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Abstract

Mixed Boolean-Arithmetic (MBA) obfuscation
protects intellectual property by converting pro-
grams into forms that are more complex to an-
alyze. However, MBA has been increasingly
exploited by malware developers to evade de-
tection and cause significant real-world prob-
lems. Traditional MBA deobfuscation methods
often consider these expressions as part of a
black box and overlook their internal seman-
tic information. To bridge this gap, we pro-
pose a truth table, which is an automatically
constructed semantic representation of an ex-
pression’s behavior that does not rely on exter-
nal resources. The truth table is a mathemati-
cal form that represents the output of expres-
sion for all possible combinations of input. We
also propose a general and extensible guided
MBA deobfuscation framework (gMBA) that
modifies a Transformer-based neural encoder-
decoder Seq2Seq architecture to incorporate
this semantic guidance. Experimental results
and in-depth analysis show that integrating ex-
pression semantics significantly improves per-
formance and highlights the importance of in-
ternal semantic expressions in recovering ob-
fuscated code to its original form. !

1 Introduction

Mixed Boolean-Arithmetic (MBA) obfuscation
protects intellectual property by transforming code
into complex forms that are difficult to analyze (Na-
gra and Collberg, 2009; Collberg et al., 2012; Cec-
cato, 2014; Bardin et al., 2017). It combines
Boolean (AND, OR, XOR) and arithmetic (+, -,
X) operations to create exponentially more complex
expressions (Zhou et al., 2007), making reverse
engineering harder (Mohajeri Moghaddam et al.,
2012). However, these techniques are increasingly
exploited by malware developers to evade detection.
By obfuscating internal code, malware can bypass
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// original code // MBA obfuscated code
X = atb X = (a”b) + 2(a&b)
y = a™b y = (atb) - 2(a&b)

MBA deobfuscation

Figure 1: MBA obfuscation and deobfuscation trans-
form mathematically equivalent expressions into differ-
ent code representations.

security analysis tools (Cohen, 1987; Kaur et al.,
2024). For example, the DarkSide ransomware uti-
lized obfuscation to evade detection (FBI National
Press Office, 2021; Trend Micro Research, 2021),
highlighting the need for advanced deobfuscation
techniques. Figure 1 shows an example of MBA
obfuscation and deobfuscation.

Traditional MBA deobfuscation methods include
bitblast (Adrien Guinet and Videau, 2017; Liu et al.,
2021), pattern matching (Eyrolles et al., 2016; Re-
ichenwallner and Meerwald-Stadler, 2022), and
program synthesis (Schloegel et al., 2022; Lee
and Lee, 2023). Recently, Seq2Seq models us-
ing RNNs (Rumelhart et al., 1986) and Transform-
ers (Vaswani et al., 2023) have been introduced
(Feng et al., 2020a), but they consider these ex-
pressions as part of a black box and overlook their
internal semantic information, leading to lower ac-
curacy. To address this, we propose using truth
tables as a structured semantic representation. We
introduce two types: Boolean truth tables (logical
equivalence) and extended truth tables (computa-
tional equivalence). These tables are automatically
constructed to represent all possible input-output
mappings of an expression.

We present gMBA, a guided MBA deobfusca-
tion framework that integrates semantic informa-
tion to improve deobfuscation performance. Using
a Transformer-based Seq2Seq model, our approach
integrates truth tables to enhance internal represen-
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tation learning. Specifically, we encode both the
obfuscated source code and the truth tables into
vector space representations and merge them to in-
ject into the decoder architecture. To the best of
our knowledge, this is the first approach leveraging
semantic representations for MBA deobfuscation.
Comparison between our gMBA and previous
methods on NeuReduce dataset (Feng et al., 2020a)
showed that our method outperforms them for both
accuracy for exact matching and BLEU metrics.

2 Boolean and Extended Truth Tables

MBA deobfuscation is NP-hard, meaning that no
general deterministic algorithm can solve it effi-
ciently (Zhou et al., 2007). Previous approaches
have treated MBA obfuscation as a black box with-
out understanding its mechanism. While Seq2Seq
models have been applied, they rely solely on syn-
tactic patterns. To incorporate semantic informa-
tion, we introduce truth tables, representing an ex-
pression’s output for all input combinations, encap-
sulating its semantics.

Truth Table Extraction for MBA Expressions
Given Boolean variables xi1,x2,...,x, where
each z; takes values from {0,1}, we define a
Boolean function derived from an MBA expres-
sion:
f:{0,1}" - Z (1)
which maps each possible input combination to
an integer output. The truth table representation of
f is constructed by evaluating f(z1,...,x,) for
all 2" possible input assignments.

For a given function f(z1,...,z,), we define
the truth table as a vector T of length 2", where
each entry corresponds to the function value for a
specific binary input configuration:

£(0,0,...,0)
0,0,...,1

T, f( | ). o
f(,1,...,1)

Each row of the truth table corresponds to a bi-
nary tuple (x1,...,x,) sorted in lexicographical
order, and the resulting vector uniquely represents
the function’s output across all possible inputs. For
an original expression f(z1,...,Z,) and an MBA-
obfuscated expression g(z1, .. ., zy), we compute
their truth table vectors Ty and Ty, respectively.

If Ty =Ty, then f and g are functionally equiv-
alent despite their syntactic differences. This prop-

erty enables MBA deobfuscation by reducing com-
plex expressions to their canonical form.

3 Methods

In this study, truth tables serve as features to
enhance the model’s understanding of Mixed
Boolean-Arithmetic (MBA) expressions. To prop-
erly ground the model’s reasoning in both syntactic
and semantic evidence, we introduce a feature fu-
sion mechanism that concatenates the encoder’s
latent embedding—capturing the syntactic patterns
of obfuscated expressions—with a vectorized truth
table representation that preserves raw semantic
evaluation values.

In this section, we describe gMBA, where both
the obfuscation code and a semantic representation
of the truth table serve as inputs.

3.1 Sequence-to-sequence Architecture

Encoder The encoder processes the input se-
quence x and generates latent representations Hp,
through stacked layers.

HO = Einput
H; = LN(H,;_; + MultiHeadAttn(H;_1)) (3)
H, = LN(HZ + FFN(H[))

where LN and FFN refers to layer normalization
and feedforward networks, respectively. After pass-
ing through L layers, the final encoder output H,
is obtained.

Concatenation with Truth Table To integrate
semantics the truth table vector T is projected and
concatenated with the encoder output:

T = Unsqueeze(Linear(T))

“4)
Hfpa = Concat(Hy, T)

where Linear(-) projects T into the embedding
space. The concatenation position varies, and a
<sep> token is added when explicitly separating
syntax and semantics.

Decoder The decoder generates the output se-
quence y based on Hypy.

Y, = Embed(y) + PosEnc(y)
Y; = LN(Y;_1 + MaskedMultiHeadAttn(Y;_1))
Y; = LN(Y; + MultiHeadAttn(Y;, Hfinar))
Y; = LN(Y + FEN(Y))
&)
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Output Probability Calculation The final de-
coder output is mapped to a probability distribution

Ypred = Softmax(Linear(Y,)) (6)

where Linear(-) maps the decoder output to the
vocabulary space, and Softmax (-) generates token
probabilities.

3.2 Integration of Truth Table Information

Truth Tables as Semantics of MBA Expressions
To integrate semantic information, two types of
truth tables were generated: Boolean truth tables
(bool tt.) and extended truth tables (extended tt.).

The Boolean truth table evaluates MBA expres-
sions for all input combinations, ensuring logical
equivalence. In the function representation (Sec-
tion 2), the range of f is 0, 1, capturing the seman-
tic relationship between obfuscated (src) and sim-
plified (trg) expressions. This establishes a solid
foundation for understanding logical behavior, in-
dependent of syntactic complexity.

On the other hand, the extended truth table en-
codes extended operations in MBA expressions,
evaluating numeric results across input combina-
tions to preserve computational semantics. In the
function representation (Section 2), the range is Z
mod m, where m > 2. While the Boolean truth ta-
ble captures binary equivalence, the extended truth
table reflects operational depth and complexity, pro-
viding a complementary perspective.

Table 1 shows the Boolean truth table and ex-
tended truth table for (a A b) + 2(a&ed), yielding
different results.

Boolean Truth Table

a,b a+b a®b a&b 2(a&d) (a®b)+ 2(akbd)
0,0 0 0 0 0 0
0,1 1 1 0 0 1
1,0 1 1 0 0 1
1 0 0 1 0 0
Extended Truth Table
a,b a+b ad®b a&b 2(a&b) (aBb)+ 2(akb)
0,0 0 0 0 0 0
0,1 1 1 0 0 1
1,0 1 1 0 0 1
1,1 2 0 1 2 2

Table 1: Example of boolean truth table (upper) and
extended truth table (lower) of (a ® b) + 2(a&bd)

Integration Strategy We explore three methods
to integrate the encoder output (H) with the truth
table (1'): addition, token-level concatenation, and
hidden-dimension concatenation. These strategies

are defined in Equation 7.

H+T add
[H;T) tok-level cat (7)
H®T hid-dim cat

Integrate(H,T) =

Addition: The truth table (7') is repeated along
the token dimension and added element-wise to the
encoder output (H), preserving its shape BxT'x D.
For clarity, T is broadcast (repeated) across the
token dimension, ensuring it matches the shape of
H before the element-wise addition.

H! ..

ige = Hijke +Tik ()

Token-level Concatenation: The truth table (T")
is reshaped to B x 1 x D and appended along the
token dimension, resulting in H’ € REX(T+1)xD,

H = [H;T] )

Hidden-dimension Concatenation: 7 is re-
peated along the token dimension and concate-

nated along the hidden dimension, forming H' €
RBXTX(D+D/).

H=H&T (10)

Concatenation Strategy To optimize the con-
catenation strategy, we experimented with various
configurations, focusing on token-level concatena-
tion, which effectively incorporates truth table in-
formation. The tested strategies, with key variables
are summarized as follows: (1) Concat Position:
the order in which semantic (truth table) and syn-
tactic (encoder output) information are combined,
(2) Seperator Token: whether a special separator
token is inserted to distinguish between syntax and
semantics, and (3) Semantics: the type of semantic
information used, including Boolean truth table,
extended truth table, or both.

3.3 Overall Architecture

Figure 2 illustrates our model architecture, which
extends the standard Transformer by integrating
a truth table vector to enhance semantic under-
standing of mathematical expressions. The encoder
follows the standard multi-head self-attention and
feed-forward layers, while the truth table vector
is processed through a linear transformation and
concatenated with the encoder representation. This
augmentation provides explicit semantic guidance
to the model.
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The decoder incorporates masked self-attention
and attends to both the encoder output and the aug-
mented representation, enabling it to better differ-
entiate semantically similar expressions. This ar-
chitecture improves the model’s ability to recover
precise mathematical expressions during deobfus-
cation.

Output
Probabilities

Truth Table
Vector
P i ——

Add & Norm

Feed
Forward

Add & Norm
Multi-Head
Attention

}
Add & Norm

Masked
Multi-Head
Attention

Linear

Nx

Multi-Head
Attention

Positional A Positional

Encoding W O Encoding
Input Output
Embedding Embedding

Inputs Outputs

Figure 2: Model Architecture

4 Experiments

4.1 Experimental Settings

Dataset We used NeuReduce dataset for our ex-
periments, using the same settings as in previous
work (Feng et al., 2020b). Based on standard split,
we divided the dataset into 80k, 20k, and 10k in-
stances for training, validation, and test datasets,
respectively. Appendix A provides further statis-
tics.

Implementation Details The model’s perfor-
mance was evaluated using two metrics: exact
matching accuracy and the BLEU score for n-gram
matching. We used greedy decoding in all experi-
ments. We trained the model with hidden dimen-
sion size 256 and max length 104. The baseline
model is a vanilla transformer network used in the
previous work that does not leverage truth tables.

4.2 Results

The experimental results on NeuReduce dataset are
shown in Table 2. As shown in the table, gMBA
consistently achieves higher accuracy and BLEU

scores compared to the Vanilla model across all
the configurations. This improvement highlights
the advantage of leveraging the semantics of MBA
expressions, enabling the correct deobfuscation of
MBA expressions with similar syntax but different
evaluation results. Specifically, gMBA outperforms
the Vanilla model, achieving an accuracy improve-
ment of at least 21.72% and up to 51.94%, along
with a BLEU score increase of at least 8.78 and
up to 17.49 points; the extended truth table with
the <sep> token, following syntactic information,
yields the highest accuracy of 92.78%.

Model Concat Position <sep> Acc (%) BLEU (%)
Vanilla - - 40.84 78.05
back N 65.05 87.84
Y 65.17 87.28
N 66.01 87.86
bool tt. front v 63.91 37.17
N 62.56 86.83
back, front of <pad> v 65.99 37,77
back N 91.69 94.96
Y 92.59 95.39
N 92.06 94.99
extended tt. front v 37.69 93.97
N 91.71 95.00
back, front of <pad> v 02,78 05.53
N 90.01 95.14
back Y 88.83 94.83
. N 91.01 95.48
both front Y 8919 94.98
N 91.57 95.51
back, front of <pad> v 38.03 94.49

Table 2: Impact of different truth table integration strate-
gies on deobfuscation performance. Vanilla refers to
the baseline (Feng et al., 2020b) Transformer model
without truth table information.

4.3 Analysis

Impact of Truth Tables on Accuracy and Se-
mantic Understanding In Table 2, we observe
that the vanilla model achieves a relatively high
BLEU score (78%) but a much lower exact-match
accuracy (40%). This discrepancy suggests that
while the model can generate expressions that look
similar to the reference, it often fails to produce
the exact target expression. In contrast, when we
introduce truth table strategies, both BLEU and ac-
curacy improve, and—crucially—the gap between
these two metrics narrows. We interpret this as ev-
idence that the added semantic information (via
truth tables) helps the model better distinguish
among closely related expressions. Moving from
the vanilla (no semantic) setup to Boolean truth
tables and then arithmetic truth tables, the model
gains deeper semantic understanding, allowing it to
shift from superficially similar expressions to pre-
cisely aligned original expressions. Furthermore,
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these results highlight the potential of neural mod-
els to learn and reason over the semantics of math-
ematical expressions, capturing underlying struc-
tures beyond mere syntactic similarity.

Effectiveness of the Extended Truth Tables In
our observations, one of the key challenges in MBA
deobfuscation lies in accurately generating the con-
stants and coefficients within an expression. While
Boolean truth tables provide only binary outcomes,
the extended truth table encodes richer numerical
information—specifically, multi-bit evaluation re-
sults—which can assist the model in identifying
and reasoning about underlying arithmetic patterns.

This additional numerical signal enables the
model to more effectively infer structural and se-
mantic properties of the expression, including mag-
nitude and relational cues that are not readily avail-
able from binary outputs alone. We believe that
the intermediate numerical guidance provided by
the extended truth table significantly enhances the
learning process, ultimately leading to better deob-
fuscation performance.

Comparison with Fine-Tuned PLMs and LLMs
One potential concern is whether pre-trained lan-
guage models and large language models, with
general mathematical and logical knowledge, can
outperform specialized models on MBA tasks.

We additionally conducted experiments and the
results are shown in Table 3. For comparison,
we selected BART? (Lewis, 2019) and T5* (Raf-
fel et al., 2020) as encoder-decoder architectured
PLMs and recent LLaMA models* for LLMs. We
fine-tuned and evaluated them with the same data
described in 4.1.

Model Metrics (%)

Acc BLEU
NeuReduce 40.84  78.05
LoRA Fine-tuned BART 4796 8191
Fine-tuned BART 52.12  74.36
LoRA Fine-tuned T5 50.90 82.30
Fine-tuned T5 54.50 83.91
LoRA Fine-tuned LLaMA 3.23B 37.29 75.13
LoRA Fine-tuned LLaMA 3.1 8B 38.56 79.17
eMBA (proposed) 92,78 95.53

Table 3: Performance comparison of fine-tuned PLMs,
instruction-tuned LL.Ms and the proposed method on
MBA deobfuscation using the dataset of NeuReduce

Zhttps://huggingface.co/docs/transformers/ko/model_doc/bart

*https://huggingface.co/docs/transformers/model_doc/t5
*https://huggingface.co/meta-1lama

Table 3’s findings suggest that the prior mathe-
matical and logical knowledge embedded in PLMs
alone is insufficient for effective MBA deobfus-
cation, highlighting the necessity of specialized
architectures that explicitly capture the semantics
of MBA expressions. It also shows the limita-
tion of the LLMs and we anlayzed this problem
is attributed to the pretraining objective of LLMs,
which optimizes for generating fluent natural lan-
guage. The underlying token distribution is shaped
by linguistic plausibility rather than the syntac-
tic precision required for symbolic tasks. Conse-
quently, even with instruction-tuning, these models
struggle to meet the strict accuracy demands of
MBA deobfuscation, unlike our proposed method,
gMBA.

5 Conclusions

We showed that incorporating truth tables derived
from semantic information is crucial for MBA de-
obfuscation. To incorporate truth tables, we pro-
posed a gMBA that leverages a Transformer-based
Seq2Seq framework. Our analysis showed that
gMBA outperforms both traditional methods and a
naive Transformer network, resulting in improving
performance.

Limitations

In terms of deobfuscation accuracy, gMBA based
on neural networks achieves an accuracy in the 90%
range, whereas the state-of-the-art (SOTA) logic-
based methods achieve 100% accuracy (Reichen-
wallner and Meerwald-Stadler, 2023). Despite this
limitation, gMBA has potential for improvement
and scalability through data augmentation, enhanc-
ing its ability to handle diverse obfuscation patterns,
unlike highly accurate logic-based approaches that
struggle with scalability due to the complexity of
crafting rules.
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A Dataset Statistics

Table 4 provides the detailed statistics of the dataset
used in our experiments. The dataset consists of ex-
pressions with varying numbers of variables, opera-
tors, and lengths. The Train-small dataset contains
100K samples, while the Test set consists of 10K
samples. The number of variables and operations
follows a wide distribution, reflecting the complex-
ity of mathematical expressions encountered during
training and evaluation. This distribution ensures
that the model is tested on expressions of varying
difficulty, supporting a robust assessment of its gen-
eralization ability.

Train-small Test
src trg src trg
Size 100K 100K 10K 10K
#of Vars 17.0+150 4.5+3.5 16.5+14.5 45+3.5
#0fOps 26.0+£230 6.0£6.0 25.0£230 6.0£6.0
Length 54.0£46.0 18.0£17.0 52.0+48.0 18.0£17.0

Table 4: Statistics of the Dataset (excluding Train-large)

B Engineering

Integration Strat.  Ver. Metrics (%)
Acc BLEU
Addition - 64.29  87.69
vl 58.60  84.18
v2 6387 8731
Token-level Concat V3 65.05 87.84
vd 3577 74.11
v5 61.89 85091
v6 6195 86.62
v7  61.82 86.01
vl 0.44 34.56
v2 0.06 17.88
v3 0.14 19.81
Hidden-dim Concat v4 0.26 23.32
v5 0.12 15.26
v6 0.13 18.55
v7 0.13 16.99

Table 5: Comparison of Accuracy and BLEU Metrics
for Truth Table Integration Techniques to Assess Syntax-
Semantics Fusion Methods in Transformer-based Deob-
fuscation

To maximize the performance of each integra-
tion strategy, we conducted extensive engineer-
ing experiments to determine the optimal place-
ment and type of normalization layers. Using the

Boolean truth table as a test case, we explored vari-
ous configurations within the concatenation-based
integration methods to identify settings that yield
the best accuracy and BLEU scores. Table 5 sum-
marizes the results, highlighting the effect of differ-
ent normalization strategies. These insights helped
in refining our final implementation, ensuring that
each approach was optimized for its best possible
performance.

When using the hidden-dimension concatenation
strategy, we observed that the matrices encoding
the expression’s syntax tend to collapse, causing a
marked drop in performance. Hence, we concluded
that this issue cannot be overcome by engineering
efforts alone.

C Analysis of Errors

trgl @ =2%(x|~y)-(~x)-1
predl : -2%(x|~y)-(~(~x)
trg2  : -3%(x&~y)-4x(~x8&y)
pred2 : -3*(x&)-4*(~x&y)
trg3 : -17x(x|ylz)

pred3 : -16%(x|y|z)

trgd : x&y

pred4 : x-((CCCCCCCCC

Figure 3: Samples of misprediction

In reviewing the model’s mispredicted expres-
sions, we identified several recurring error pat-
terns that highlight the system’s current limitations.
In most cases, the answers started with the same
subexpression but ended incorrectly. There were
also many cases that had generated almost identical
to the correct answer but with a slightly different
constant or operator. We observed a few instances,
wherein the model introduces extraneous charac-
ters or repeated segments that deviate from the
expected structure.
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