
Findings of the Association for Computational Linguistics: ACL 2025, pages 21889–21905
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

READOC: A Unified Benchmark for Realistic
Document Structured Extraction

Zichao Li1,2,*, Aizier Abulaiti1,2,*, Yaojie Lu1, Xuanang Chen1,†,
Jia Zheng1,†, Hongyu Lin1, Xianpei Han1, Shanshan Jiang3, Bin Dong3, Le Sun1

1Chinese Information Processing Laboratory, Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Ricoh Software Research Center Beijing Co., Ltd
{lizichao2022,aizier2022,luyaojie,chenxuanang,zhengjia}@iscas.ac.cn

{hongyu,xianpei,sunle}@iscas.ac.cn {shanshan.jiang,bin.dong}@cn.ricoh.com

Abstract

Document Structured Extraction (DSE) aims
to extract structured content from raw doc-
uments. Despite the emergence of numer-
ous DSE systems, their unified evaluation re-
mains inadequate, significantly hindering the
field’s advancement. This problem is largely
attributed to existing benchmark paradigms,
which exhibit fragmented and localized char-
acteristics. To offer a thorough evaluation of
DSE systems, we introduce a novel bench-
mark named READOC, which defines DSE
as a realistic task of converting unstructured
PDFs into semantically rich Markdown. The
READOC dataset is derived from 3,576 di-
verse and real-world documents from arXiv,
GitHub, and Zenodo. In addition, we develop
a DSE Evaluation S3uite comprising Standard-
ization, Segmentation and Scoring modules,
to conduct a unified evaluation of state-of-the-
art DSE approaches. By evaluating a range of
pipeline tools, expert visual models, and gen-
eral Vision-Language Models, we identify the
gap between current work and the unified, real-
istic DSE objective for the first time. We aspire
that READOC will catalyze future research in
DSE, fostering more comprehensive and practi-
cal solutions.

1 Introduction

The wealth of knowledge preserved in documents
is immeasurable. Document Structured Extraction
(DSE), which involves converting raw documents
into machine-readable structured text (Tkaczyk
et al., 2015; Zhong et al., 2019; Shen et al., 2022;
Lo et al., 2023), is increasingly crucial in real-
world scenarios. It facilitates building extensive
knowledge bases (Wang et al., 2020), constructing
high-quality corpora (Jain et al., 2020), and plays
a pivotal role in Retrieval-Augmented Generation

*Equal contribution.
†Corresponding author.

Multi-page PDF
Document

Single-Page
Image

Document
Layout Analysis

Text

Table

Formula

Heading

Text Extraction / OCR

Table Structure
Recognition

Mathematical
Formula Conversion

Table-of-Content
Extraction

Reading Order
Detection

Plain text /
LaTeX / HTML /
Logical Tree …

Document
Structured Extraction

Existing Fragmented
and Localized tasks

Unified and Realistic
READoc task

Constraining Coefficient

Coefficient

\[D_e=\textrm{GeV}\]

The index \(\delta\) is 1/3.

\begin{table} …
\end{table}

Inconsistent
Formats

Figure 1: A comparison between fragmented and lo-
calized DSE task views and the READOC benchmark
paradigm.

(RAG) (Gao et al., 2023) applications for Large
Language Models (LLMs) (Achiam et al., 2023).

Recent progress in Document AI (Appalaraju
et al., 2021; Huang et al., 2022; Ye et al., 2023; Hu
et al., 2024) has led to the creation of numerous
DSE systems (Breezedeus, 2022; Paruchuri and
Lampa, 2023; Blecher et al., 2023). However, the
absence of unified evaluation in real-world scenar-
ios has left uncertainty about their performance
levels and hindered their further development. This
issue is largely due to the limitations of prevailing
benchmark paradigms, which exhibit fragmented
and unrealistic characteristics. Firstly, as depicted
in Figure 1, existing benchmarks typically frag-
ment DSE into distinct subtasks, including docu-
ment layout analysis (Zhong et al., 2019), optical
character recognition (Karatzas et al., 2015), table-
of-contents extraction (Hu et al., 2022), reading
order detection (Wang et al., 2021), table recogni-
tion (Smock et al., 2022) and formula conversion
(Deng et al., 2017). Due to their narrow focus,
diverse data sources, and inconsistent formats, ex-
isting benchmarks lack a unified framework to com-

21889

Benchmark
Coverage Task Paradigm

Layout
Analysis

Character
Recognition

Table
Recognition

Formula
Conversion

ToC.
Extraction

Order
Detection INPUT OUTPUT

PubLayNet ! ✗ ✗ ✗ ✗ ✗ Page image Layout blocks
DocBank ! ✗ ✗ ✗ ✗ ✗ Page image & text Layout blocks

Robust Reading ✗ ! ✗ ✗ ✗ ✗ Text image Plain text
PubTabNet ✗ ✗ ! ✗ ✗ ✗ Table image HTML table

TabLeX ✗ ✗ ! ✗ ✗ ✗ Table image LATEX table
Im2Latex-100K ✗ ✗ ✗ ! ✗ ✗ Formula image LATEX formula
ReadingBank ✗ ✗ ✗ ✗ ✗ ! Unsorted tokens Sorted tokens

HRDoc ! ✗ ✗ ✗ ! ✗ Doc images & text Logical tree

READOC ! ! ! ! ! ! Realistic PDF doc Markdown text

Table 1: A comparison between READOC and existing DSE benchmarks, including PubLayNet (Zhong et al., 2019),
DocBank (Li et al., 2020), Robust Reading (Karatzas et al., 2015), PubTabNet (Zhong et al., 2020), TabLeX (Desai
et al., 2021), Im2Latex-100K (Deng et al., 2017), ReadingBank (Wang et al., 2021), and HRDoc (Ma et al., 2023).

prehensively evaluate DSE systems. Additionally,
current research often unrealistically targets lo-
calized regions, such as layout blocks or tables
within a single page. This approach overlooks the
complexity of real-world documents, which typi-
cally span multiple pages with hierarchical head-
ings and require long-range dependencies to con-
struct a global structure. Benchmarks focusing on
isolated pages or blocks fail to provide realistic
evaluations.

To address these issues, we introduce READOC,
a unified benchmark designed to quantify the gap
between existing work and the goal of REAlistic
DOCument Structured Extraction. READOC for-
mulates DSE as an end-to-end task, converting
multi-page PDFs into structured Markdown. We au-
tomatically construct 3,576 PDF-Markdown pairs
from arXiv, GitHub, and Zenodo, covering diverse
types, years, and topics to reflect real-world com-
plexity. Additionally, we develop a DSE evalua-
tion S3uite with three modules: Standardization,
Segmentation, and Scoring, enabling unified eval-
uation of diverse DSE systems, including pipeline
tools (Paruchuri and Lampa, 2023), expert mod-
els (Blecher et al., 2023), and Vision-Language
Models (Achiam et al., 2023).

Our contributions are three-fold: 1) READOC is
the first benchmark to frame DSE as a PDF-to-
Markdown paradigm, which is realistic, end-to-
end, and incorporates diverse data. 2) An eval-
uation S3uite is proposed to support the unified
assessment of various DSE systems and to quan-
tify multiple capabilities required for DSE. 3) We
present the gap between current research and real-
istic DSE, emphasizing the importance of explor-

ing new modeling paradigms. The code and data
are publicly available at https://github.com/
icip-cas/READoc.

2 Related Work

2.1 Task Views and Benchmarks

DSE is a crucial task, yet existing benchmarks fo-
cus on discrete subtasks: document layout analysis
(Zhong et al., 2019; Li et al., 2020) identifies lay-
out blocks; optical character recognition (Karatzas
et al., 2015) extracts text from images; table struc-
ture recognition (Zhong et al., 2020) transforms ta-
bles into structured formats; mathematical formula
conversion (Deng et al., 2017) converts formulas
into semantic formats; table-of-contents (ToC) ex-
traction (Ma et al., 2023) constructs hierarchical
heading trees; reading order detection (Wang et al.,
2021) sorts page elements by reading order. We
summarize relevant benchmarks in Table 1. How-
ever, their heterogeneity complicates unified DSE
evaluation.

Recent research conceptualizes DSE as a single-
page image-to-markup task (Blecher et al., 2023;
Lee et al., 2023), and targeted benchmarks such
as OmniDocBench (Ouyang et al., 2024) have
emerged. Although OmniDocBench demonstrates
commendable richness in evaluation and diversity
of data, its single-page approach falls short in han-
dling multi-page or lengthy documents often en-
countered in real-world scenarios.

2.2 Methods for Document Structured
Extraction

Due to the intricacies of textual, graphical, and lay-
out information within documents (Xu et al., 2020),

21890

https://github.com/icip-cas/READoc
https://github.com/icip-cas/READoc

a universally accepted method for DSE has yet to
emerge. A common simplistic strategy involves
leveraging external parsing engines (PyMuPDF,
2024) to extract text and metadata from digital-born
PDFs. With the rise of deep learning techniques,
Numerous systems (Li et al., 2022; Paruchuri and
Lampa, 2023; Contributors, 2024) have integrated
a series of submodels into a pipeline, with each
submodel dedicated to a specific subtask of DSE.
Recent advancements have shifted towards end-to-
end DSE methodologies, with some works lever-
aging Transformer (Vaswani et al., 2017) expert
models to convert document page images directly
into structured formats such as HTML (Lee et al.,
2023) or Markdown (Blecher et al., 2023).

Recently, large Vision-Language Models have
garnered widespread attention (Achiam et al., 2023;
Liu et al., 2024c), with document understanding
(Feng et al., 2023; Hu et al., 2024) being a key focus
of their capabilities. Efforts to enhance VLMs’
document understanding capability have focused
on methods like tailored training tasks (Ye et al.,
2023) and resolution adaptation (Li et al., 2024),
leading to notable improvements. VLMs obtain
impressive results on various DSE subtasks, such
as OCR (Liu et al., 2024d), table recognition (Zhao
et al., 2024), and formula conversion (Xia et al.,
2024). Additionally, some research has explored
converting page images into structured text using
VLMs (Lv et al., 2023; Wei et al., 2024a; Liu et al.,
2024a). However, the lack of a unified benchmark
leaves uncertainty about the gap between VLMs’
current capabilities and realistic DSE needs.

3 Task Definition

We establish a realistic task paradigm for end-to-
end DSE, using raw PDF documents as input due
to their prevalence and unstructured nature, which
poses challenges with dispersed content and mul-
timodal information. On the other hand, we em-
ploy Markdown as the output format, leveraging
its lightweight markup to represent structural ele-
ments like headings and lists. We adopt a variant
of Markdown (Blecher et al., 2023) that supports
LATEX syntax for tables and formulas. Markdown,
as the target format, can be chunked, indexed as
flat text, or directly ingested by LLMs.

In summary, READOC uniformly defines DSE
as a task that takes a complete PDF file as input
and generates structured text in Markdown format,
which is well-defined, practical, and challenging

for DSE systems. Examples of task inputs and
outputs are provided in Appendix A.

4 Benchmark Construction

READOC is a unified DSE benchmark derived
from real-world documents. We select heteroge-
neous documents from arXiv preprints1, GitHub
READMEs2 and Zenodo’s Open Research Repos-
itory3, which are then automatically processed to
construct PDF-Markdown pairs. READOC con-
sists of 3,576 documents: 1,009 in the READOC-
arXiv subset, 1,224 in the READOC-GitHub sub-
set, and 1343 in the READOC-Zenodo subset.
Each subset offers unique challenges: READOC-
arXiv features complex academic structures such
as formulas and tables, with diverse multi-column
layout templates. However, its heading styles are
simple, often following easily recognizable pat-
terns like "1.1 Introduction." In contrast, READOC-
GitHub includes only basic elements like para-
graphs and headings, and presents a uniform single-
column layout style. However, building its ToC
structure is challenging due to varied and often un-
marked heading styles. READOC-Zenodo contains
longer documents (many exceeding 30 pages) and
diverse types, such as posters, reports, theses, and
books, challenging layout analysis. Additionally,
its 27 languages further increase text processing
and semantic understanding complexity. Each sub-
set exhibits significant diversity in types, topics,
eras, and so on, establishing READOC as a robust
benchmark. We describe more construction details
in Appendix B.

4.1 Document Collection and Processing

READOC-arXiv. For the arXiv preprints, the
collection process involves using type keywords
such as “Conference" and “Journal" to select pa-
pers and filtering for English language. Preprints
without LATEX files or with unclear main LATEX files
are excluded. The selected documents are first con-
verted from LATEX to HTML using LaTeXML4, fol-
lowed by a conversion from HTML to Markdown
using a modified version of the Nougat (Blecher
et al., 2023) process. Only documents that com-
plete this process without any errors and maintain
correct table syntax after conversion are included.

1https://arxiv.org/
2https://github.com/
3https://zenodo.org/
4https://github.com/brucemiller/LaTeXML

21891

https://arxiv.org/
https://github.com/
https://zenodo.org/
https://github.com/brucemiller/LaTeXML

cs

16.9%

math 14.5%

physics

17.7%

q-bio

11.7% q-fin

9.2%

stat12.5%

eess

12.9%

econ

4.6%

(a) (b) (c)

Figure 2: Visualization of data distribution in READOC. (a) Document disciplines of READOC-arXiv. (b)
Document topics of READOC-GitHub. (c) Language distribution of READOC-Zenodo.

Statistics arXiv GitHub Zenodo

Documents 1,009 1,224 1,343
Avg. Pages 11.67 6.54 14.93
Avg. Depth 3.10 3.11 2.66
Avg. Length 10,209.50 1,978.10 8255.85
Year Span 1996 - 2024 2008 - 2024 2014 - 2024
Types / Disciplines 6 / 8 - -
Topics - 2,805 -
Language count 1 1 27

Table 2: The data statistics of READOC.

READOC-GitHub. The GitHub README files
are originally in Markdown format, and we collect
and filter them based on specific criteria: they must
have obtained than 500 stars, be written in English,
exclude HTML syntax, etc. To maintain the sim-
plicity of this subset, we exclude files that contain
tables and formulas. After initial preprocessing,
the Markdown files are converted to PDFs using
Pandoc5 as the conversion engine and Eisvogel6

as the template. Only documents that successfully
complete this entire workflow without execution
errors or warnings are retained.

READOC-Zenodo. For the Zenodo dataset, we
collect 910 DOCX and 433 HTML files from Zen-
odo. DOCX files are converted to Markdown us-
ing Microsoft’s Markitdown (microsoft, 2024) tool,
then to PDF via python-docx7. HTML files are con-
verted to Markdown using Pandoc8, then to PDF
via Chromium. We exclude conversion failures and
overly long/short files, retaining only structurally
rich documents.

5https://github.com/jgm/pandoc
6https://github.com/Wandmalfarbe/

pandoc-latex-template
7https://pypi.org/project/python-docx/
8https://github.com/jgm/pandoc

4.2 Dataset Statistics

We present the basic statistics of READOC in Table
2, showcase the diversity of READOC in Figure
2, and provide additional statistics in Appendix B.
Overall, our benchmark is divided into three sub-
sets. READOC-arXiv consists of 1,009 documents,
with an average of 11.67 pages, 10,209.50 tokens,
and 3.10 heading levels. These documents cover
a timeline from 1996 to 2024, ensuring ample di-
versity across 6 types and 8 disciplines. READOC-
GitHub comprises 1,224 documents, with an av-
erage of 6.54 pages, 1,978.11 tokens, and 3.11
heading levels. These documents are sourced from
projects spanning the years 2008 to 2024, encom-
passing a rich tapestry of 2,805 topics. READOC-
Zenodo contains 1,343 documents, with an average
of 14.93 pages, 8,255.85 tokens, and 2.66 heading
levels. These documents span from 2014 to 2024
and include 27 languages, e.g., English and French.

5 Evaluation S3uite

Considering the potential confusion that various
models may have with our Markdown syntax and
the multifaceted nature of the capabilities required
for DSE tasks, we propose an Evaluation S3uite,
consisting of three sequential modules: Standard-
ization, Segmentation, and Scoring, as shown in
Figure 3. The S3uite ensures that READOC can
automatically perform a unified evaluation of the
end-to-end DSE task, yielding reliable and effective
assessment results. More implementation details
are in Appendix C.

5.1 Standardization

The first module of the S3uite standardizes the
output Markdown text to align with the ground
truth Markdown format. This alignment is essen-
tial for mitigating the impact on evaluation accu-
racy caused by variations in the format and syntax

21892

https://github.com/jgm/pandoc
https://github.com/Wandmalfarbe/pandoc-latex-template
https://github.com/Wandmalfarbe/pandoc-latex-template
https://pypi.org/project/python-docx/
https://github.com/jgm/pandoc

Standardization

Constraining Coefficient
=====
Coefficient

\begin{equation}
D_e=\textrm{GeV}^{\delta}
\end{equation}
the [diffusion](www.diff.com)
index δ is 1/3.

![figure_1](figure_1.jpg)
name	acc
X	88.7
Y	67.8

Constraining Coefficient

Coefficient

\[D_e=\textrm{GeV}^{\delta}\]

the diffusion index \(\delta\) is 1/3.

\begin{table}
\begin{tabular}{c r}
name & acc \\ \hline
X & 88.7 \\
Y & 67.8 \\ \hline
\end{tabular}
\end{table}

Plain Text

Tables

Formulas

Headings

Segmentation Scoring

Semantic Unit Evaluation

Heading Detection
- Concat EDS
- Tree EDS

Formula Conversion
- Embedded EDS
- Isolated EDS

Table Recognition
- Concat EDS
- Tree EDS

Text Extraction
- Concat EDS
- Vocab F1

Reading Order Detection
- Block-level KTDS - Token-level KTDS

Figure 3: The three modules of the READOC Evaluation S3uite: Standardization, Segmentation and Scoring.

of texts generated by different DSE systems. The
standardization includes aligning the boundaries
of formulas, such as $$, \begin{equation}, and \[;
unifying different Markdown heading styles; align-
ing Markdown tables with LATEX table formats for
evaluation consistency; removing images and elim-
inating the link syntax, etc. This module ensures
that the focus remains on the core DSE capabilities,
rather than being clouded by formatting disunity.

5.2 Segmentation

The second module of the S3uite divides the stan-
dardized Markdown text into distinct semantic
units. To facilitate READOC in highlighting var-
ious specialized DSE capabilities of the models
within a single document, we divide both the out-
put and the ground truth Markdown text into four
units: Headings of different levels, Formulas in
both embedded and isolated forms, Tables, and
residual Plain Text encompassing basic text and
simple formatting such as bold, italic, and lists.

5.3 Scoring

The scoring module comprises two submodules:
The Semantic Unit Evaluation submodule im-

plicitly assesses the models’ layout analysis ability
of identifying semantic units and explicitly mea-
sures four specialized capabilities: 1) Text Extrac-
tion refers to extracting plain text through PDF
bytecode parsing or visual methods (e.g., OCR
tools, VLMs). We measure edit distance similar-
ity (EDS) after concatenating plain text and the F1
score of the plain text vocabulary. 2) Heading De-
tection involves detecting headings and construct-
ing a hierarchical ToC tree. We measure EDS after
concatenating all headings and construct ToC trees
to calculate tree edit distance similarity (TEDS). 3)
Formula Conversion involves transforming math-
ematical formulas into LATEX format. We measure

EDS by concatenating all embedded formulas, as
well as all isolated formulas. 4) Table Recognition
involves identifying tables’ structures. We evalu-
ate EDS after concatenating all tables. Then, we
convert tables into structural trees, use a maximum
bipartite matching algorithm to find the optimal
mapping between tables and calculate TEDS for
the matched tables.

The Reading Order Detection submodule de-
termines whether the model extracts document
elements in the correct order. We first segment
each document into blocks based on semantic unit
boundaries and line breaks, create two ordered lists
from these blocks, and calculate Kendall’s Tau Dis-
tance Similarity (KTDS) between the lists. Addi-
tionally, we divide each document into sequential
tokens, construct lists based on the positions of
co-occurring tokens at their first appearance, and
compute KTDS between the token-level lists.

6 Experiments

6.1 Compared Methods
Baselines. We employ three simple and widely
applicable methods as baselines. The first is
PyMuPDF4LLM (PyMuPDF, 2024), a PDF byte-
code parsing engine that converts digital-born
PDFs into Markdown using embedded metadata.
The second is Tesseract (Smith, 2007), an OCR
tool for text extraction and basic page segmenta-
tion. The third is MarkItDown (microsoft, 2024), a
versatile tool designed for converting various file
types into Markdown format.

Pipeline Tools. We evaluate three tools that sup-
port PDF-to-Markdown functionality, which inte-
grate complex engineering with PDF parsing en-
gines and advanced deep learning submodels. The
pipeline tools we evaluate include the following.
Marker (Paruchuri and Lampa, 2023), MinerU

21893

Methods
Semantic Unit Evaluation Reading

Order AverageText Heading Formula Table
Concat Vocab Concat Tree Embed Isolate Concat Tree Block Token

Baselines

PyMuPDF4LLM 66.66 74.27 27.86 20.77 0.07 0.02 23.27 15.83 87.70 89.09 40.55
Tesseract OCR 78.85 76.51 1.26 0.30 0.12 0.00 0.00 0.00 96.70 97.59 35.13
MarkItDown 73.88 79.64 2.90 0.93 0.10 0.00 0.34 0.08 97.13 97.08 35.21

Pipeline Tools

MinerU 88.32 91.22 67.06 41.97 62.77 70.76 59.34 52.85 98.52 97.90 73.07
Pix2Text 85.85 83.72 63.23 34.53 43.18 37.45 54.08 47.35 97.68 96.78 64.39
Marker 79.11 82.71 63.60 39.39 3.47 48.74 64.61 72.36 98.04 97.74 64.98
Docling 79.73 85.39 68.74 38.33 0.23 0.0 54.09 66.56 98.05 97.18 58.83

Expert Visual Models

Nougat-small 87.35 92.00 86.40 87.88 76.52 79.39 55.63 52.35 97.97 98.36 81.38
Nougat-base 88.03 92.29 86.60 88.50 76.19 79.47 54.40 52.30 97.98 98.41 81.42

GOT-OCR 2.0 84.47 86.24 66.69 57.68 53.48 56.23 50.40 34.50 97.73 97.50 68.49

Vision-Language Models

DeepSeek-VL-7B-Chat 31.89 39.96 23.66 12.53 17.01 16.94 22.96 16.47 88.76 66.75 33.69
MiniCPM-Llama3-V2.5 58.91 70.87 26.33 7.68 16.70 17.90 27.89 24.91 95.26 93.02 43.95
LLaVa-1.6-Vicuna-13B 27.51 37.09 8.92 6.27 17.80 11.68 23.78 16.23 76.63 51.68 27.76

InternVL-Chat-V1.5 53.06 68.44 25.03 13.57 33.13 24.37 40.44 34.35 94.61 91.31 47.83
GPT-4o-mini 79.44 84.37 31.77 18.65 42.23 41.67 47.81 39.85 97.69 96.35 57.98

Table 3: Evaluation of various Document Structured Extraction systems on READOC-arXiv.

Methods
Semantic Unit Evaluation Reading

Order AverageText Heading Table
Concat Vocab Concat Tree Concat Tree Block Token

MinerU 57.28 59.95 30.73 22.83 38.75 26.82 65.46 66.87 46.08
Marker 59.34 61.68 30.28 18.29 40.68 29.10 65.77 66.40 46.44

Nougat-base 57.54 66.87 35.99 26.98 13.99 11.55 93.56 93.01 49.94
GPT-4o-mini 64.16 71.76 25.07 15.4 45.75 31.88 95.23 95.2 55.56

Table 5: Evaluation of three representative Document Structured Extraction systems on READOC-Zenodo.

(Contributors, 2024), Pix2Text (Breezedeus, 2022)
and Docling (Auer et al., 2024).

Expert Visual Models. We evaluate Nougat-
small and Nougat-base (Blecher et al., 2023), spe-
cialized transformer models trained on arXiv aca-
demic documents under the single-page image-
to-Markdown paradigm, with parameter sizes of
250M and 350M, respectively. Additionally, we
evaluate the GOT-OCR 2.0 model (Wei et al.,
2024b), a unified, end-to-end OCR system with
580M parameters.

Vision-Language Models. We evaluate VLMs
using the same single-page image-to-Markdown
paradigm as expert models. For efficiency, we
select open-source models with fewer than 30 bil-
lion parameters and lightweight proprietary models.
Only VLMs with basic instruction-following and
preliminary Markdown understanding are retained.
The retained VLMs include: the open-source

models DeepSeek-VL-7B-Chat (Lu et al., 2024),
MiniCPM-Llama3-V2.5 (Hu et al., 2023), LLaVa-
1.6-Vicuna-13B (Liu et al., 2024b), InternVL-Chat-
V1.5 (Chen et al., 2024), and the proprietary model
GPT-4o-mini (Achiam et al., 2023). More imple-
mentation details are included in Appendix D.

6.2 Experimental Results

Results for READOC-arXiv, READOC-GitHub
and READOC-Zenodo are presented in Table 3 ,4
and 5, respectively. We draw insights from both
DSE system categories and specialized capabilities.

From the point of DSE system categories, we
observe that: 1) Pipeline tools are often plagued
by complex engineering challenges. Docing falls
short in recognizing embedded and isolated for-
mulas, while Maker struggles with detecting em-
bedded formulas, issues that are overlooked within
the complex pipeline designs. In contrast, MinerU
performs significantly better than other pipeline

21894

Methods
Semantic Unit Evaluation Reading

Order Avg.Text Heading
Concat Vocab Concat Tree Block Token

Baselines

PyMuPDF4LLM 85.21 77.27 12.13 11.05 98.61 98.43 63.78
Tesseract OCR 82.06 82.32 6.65 4.25 98.48 99.01 62.13
MarkItDown 85.23 85.69 2.07 0.64 99.4 99.42 62.07

Pipeline Tools

MinerU 84.46 84.78 67.24 47.15 99.51 99.18 80.39
Pix2Text 78.99 78.51 60.53 39.42 97.94 97.38 75.46
Marker 89.50 88.11 72.81 37.51 99.03 99.13 81.02
Docling 44.53 50.73 40.17 22.8 70.77 70.19 49.87

Expert Visual Models

Nougat-small 76.04 77.11 62.81 38.73 98.33 96.12 74.86
Nougat-base 75.26 76.79 62.39 37.01 97.65 95.62 74.12

GOT-OCR 2.0 78.18 84.53 62.08 50.06 98.40 98.60 78.64

Vision-Language Models

DeepSeek-VL-7B-Chat 34.85 41.97 38.69 20.15 96.47 84.55 52.78
MiniCPM-Llama3-V2.5 71.61 78.88 39.66 22.99 97.91 97.97 68.17
LLaVa-1.6-Vicuna-13B 37.03 52.88 27.49 16.13 95.65 90.45 53.27

InternVL-Chat-V1.5 72.59 78.27 56.85 32.70 98.39 97.69 72.75
GPT-4o-mini 85.06 89.41 62.65 42.04 98.81 99.05 79.50

Table 4: Evaluation of various DSE systems on READOC-GitHub.

2 =3 =4 5
Heading Hierarchical Levels

70.0

75.0

80.0

Av
er

ag
e

Sc
or

e

Method Performance vs Document Depth

Pix2Text
Nougat-small
GPT-4o-mini

(0,800] (800,1600] (1600,2400] (2400,)
Token Number Counts

74.0

76.0

78.0

80.0

82.0

Av
er

ag
e

Sc
or

e

Method Performance vs Document Length

Pix2Text
Nougat-small
GPT-4o-mini

Figure 4: Relationship between DSE sys-
tems’ performance and the depth or length
of documents in READOC-GitHub.

Methods Modeling Paradigm
Semantic Unit Evaluation Reading

Order AverageText Heading Formula Table
Concat Vocab Concat Tree Embed Isolate Concat Tree Block Token

GPT-4o-mini
Single Page 77.95 83.10 40.63 23.82 39.03 40.05 54.55 44.70 97.79 96.61 59.82

Multiple Pages 70.28 78.66 62.71 51.87 33.22 33.62 43.50 34.09 98.87 96.31 60.31

Table 6: Comparison of page-level modeling paradigms, for documents within 5 pages of READOC-arXiv.

models in both embedded and isolated formula
recognition. Besides, Pix2Text encounters program
crashes and fails to process certain PDFs (3 files
on READOC-arXiv and 4 on READOC-GitHub),
posing a significant usability issue. 2) Expert
models struggle with generalization and scal-
ability issues. Nougat performs well on READOC-
arXiv but declines markedly on READOC-GitHub
(i.e., from 81.42 to 74.12) and READOC-Zenodo
(e.g., from 81.42 to 49.94), which features sim-
pler layouts and fewer semantic units, indicating
poor transfer learning ability. Moreover, scaling
up from Nougat-small to Nougat-base does not
boost performance (+0.04 on READOC-arXiv, -
0.74 on READOC-GitHub). Additionally, while
GOT-OCR 2.0 scores lower than Nougat-small
and Nougat-base on READOC-arXiv, it outper-
forms them on the READOC-GitHub subset. 3)
VLMs generally underperform in complex aca-
demic documents. The best-performing open-
source model, InternVL-Chat-V1.5, scores 47.83
on READOC-arXiv, while the proprietary model

GPT-4o-mini scores 57.98, both of which are lower
than the pipeline tools. On READOC-Zenodo,
GPT-4o-mini achieves an average score of 55.56,
suggesting its potential in handling multilingual
and multi-format documents.

From the perspective of specialized capabilities,
we observe that: 1) Building hierarchical ToC
trees from a global perspective remains a signifi-
cant challenge, as existing systems predominantly
focus on single-page images. Pipeline tools lack
modules to assess heading depth, leading to sub-
stantial drops in Tree EDS compared to Concat
EDS. Expert models can exhibit strong ToC con-
struction for specific documents, which is more a
superficial imitation rather than a semantic under-
standing of the logical structure. On READOC-
arXiv, Nougat-base scores 88.50 in TEDS, while
on READOC-GitHub, it drops to 37.01. 2) Un-
derstanding localized structured data such as
tables and formulas is relatively difficult. VLMs
perform poorly on these tasks. Even the expert
model Nougat-base, trained on arXiv documents,

21895

Methods
Semantic Unit Evaluation (Avg.)

Single-col. Multi-col. Drop ↓
MinerU 52.75 48.34 4.41
Pix2Text 56.93 55.34 1.59
Marker 56.70 53.39 3.31

Nougat-small 80.51 74.09 6.42
Nougat-base 80.48 74.16 6.32

InternVL-Chat-V1.5 39.96 32.83 7.13
GPT-4o-mini 49.23 47.08 2.15

Table 7: Relationship between DSE systems’ seman-
tic unit evaluation and the layout of documents in
READOC-arXiv.

Methods Modeling Paradigm
Heading

Concat Tree

Pix2Text Single Page 63.38 38.89

Nougat-small Single Page 64.87 39.53

GPT-4o-mini
Single Page 69.78 45.12

Multiple Pages 83.71 68.11

Table 8: Comparison of page-level modeling paradigms,
for documents within 5 pages of READOC-GitHub.

has shown only modest performance, with average
metrics of 65.56 on these two tasks. 3) Reading
Order Detection is a relatively easy capability to
acquire. The baseline tool Tesseract, which uses
heuristics for page segmentation, scores 96.70 and
98.48 in block-level KTDS on READOC-arXiv
and READOC-GitHub, respectively.

6.3 Fine-grained Analysis

Impact of Document Length and Depth. Fig-
ure 4 displays the results of three representative
DSE systems on READOC-GitHub. Pipeline tools
and expert models exhibit similar performance
trends, remaining stable with variations in doc-
ument length but declining sharply as document
depth increases. In contrast, VLMs demonstrate
stability with changes in document depth, while
their performance decreases as document length in-
creases. This indicates that different DSE systems
exhibit distinct shortcomings in realistic scenarios,
which have not been previously revealed.

Impact of Document Layout. Using pdfplumber
(Singer-Vine and The pdfplumber contributors,
2024) and heuristic rules, we classify documents in
READOC-arXiv into single- and multi-column cat-
egories, representing different layout complexities.
Table 7 illustrates the average semantic unit eval-
uation scores across the two document types. All

Methods Time Cost (s)
per Document

NVIDIA
GPU Devices

Marker 23.86

1× Titan RTX
(24GB)

MinerU 30.96
Nougat-small 51.34
Nougat-base 101.07

Pix2Text 188.10

MiniCPM-Llama3-V2.5 392.37 1× A100 (80GB)
InternVL-Chat-V1.5 1,182.02 2× A100 (80GB)

Table 9: Comparison of Efficiency of DSE systems.

systems show performance degradation on complex
multi-column documents, highlighting that our se-
mantic unit evaluation implicitly measures the lay-
out analysis capability. Among the systems, GPT-
4o-mini exhibits the best layout analysis capability,
while InternVL-Chat-V1.5 shows the most signif-
icant performance decline, reflecting substantial
differences in performance levels among VLMs.

Exploration of the Multi-Page Paradigm. Pre-
vious researches focus on processing single pages
and perform poorly in constructing global ToC
trees. To explore how DSE systems might uti-
lize global information, we investigate a paradigm
where multiple pages are processed simultaneously.
Specifically, we employ GPT-4o-mini to receive
all page images of the document at once and con-
vert them into Markdown text. We conduct experi-
ments on documents with up to 5 pages, as shown
in Tables 6 and 8. While this method significantly
enhances global ToC construction compared to the
single-page paradigm, processing multiple pages
simultaneously reduces local fine-grained capabili-
ties, such as table and formula conversion, indicat-
ing that DSE modeling for multi-page documents
still needs further development.

Considerations of Efficiency. DSE focuses on
practical efficiency, which may involve real-time
RAG calls or large-scale corpus construction. We
sample 50 documents from READOC-arXiv and
measure the throughput of DSE systems, as shown
in Table 9. Despite significant advancements in
GPU memory and computational power, VLMs
remains considerably lower efficiency compared
to pipeline tools and expert Transformer models,
indicating the need for future improvements in not
only performance but also efficiency.

6.4 Case Study

We compare results from four representative sys-
tems in Figure 5. Key observations include: 1)

21896

GPT-4o-mini : Misidentifying Heading Levels

lume.angle(x1, y1, x2, y2)
Returns the angle between the two points.

lume.vector(angle, magnitude)
Given an angle and magnitude, returns a vector.
…

InternVL-Chat-V1.5 :
Hallucinations & Inaccurate Text Extraction

LUME

lume.angle(x1, y1, x2, y2)
Returns the angle between the two points.

lume.vector(angle, magnitude)
Given an angle in degrees and magnitude, returns a vector.
…

Pix2Text : Program Execution Error

IndexError: list index out of range

Nougat-small : Hallucinations & Repetition

Abstract

In this paper we present a new method for computing the
number of nodes in a graph. … We also show that the
number of nodes in a graph is bounded by a constant. We
also show that the number of nodes in a graph is bounded
by a constant. We also show that the number of nodes in a
graph is bounded by a constant. We also show …

READoc Ground Truth

lume.angle(x1, y1, x2, y2)
Returns the angle between the two points.

lume.vector(angle, magnitude)
Given an `angle` and `magnitude`, returns a vector.
…

lume.angle(x1, y1, x2, y2) Returns the angle between the two points.

lume.vector(angle, magnitude) Given an angle and magnitude, returns a vector.

1 local x, y = lume.vector(0, 10) -- Returns 10, 0

lume.random([a [, b]]) Returns a randomnumber betweena andb. If onlya is supplied a number
between 0 and a is returned. If no arguments are supplied a random number between 0 and 1 is
returned.

lume.randomchoice(t) Returns a random value from array t. If the array is empty an error is
raised.

1 lume.randomchoice({true, false}) -- Returns either true or false

lume.weightedchoice(t) Takes the argument table t where the keys are the possible choices and
the value is the choice’s weight. A weight should be 0 or above, the larger the number the higher the
probability of that choice being picked. If the table is empty, a weight is below zero or all the weights
are 0 then an error is raised.

1 lume.weightedchoice({ ["cat"] = 10, ["dog"] = 5, ["frog"] = 0 })
2 -- Returns either "cat" or "dog" with "cat" being twice as likely to be

chosen.

lume.isarray(x) Returns true if x is an array – the value is assumed to be an array if it is a table
which contains a value at the index 1. This function is used internally and can be overridden if you
wish to use a different method to detect arrays.

lume.push(t,…) Pushes all the given values to the endof the tabletand returns thepushedvalues.
Nil values are ignored.

1 local t = { 1, 2, 3 }
2 lume.push(t, 4, 5) -- `t` becomes { 1, 2, 3, 4, 5 }

lume.remove(t, x) Removes the first instance of the value x if it exists in the table t. Returns x.

1 local t = { 1, 2, 3 }
2 lume.remove(t, 2) -- `t` becomes { 1, 3 }

2

Figure 5: A case study from READoc-GitHub. More cases are in Appendix D.

GPT-4o-mini misclassifies heading levels, reveal-
ing the limitations of single-page paradigms that
fail to globally perceive the document’s logical
structure. 2) InternVL-Chat-V1.5 exhibits halluci-
nations and inaccurate text extraction, illustrating
the differences in DSE capabilities between open-
source and proprietary VLMs. 3) Nougat-small
fabricates content completely unrelated to the orig-
inal document, reflecting the poor generalization
ability of expert models. 4) Pix2Text triggers an
execution error, demonstrating the complexity in
developing pipeline tools.

7 Conclusion

This paper proposes READOC, a novel benchmark
that frames document structured extraction as a re-
alistic, end-to-end task, i.e., transforming unstruc-
tured PDFs into semantically rich Markdown text.
Based on an evaluation S3uite, We conduct a uni-
fied evaluation of state-of-the-art approaches, in-
cluding pipeline tools, expert models and general
VLMs. Our experimental results reveal critical
gaps in current researches when applied to real-
istic scenarios and underscore the importance of
exploring new research paradigms.

Limitations

Our work has two main limitations: 1) First, there
exists some noise in the PDF-Markdown pairs gen-
erated through the automated framework. Although
we have implemented various filtering and post-
processing methods to minimize this impact, it re-
mains difficult to eliminate completely. In fact,
this is a common challenge in current document
processing benchmark fields, and we will continue
to explore more efficient and accurate processing

paradigms in the future. 2) Second, although we
introduce a Standardization module in our DSE
evaluation S3uite to unify the outputs from differ-
ent models to the ground truth format, there are
still some scenarios we cannot fully account for.
We plan to introduce more comprehensive format
unification modules in future work.

Ethics Statement

All the data, tools and model weights we use come
from publicly available sources. We only use them
for evaluation purposes in document structured ex-
traction. When using these resources for this study,
we strictly adhere to their licensing agreements.

Acknowledgment

We sincerely thank the reviewers for their insight-
ful comments and valuable suggestions. This work
was supported by Beijing Municipal Science and
Technology Project (Nos. Z231100010323002),
Beijing Natural Science Foundation (L243006),
the Natural Science Foundation of China (No.
62306303, 62476265) and the Basic Research Pro-
gram of ISCAS (Grant No. ISCAS-JCZD-202401).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota,
Yusheng Xie, and R Manmatha. 2021. Docformer:
End-to-end transformer for document understanding.
In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 993–1003.

21897

Christoph Auer, Maksym Lysak, Ahmed Nassar,
Michele Dolfi, Nikolaos Livathinos, Panos Vage-
nas, Cesar Berrospi Ramis, Matteo Omenetti, Fabian
Lindlbauer, Kasper Dinkla, Lokesh Mishra, Yusik
Kim, Shubham Gupta, Rafael Teixeira de Lima,
Valery Weber, Lucas Morin, Ingmar Meijer, Viktor
Kuropiatnyk, and Peter W. J. Staar. 2024. Docling
technical report. Preprint, arXiv:2408.09869.

Lukas Blecher, Guillem Cucurull, Thomas Scialom, and
Robert Stojnic. 2023. Nougat: Neural optical un-
derstanding for academic documents. arXiv preprint
arXiv:2308.13418.

Breezedeus. 2022. Pix2text (p2t). https://github.
com/breezedeus/pix2text. Accessed: 2024-07-
18.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. 2024. How far
are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv
preprint arXiv:2404.16821.

MinerU Contributors. 2024. Mineru: A one-stop, open-
source, high-quality data extraction tool. https:
//github.com/opendatalab/MinerU. Accessed:
2025-04-14.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and
Alexander M Rush. 2017. Image-to-markup gen-
eration with coarse-to-fine attention. In International
Conference on Machine Learning, pages 980–989.
PMLR.

Harsh Desai, Pratik Kayal, and Mayank Singh. 2021.
Tablex: a benchmark dataset for structure and con-
tent information extraction from scientific tables. In
Document Analysis and Recognition–ICDAR 2021:
16th International Conference, Lausanne, Switzer-
land, September 5–10, 2021, Proceedings, Part II 16,
pages 554–569. Springer.

Hao Feng, Qi Liu, Hao Liu, Wengang Zhou, Houqiang
Li, and Can Huang. 2023. Docpedia: Unleashing the
power of large multimodal model in the frequency
domain for versatile document understanding. arXiv
preprint arXiv:2311.11810.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang
Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei
Huang, et al. 2024. mplug-docowl 1.5: Unified struc-
ture learning for ocr-free document understanding.
arXiv preprint arXiv:2403.12895.

Jinyi Hu, Yuan Yao, Chongyi Wang, Shan Wang, Yinxu
Pan, Qianyu Chen, Tianyu Yu, Hanghao Wu, Yue
Zhao, Haoye Zhang, Xu Han, Yankai Lin, Jiao Xue,
Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023.

Large multilingual models pivot zero-shot multi-
modal learning across languages. arXiv preprint
arXiv:2308.12038.

Pengfei Hu, Zhenrong Zhang, Jianshu Zhang, Jun Du,
and Jiajia Wu. 2022. Multimodal tree decoder for
table of contents extraction in document images. In
2022 26th international conference on pattern recog-
nition (ICPR), pages 1756–1762. IEEE.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022. Layoutlmv3: Pre-training for doc-
ument ai with unified text and image masking. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, pages 4083–4091.

Sarthak Jain, Madeleine van Zuylen, Hannaneh Ha-
jishirzi, and Iz Beltagy. 2020. Scirex: A challenge
dataset for document-level information extraction. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7506–
7516.

Dimosthenis Karatzas, Lluis Gomez-Bigorda, Angue-
los Nicolaou, Suman Ghosh, Andrew Bagdanov,
Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vi-
jay Ramaseshan Chandrasekhar, Shijian Lu, et al.
2015. Icdar 2015 competition on robust reading.
In 2015 13th international conference on document
analysis and recognition (ICDAR), pages 1156–1160.
IEEE.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexi-
ang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur-
vashi Khandelwal, Peter Shaw, Ming-Wei Chang,
and Kristina Toutanova. 2023. Pix2struct: Screen-
shot parsing as pretraining for visual language under-
standing. In International Conference on Machine
Learning, pages 18893–18912. PMLR.

Chenxia Li, Ruoyu Guo, Jun Zhou, Mengtao An,
Yuning Du, Lingfeng Zhu, Yi Liu, Xiaoguang
Hu, and Dianhai Yu. 2022. Pp-structurev2: A
stronger document analysis system. arXiv preprint
arXiv:2210.05391.

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu
Wei, Zhoujun Li, and Ming Zhou. 2020. Docbank: A
benchmark dataset for document layout analysis. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 949–960.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. 2024. Monkey: Image resolution and
text label are important things for large multi-modal
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
26763–26773.

Chenglong Liu, Haoran Wei, Jinyue Chen, Lingyu
Kong, Zheng Ge, Zining Zhu, Liang Zhao, Jianjian
Sun, Chunrui Han, and Xiangyu Zhang. 2024a. Fo-
cus anywhere for fine-grained multi-page document
understanding. arXiv preprint arXiv:2405.14295.

21898

https://arxiv.org/abs/2408.09869
https://arxiv.org/abs/2408.09869
https://github.com/breezedeus/pix2text
https://github.com/breezedeus/pix2text
https://github.com/opendatalab/MinerU
https://github.com/opendatalab/MinerU

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024b. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024c. Visual instruction tuning. Advances in
neural information processing systems, 36.

Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li,
Zhiyin Ma, Shuo Zhang, and Xiang Bai. 2024d.
Textmonkey: An ocr-free large multimodal model
for understanding document. arXiv preprint
arXiv:2403.04473.

Kyle Lo, Zejiang Shen, Benjamin Newman, Joseph Z
Chang, Russell Authur, Erin Bransom, Stefan Can-
dra, Yoganand Chandrasekhar, Regan Huff, Bailey
Kuehl, et al. 2023. Papermage: A unified toolkit for
processing, representing, and manipulating visually-
rich scientific documents. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages
495–507.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Yaofeng Sun, et al. 2024. Deepseek-vl:
towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525.

Tengchao Lv, Yupan Huang, Jingye Chen, Lei Cui,
Shuming Ma, Yaoyao Chang, Shaohan Huang, Wen-
hui Wang, Li Dong, Weiyao Luo, et al. 2023.
Kosmos-2.5: A multimodal literate model. arXiv
preprint arXiv:2309.11419.

Jiefeng Ma, Jun Du, Pengfei Hu, Zhenrong Zhang, Jian-
shu Zhang, Huihui Zhu, and Cong Liu. 2023. Hrdoc:
Dataset and baseline method toward hierarchical re-
construction of document structures. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 1870–1877.

microsoft. 2024. Markitdown. https://github.com/
microsoft/markitdown. Accessed: 2025-01-20.

Linke Ouyang, Yuan Qu, Hongbin Zhou, Jiawei Zhu,
Rui Zhang, Qunshu Lin, Bin Wang, Zhiyuan Zhao,
Man Jiang, Xiaomeng Zhao, et al. 2024. Om-
nidocbench: Benchmarking diverse pdf document
parsing with comprehensive annotations. arXiv
preprint arXiv:2412.07626.

Vik Paruchuri and Samuel Lampa. 2023. Marker:
Convert pdf to markdown quickly with high
accuracy. https://github.com/VikParuchuri/
marker. Accessed: 2025-04-14.

PyMuPDF. 2024. Pymupdf4llm. https://github.
com/pymupdf/RAG. Accessed: 2024-07-26.

Zejiang Shen, Kyle Lo, Lucy Lu Wang, Bailey Kuehl,
Daniel S Weld, and Doug Downey. 2022. Vila: Im-
proving structured content extraction from scientific
pdfs using visual layout groups. Transactions of the
Association for Computational Linguistics, 10:376–
392.

Jeremy Singer-Vine and The pdfplumber contributors.
2024. pdfplumber. Accessed: 2024-08-05.

Ray Smith. 2007. An overview of the tesseract ocr
engine. In ICDAR ’07: Proceedings of the Ninth
International Conference on Document Analysis and
Recognition, pages 629–633, Washington, DC, USA.
IEEE Computer Society.

Brandon Smock, Rohith Pesala, and Robin Abraham.
2022. Pubtables-1m: Towards comprehensive table
extraction from unstructured documents. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4634–4642.

Dominika Tkaczyk, Paweł Szostek, Mateusz Fedo-
ryszak, Piotr Jan Dendek, and Łukasz Bolikowski.
2015. Cermine: automatic extraction of structured
metadata from scientific literature. International
Journal on Document Analysis and Recognition (IJ-
DAR), 18:317–335.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Doug Burdick, Darrin
Eide, Kathryn Funk, Yannis Katsis, Rodney Kinney,
et al. 2020. Cord-19: The covid-19 open research
dataset. In Annual Meeting of the Association for
Computational Linguistics.

Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and
Furu Wei. 2021. Layoutreader: Pre-training of text
and layout for reading order detection. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4735–4744.

Haoran Wei, Lingyu Kong, Jinyue Chen, Liang Zhao,
Zheng Ge, En Yu, Jianjian Sun, Chunrui Han, and
Xiangyu Zhang. 2024a. Small language model meets
with reinforced vision vocabulary. arXiv preprint
arXiv:2401.12503.

Haoran Wei, Chenglong Liu, Jinyue Chen, Jia Wang,
Lingyu Kong, Yanming Xu, Zheng Ge, Liang Zhao,
Jianjian Sun, Yuang Peng, Chunrui Han, and Xi-
angyu Zhang. 2024b. General ocr theory: Towards
ocr-2.0 via a unified end-to-end model. Preprint,
arXiv:2409.01704.

Renqiu Xia, Song Mao, Xiangchao Yan, Hongbin Zhou,
Bo Zhang, Haoyang Peng, Jiahao Pi, Daocheng Fu,
Wenjie Wu, Hancheng Ye, et al. 2024. Docgenome:
An open large-scale scientific document benchmark
for training and testing multi-modal large language
models. arXiv preprint arXiv:2406.11633.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD interna-
tional conference on knowledge discovery & data
mining, pages 1192–1200.

21899

https://github.com/microsoft/markitdown
https://github.com/microsoft/markitdown
https://github.com/VikParuchuri/marker
https://github.com/VikParuchuri/marker
https://github.com/pymupdf/RAG
https://github.com/pymupdf/RAG
https://github.com/jsvine/pdfplumber
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/33418.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/33418.pdf
https://arxiv.org/abs/2409.01704
https://arxiv.org/abs/2409.01704

Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye,
Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,
Qi Qian, Ji Zhang, et al. 2023. Ureader: Univer-
sal ocr-free visually-situated language understand-
ing with multimodal large language model. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 2841–2858.

Weichao Zhao, Hao Feng, Qi Liu, Jingqun Tang, Shu
Wei, Binghong Wu, Lei Liao, Yongjie Ye, Hao Liu,
Houqiang Li, et al. 2024. Tabpedia: Towards com-
prehensive visual table understanding with concept
synergy. arXiv preprint arXiv:2406.01326.

Xu Zhong, Elaheh ShafieiBavani, and Antonio Ji-
meno Yepes. 2020. Image-based table recognition:
data, model, and evaluation. In European conference
on computer vision, pages 564–580. Springer.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes.
2019. Publaynet: largest dataset ever for document
layout analysis. In 2019 International conference on
document analysis and recognition (ICDAR), pages
1015–1022. IEEE.

A Task Example

This section provides an example of input and out-
put for the Document Structured Extraction (DSE)
task as defined by READOC. As illustrated in
Figure 6, DSE systems are required to process a
multi-page, real-world PDF document as input and
produce a structured Markdown text as output.

B Details of Dataset

B.1 Construction Details

Type Keywords of READOC-arXiv. As we
aim to improve data diversity in READOC across
types, disciplines, topics, and so on, we use cus-
tom keywords to capture the document category
types in READOC-arXiv, as illustrated in Table
10. We treat the comments of each arXiv preprint
as retrieval targets, determining whether they con-
tain the keywords to map them to specific docu-
ment types. The document type distribution of
READOC-arXiv is illustrated in Figure 10.

Modification of Nougat process. As described
in the main body of the paper, we modify Nougat’s
source code (Blecher et al., 2023) to convert arXiv
documents in HTML format into Markdown text.
Specifically, our modifications include: 1) im-
proved support for converting the \tableofcontents
command; 2) recognition and conversion of nested
lists; 3) support for identifying and converting sub-
tables and subfigures; and 4) removal of line breaks
within headings in the Markdown format.

Document Type Keywords

Workshop Workshop

Conference Conference

Journal Journal

Dissertation Thesis, Dissertation

Guide
Handbook, Manual,

Guide, Tutorial,
Technical Note

Others -

Table 10: Document type keywords of READOC-arXiv.

B.2 Additional Data Statistics

In addition to the diversity in disciplines, topics and
languages, we provide supplementary statistical
information here. This includes the distribution of
the READOC dataset by year, as shown in Figure
7, and the distribution by page count, depth, and
length, as illustrated in Figure 8 and Figure 9.

C Details of Evaluation S3uite

C.1 Standardization Details

We standardized the Markdown text output from
various tools and models according to a set of spe-
cific rules:

• Alignment of different formula bound-
aries. For isolated formulas, we stan-
dardize the starting boundary by convert-
ing $$, \begin{equation}, \begin{gather}, \be-
gin{multline}, \begin{equation}, to \[, with a
similar format for the ending boundary. For
embedded formulas, we convert the starting
boundary $ to \(, with a similar format for the
ending boundary.

• Heading formatting. We standardize doc-
ument headings by converting them to text
lines beginning with consecutive “#" symbols,
where the number of “#" indicates the heading
level.

• Removal of certain elements. External
URLs are removed from the link format and
image references are also removed.

• Table formatting. We standardize tables by
converting Markdown-compliant tables to La-
TeX format. The reason for using LaTeX as

21900

Self-Driving like a Human driver instead of a Robocar: Personalized comfortable
driving experience for autonomous vehicles

I. Bae, J. Moon, J. Jhung, H. Suk, T. Kim, H. Park, J. Cha, J. Kim, D. Kim and Shiho Kim
Seamless Transportation Lab (STL)
Yonsei University, Incheon, 21983, Korea
shiho@yonsei.ac.kr

…

2 Modeling Occupant’s Preference Metric

Through the review of the previous studies which is related with the comfort criterion
of passengers and drivers, we designed the Occupant’s Preference Metric (OPM)
defining a preferred lateral and longitudinal acceleration region with maximum
allowable jerk. It is employed the five significant parameters which are directly related
with a vehicle motions as follow,

\[OPM=\left\{{a_{(+)x}}_{opm},{a_{(-)x}}_{opm},\left|{a_{y}}_{opm}\right|,
\left|{z_{x}}_{opm}\right|,\left|{z_{y}}_{opm}\right|\right\}\] (1)

where the \({a_{(+)x}}_{opm}\) is the occupantdiscomfort threshold of the longitudinal
acceleration, \({a_{(-)x}}_{opm}\) is the longitudinal deceleration threshold’s, is the
lateral acceleration threshold, \(|{z_{x}}_{opm}|and|{z_{y}}_{opm}|\) is the maximum
allowable longitudinal and lateral jerks.

…

\begin{table}
\begin{tabular}{l l l}
\hline
Parameters & Notation & Value \\
\hline
Vehicle mass & \(m\) & \(1740kg\) \\
Vehicle yaw moment & \(I_{z}\) & \(3000kg{\cdot}m^{2}\) \\
Front-c.g. distance & \(l_{f}\) & \(1.4m\) \\
Rear-c.g. distance & \(l_{r}\) & \(1.65m\) \\
Cornering stiffness of front tires & \(C_{af}\) & 81000N/∘ \\
Cornering stiffness of rear tires & \(C_{ar}\) & 81000N/∘ \\ \hline \hline
\end{tabular}
\end{table}
Table 1: Vehicular parameters used in the simulation.
…

Multi-page PDF Document

Structured Markdown Text

https://arxiv.org/pdf/2001.03908

Figure 6: Input-Output example of READOC task.

the standardized table format is that, com-
pared to native Markdown, it can represent
more complex features such as multi-row and
multi-column layouts.

C.2 Segmentation Details

The segmentation module primarily based on a
series of regular expressions written in Python, as
illustrated in Figure 11.

C.3 Scoring Details

This section mainly discusses the metric calcula-
tions involved in the scoring module. Specifically,
we focus on the following three similarity mea-
sures:

1) Edit Distance Similarity (EDS): The edit dis-
tance ED(A,B) is defined as the minimum num-
ber of single-character edits (insertions, deletions,
or substitutions) required to change string A into
string B. The edit distance similarity is calculated
using the formula:

EDS(A,B) = 1− ED(A,B)

max(|A|, |B|)

where |A| and |B| are the lengths of strings A
and B, respectively.

2) Tree Edit Distance Similarity (TEDS): The
tree edit distance TED(T1, T2) is the minimum
number of operations needed to transform one tree
T1 into another tree T2. The operations typically
include insertion, deletion, and relabeling of nodes.
The tree edit distance similarity is computed as
follows:

TEDS(T1, T2) = 1− TED(T1, T2)

max(|T1|, |T2|)

where |T1| and |T2| represent the sizes of trees
T1 and T2, respectively.

3) Kendall’s Tau Distance Similarity (KTDS):
The Kendall’s Tau distance measures the ordinal
association between two rankings. The number of
discordant pairs Kd is defined as the number of
pairs where xi and xj are in different orders. The
Kendall’s Tau distance similarity is given by the
formula:

KTDS(X,Y) = 1− 2 ·Kd

n(n− 1)

where n is the total number of items.

21901

1995-1999 2000-2004 2005-2009 2010-2014 2015-2019 2020-2024
Publication Years

0

50

100

150

200

250

300

350

400
Do

cu
m

en
t C

ou
nt

s

(a)

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Publication Years

0

25

50

75

100

125

150

175

Do
cu

m
en

t C
ou

nt
s

(b)

Figure 7: Visualization of year distribution in READOC.
(a) Document publication years of READOC-arXiv. (b)
Document publication years of READOC-GitHub.

D Details of Experiments

D.1 Implementation of VLMs
This section primarily supplements the evalua-
tion process of Vision-Language Models. Specif-
ically, we adopt a one-page image-to-Markdown
approach, concatenating the Markdown text gen-
erated for each page. The prompts we use are
illustrated in Figure 12, and we uniformly apply
the generation parameters for all VLMs as shown
in Table 11.

D.2 Additional Case Study
We provide two additional case analyses, as shown
in Figures 13 and 14. It is evident that none of
the DSE systems demonstrated satisfactory perfor-
mance, as they exhibited various types of errors,
including Missing Content, Misidentifying Head-
ings, Inaccurate Text Extraction, Confused Reading
Order, Hallucinations, and Repetitions.

Parameter Value

top_p 0.8

top_k 100

temperature 0.7

do_sample True

repetition_penalty 1.05

Table 11: Generation parameters of Vision-Language
Models.

21902

5 10 15 16
Page Counts

0

50

100

150

200

250

300

350
Do

cu
m

en
t C

ou
nt

s

(a)

2 =3 =4 5
Heading Levels

0

100

200

300

400

Do
cu

m
en

t C
ou

nt
s

(b)

(0,5000] (5000,10000] (10000,15000] (15000,)
Token Counts

0

50

100

150

200

250

300

350

Do
cu

m
en

t C
ou

nt
s

(c)

Figure 8: Visualization of year distribution in READOC-arXiv. (a) Document page counts of READOC-arXiv. (b)
Document depth (heading levels) of READOC-arXiv. (b) Document Length (token counts) of READOC-arXiv.

3 6 9 10
Page Counts

0

100

200

300

400

Do
cu

m
en

t C
ou

nt
s

(a)

2 =3 =4 5
Heading Levels

0

100

200

300

400

500

600

700

Do
cu

m
en

t C
ou

nt
s

(b)

(0,800] (800,1600] (1600,2400] (2400,)
Token Counts

0

50

100

150

200

250

300

350

Do
cu

m
en

t C
ou

nt
s

(c)

Figure 9: Visualization of year distribution in READOC-GitHub. (a) Document page counts of READOC-GitHub.
(b) Document depth (heading levels) of READOC-GitHub. (b) Document Length (token counts) of READOC-
GitHub.

Conference

27.9%

Journal

21.6%

Workshop

12.6%
Dissertation

4.7% Guide
6.0%

Others

27.2%

Figure 10: Document types of READOC-arXiv.
(The remaining part is treated as plain text)

re.compile(r"(\n\\begin\{table\}((?:(?!\\
begin\{table\}).)*?)\\end\{table\})", re.S)

re.compile(r"\\\(((.*?)(?<!\\))\\\)")

re.compile(r'^((#{1,6}) +(.+))', re.MULTILINE)

Headings

Embedded Formulas

re.compile(r"\\\[((.+?)(?<!\\))\\\]", re.S)

Isolated Formulas

Tables

Plain Text

Figure 11: Segmentation module’s regular expressions.

21903

This image displays a document page, convert the page
content into Markdown format. Use continuous # to denote
headings at each level. Display tables following markdown or
latex format. Use $ or \(\) to surround inline math, and use
$$ or \[\] to surround isolated math block. Don't explain,
directly output the Markdown-format content.

This image displays a document page, convert the page
content into Markdown format. Use continuous # to denote
headings at each level. If it's a blank page, don't output
anything. Otherwise, directly output the Markdown-format
content without explanation.

Prompt for READoc-GitHub

Prompt for READoc-arXiv

Figure 12: Prompts of Vision-Language Models.

21904

GPT-4o-mini : Misidentifying Heading

Starting Configuration

Beckett’s text explicitly notes that every possible non-empty
subset of characters appear on stage together at least once
but admits that these subsets do not appear a uniform
number of times [1].
…

InternVL-Chat-V1.5 : Missing Content

2 Preliminaries

The existence of a Beckett-Gray code is equivalent to being
able to realize every subset of an n-set exactly once as
successive states of a queue, where queue entries are the bit
positions that are currently \(1\). …
…

Pix2Text : Incomplete Table Recognition

…
| 000 | 0 |

Table 1: A 3-bit non-cyclic binary Beckett-Gray code.
…

Nougat-small : Confused Reading Order
…
Two Gray codes are called _isomorphic_ … Permuting bit
positions preserves the Beckett-Gray

\begin{table}
…

starting configuration. Beckett’s text explicitly notes that every possible non-
empty subset of characters appear on stage together at least once but admits
that these subsets do not appear a uniform number of times [1].

If each subset of appeared precisely once, then the series of subsets – repre-
sented by length four binary words – would form a cyclic Gray code with n = 4.
Gray codes of binary n-bit words are equivalent to Hamilton paths and cycles in
the n-dimensional hypercube [14]. The additional exit constraint is equivalent
to only permitting a 1 in bit position p to change to a 0 if, of those positions
containing a 1, position p has been so longest. In other words, this 1 has the
longest current run. We will call a Gray code with this additional property a
Beckett-Gray code. For all but the shortest codes, we will display a Gray code by
its transition sequence; the list of bit positions at which each change takes place.
We number the bit positions from the right, starting from zero. While the liter-
ary use of Beckett-Gray codes has been explored [13], here we investigate these
objects mathematically. We will discuss their isomorphisms and enumerate all
Beckett-Gray codes for n ≤ 6 and give examples for n = 7, 8. We finish by
discussing the compatibility of Gray codes – not just Beckett-Gray codes – with
various data-structures. This work was completed over a decade ago and since
then other results regarding Beckett-Gray codes have been published. We feel
this note provides the necessary background to this work; for a more detailed
account of the history and searches see [5].

2 Preliminaries

The existence of a Beckett-Gray code is equivalent to being able to realize every
subset of an n-set exactly once as successive states of a queue, where queue
entries are the bit positions that are currently 1. In Table 1 we give an example
of a non-cyclic Beckett-Gray code and the corresponding queue states.

Code Queue

000 ∅
001 0
011 0, 1
010 1
110 1, 2
100 2
101 2, 0
111 2, 0, 1

Table 1: A 3-bit non-cyclic binary Beckett-Gray code.

Two Gray codes are called isomorphic if one can be obtained from the other
by permuting bit positions, adding a fixed n-bit word to all words and/or re-
versing the list of words. Permuting bit positions preserves the Beckett-Gray

2

READoc Ground Truth

starting configuration. Beckett’s text explicitly notes that every
possible non-empty subset of characters appear on stage
together at least once but admits that these subsets do not
appear a uniform number of times [1].

If each subset of appeared precisely once, then the series of
subsets – represented by length four binary words – would form
a cyclic Gray code with \(n=4\). Gray codes of binary \(n\)-bit
words are equivalent to Hamilton paths and cycles in the \(n\)-
dimensional hypercube [14]. … We feel this note provides the
necessary background to this work; for a more detailed account
of the history and searches see [5].

2 Preliminaries

The existence of a Beckett-Gray code is equivalent to being able
to realize every subset of an \(n\)-set exactly once as successive
states of a queue, where queue entries are the bit positions that
are currently 1. In Table 1 we give an example of a non-cyclic
Beckett-Gray code and the corresponding queue states.

\begin{table}
\begin{tabular}{|c|l|}
\hline
Code & **Queue** \\
\hline \hline
\(000\) & \(\emptyset\) \\
\(001\) & \(0\) \\
\(011\) & \(0,1\) \\
\(010\) & \(1\) \\
\(110\) & \(1,2\) \\
\(100\) & \(2\) \\
\(101\) & \(2,0\) \\
\(111\) & \(2,0,1\) \\ \hline
\end{tabular}
\end{table}
Table 1: A 3-bit non-cyclic binary Beckett-Gray code.

Two Gray codes are called _isomorphic_ if one can be obtained
from the other by permuting bit positions, adding a fixed \(n\)-
bit word to all words and/or reversing the list of words.
Permuting bit positions preserves the Beckett-Gray

Figure 13: A case study from READOC arXiv.

GPT-4o-mini : Missing Content & Misidentifying Heading
Query API

Example timeserie request
``` …

MiniCPM-Llama3-V2.5 : Missing Content
& Inaccurate Text Extraction

# Query API

**Example timeserie request**

…"range": {
"from": "2016-10-31T06:33:44.866Z",
"to": "2016-10-31T12:33:44.866Z"

},
"raw": {
"from": "now-6h",
"to": "now"

},…

Marker : Coufused Reading Order

…
## Query Api

Example timeserie request Example timeserie response 1 […

Nougat-base : Hallucinations & Repetition

…
mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{
O}( \mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\math
cal{O}(\mathcal{O}(\mathcal{O}( \mathcal{O}(\mathcal{O…

• https://github.com/smcquay/jsonds
• https://github.com/ContextLogic/eventmaster
• https://gist.github.com/linar‑jether/95ff412f9d19fdf5e51293eb0c09b850 (Python/pandas
backend)

Query API

Example timeserie request

1 {
2 "panelId": 1,
3 "range": {
4 "from": "2016-10-31T06:33:44.866Z",
5 "to": "2016-10-31T12:33:44.866Z",
6 "raw": {
7 "from": "now-6h",
8 "to": "now"
9 }

10 },
11 "rangeRaw": {
12 "from": "now-6h",
13 "to": "now"
14 },
15 "interval": "30s",
16 "intervalMs": 30000,
17 "targets": [
18 { "target": "upper_50", "refId": "A", "type": "timeserie" },
19 { "target": "upper_75", "refId": "B", "type": "timeserie" }
20 ],
21 "adhocFilters": [{
22 "key": "City",
23 "operator": "=",
24 "value": "Berlin"
25 }],
26 "format": "json",
27 "maxDataPoints": 550
28 }

Example timeserie response

1 [
2 {
3 "target":"upper_75", // The field being queried for
4 "datapoints":[
5 [622,1450754160000], // Metric value as a float , unixtimestamp

in milliseconds
6 [365,1450754220000]
7 ]

2

READoc Ground Truth

- https://github.com/smcquay/jsonds
- https://github.com/ContextLogic/eventmaster
- https://gist.github.com/… (Python/pandas backend)

### Query API

Example `timeserie` request
``` javascript
{
"panelId": 1,
"range": {
"from": "2016-10-31T06:33:44.866Z",
"to": "2016-10-31T12:33:44.866Z",
"raw": {
"from": "now-6h",
"to": "now"

}
},
"rangeRaw": {
"from": "now-6h",
"to": "now"

},
"interval": "30s",
"intervalMs": 30000,
"targets": [
{ "target": "upper_50", "refId": "A", "type": "timeserie" },
{ "target": "upper_75", "refId": "B", "type": "timeserie" }

],

…

Example `timeserie` response
``` javascript
[
{
"target":"upper_75", // The field being queried for
"datapoints":[
[622,1450754160000], // Metric value … milliseconds
[365,1450754220000]

]

Figure 14: A case study from READOC GitHub.

21905


