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Abstract

With the emergence of new topics on so-
cial media as sources of rumor dissemina-
tion, addressing the distribution shifts between
source and target domains remains a crucial
task in cross-domain rumor detection. Ex-
isting feature alignment methods, which aim
to reduce the discrepancies between domains,
are often susceptible to task interference dur-
ing training. Additionally, data distribution
alignment methods, which rely on existing
data to synthesize new training samples, in-
herently introduce noise. To deal with these
challenges, a new cross-domain rumor de-
tection method, MONTROSE, is proposed.
It combines LLM-driven Monte Carlo tree
search (MCTS) data synthesis to generate high-
quality synthetic data for the target domain
and a domain-sharpness-aware minimization
(DSAM) self-refinement approach to train ru-
mor detection models with these synthetic data
effectively. Experiments demonstrate the su-
perior performance of MONTROSE in cross-
domain rumor detection. The code is available
at https://github.com/lisa633/MONTROSE.

1 Introduction

With the advent of machine learning and deep learn-
ing techniques, significant progress has been made
in rumor detection. These methods effectively mine
semantic information from both text content (Ma
et al., 2016; Shu et al., 2019; Przybyla, 2020) and
propagation structures (Monti et al., 2019; Zhou
and Zafarani, 2019; Shu et al., 2020), achieving
better rumor detection performance.

However, detecting rumors of emerging topics
remains a challenge for existing methods(Yue et al.,
2022). Traditional methods detect rumors under
∗ contributed equally to this work.
§ corresponding author
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Figure 1: An example of cross-domain rumor detection.
The source domain and the target domain exhibit a dis-
tribution shift, caused by the variation of word usage
and writing style across different topics.

in-domain conditions. Nevertheless, in the case
of detecting rumors about emerging topics, there
is a distribution shift between the emerging topics
and historical topics. As shown in Figure 1, there
are differences in word usage and writing style
between the two domains. If this distributional
discrepancy is ignored and the model trained on
the source domain is directly applied to the target
domain, their performance undergoes a significant
diminishment.

To deal with the distribution shift issue, methods
can be divided into two main categories: feature
space alignment (Wang et al., 2018; Lin et al.,
2022; Shu et al., 2022; Ran and Jia, 2023; Yue
et al., 2023) and data distribution alignment (Lu
et al., 2023; Shi et al., 2023; Chen et al., 2025;
Cui and Jia, 2025). The former methods employ
techniques, such as domain adversarial learning
(DAL) (Wang et al., 2018) and maximum mean
discrepancy (MMD) (Lin et al., 2022), to align the
feature space distributions across various topics.
However, these methods simultaneously optimize
two conflicting objectives, aligning feature space
and conducting supervised training, leading to task
interference and suboptimal performance (Wang
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et al., 2024). Data distribution alignment aims to
create training datasets that closely resemble the
target data distribution, enabling model retraining
and adaptation through techniques such as pseudo-
labeling (Lu et al., 2023) and data selection (Chen
et al., 2025). Yet, pseudo-labeling suffers from la-
bel noise, and data selection introduces input bias,
particularly problematic in complex tasks like ru-
mor detection, where contextual understanding is
critical (Zheng et al., 2024; Yan et al., 2024).

In this paper, we propose a new approach
for cross-domain rumor detection that combines
feature space alignment and data distribution
alignment, termed MONTROSE (LLM-driven
MONte Carlo Tree seaRch dOmain-sharpness-
aware minimization Self-rEfinement). MON-
TROSE is a two-stage framework that first syn-
thesizes training data with an LLM-Driven Monte
Carlo tree search (MCTS) module, and then re-
trains the model on these synthesized data via
a domain-sharpness-aware minimization (DSAM)
self-refinement method:

LLM-driven MCTS. Although LLMs excel at
generating fluent text, synthesizing rumors remains
challenging due to their complex social and psy-
chological underpinnings, which result in intri-
cate contextual and propagation dynamics (Zhao
et al., 2024). To address this, we employ MCTS
to model the branching nature of rumor dissemi-
nation. By identifying key nodes, MCTS guides
the LLM generation process, enabling rapid con-
vergence on domain-relevant propagation patterns.
This approach ensures that the synthesized data is
not only highly readable but also authentically cap-
tures the structural characteristics of rumor propa-
gation, thereby achieving the goal of synthesizing
domain-specific data.

DSAM Self-Refinement. To refine the model
using unlabeled synthetic data, MONTROSE ini-
tially assigns pseudo-labels to the data based on the
model’s high-confidence predictions. However, re-
cent research has shown that while high-confidence
samples are generally reliable, they often do not
significantly improve model training performance
because they tend to reinforce existing model bi-
ases (Chen et al., 2022). To mitigate this issue,
DSAM self-refinement perturbs the model param-
eters with the domain alignment loss. By perturb-
ing the parameter space, DSAM prevents overfit-
ting while simultaneously aligning feature space.
Meanwhile, since the perturbations are constrained
within a bounded range, this mechanism can also

effectively mitigate task interference to maintain
task-specific performance.

To summarize, our contributions are fourfold:

• We introduce a new framework termed MON-
TROSE for cross-domain rumor detection.
MONTROSE first synthesizes training sam-
ples that mimic the target domain’s data distri-
bution and then trains the model using a spe-
cialized DSAM Self-Refinement algorithm.

• We design an LLM-driven MCTS module to
synthesize training data, which recovers the
structural characteristics of the rumor propaga-
tion through Monte Carlo simulations during
the LLM-synthesis process.

• We introduce a DSAM self-refinement train-
ing algorithm with a dual mechanism that can
perturb the parameter space while aligning the
feature space simultaneously.

• Experimental results demonstrate the effec-
tiveness of the proposed MONTROSE frame-
work, validating its superiority in addressing
challenges of cross-domain rumor detection.

2 Related Work

2.1 Cross-Domain Rumor Detection

Deep learning-based rumor detection methods ef-
fectively mine semantic information from both text
content (Ma et al., 2016; Shu et al., 2019; Przy-
byla, 2020) and propagation structures (Monti et al.,
2019; Zhou and Zafarani, 2019; Shu et al., 2020),
achieving notable success in detecting rumors un-
der in-domain conditions.

Subsequently, cross-domain rumor detection
methods emerged, broadly categorized into two
approaches, feature space alignment (Wang et al.,
2018; Lin et al., 2022; Shu et al., 2022; Ran and
Jia, 2023; Yue et al., 2023) and data distribution
alignment (Lu et al., 2023; Shi et al., 2023; Chen
et al., 2025; Cui and Jia, 2025). Despite their ef-
forts, existing methods often face challenges such
as task interference during training or the introduc-
tion of noise during data synthesis, limiting their
effectiveness in cross-domain scenarios.

With the rise of LLMs and their outstanding
performance, researchers incorporate LLMs into
rumor detection (Lai et al., 2024; Ouyang et al.,
2024; Hu et al., 2024). However, existing LLM-
based methods primarily focus on data augmenta-
tion or prompt engineering, and their performance
in cross-domain rumor detection remains limited.
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2.2 Monte Carlo Tree Search
MCTS is primarily used in game theory and
decision-making, which provides a robust frame-
work for the exploration of complex search spaces
by simulating and evaluating iteratively (Browne
et al., 2012). In recent years, with the rapid de-
velopment of LLMs, methods that combine MCTS
with LLMs have emerged. These methods can max-
imize the exploration capabilities of large language
models, making exploration at different levels pos-
sible, and are applied in various areas, e.g., image
enhancement (Cotogni and Cusano, 2023), code
generation (Brandfonbrener et al., 2024), reason-
ing (Xie et al., 2024), and synthetic data generation
(Locowic et al., 2024).

Inspired by the pivotal nodes in rumor propaga-
tion, such as novel or emotionally charged content,
we leverage MCTS to identify key nodes and guide
domain-oriented data synthesis.

3 Problem Formulation

Cross-domain rumor detection can be denoted
as the unsupervised domain adaptation task in
text classification. Historic data is the source
domain DS , composed of a feature space X S ,
a label space YS , and an associated probabil-
ity distribution P (XS , Y S) such that DS =
{X s,Ys, P (XS , Y S)}. XS = {xS1 , xS2 , . . . , xSn}
denotes the sample set, where n is the number of
samples and xSi denotes the input sentence in the
text classification task. Y S = {yS1 , yS2 , . . . , ySn}
is corresponding labels of XS , where ySi is a
vector of one hot label of C dimensions, that is,
ySi ∈ {0, 1}C , C is the number of classes. Sim-
ilarly, samples of emerging topics consist of the
target domain DT = {X T ,YT , Q(XT , Y T )}. In
unsupervised scenarios, the labels of the target do-
main are not available, and Y T is unknown. DS

and DT share the same label space, but as topics
change, there exists a domain shift between them.
In the case of DA, a hypothesis h : X S → YS
is learned based on DS . If the same hypothesis h
also works for X T → YT with an acceptable error,
the hypothesis h adapts to the target domain and
source domain.

4 Methodology

4.1 Overview
The core idea of MONTROSE is to utilize LLMs to
synthesize data for new topics and design a training
algorithm to effectively use this synthetic data. As

shown in Figure 2, MONTROSE consists of three
main stages: LLM-driven MCTS data synthesis,
pseudo-labeling, and DSAM self-refinement.

In the first stage, we employ LLM-driven MCTS
to construct training data that simulates the dis-
tribution of the new domain. Since rumor data
not only includes text but also encompasses graph
structures such as propagation networks, relying
solely on LLM for data synthesis fails to capture
such propagation characteristics. Therefore, we
utilize MCTS to thoroughly explore the possibili-
ties of rumor propagation and guide the generation
process with a discriminator to ensure the synthetic
data is similar to the target domain.

In the second stage, we generate pseudo-labels
for the synthetic data. We predict labels for the
newly generated data with the model trained on
the source domain. Samples with high confi-
dence scores are selected, and their predicted labels
are used as pseudo-labels. However, since these
pseudo-labels have high confidence, it is hard to
improve training performance.

In the third stage, we conduct training on the
pseudo-labeled synthetic data. This method first
uses the gradient of a domain alignment loss to
perturb the model parameters. On one hand, the
perturbed model aligns the feature space. On the
other hand, the perturbation process reduces the
model’s confidence in the pseudo-labeled data, pre-
venting overfitting. Unlike joint loss, the pertur-
bation process allows us to control its magnitude,
avoiding interference with the training of the task
loss during feature space alignment.

4.2 LLM-Driven Monte Carlo Tree Search

To synthesize high-quality data that maintains the
propagation characteristics of rumors, a domain-
oriented data synthesis approach based on MCTS
and LLM is introduced. A revised MCTS algorithm
is used to search available nodes in rumor propaga-
tion trees. Each iteration contains four steps:

Selection: Starting from the root node repre-
senting the source tweet, we search through the
nodes in the rumor propagation tree, which repre-
sent replies to the source tweet. The Upper Confi-
dence Bound (UCB) is applied to select nodes:

UCBi = Ri + η

√
2lnNp
Ni

, (1)

where i denotes the i-th node in the tree, and Ri
refers to the similarity score to the target domain. η
is an exploration parameter that controls the trade-
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Figure 2: An overview of our proposed MONTROSE, involving LLM-driven MCTS, pseudo-labeling, and DSAM
self-refinement. In the beginning, MCTS is applied to select nodes from the rumor tree, while LLM supports add
and rewrite actions for data synthesis. Then the synthetic data are pseudo-labeled, and only easy samples with high
confidence scores are selected for retraining. The bottom right part shows the perturbation to the task loss with the
gradient of the domain alignment loss.

off between exploration and exploitation. Np rep-
resents the total number of times the parent node is
modified, while Ni is the number of modification
times of the i-th node.

Expansion: After selecting the node, there are
three actions to choose: add, delete, and rewrite,
and the probability of each action being selected
is equal. Specifically, add indicates adding a reply
to the tweet corresponding to the selected node.
Delete means removing the selected node and the
subtree rooted at the selected node. Rewrite refers
to rewriting the tweet corresponding to the selected
node. Adding replies and rewriting tweets are im-
plemented by calling LLMs with prompt learning.

Evaluation: The similarity scoreRi is computed
in the evaluation stage. After expansion, the modi-
fied rumor tree is fed to the domain discriminator
trained by samples of the source domain and target
domain. Then the softmax function is applied to
the output of the discriminator, and its value for the
dimension of the target domain is denoted as the
similarity score:

Ri(k) =
ezk∑C
j=1 e

zj
, (2)

where C is the number of domains, k represents
the target domain, and zk denotes the output of the
domain discriminator in the k-th dimension.

Backpropagation: In the backpropagation pro-

cess, the similarity score and the number of modifi-
cation times are propagated from the selected node
up to the root of the tree. If the score exceeds the
threshold before reaching the maximum number of
iterations, the MCTS process is terminated early,
and the obtained rumor tree is used as pseudo-data
for the target domain.

The example of LLM-driven MCTS is intro-
duced in Appendix A.

4.3 DSAM Self-Refinement

Owing to LLM-driven MCTS data synthesis, we ac-
quire abundant unlabeled pseudo-samples of the tar-
get domain. To utilize these samples effectively and
realize knowledge transfer from the source domain
to the target domain, the DSAM self-refinement ap-
proach is introduced, which includes two modules:
pseudo-labeling and DSAM perturbation.

Inspired by the self-training, we assign pseudo-
labels to samples from data synthesis. Stemming
from semi-supervised learning, self-training trains
a classifier fθ on the labeled data from the source
domain DS :min

θ
Lcls

(
f(θ,XS), Y S

)
, where θ de-

notes parameters of the classifier. Then the trained
classifier is used to generate pseudo labels for unla-
beled samples in the target domain:
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min
θ,ŶT

Lst
(
θ, ŶT

)
=

∑

xk,yk∈DS

Lcls (f (θ, xk) , yk)

+
∑

xi∈DT

Lcls (f (θ, xi) , ŷ (xi)) ,
(3)

where ŶT = {ŷ1T , ŷ2T , . . . , ŷnT } represents
pseudo labels predicted by classifier fθ for unla-
beled samples in target domain.

To transfer knowledge from the source domain
to the target domain, the retraining model is based
on domain adversarial learning. The basic com-
ponents consist of a task-specific model TΨ and a
domain discriminator DΦ. Specifically, the task-
specific model can be divided into two parts, a fea-
ture extraction layer gψ and a classification layer
fθ. The domain discriminator is applied to learn
the discrepancy between DS and DT .

The domain adversarial training is to optimize:

E(ψ, θ,Φ) =
1

n

n∑

i=1

Licls(ψ, θ)− λ(
1

n

n∑

i=1

Lidom(Φ, θ)),

(4)

by finding the optimal value of ψ, θ,Φ that

(ψ̂, θ̂) = argmin
ψ,θ

E(ψ, θ, Φ̂),

Φ̂ = argmax
Φ

E(ψ̂, θ̂,Φ).
(5)

Although pseudo-labeled high-confidence sam-
ples are reliable, they are prone to overfitting and
reinforcing the model’s existing biases. Inspired
by SAM (Foret et al., 2020), we introduce a per-
turbation to the model parameters with the domain
alignment loss, denoted as:

Lper(θ) ≜ max
∥ϵ∥≤ρ

Lcls(θ + ϵ), (6)

where ρ ≥ 0 is a hyperparameter to control the
range of perturbation and ϵ is obtained from the
domain alignment loss:

ϵ =
∂Ldom
∂θ

, (7)

and domain alignment loss is computed by:

Ldom =
1

B
B∑

i=1

(
C∑

c=1

Kc · (− log(D(c|xi; Φ)))

+
C∑

c=1

D(c|xi; Φ) · log(D(c|xi; Φ))),
(8)

where B represents the training batch, D(c|xi; Φ)
is the probability of the instance xi belongs to the c-
th category, and Kc denotes the average probability
distribution of the c-th category, computed as:

Kc =
1

B
B∑

i=1

D(c|xi; Φ). (9)

After perturbation, the training loss for the do-
main adversarial learning is represented as:

LDA = Lcls + Lper − λLdom. (10)

The whole training process is depicted in Algo-
rithm 1, detailed in Appendix B.

5 Experiments

In this section, the dataset, baselines, and imple-
mentation details are introduced briefly at first. Fol-
lowing that, experimental results are illustrated.

5.1 Datasets
Our proposed MONTROSE is evaluated on
PHEME (Buntain and Golbeck, 2017), Twit-
ter15(Ma et al., 2017) and Twitter16 (Ma et al.,
2017). For detailed information about the datasets,
please refer to the Appendix C.

5.2 Baselines and Implementation Details
We conduct a comprehensive evaluation of our pro-
posed MONTROSE against various methods.

First, given that MONTROSE is proposed for
rumor detection, we compare its performance with
several well-designed rumor detection models, in-
cluding UDGCN (Bian et al., 2020), BiGCN (Bian
et al., 2020), and MetaAdapt (Yue et al., 2023).
Second, since MONTROSE leverages LLMs to
generate readable and contextually synthetic sam-
ples, we also compare it with other recent rumor
detection methods that utilize LLMs, such as GPT-
3.5 (OpenAI, 2022), GPT-4 (Achiam et al., 2023),
LLaMA3-7B (Touvron et al., 2023), and ARG (Hu
et al., 2024). Third, as rumor detection of emerg-
ing topics can be regarded as cross-domain rumor
detection, we compare our approach with general
domain adaptation methods that share similarities
with this scenario, including DANN (Ganin et al.,
2016), MME (Saito et al., 2019), BiAT (Jiang et al.,
2020), SFT (Chen et al., 2021), WIND (Chen et al.,
2021), and DaMSTF (Lu et al., 2023). The details
of baseline models can be found in Appendix D.
Implementation details (e.g., learning rate, batch
size, etc.) are introduced in Appendix E.

5.3 Results
Rumor Detection Performance. To validate the
effectiveness of MONTROSE, we compare MON-
TROSE with existing rumor detection approaches.
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Table 1: Results compared with rumor detection methods and LLM-based prompt engineering approaches.

Method PHEME Twitter15 Twitter16Cha. Fer. Ott. Syd.
UDGCN 0.641 0.364 0.550 0.506 0.824 0.839
BiGCN 0.672 0.451 0.748 0.657 0.812 0.822

MetaAdapt 0.696 0.589 0.407 0.744 0.357 0.430
Llama3 0.304 0.322 0.443 0.461 0.661 0.673
GPT3.5 0.291 0.364 0.432 0.501 0.630 0.706
GPT4 0.351 0.400 0.623 0.583 0.744 0.785
ARG 0.688 0.590 0.751 0.733 0.835 0.830

MONTROSE 0.712 0.594 0.818 0.756 0.848 0.878

Since MONTROSE incorporates modules based
on LLMs, we also compared MONTROSE with
LLM-based prompt engineering approaches. Ex-
perimental results in Table 1 show that MON-
TROSE achieved the best performance across all
topics, thereby validating its effectiveness in cross-
domain rumor detection. Although methods such
as UDGCN, BiGCN, and MetaAdapt show good
results in traditional rumor detection tasks, their
performances deteriorate when directly applied
to emerging topics. This indicates that existing
methods are not well-suited to handle the unique
challenges posed by cross-domain rumor detection.
Meanwhile, methods based on LLM prompt en-
gineering generally underperform those based on
fine-tuning. This suggests that the performance
improvement of our proposed method does not
stem from the use of LLMs. In other words, our
method’s effectiveness can be attributed to MCTS-
based domain-oriented data synthesis and DSAM
self-refinement.

Table 2: F1 score of cross-domain rumor detection re-
sults compared with domain adaptation baselines.

Target SFT MME BiAT Wind DANN DaMSTF MONTROSE

Cha. 0.586 0.601 0.547 0.552 0.658 0.600 0.712
Fer. 0.200 0.081 0.256 0.291 0.542 0.542 0.594
Ott. 0.599 0.612 0.614 0.633 0.793 0.694 0.811
Syd. 0.424 0.677 0.661 0.628 0.698 0.685 0.756

Domain Adaptation Performance. In cross-
domain rumor detection, the data distribution of
the target domain differs significantly from that of
the source domain. This setting is similar to the do-
main adaptation task. Therefore, we also compare
our proposed method with the domain adaptation
approaches, and the results are presented in Table
2. It can be found that MONTROSE outperforms
all the domain adaptation methods across differ-
ent target domains. For instance, the F1 score of

MONTROSE is higher than that of the best baseline
DANN by 5.8% in Syd. This substantial improve-
ment is primarily attributed to two core components
of our method: domain-oriented data synthesis and
domain-smoothness self-refinement. These com-
ponents enhance the model’s ability to adapt to
new domains by enriching the training data and
optimizing the learning process.

5.4 Ablation Study
To evaluate the impact of each component of MON-
TROSE, we conduct an ablation study. In detail,
we separately remove the LLM-driven MCTS data
synthesis component (-w/o M), DSAM perturba-
tion (-w/o P), and both components simultaneously
(-w/o M, P) to monitor changes in performance.
The results are detailed in Table 3.

As shown in Table 3, removing either the LLM-
driven MCTS data synthesis component or DSAM
perturbation results in a degradation of the model’s
performance. When both components are re-
moved, MONTROSE experiences a substantial per-
formance drop, especially in the Fer. topic, where
the F1 score decreases by 13.7%. These results
demonstrate the indispensable roles of LLM-driven
MCTS data synthesis and DSAM perturbation in
improving the model’s performance.

Table 3: F1 score of ablation study on cross-domain
rumor detection.

Method
PHEME Twitter15 Twitter16

Cha. Fer. Ott. Syd.
MONTROSE 0.712 0.594 0.811 0.756 0.848 0.878

- w/o M 0.676 0.561 0.780 0.728 0.844 0.863
- w/o P 0.678 0.503 0.791 0.727 0.812 0.839

- w/o M, P 0.644 0.457 0.774 0.678 0.807 0.825

5.5 Pareto Analysis
To demonstrate that MONTROSE can alleviate task
interference in aligning features, we conducted a

21480



Pareto analysis experiment, comparing the MON-
TROSE method with the DANN approach, as de-
picted in Figure 3. The horizontal and vertical axes
of the graph represent the task classification error
rate and domain classification error rate, respec-
tively. Both MONTROSE and DANN are based
on the domain adversarial framework. Within this
framework, the goal is to find Pareto optimal solu-
tions whose task classification error rate is as low
as possible while domain classification error rate is
as high as possible, ideally concentrating results in
the ’Golden Area’ of the graph. It can be seen from
Figure 3, the outcomes for MONTROSE are pre-
dominantly located within the ’Golden Area’, but
the outcomes of DANN are primarily found in the
’Bronze Area’. This comparison underscores the
superior performance of MONTROSE in improv-
ing the accuracy of task classification and deceiving
the domain discriminator.
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MONTROSE
DANN

task error rate

do
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n 
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ro

r r
at

e Silver Area

Silver Area

Figure 3: Patero analysis between MONTROSE and
DANN. The golden area means a high domain error rate
and low task error rate, while the bronze area denotes
a low domain error rate and high task error rate. The
other area is the silver area.

5.6 Robustness Analysis
Following (Cha et al., 2021), we conduct a local
smoothness comparison between MONTROSE and
DANN to verify that our proposed MONTROSE
can improve robustness. For a given model pa-
rameter set θ, we calculate the expected alter-
ations in loss values when transitioning from θ
to parameters θ

′
situated on a spherical bound-

ary centered at θ with a radius of ϵ, i.e., F(θ) =
E∥θ′∥=∥θ∥+ϵ [E (θ′)− E(θ)]. In practice, the value
of F(θ) is estimated using a Monte Carlo sampling
approach, with a sample size of 100.

In Figure 4, we compare local smoothness via
loss gap F(θ) between MONTROSE and DANN,
by varying radius ϵ. It can be found that with the

increase of ϵ, the curve representing the F(θ) of
MONTROSE exhibits a more gradual growth trend
compared to DANN. This indicates that MON-
TROSE can find flatter minima, suggesting a po-
tentially more robust performance in the face of
increased perturbation.
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Figure 4: Local smoothness comparison between MON-
TROSE and DANN.

5.7 DSAM Perturbation Effect
In this section, we conduct a visualization experi-
ment to analyze the effect of DSAM perturbation.
This perturbation is based on the domain align-
ment loss, which is used to perturb the task loss to
ensure that the loss landscapes for both task loss
and domain loss become smoother. Current re-
search finds that the smoother the loss landscape,
the more robust the model (Foret et al., 2020). As
presented in Figure 5, after introducing DSAM
perturbation, both the task loss and domain loss
landscapes become smoother. This visual evidence
supports our hypothesis that DSAM perturbation ef-
fectively smoothens the loss landscapes. By reduc-
ing the sharpness of the loss surfaces, the model is
less likely to get stuck in suboptimal local minima.
Consequently, this leads to improved performance
on both the classification task and domain discrim-
ination objectives, validating the effectiveness of
the DSAM perturbation module in enhancing the
model’s overall generalization.

5.8 T-SNE Visualization
In the cross-domain rumor detection task, there is
an inevitable distribution shift between the source
domain and the target domain. It is expected that
the trained model can correctly distinguish whether
samples belong to the source or target domain. To
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Figure 5: Comparison of the smoothness of task loss and domain loss landscape before and after DSAM perturbation.
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Figure 6: T-SNE visualization of MONTROSE on Pheme, Twitter15, and Twitter16.

analyze this, we performed t-SNE visualizations
of the feature representations of the trained MON-
TROSE when transferred among the PHEME, Twit-
ter15, and Twitter16 datasets. It can be seen from
Figure 6 that our proposed MONTROSE can bet-
ter differentiate samples as to whether they come
from the source domain or the target domain. At
the same time, it can also accurately distinguish
between positive and negative examples within the
domain, facilitating better classification tasks.

6 Conclusion

In this paper, we introduced MONTROSE to ad-
dress the challenges of cross-domain rumor de-
tection. LLM-driven MCTS data synthesis is in-
tegrated to generate high-quality synthetic data
tailored to the target domain’s characteristics. A
DSAM self-refinement method is further utilized
to perturb model parameters with domain clas-
sification gradients, aligning the feature space
and enhancing the training contribution of high-
confidence samples. Experimental results demon-
strate that MONTROSE outperforms existing meth-
ods in detecting rumors in emerging topics, making
it a robust solution for real-time and cross-domain
rumor detection.

Limitations

While MONTROSE presents an effective approach
to cross-domain rumor detection, it also has some
limitations. First, we assume that the target do-
main has some underlying similarity to the source
domain, which may not always be the case. In
scenarios where the domain shift is too drastic, the
synthetic data generated by LLM-driven MCTS
may not be sufficient to bridge the gap, leading to
suboptimal detection performance. Second, MCTS,
while powerful, can be resource-intensive and time-
consuming, particularly when dealing with large-
scale datasets or complex propagation structures.
This could hinder the scalability of MONTROSE
in real-time or large-scale applications.
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Table 4: Mathematic Symbol List

DS source domain
DT target domain
X S/X T feature space
YS/YT label space
P (X,Y ) probability distribution

xi input sentence
yi vector of one-hot label
TΨ task-specific model
DΦ domain discriminator
gψ feature extraction layer
fθ classification layer
Lcls rumor detection loss
Ldom domain discrimination loss
Lper perturbation loss in DSAM

ϵ
perturbation obtained form domain
alignment

ρ
hyperparameter to control the range
of perturbation

λ
hyperparameter to control the propor-
tion of domain discrimination loss

A Example of Domian-Oriented Data
Synthesis

For a better understanding of the data synthesis
process, we present an example here. The samples
used for generation are from the source domain of
PHEME and Twitter16, and the target domain is
Twitter15. For one sample in the source domain,
we first construct a rumor propagation tree based
on the retweeting relationships between tweets. For
example, the sample has one source tweet, which
is retweeted three times. In this case, node 0 repre-
sents the original tweet as the root node, and nodes
1,2,3, which represent the retweets, are the child
nodes of node 0. Based on this tree structure, we
start the MCTS from the root node.

At first, we use the trained domain discrimina-
tor to classify the current rumor propagation tree
and take the value of the softmax function in the
target domain dimension as the initial similarity
score. In the selection phase, we traverse the child
nodes of the root node and select the child node
with the highest UCB score computed by Equation
1. Since it is the first iteration, the UCB values of
nodes 1, 2, and 3 are all positive infinity. There-
fore, following the principle of depth-first search,
we first select node 1. In the expansion phase,
we randomly choose an action from: add, delete,

and rewrite. For add action, we utilize the tweet
represented by node 1 as [prompt sentence] and
randomly select one tweet from the target domain
as [target sentence]. We utilize LLM to synthesize
a retweet for the selected node with the prompt:

Context: You are a Twitter user. You can
generate a Twitter-form reply to make it
look like replies in the target domain.
Prompt: Here is an example in the target
domain: [target sentence]. The given Twit-
ter is: [prompt sentence]. Please generate a
target-domain-form reply to the given Twit-
ter.

For the delete action, we remove the selected
node directly. It is worth noting that if the node
to be deleted has descendant nodes, we delete the
node and all its descendant nodes. As for the mod-
ify action, [prompt sentence] and [target sentence]
are the same as the add action. LLM is utilized to
rephrase the tweet represented by the selected node
with the prompt:

Context: You are a Twitter user. You can
rephrase a Twitter-form reply to make it like
replies in the target domain.
Prompt: Here is an example in the target
domain: [target sentence]. The given Twit-
ter is:[prompt sentence]. Please rephrase
the given Twitter to make it a reply in the
target domain.

Assuming that we choose add, we add node 4
with the synthetic tweet as the child node for se-
lected node 1. In the evaluation phase, we use the
trained domain discriminator and the updated tree
from the expansion step to calculate the similarity
score Ri, which is the maximum value of the soft-
max function in the target domain dimension. If the
similarity score is higher than the initial similarity
score, we accept this modification, increment the
modification counts of node 1 and its parent node
by 1, respectively, and update the similarity score
of node 1. Otherwise, we reject this modification
and proceed directly to the next iteration. We repeat
the above steps in a loop until the similarity score
exceeds the threshold or the number of iterations
reaches the preset maximum value.
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B Algorithm of MONTROSE

The detailed pseudo-code of MONTROSE is
shown in Algorithm 1.

C Dataset

The PHEME dataset (Buntain and Golbeck, 2017)
is a collection of Twitter conversation threads about
rumors. It contains 330 labeled source tweets
across five topics: Charlie Hebdo (Cha.), Ferguson
(Fer.), Germanwings Crash (Ger.), Ottawa Shoot-
ing (Ott.), and Sydney Siege (Syd.), with each
source tweet having a tree of replies and further
interactions, resulting in a total of 4,512 additional
descendant tweets. PHEME is annotated by jour-
nalists to label the truthfulness of the rumors as
true or false. The Twitter15 and Twitter16 datasets
(Ma et al., 2017) are collections of microblog posts
and their propagation structures used for rumor
detection research, both annotated with labels for
non-rumors, false rumors, true rumors, and unveri-
fied rumors. To align with the PHEME, we label
non-rumors in the Twitter15 and Twitter16 datasets
as false, and the other three categories (false ru-
mors, true rumors, and unverified rumors) as true.

D Baselines

D.1 Rumor Detection Baselines

• UDGCN (Bian et al., 2020): UDGCN is a
graph-based model for rumor detection that
uses an undirected graph structure to capture
the relationships among posts in a rumor prop-
agation tree, aggregating information from
neighboring nodes to learn high-level repre-
sentations for identifying rumors.

• BiGCN (Bian et al., 2020): Compared with
UDGCN, BiGCN can capture both the top-
down propagation patterns and bottom-up dis-
persion structures of rumors by integrating
two GCNs to learn comprehensive high-level
representations for rumor identification.

• MetaAdapt (Yue et al., 2023): MetaAdapt is
a meta-learning-based approach for domain
adaptive few-shot misinformation detection,
which leverages limited target examples to
guide the transfer of knowledge from source
to target domains by adaptively learning from
source tasks and optimizing model perfor-
mance in the target domain.

Algorithm 1 MONTROSE

Require: labeled source datasetDS , unlabeled tar-
get dataset DT , pre-trained LLM

1: Pretrain θ on DS

2: DT
pse ←MCTSGENERATION(DS ,DT ,θ)

3: DT
uni = DT ∪DT

pse

4: while the termination criteria is not met do
5: Compute pseudo label ŶT on DT

uni

6: H = −ŶT ∗ log(ŶT )
7: Sort the samples whose H is higher than the

threshold to construct DT
tra

8: DOMAINPERTURATION(DS ,DT
tra,ψ, θ,Φ)

9: function MCTSGENERATION(DS ,DT ,θ)
10: Initialize tree T for DS

k

11: Set i← 0,j ← 0
12: while j < M do
13: Select node ni from T with the highest

UCBi
14: T ′ ← expand node ni by selecting ac-

tion randomly from the action list [add, delete,
rewrite] powered by LLM

15: Compute similarity score Ri with θ
16: if Ri > threshold
17: return T ′

18: else if
19: if Ri > Ri−1

20: Ni+ = 1
21: Np+ = 1
22: end if
23: end if
24: end function
25: function PERTURATION(DS ,DT

tra,ψ, θ,Φ)
26: for training batch B in DS ∪DT

tra do
27: for t = 1→ Tdom do
28: Φ = Φ− η1∇ΦLDA(ψ, θ,Φ,B)
29: end for
30: for t = 1→ Tper do
31: θ = θ +∇θLdom(θ,B)
32: end for
33: for t = 1→ Tcls do
34: ψ = ψ + η2∇ψLDA(ψ, θ,Φ,B)
35: end for
36: end function

21486



D.2 LLM-based Baselines

We selected three representative LLMs as base-
lines for rumor detection: GPT-3.5 (OpenAI,
2022) (gpt-3.5-turbo), GPT-4 (Achiam et al., 2023)
(gpt-4-1106-preview), and LLaMA-3-7B (Tou-
vron et al., 2023) (Llama-3-8B-Instruct). For
GPT-3.5 and GPT-4, we utilized their APIs from
OpenAI1. For LLaMA-3-8B, we used weights
from ModelScope2 . ARG (Hu et al., 2024) is pro-
posed to leverage the multi-perspective rationales
generated by LLMs to enhance the performance
of small language models by selectively acquiring
useful insights and improving their ability to make
accurate judgments.

D.3 Domain Adaptation Baselines

• SFT (Chen et al., 2021): SFT refers to super-
vised fine-tuning, a training approach where a
pre-trained model is further adjusted on a spe-
cific target domain using labeled data from
that domain, aiming to improve its perfor-
mance on the target task.

• MME (Saito et al., 2019): MME is an adver-
sarial learning approach for semi-supervised
domain adaptation, which optimizes an adap-
tive few-shot model by alternately maximiz-
ing the conditional entropy of unlabeled target
data concerning the classifier and minimizing
it for the feature encoder, thereby learning
discriminative and domain-invariant features.

• BiAT (Jiang et al., 2020): BiAT generates
adversarial examples bidirectionally between
source and target domains using gradients to
guide the perturbations, thereby filling the do-
main gap and improving model performance.

• WIND (Chen et al., 2021): WIND is a model-
agnostic instance weighting algorithm for do-
main adaptation, which automatically learns
optimal instance weights through a bi-level
optimization framework inspired by meta-
learning, thereby improving model general-
ization on target domains.

• DANN (Ganin et al., 2016): DANN achieves
domain adaptation by learning domain-
invariant features through an adversarial train-

1https://openai.com/
2https://modelscope.cn/models/llm-research/meta-llama-
3.8b-insturct

ing process that aligns feature distributions
across different domains.

• DaMSTF (Lu et al., 2023): As a self-training
framework for domain adaptation, DaMSTF
integrates domain adversarial learning and
meta-learning to reduce label noise, preserve
hard examples, and improve performance.

E Implementation Details

MONTROSE employs BERT+GCN as the base ru-
mor detection architecture, which is very common
in rumor detection methods. For the LLM com-
ponent, we utilize Qwen-Turbo by calling the API
provided by Alibaba. We implement MONTROSE
and other baselines applying PyTorch with CUDA
10.0 on Ubuntu 18.04.5 LTS servers with NVIDIA
A100 GPU. For optimization, Adam optimizers are
utilized across all datasets. We trained the model
with a batch size of 32 and initialized the learning
rate to 5e−5. ρ in Equation (6) is set to 5e−6 and
the learning rate for DSAM perturbation is 5e− 6.

We constructed a cross-domain scenario based
on existing rumor detection datasets. Specifically,
we select the data of one topic as the target do-
main, while the data of other topics are used as
the source domain. As for evaluation metrics, we
utilize F1 score for the classification of the ’ru-
mor’ category. The experiments on PHEME are
conducted on "Cha.", "Fer.", "Ott.", and "Syd."3

3The labeled data in the "Ger." topic is too scarce to obtain
reliable results
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