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Abstract

In real-world applications, large language mod-
els (LLMs) often need to handle diverse and
complex instructions. Specifically, when in-
structions are subject to multiple constraints,
some of which are somewhat ambiguous,
LLMs often fail to produce answers that sat-
isfy all constraints, limiting their effectiveness
in various tasks. To address this challenge,
we examine the different constraints in the in-
structions and discover that the difficulty of
determining whether an answer meets a con-
straint varies widely, from extremely straight-
forward to exceptionally perplexing. Corre-
spondingly, we propose to assign constraints
to different constraint levels. Furthermore,
inspired by chain-of-thought (CoT) and self-
taught reasoner (STaR), we propose a two-
stage method named CARE-STaR (Constraint-
AwaRE STaR). Our method distinguishes con-
straints within instructions by generating differ-
ent CoTs and guides LLMs to autonomously
learn optimal answers by setting positive re-
wards for the CoTs that are beneficial to gener-
ating accurate answers and iteratively optimiz-
ing these answers. We have conducted exten-
sive experiments on three instruction-following
benchmarks, taking three existing LLMs as
base LLMs, respectively. Experimental re-
sults indicate that our method substantially en-
hances the capability of these LLMs to han-
dle complex instructions, outperforming super-
vised fine-tuning (SFT). Our code is available
at https://github.com/lzl0124/carestar.

1 Introduction

In recent years, large language models (LLMs),
which have been used in a wide range of applica-
tions, such as dialogue systems, text summariza-
tion, and machine translation (Achiam et al., 2024),
have achieved significant success. As LLMs are ap-
plied to an expanding range of domains, the instruc-

*Equal contribution.
†Corresponding author.

Use 'needed', 'money', 'computer', 'bought',
'happy' in the story, with no restrictions on
tense.

Generate a story that satisfies the following constraints.

+ Contain exactly 5 sentences1

+ 2

... John realized he needed money quickly. He decided

... old computer for parts. To his surprise, he found ...
and bought it. With the refurbished machine, ... he
needed. Now, John feels happy ... his financial future. 

... urgent need for money to ... purchase a computer, ...
new opportunities. With savings ... making a well-
informed decision. Upon ... and happiness washed over
him, ... improve his prospects. 

+ Please use a formal tone3

Figure 1: An example to illustrate the instruction-
following capability of the LLM, indicating its short-
coming. The answer generated by the LLM meets con-
straints (1) and (2) when only these are given in the
instruction, but fails when constraint (3) is added.

tions that users input into these LLMs have become
increasingly complex and diverse. In real-world ap-
plications, users expect models to handle intricate
domain-specific tasks and adapt to evolving scenar-
ios. They impose multiple constraints on instruc-
tions to optimize outputs and ensure compliance
with specific measurements. The increasing com-
plexity of instructions poses significant challenges
to the understanding capabilities of LLMs. Enhanc-
ing the capability of LLMs to deal with complex in-
structions remains an important yet under-explored
research topic.

Recent research on instruction following (Xu
et al., 2024; Sun et al., 2024; He et al., 2024a) has
highlighted the importance of diverse and high-
quality training data, which can be divided into
two categories in terms of training strategy. One is
to apply Supervised Fine-Tuning (SFT) (Ouyang
et al., 2022) to complex instructions, while the
other is to employ Direct Preference Optimization
(DPO) (Rafailov et al., 2024). The primary differ-
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ences lie in both the training data format and the
optimization objective (i.e., loss function). How-
ever, both kinds of methods face the same issue:
they only capture direct associations between in-
struction and response, lacking a nuanced under-
standing of instruction. This lack of understanding
is particularly pronounced when dealing with multi-
constraint instructions. As shown in Figure 1, we
have found that when an additional constraint is
added to an instruction in an attempt to generate
more accurate answers, the LLM fails to provide
satisfactory answers. We argue that the reasons be-
hind this are twofold. 1⃝ Due to the inherent am-
biguity of natural language, certain constraints
cannot be expressed precisely, and this vagueness
can make it difficult for the model to correctly un-
derstand the task objective, leading to outputs that
deviate from user expectations. Balancing such
constraints presents a challenge to the model’s com-
prehension capabilities. 2⃝ Due to the complex-
ity of the task, the model sometimes cannot sat-
isfy multiple constraints based solely on limited
prior knowledge, especially when there are inter-
dependencies between the constraints. Generating
a response that satisfies a high proportion of con-
straints poses a challenge to the model’s constraint-
handling capabilities.

In this paper, we first examine the different con-
straints in the instructions. Existing instruction-
following methods typically treat all constraints
equally, which results in a lack of fine-grained opti-
mization when the model handles constraints. How-
ever, we discover that some constraints are "vague"
and often involve factors such as language style and
creative expression. These constraints can be ad-
justed within a certain range and do not need to be
followed rigidly in every detail. We call these con-
straints Soft Constraints. In contrast, some con-
straints are "precise" and typically can be checked
by quantitative metrics, with evaluation results cat-
egorized as either "satisfied" or "not satisfied". We
call them Hard Constraints. For instance, con-
straints related to length or format are typically
hard constraints that must be strictly adhered to.
Meanwhile, there are numerous constraints, and
the difficulty of assessing whether they are satis-
fied lies somewhere on the spectrum between soft
and hard constraints. This distinction creates new
optimization space for LLMs, enabling the opti-
mized LLMs to handle soft constraints more flexi-
bly while ensuring adherence to hard constraints,
ultimately producing responses that balance preci-

sion with creativity.
To echo this line of thought, we formulate the

instruction-following task in LLMs to stipulate the
optimization goal of LLMs, while also revealing
the role of constraints. Subsequently, we propose
to assign constraints to different constraint levels
by the difficulty level of satisfying the different con-
straints, and put forward a two-stage method named
CARE-STaR (Constraint-AwaRE Self-Taught Rea-
soner) to help LLMs strengthen the understanding
of instructions and improve the capability to handle
constraints, aiming to enable the models to provide
answers that satisfy constraints well in different
scenarios, thus enhancing the user experience.

CARE-STaR is inspired by the chain-of-thought
(CoT), which has been successful in helping mod-
els deal with mathematical problems or reasoning
tasks (Wei et al., 2022; Nye et al., 2021; Kojima
et al., 2022; Rajani et al., 2019; Shwartz et al.,
2020). CARE-STaR utilizes CoT to guide an LLM
in distinguishing constraint levels, as well as an-
alyzing these constraints in detail to enhance the
capability of the model to handle them effectively.
Meanwhile, CARE-STaR is also an expansion of
Quiet-STaR (Zelikman et al., 2024). In particular,
our method first employs GPT-4 (Achiam et al.,
2024) for a cold start in CoT generation, improv-
ing training stability. It then incorporates a rein-
forcement algorithm to optimize parameters, en-
abling the model to refine its CoT generation strat-
egy and achieve more precise constraint analysis
while better assisting in answering questions. This
ultimately leads to answers with higher constraint
satisfaction.

Our contributions can be summarized as follows.

• We formulate the instruction-following task
within the framework of the fuzzy set. This
formulation is flexible enough to allow set-
ting different constraint levels for constraints,
thus supporting fine-grained optimization of
instruction following.

• We adopt two stages for improving instruction
following: first employ a few labeled CoT ex-
emplars to warm up the LLM, and then design
a reinforcement algorithm to autonomously
optimize the generation of CoTs that best con-
tribute to instruction following.

• We conduct three instruction-following bench-
marks. The results on the three LLMs show
that each of them, when trained using our
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method, exhibits greater performance im-
provement compared to the same LLM trained
with SFT.

2 Formulation of Instruction Following

In this section, we borrow the concept of mem-
bership function from fuzzy theory (Fullér et al.,
1998) to formulate the instruction-following task in
LLMs, taking into consideration that the optimiza-
tion of LLM has similarities with the fuzzy control
process.

A multi-constraint instruction refers to an in-
struction issued by a user to LLM that incorpo-
rates multiple constraints, all of which should be
satisfied simultaneously when generating an an-
swer. Let I = {q, c1, c2, ..., cm} denote the multi-
constraint instruction, where q denotes the ques-
tion, ci denotes the i-th constraint and m is the
total number of constraints. Let the set X be the
set of all possible answers generated by an LLM
for a given instruction I . We define a fuzzy set Fci

over X , in which each answer a ∈ X is assigned
a membership function µc(a, ci) ∈ [0, 1] reflecting
the degree to which it satisfies the constraint ci.
The larger the value of the membership function
µc(a, ci), the more a belongs to that fuzzy set Fci .
Similarly, we introduce the membership function
µq(a, q) ∈ [0, 1] for question q in the instruction
I . Thus, the ideal goal pursued by the LLM is that
the answer a to the instruction I = {q, c1, ..., cm}
satisfies the following equation:

µq(a, q) +
m∑

i=1

µc(a, ci) = 1 +m (1)

However, it is often hard for LLM to achieve this
objective. As a result, the instruction-following
task is proposed to train the LLM so that it satisfies
the following requirement:

max(µq(a, q) +
m∑

i=1

µc(a, ci)) (2)

Notably, the roles of µq(a, q) and µc(a, ci) can
be undertaken by any SOTA LLM.

In the light of this definition, we set the fuzziness
of constraint for each constraint and a constraint
level function L(ci) to quantify its degree of hard-
ness or softness. A lower value indicates that ci
is a highly fuzzy constraint, which means that it
allows for flexible interpretation, while a higher
value signifies that ci is highly precise, requiring

strict adherence. For simplicity, the range of L is
currently set to L(ci) ∈ {1, 2, 3, 4, 5}. ci is identi-
fied as a hard constraint if L(ci) = 5, or as a soft
constraint if L(ci) = 1.

In our implementation, we employ chain-of-
thought (CoT) to perform "constraint analysis",
which adopts the LLM to be trained to conduct
the L(ci) evaluation. Furthermore, we design
three loss functions Losstalk, Losstalk_cot, and
Lossthink as described in the next section to au-
tonomously optimize the generation of CoTs that
most effectively enhance instruction following.

3 Method

We now describe our method, which aims to teach
LLMs to effectively follow instructions and obtain
satisfactory answers. Our method consists of two
stages, i.e., the initial cold-start stage, followed by
the self-taught stage.

In the first stage, we warm up the LLM to be
trained to improve its generation capability of high-
quality CoTs. In the second stage, whose process
is shown in Figure 2, we first guide the model to
generate multiple candidate CoTs for each instruc-
tion in the training dataset of stage 2. Then, we
evaluate the quality of each CoT based on its im-
pact on the answer prediction. Finally, we adjust
the probabilities of generating CoTs according to
the evaluation results. We iterate the process above
to automate the generation of "constraints analysis"
until finishing the designated number (defaulted to
three) of epochs.

To be noted, we can adopt any typical instruction-
tuning dataset D = {x(i), y(i)}Ni=1 as our train-
ing dataset, which is not required to contain CoTs.
Here, x(i) denotes an instruction and y(i) denotes
an answer. The dataset is randomly split into two
disjoint subsets, which are used for the two stages
of the method, respectively.

3.1 Cold Start

In the cold-start stage, we leverage GPT-4 (Achiam
et al., 2024) to generate a CoT for each input in-
struction in the training set of stage 1, using the
prompt shown in Appendix Table 7. Then we per-
form SFT on the LLM to be trained using the (in-
struction, CoT) pairs as training exemplars, thus
helping LLM learn to discern effective CoTs before
it begins to generate CoTs autonomously.

This stage is necessary because we have ob-
served that if we enter the second stage directly
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Figure 2: The framework of our self-taught stage. We first generate CoTs for each instruction in the training
dataset. Then, we apply our designed reinforcement algorithm to increase the likelihood of CoTs that help the
model complete the answer better. The dashed line indicates the fine-tuning outer loop. For a detailed description of
the algorithmic steps, please refer to Algorithm 1 in the Appendix.

without the first stage, then the LLM often gen-
erates lengthy and suboptimal CoTs in the initial
steps. These inaccurate CoTs will fail to effectively
guide response generation, ultimately impacting
the stability of model training. Ideally, CoTs are
expected to be concise, enabling the model to pro-
duce more accurate and coherent answers through
simple reasoning. To bridge the gap between the
ideal and reality CoTs, we design the cold-start
stage.

By first training on these exemplars, we improve
the capability of the model, which enables it to pro-
duce concise and accurate CoTs in the second stage,
thereby enhancing the stability and effectiveness of
the overall training process.

3.2 Sampling CoTs

Stage 2, whose kernel is a reinforcement algorithm,
comprises multiple training steps. At the begin-
ning of each training step, we require the LLM to
sample multiple candidate CoTs to complete the
analysis of constraints in each instruction to get the
corresponding constraint levels. The prompt used
is also the one listed in Appendix Table 7. Specifi-
cally, for a given input instruction x(i), we obtain
a set of CoT candidates z(i) = {z(i)1 , z

(i)
2 , ...z

(i)
p },

where p denotes the total number of sampled CoTs.
Through this process, we construct an augmented
dataset D′ = {x(i), y(i), z(i)}Ni=1.

To separate the CoT from the answer, we use
two learnable meta tokens (<|startthought|>
and <|endthought|>) to mark the start and end
positions of the CoT. <|startthought|> informs
the LLM that it is in "thinking mode," while

<|endthought|> indicates that the model has fin-
ished thinking and needs to provide an answer.

3.3 Learning to Answer "after Thinking"

Since we have introduced CoTs for constraint eval-
uation, the model has not yet developed the ability
to capture the relationship between the CoT and
the response. Therefore, we need to train the LLM
to better utilize the CoTs for providing responses.
At the same time, we do not want the answer of
the LLM to overly rely on the CoT, thus losing the
capability to respond directly. Hence, we divide
the training of the generation of responses into two
parts:
Talk directly: This part of the training objective
aligns with the goal of SFT: the goal is to fine-tune
a pre-trained LLM through supervised learning to
generate the target answer. Specifically, SFT adopts
maximum likelihood estimation (MLE) for training
on the dataset D. The training objective is to min-
imize the following loss function of current LLM
πθ:

Losstalk = −E(x,y)∼D [log πθ(y | x)] (3)

Talk with thoughts: Inspired by the attention
mechanism and Quiet-STaR, we adopt a Mixing
Head (i.e., a 3-layer MLP) to output a weight value
for each token of the answer, to decide the degree
of reliance on CoTs or direct response. Specifically,
in the initial few steps of the training, we set the last
layer of Mixing Head to zero, so that in the early
steps of training, the model primarily utilizes the
direct response (without CoTs). In the later steps
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of training, the model adjusts the weight values ac-
cording to the following rule. If the CoT helps the
prediction of a certain token of the answer, the cor-
responding weight value increases, enhancing the
reliance on CoT; otherwise, it decreases, promoting
a more direct response.

Given an instruction x(i), the corresponding an-
swer y(i), and the j-th candidate CoT z

(i)
j , we can

get the weighting values w(i,j) and compute the
log-likelihood of the response conditioned on the j-
th CoT and the response without any CoT, denoted
as ℓ(i,j)w/ CoT and ℓ

(i)
w/o CoT, respectively. At position

k, the weighting value and log-likelihood are given
by:

w(i,j,k) = MH

(
h_stsθ([x(i); z

(i)
j ; y

(i)
:k−1]),

h_stsθ([x(i); y
(i)
:k−1])

)
(4)

ℓ
(i,j,k)
w/CoT = log pθ(y

(i)
k | x(i), z

(i)
j , y

(i)
:k−1) (5)

ℓ
(i,k)
w/oCoT = log pθ(y

(i)
k | x(i), y

(i)
:k−1) (6)

where MH(·) denotes Mixing Head and h_stsθ(·)
denotes the hidden states output by the last layer of
the LLM.

Then we can compute a weighted sum at the
position k, yielding the final log-likelihood.

ℓ
(i,j,k)
final =

w(i,j,k) · ℓ(i,j,k)w/CoT + (1− w(i,j,k)) · ℓ(i,k)w/oCoT

(7)

Similarly, we can define the loss for this stage of
training, following the same principle as SFT:

Losstalk_cot=−E(x,y,z)∼D′ [log πθ(y |x,z)] (8)

3.4 Optimizing Generation of CoTs
The key challenge in our method is to identify the
most reasonable CoT that accurately completes
the constraints analysis. We believe that if a
CoT is sufficiently reasonable, it should lead to a
higher generation probability of the gold response.
Therefore, for each pair (x(i), y(i)) in the training
dataset D, we aim to find a CoT ˜z(i) such that
πθ(y

(i)|x(i), ˜z(i)) is maximized.
Following the process outlined above, for

the input x(i), we can obtain Loss
(i)
talk and

{Loss(i,j)talk_cot|j = 1, 2, . . . , p}. If Loss(i,j)talk_cot is

lower, it indicates that the j-th CoT is more help-
ful; otherwise, the CoT is less helpful. However,
due to the limited number of sampled CoTs, we
often cannot obtain the optimal one. Therefore, we
use Losstalk as a reference to filter the CoTs. For
the j-th CoT of the i-th instruction, we define the
reward r(i,j) as follows:

r(i,j) = max(0, Loss
(i)
talk − Loss

(i,j)
talk_cot) (9)

The reward signifies the improvement in the
prediction of the answer when a CoT is involved.
Following the methods in TRICE (Hoffman et al.,
2024) and Quiet-STaR, we subtract the mean re-
ward of the p sampled CoTs from the original re-
ward of each CoT, and remove any negative values
to improve training stability:

r(i,j) = max(0, r(i,j) − r(i)) (10)

We then use this reward to increase the probabil-
ity of generating CoTs that perform better than the
average:

Loss
(i,j)
think = −r(i,j) · log πθ(z

(i,j)|x(i)) (11)

Through the iterative learning process, the model
will gradually learn to generate CoTs, which not
only accomplishes the task of constraint analysis
but also enhances the response to ensure compli-
ance with the constraints.

4 Experiments

4.1 Experimental Setup
We conduct experiments on three popular base
LLMs: Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023a), LLaMA-3.2-3B-Instruct (Dubey et al.,
2024), and Qwen2.5-7B-Instruct (Yang et al.,
2024a). For brevity, we omit the suffix ’Instruct’
from all model names below.

We employ WizardLM (Xu et al., 2024) as the
training dataset. The reason for this is that Wiz-
ardLM is a resultant dataset of executing the Evol-
Instruct approach that allows for incrementally gen-
erating more complex instructions by taking initial
seed instructions as input. This gradual generation
of increasingly sophisticated instructions makes
WizardLM a suitable choice for our training needs.

Apart from adopting our method to train the base
models, we also adopt SFT to train the base models
as baselines, since both share the same training data
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Models Change Case Combination Content Format Keywords Language Length Punctuation StartEnd P-Level I-Level

Mistral-7B-v0.3
Base Model 0.6742 0.2615 0.8679 0.8471 0.7117 0.7742 0.5035 0.2121 0.8358 0.5268 0.6451
SFT 0.7303 0.5846 0.8113 0.8089 0.6564 0.7742 0.5315 0.2424 0.8507 0.5600 0.6630
Ours 0.7753 0.7538 0.8679 0.8918 0.7055 0.8387 0.5664 0.2425 0.7910 0.6248 0.7134

Llama-3.2-3B
Base Model 0.7753 0.3846 0.8679 0.8280 0.8037 0.9032 0.7552 0.9848 0.8358 0.6968 0.7889
SFT 0.7528 0.6154 0.7736 0.8599 0.7791 0.9355 0.6783 0.8636 0.8955 0.7024 0.7830
Ours 0.8090 0.4615 0.8868 0.8790 0.8221 0.9032 0.7343 0.8030 0.8657 0.7246 0.7974

Qwen2.5-7B
Base Model 0.7640 0.6769 0.8302 0.8854 0.7975 1.0000 0.6224 0.9697 0.9403 0.7320 0.8058
SFT 0.7640 0.6769 0.9433 0.9235 0.7791 0.9032 0.6434 0.8333 0.9403 0.7338 0.8058
Ours 0.8202 0.7692 0.8491 0.9172 0.7423 1.0000 0.6573 0.8636 0.9104 0.7579 0.8106

Table 1: Overall performance on IFeval.

format. For completeness, we also compare our
method with DPO, and the corresponding results
are presented in Appendix A.4.

For evaluation, we choose the following three
challenging instruction-following benchmarks,
which contain complex constraints and allow us
to observe the effect of thoughts on instruction-
following capability.

• IFeval (Zhou et al., 2023) is designed to evalu-
ate a series of "verifiable constraints" without
relying on manual evaluation or LLM-based
assessments.

• FollowBench (Jiang et al., 2023b) aims to eval-
uate the model performance across multiple
types of scenarios (including content, situ-
ation, format, and mixed) by progressively
adding constraints.

• CELLO (He et al., 2024b) designs eight sce-
narios (such as QA, planning, summarization,
etc.) using complex instructions to compre-
hensively assess the capability of LLMs to
follow complex instructions.

It is worth mentioning that the instructions in the
training dataset differ significantly from those in
the three benchmarks. This shows that our method
is agnostic to the training dataset.

4.2 Main Results
Tables 1 and 2 list results on three instruction-
following benchmarks.

From these tables, we find that the models
trained using our method perform excellently re-
gardless of the benchmark. Taking the IFeval
benchmark as an example, the models trained us-
ing our method are, on average, 8.71% higher in
terms of P-Level metrics and 4.09% higher in terms
of I-Level compared to the corresponding original
models. On average, the models trained using our
method are 6% higher on the P-Level metric and

Models Followbench CELLO

CSL HSR SSR Avg

Mistral-7B-v0.3
Base Model 2.550 0.576 0.677 0.632
SFT 2.450 0.594 0.667 0.634
Ours 2.675 0.625 0.692 0.714

Llama-3.2-3B
Base Model 2.300 0.569 0.658 0.633
SFT 2.625 0.612 0.704 0.647
Ours 2.725 0.622 0.699 0.676

Qwen2.5-7B
Base Model 2.900 0.672 0.746 0.745
SFT 2.800 0.650 0.737 0.751
Ours 2.975 0.699 0.764 0.761

Table 2: Performance on Followbench and CELLO
benchmarks. The full results of CELLO are provided in
Table 6 of the Appendix.

3.34% higher on the I-Level metric, compared to
the corresponding models trained using SFT. In par-
ticular, of the three base models, Mistral-7B-v0.3
can obtain the maximum performance improve-
ment, compared to the other base models. Addi-
tionally, we found that our method achieves limited
performance gains in Qwen2.5-7B. To investigate
the underlying cause of this phenomenon, we con-
duct additional experiments, whose details are pro-
vided in Appendix A.5.

4.3 Ablation Study

Ablation study is carried out to investigate the im-
pact of the soft and hard constraint concepts in-
troduced in Section 2, the cold-start stage and the
self-taught iteration proposed in Section 3. Here,
given a base model, we adopt its base version, con-
straint version, cold-start version, and self-taught
version. For more details on the definitions of these
versions, see Appendix A.2.

The results, summarized in Figure 3, reveal that:

• The introduction of distinction between
constraints has improved the constraint
handling capability of LLMs. For example,
the constraint version of Mistral-7B results in
a 6.28% improvement on IFeval, demonstrat-
ing that the model can more effectively handle
constraints in this benchmark, such as format-
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Figure 3: Ablation study.
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Figure 4: Effect of number of sampled thoughts on performance.

ting and word counting, which are treated as
hard constraints. This result is particularly
promising, because no additional knowledge
is introduced to the base model during this pro-
cess. Instead, simply prompting LLM to be
aware of the differences in constraints within
the instruction appreciably improves the ex-
tent to which the answers given by the LLM
conform to the different constraints.

• After the cold-start stage, LLMs gain
the capability to generate beneficial CoTs,
which is helpful for the subsequent self-taught
stage. Taking Llama-3.2-3B as an example, it
results in a 7.4% improvement over the con-
straint version and a 10.9% improvement com-
pared to the base version on Followbench. The
cold-start version always outperforms the con-
straint version, as the LLM begins to analyze
the constraints rather than merely pondering
them.

• After the self-taught stage, LLMs demon-
strate further improvements in instruction-
following tasks, validating the effectiveness
of our reinforcement algorithm. Taking
Mistral-7B-v0.3 as an example, it achieves
a 9.7% improvement on IFeval, an 11.2% im-
provement on CELLO, and a 1.9% improve-
ment on Followbench compared to the model
that finishes the cold-start stage of training.

In sum, incrementally adding training stages pro-
posed in our method into LLMs can help LLMs
progressively enhance their handling of constraints.

4.4 Effects of Number of Sampled Thoughts

We investigate the impact of the number of CoTs
sampled during training on performance. As Fig-
ure 4 shows, we observe that for models with 3B
or 7B parameters, setting the number to 3 usually
yields the best results. Specifically, when the num-
ber is set to 2, the model often struggles to sample
the optimal CoT. Conversely, when the number
exceeds 3, the limited capability of the model in-
creases the likelihood of introducing noise to our
self-taught stage, which in turn compromises train-
ing stability. Additionally, we note that for different
base models, those with higher performance tend
to exhibit greater training stability. For instance, in
the case of Qwen, we observe that as the number of
CoTs increases, there is only a slight improvement
in performance on the CELLO benchmark.

4.5 Case Study

Figure 5 presents an example of an instruction that
the original model fails to answer correctly but
the model after training with our method success-
fully resolves. This instruction includes three con-
straints, where the "formal tone" constraint is more
flexible and can influence the fulfillment of the
other constraints, as a formal tone often requires
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Example:
Instruction:
Using words in the 'Input' to generate a story, with no
restrictions on tense. The story should contain exactly 5
sentences. Please using a formal tone.

Input:
needed, money, computer, bought, happy

Output:
<|startthought|>
   - Generate a story using words from the input: 5
   - The story should contain exactly 5 sentences: 5
   - Use a formal tone: 4
   …
<|endthought|>
John realized he needed a computer to ... in a few days. Despite
his tight budget, ... for the job. With determination, he ... at his
part-time job. Finally, he had enough money to buy ... eyeing.
Overwhelmed with happiness, John felt a sense of relief and
excitement... new computer home. 

Figure 5: Example of an LLM trained with our method
to answer an instruction with multiple constraints.

adherence to specific norms, which may impact
word choice or sentence structure.

From the response, we find that these constraints
are rated accordingly. The constraints on "sentence
counting" and "word choice" are given high scores,
while the "formal tone" constraint is rated a sec-
ondary score. The answer meets all the hard con-
straints and incorporates fewer colloquial expres-
sions, such as "a sense of relief and excitement," to
fulfill the "formal tone" requirement. More details
are shown in Appendix A.3.

5 Related Work

5.1 Complex Instruction Tuning

Existing research on improving the capability of
LLMs to handle complex instructions concentrates
on the generation of different complex instructions.
These generated instructions are then used to fine-
tune the original pre-trained models. For example,
Xu et al. (2024) proposed Evol-Instruct to rewrite
seed instructions step by step into more complex
instructions, aiming to enhance the overall capa-
bility of LLMs for tasks with varying complexity.
Yang et al. (2024b) introduced an effective data
augmentation technique that breaks down complex
instructions into simpler sub-instructions, and mod-
ifies and reconstructs them to form new instruc-
tions, enhancing the capability of LLMs to detect
subtle variations.

When fine-grained constraints are gradually

added to the instruction, LLMs usually struggle
to meet them (Sun et al., 2023). He et al. (2024a)
found that training LLMs with instructions contain-
ing multiple constraints can enhance their under-
standing of complex instructions and proposed a
"discriminative" approach to acquiring data with
complex constraints. Conifer (Sun et al., 2024) pro-
poses a progressive learning method by fine-tuning
the model using instructions with increasing num-
bers of constraints to improve its performance on
complex constraints. However, these methods do
not consider the differences between constraints,
which makes it difficult for the model to handle
them with fine-grained processing.

5.2 Training to Think

LLMs exhibit enhanced performance on reason-
ing tasks when they explicitly write their reason-
ing steps first (Wei et al., 2022). However, try-
ing to equip LLMs with such capabilities often
requires the construction of massive reasoning
datasets. Consequently, recent research exploring
self-improvement techniques to enhance LLMs’
reasoning capabilities has garnered our interest.
STaR (Zelikman et al., 2022) iteratively enhances
the model’s reasoning capability through the fol-
lowing process: using few-shot prompting to have
the model generate both thoughts and answers from
the training data, and then filtering the thoughts
based on the correctness of the answers for SFT. Its
extended method, V-STaR (Hosseini et al., 2024),
trains a verifier to assess the correctness of the
CoTs using DPO, by leveraging both correct and
incorrect CoTs generated during the iterative pro-
cess, and utilizes the verifier to select the correct
CoT during the inference phase. Quiet-STaR (Ze-
likman et al., 2024) aims to teach LLMs to gen-
erate a thought segment after each token to ex-
plain the future text, thereby improving predictions
for the next token. However, these methods have
only shown improvements in mathematical and
reasoning tasks and have not been applied to the
instruction-following tasks. Wu et al. (2024) argue
that CoTs can be applied to any task and propose an
algorithm called "TPO", which iteratively searches
and optimizes the process of thought generation,
allowing the model to learn how to think indepen-
dently. However, this approach does not account
for complex constraints.
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6 Conclusion

In this paper, we propose the CARE-STaR method,
which trains LLMs in two stages to push the upper
limit of the capability of the original LLMs to fol-
low instructions. Our method adopts a self-taught
mechanism to tackle multiple constraints in the
instruction, eliminating the need for any specific
instruction dataset during training. Experimental
results show that our method outperforms SFT in
handling complex instructions.

7 Limitations

CARE-STaR enhances the performance of LLMs
in instruction-following tasks by introducing CoTs
to guide the differentiation of constraints within in-
structions. However, generating multiple CoTs for
each instruction in the training set incurs significant
computational costs. Future work could optimize
this process to improve its efficiency. Additionally,
we have observed that our method results in only
limited improvements for Qwen2.5-7B. One pos-
sible explanation is that the model already demon-
strates strong performance, reducing the impact of
additional reasoning steps. Furthermore, the lim-
ited relevance between our training dataset and the
test set may have also played a negative role in
these results.

Besides, our experiments were conducted only
on models of sizes 3B and 7B. Whether this method
remains effective for larger models remains an open
question for future exploration.
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A Appendix

A.1 Prompt for Generating Thoughts

By incorporating a chain of thought, we can prompt
the model to provide additional steps before an-
swering, which helps it perform better. For in-
stance, Zero-Shot Reasoner (Kojima et al., 2022)
improved the performance of the model in vari-
ous reasoning tasks by simply adding the phrase
“Let’s think step by step". Our method optimizes
the content of the chain of thought specifically for
instruction-following tasks. We prompt the model
to first evaluate the constraints within the instruc-
tion, and then provide a step-by-step procedure for
answering the instruction based on the evaluation
results. Our prompt for generating thoughts is de-
tailed in Table 7. To further investigate the impact
of reasoning order on model performance, we also
conduct an additional experiment on Mistral-7B-
v0.3, where the model is prompted to first generate
the step-by-step procedure and then perform con-
straint evaluation. The results are shown in Table 4.
We think that the results are consistent with the
following viewpoint: When LLMs rely on rating
scores in writing answer steps, this reliance is in-
herently logically reasonable.

A.2 Four LLM Versions for Ablation Study

In the ablation study, we investigate the necessity
of each component introduced in our method by
gradually adding them to the base model. Given an
LLM, the ablation study adopts four versions: the
base version, constraint version, cold-start version,
and self-taught version.
Base version: The base version is the base model it-
self (i.e., Llama-3.2-3B, Qwen2.5-7B, or Mistral-
7B-v0.3), which directly executes instructions to
provide answers.
Constraint version: Constraint version provides a
simple implementation of soft and hard constraints
on the base model, enabling it to consider the vary-
ing nature of constraints in the instructions. In par-
ticular, we use the prompt, one example of which
is shown in Table 3, to inform the model that the
instruction may contain multiple constraints, which
can differ from one another and be categorized into
hard and soft constraints. In this way, we attempt to
guide the base model to revise the way it produces
the answer.
Cold-start version: Cold-start version aims to ex-
plore the quality of CoTs produced by the model
trained in the cold-start stage (hereafter referred to

You are a helpful AI assistant. You will be given
an instruction that describes a task. The instruc-
tion may contain multiple constraints and the
constraints can be categorized into hard and soft
constraints. Hard constraints are precise and
quantifiable, with clear yes/no or pass/fail cri-
teria. They must be strictly followed (e.g., word
counting, specific format). Soft constraints are
more flexible, allowing for some variation in
their fulfillment (e.g., tone, creativity, or style).
You need to write a response that appropriately
completes the instruction directly.
Instruction:
%s

Table 3: An example of the prompt to handle the hard
and soft constraints.

as the cold-start model). For this purpose, we first
execute the cold-start model, taking the prompt in
Table 7 as input, to generate a CoT for each instruc-
tion. Then, we execute the base model by inputting
the (Instruction, CoT) pair to generate a response.
The quality of the generated response can serve as
an indicator of the effectiveness of the CoT.
Self-taught version: This version is the model
trained by our two-stage method, which generates
CoTs first and then utilizes these CoTs to complete
the final answer.

By comparing the results of the four versions
above, we can assess the impact of each component
of our method on the instruction-following task.

A.3 Case Study Details
We provide the complete answers to the instruc-
tions in the case study. As shown in Table 8, the
base model is able to successfully complete the
instruction when faced with only the constraints
of "sentence counting" and "word choice". How-
ever, when the relatively vague constraint of "for-
mal tone" is added, the model fails to meet the
first two constraints. After being trained with our
method, the model performs the aforementioned
instruction again. As shown in Table 9, it extracts
and evaluates the constraints within the instruction.
Then, based on this analysis, it outlines the steps to
perform the instruction. Finally, the model success-
fully handles the constraints.

A.4 Comparison with a DPO Baseline
We apply the code and training dataset provided by
He et al. (2024a) on Mistral-7B, and then let the
DPO-tuning Mistral-7B-v0.3 run the benchmarks.
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The main results are listed in Table 5. From the
results, we observe that although DPO tuning leads
to better performance on IFeval, it underperforms
on CELLO and FollowBench. Considering that
the dataset used for this method is specifically op-
timized for IFeval (i.e., using data containing the
constraints in IFeval), and that it performs unsat-
isfactorily on other benchmarks, we believe that
training an LLM with this DPO method does not
bring a stable performance increase to the LLM’s
capability of instruction-following.

A.5 Additional Experiments on Qwen2.5

To investigate the reason behind the limited perfor-
mance gains observed in Qwen2.5-7B, we further
evaluate three additional models from the Qwen2.5
family using the IFeval benchmark. We consider
three types of models: the original base models,
models tuned with SFT, and those tuned using our
method. The benchmarking results are presented
in Figure 6.

From the results, we observe the following:
1⃝ our method consistently outperforms the
SFT approach across all tested models. Notably,
SFT does not always yield performance improve-
ments, regardless of the model size. 2⃝ Within
the same model family, our method tends to de-
liver greater improvements for smaller models
than for larger ones. One possible explanation is
that larger models, with more parameters, already
possess stronger instruction-following capabilities,
leaving less room for improvement. In contrast,
our method provides a more cost-efficient way to
enhance performance, compared to scaling up the
model size.
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Figure 6: Effect of model sizes on performance.

A.6 Implementation Details

We conduct all experiments using four NVIDIA
A100 80GB GPUs. Our training leverages Deep-
Speed ZeRO Stage 2 for efficient memory manage-
ment. For optimization, we employ the AdamW

Models
IFeval CELLO FollowBench

P-Level Avg HSR

Original 0.625 0.714 0.625
Inverse 0.590 0.711 0.584

Table 4: Effect of reasoning order on instruction-
following performance. Original denotes the setting
where the model performs constraint evaluation before
giving steps to answer, while Inverse reverses the order.

Models
IFeval CELLO FollowBench

P-Level I-Level Avg CSL HSR SSR

Base Model 0.527 0.645 0.632 2.550 0.576 0.677
DPO 0.647 0.732 0.651 2.125 0.518 0.636
Ours 0.625 0.713 0.714 2.675 0.625 0.692

Table 5: Comparison with a DPO Baseline.

optimizer with a warmup of 20 steps, a weight de-
cay of 0.001, a learning rate of 5e-7, and a batch
size of 4. During training, we generate multiple
CoTs for each instruction using a sampling temper-
ature of T = 0.9. In contrast, for evaluation, we
employ greedy decoding to generate CoTs. The
maximum length for sampled CoTs is set to 200,
and any exceeding this limit will be truncated.
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Algorithm 1 CARE-STaR

Input: Language model (lm) π0
θ , training steps num_steps, batch_size b, num_cots p

Output: Language model πnum_steps
θ

1: for i = 0 to num_steps− 1 do
2: Sample p CoTs zj,1, . . . , zj,p for each input xj in the batch X in parallel
3: for j = 1 to b in parallel do
4: horiginalj ← hidden_statesπi

θ
([xj ; yj ])

5: hthoughtj,1:p ← hidden_statesπi
θ
([xj ; zj,1:p; yj ])

6: log poriginalj ← lm_head(horiginalj )

7: log pthoughtj,1:p ← lm_head(hthoughtj,1:p )

8: wj,1:p ←Mixing_Head([horiginalj ;hthoughtj,1:p ])

9: log pfinalj,1:p ← wj,1:p · log poriginalj + (1− wj,1:p) · log pthoughtj,1:p

10: Ltalkj ← − log poriginalj (yj)

11: Ltalk_cot
j,1:p ← − log pfinalj,1:p (yj)

12: rj,1:p ← max(0,Ltalkj − Ltalk_cot
j,1:p )

13: rj,1:p ← rj,1:p − rj
14: ∇πi

θ
Lthinkj,1:p ← −rj,1:p · I(rj,1:p > 0) · log p(zj,1:p|xj)

15: ∇πi
θ
Lj ← ∇πi

θ
Ltalkj +

∑p
k=1

(
∇πi

θ
Ltalk_cot
j,k +∇πi

θ
Lthinkj,k

)

16: end for
17: πi+1

θ ← πi
θ − α 1

batch_size
∑batch_size

j=1 ∇πi
θ
Lj

18: end for

Models Complex Task Description Complex Input All
Extraction Planning Meta. Writing(S) BS(S) Average Keywords QA Sum. Structure Average Average

Mistral-7B-v0.3
Base Model 0.550 0.755 0.623 0.718 0.758 0.681 0.396 0.517 0.641 0.781 0.584 0.632
SFT 0.617 0.665 0.616 0.785 0.860 0.709 0.621 0.554 0.426 0.635 0.559 0.634
Ours 0.615 0.712 0.708 0.760 0.748 0.708 0.750 0.694 0.645 0.790 0.720 0.714

Llama-3.2-3B
Base Model 0.568 0.519 0.444 0.749 0.822 0.621 0.580 0.588 0.666 0.750 0.646 0.633
SFT 0.624 0.641 0.380 0.659 0.781 0.617 0.673 0.698 0.668 0.671 0.677 0.647
Ours 0.585 0.646 0.559 0.730 0.884 0.681 0.630 0.632 0.676 0.750 0.672 0.676

Qwen2.5-7B
Base Model 0.705 0.824 0.635 0.829 0.806 0.760 0.695 0.708 0.761 0.755 0.730 0.745
SFT 0.700 0.829 0.612 0.813 0.766 0.744 0.779 0.697 0.791 0.768 0.759 0.751
Ours 0.686 0.824 0.654 0.807 0.785 0.751 0.788 0.737 0.783 0.779 0.772 0.761

Table 6: Overall performance on CELLO.
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Instruction:
%s
Task:
Please analyze the provided instruction.
Write your thought process briefly after "Here is my thought process:". In the thought process, divide
your response into two sections: "Requirement Evaluation" and "Steps to Answer".
1. Requirement Evaluation:
- Identify and list all requirements from the Instruction.
- Assign a rating score (1 to 5) to each requirement:
- The constraint with score 5 indicates that it should be strictly followed.
- The constraint with score 1 indicates that it can be loosely followed.
- Use concise bullet points without additional explanation.
2. Steps to Answer:
- Outline the minimal steps necessary to directly execute the Instruction.
- Do not include steps for analyzing, reasoning, or checking; limit steps to direct execution of the
Instruction.
- Keep steps concise, with no more than one sentence per step.
- If formatting is involved, provide examples in an abstract way (e.g., for the requirement ’separate 2
answers by ******’, you can give an example like ’[ANS1]******[ANS2]’).
Here is my thought process:

Table 7: Prompt for generating a CoT to complete constraint analysis.

/*Instruction with 2 constraints*/
Instruction:
Using words in the ’Input’ to generate a story, with no restrictions on tense. The story should contain
exactly 5 sentences.
Input:
needed, money, computer, bought, happy
Output:
After losing his job, John realized he needed money quickly. He decided to sell his old computer for parts.
To his surprise, he found a working computer at a thrift store and bought it. With the refurbished machine,
John was able to start freelancing, earning him the money he needed. Now, John feels happy and relieved,
knowing he has secured his financial future.

/*Instruction with 3 constraints*/
Instruction:
Using words in the ’Input’ to generate a story, with no restrictions on tense. The story should contain
exactly 5 sentences. Please using a formal tone.
Input:
needed, money, computer, bought, happy
Output:
The individual recognized the urgent need for money to secure his family’s future, and after much
deliberation, he decided to purchase a computer, which he believed would open up new opportunities. With
savings meticulously set aside, he visited several stores to compare models and features, ultimately making
a well-informed decision. Upon returning home with his new acquisition, a sense of accomplishment and
happiness washed over him, knowing this investment could significantly improve his prospects.

Table 8: Example of a base model to complete the "sentence counting", "word choice" and "formal tone" constraints.

21702



Instruction:
Using words in the ’Input’ to generate a story, with no restrictions on tense. The story should contain
exactly 5 sentences. Please using a formal tone.
Input:
needed, money, computer, bought, happy
Output:
<startthought>
1. Requirement Evaluation:
- Generate a story using words from the input: 5
- The story should contain exactly 5 sentences: 5
- Use a formal tone: 4
2. Steps to Answer:
- Identify the words from the input: needed, money, computer, bought, happy.
- Create a narrative that incorporates these words in a logical sequence.
- Ensure the story consists of exactly 5 sentences.
- Maintain a formal tone throughout the story.
<endthought>
John realized he needed a computer to complete his project, which was due in a few days. Despite his
tight budget, he understood the importance of having the right tools for the job. With determination, he
saved every penny he could, working extra hours at his part-time job. Finally, he had enough money to buy
the computer he had been eyeing. Overwhelmed with happiness, John felt a sense of relief and excitement
as he carried his new computer home.

Table 9: Example of the self-taught version of the base model to handle the hard and soft constraints.
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