Jatowt, and Yi Cai. 2024. Towards
Effective Time-Aware Language Representation: Ex-
ploring Enhanced Temporal Understanding in Lan-
guage Models. CoRR, abs/2406.01863.

Jiexin Wang, Adam Jatowt, Masatoshi Yoshikawa, and
Yi Cai. 2023. BiTimeBERT: Extending Pre-Trained
Language Representations with Bi-Temporal Infor-
mation. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’23, pages 812–
821, New York, NY, USA. Association for Comput-
ing Machinery.

Yuting Wei, Meiling Li, Yangfu Zhu, Yuanxing Xu,
Yuqing Li, and Bin Wu. 2025. A diachronic language
model for long-time span classical Chinese. Informa-
tion Processing & Management, 62(1):103925.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian
Wang, Dong Yan, and others. 2023. Baichuan 2:
Open large-scale language models. arXiv preprint
arXiv:2309.10305.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen2.5 Technical Report. arXiv
preprint arXiv:2412.15115.

Xuejin Yu and Wei Huangfu. 2019a. A Machine Learn-
ing Model for the Dating of Ancient Chinese Texts.
In 2019 International Conference on Asian Language
Processing (IALP), pages 115–120.

Xuejin Yu and Wei Huangfu. 2019b. A Machine Learn-
ing Model for the Dating of Ancient Chinese Texts.
In 2019 International Conference on Asian Language
Processing (IALP), pages 115–120.

Sergey Zinin and Yang Xu. 2020. Corpus of Chinese
dynastic histories: Gender analysis over two millen-
nia. In Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages 785–793,
Marseille, France. European Language Resources
Association.

A Appendix

21916

https://doi.org/10.18653/v1/2022.emnlp-main.428
https://doi.org/10.18653/v1/2022.emnlp-main.428
https://doi.org/10.18653/v1/2022.emnlp-main.428
https://doi.org/10.18653/v1/2021.latechclfl-1.19
https://doi.org/10.18653/v1/2021.latechclfl-1.19
https://doi.org/10.48550/ARXIV.2406.01863
https://doi.org/10.48550/ARXIV.2406.01863
https://doi.org/10.48550/ARXIV.2406.01863
https://doi.org/10.48550/ARXIV.2406.01863
https://doi.org/10.1145/3539618.3591686
https://doi.org/10.1145/3539618.3591686
https://doi.org/10.1145/3539618.3591686
https://doi.org/10.1016/j.ipm.2024.103925
https://doi.org/10.1016/j.ipm.2024.103925
https://doi.org/10.1109/IALP48816.2019.9037653
https://doi.org/10.1109/IALP48816.2019.9037653
https://doi.org/10.1109/IALP48816.2019.9037653
https://doi.org/10.1109/IALP48816.2019.9037653
https://aclanthology.org/2020.lrec-1.98/
https://aclanthology.org/2020.lrec-1.98/
https://aclanthology.org/2020.lrec-1.98/


Dataset Prompt Text

RSC Given the following text, you need to determine the period class it belongs to.
For example, a text belongs to the period class 1600–1680 means that it was
written between 1600 and 1680. There are 11 period classes: 1660–1680,
1680–1700, 1700–1720, 1720–1740, 1740–1760, 1760–1780, 1780–1800,
1800–1820, 1820–1840, 1840–1860 and 1860–1880. Please return only one
period class according to the text without any explanation. The text is as follows:
{text}

24 Histories 请根据给定的文本内容，判断该文本所属的年代类别。例如，如果
一个文本写于唐代 (618年-907年)，那么该文本的年代类别为唐代。年
代类别包括：西汉、东汉、西晋、南朝宋、南朝梁、北朝齐、唐、后
晋、宋、元、明、清。请只返回一个年代类别，不要添加任何额外的解
释：{text}

Table 4: Prompt Templates for Twenty-Four Histories Corpus and Royal Society Corpus Datasets

Figure 2: t-SNE plot of the CLS embeddings learned on the Twenty-Four Histories Corpus test set, consisting
of 6911 samples and 12 categories. The plot on the left represents the TicTac model, while the plot on the right
represents the BERT model.

Figure 3: t-SNE plot of the CLS embeddings learned on the Royal Society Corpus test set, consisting of 13465
samples and 11 categories. The plot on the left represents the TicTac model, while the plot on the right represents
the BERT model.
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Dataset Period TicTac RoBERTa
P R F1 P R F1

Twenty-Four
Histories Corpus

Western Han 89.95 85.86 87.86 95.00 88.89 91.84
Eastern Han 87.71 87.47 87.59 81.99 83.98 82.97
Western Jin 90.80 95.18 92.94 93.18 91.79 92.48

Southern Song 89.66 84.69 87.10 74.40 87.20 80.29
Southern Liang 79.41 71.81 75.42 82.17 83.23 82.69

Northern Qi 79.76 74.44 77.01 86.71 78.48 82.39
Tang 86.04 90.95 88.43 88.08 87.89 87.99

Later Jin 90.76 86.60 88.63 84.41 91.78 87.94
Song 91.32 89.35 90.33 94.58 81.95 87.81
Yuan 93.86 97.58 95.69 91.50 96.30 93.84
Ming 93.40 91.24 92.31 87.26 94.48 90.73
Qing 97.38 96.78 97.08 98.03 90.75 94.25

Royal Society
Corpus

1660-1680 62.97 80.40 70.62 69.40 71.00 70.20
1680-1700 48.48 36.62 41.72 47.53 45.81 46.66
1700-1720 59.57 51.51 55.25 52.06 55.02 53.50
1720-1740 53.53 31.39 39.57 38.10 40.60 39.31
1740-1760 63.01 60.22 61.58 60.32 56.54 58.37
1760-1780 57.89 74.73 65.24 61.68 61.45 61.57
1780-1800 66.70 62.20 64.37 65.74 54.01 59.30
1800-1820 76.45 65.94 70.81 62.54 78.42 69.59
1820-1840 66.36 73.22 69.62 64.33 63.60 63.96
1840-1860 68.37 79.11 73.35 66.94 63.98 65.42
1860-1880 82.25 71.45 76.47 72.12 71.19 71.65

Table 5: Performance by historical period on TicTac and RoBERTa, evaluated by P, R, and F1

Figure 4: The confusion matrix of our model on the Twenty-Four Histories Corpus (left) and Royal Society Corpus
(right). Rows represent true labels, and columns represent predicted labels. The percentage values in each cell
indicate the proportion of instances correctly or incorrectly classified into each time period.
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