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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities across various
tasks. However, these models could offer bi-
ased, hallucinated, or non-factual responses
camouflaged by their fluency and realistic ap-
pearance. Uncertainty estimation is the key
method to address this challenge. While re-
search efforts in uncertainty estimation are
ramping up, there is a lack of comprehensive
and dedicated surveys on LLM uncertainty es-
timation. This survey presents four major av-
enues of LLM uncertainty estimation. Further-
more, we perform extensive experimental eval-
uations across multiple methods and datasets.
At last, we provide critical and promising fu-
ture directions for LLM uncertainty estimation.

1 Introduction

Large Language Models (LLMs) have emerged as
state-of-the-art solutions for a wide range of prob-
lems, mainly due to their unparalleled ability to
generate coherent and contextually appropriate re-
sponses to diverse user prompts (Ouyang et al.,
2022; Zhao et al., 2024). However, with the in-
creasing adoption of LLMs, concerns have grown
regarding their tendency to produce biased, halluci-
nated, non-factual, and misaligned outputs (Zhang
et al., 2023b; Huang et al., 2024b). These issues
are further exacerbated by the fact that such flawed
responses often appear highly fluent and convinc-
ingly realistic, making them difficult to detect. A
promising approach to addressing the challenge of
misleading yet plausible responses is uncertainty
estimation, which assigns an uncertainty or confi-
dence score to the model’s output. Figure 1 pro-
vides an overview of this process. First, the LLM
generates an initial response based on the input.
Next, a confidence score is computed for this re-
sponse. The score is then evaluated against a pre-
defined threshold to determine the final output. If

Input

I have a headache.
Can I take some

Possible Final Output

Yes, you can take
Tylenol for your

Tylenol? headache.
LLM |¢| }{ Confidence ' > ‘Threshold
————— - Score
{__ InitiallOutput || <|Threshold
: Yes, you can take : I do not know. It is
| Tylenol for your Uncertainty | bgst to consult
\ headache. Estimation with a doctor.

Figure 1: Illustration of uncertainty estimation.

the confidence score meets or exceeds the thresh-
old, the initial response is accepted; otherwise, the
model outputs "I do not know," thereby reducing
the risk of providing incorrect but convincingly
realistic information to users.

There is an urgent need for a comprehensive
survey on LLM uncertainty estimation. Below, we
highlight three of them: (i) Although uncertainty es-
timation has been extensively studied in traditional
deep neural networks (DNNs)—with Bayesian and
ensemble methods being notable examples (Gaw-
likowski et al., 2023))—these techniques are not
easily transferable to LLMs, due to the large num-
ber of parameters in LLMs. (ii) LLMs significantly
transform society, creating a strong demand for a
thorough study of uncertainty estimation tailored
to LLMs. While numerous uncertainty estimation
methods exist, recent benchmark studies (Fadeeva
et al., 2023; Vashurin et al., 2025) have focused
on their empirical evaluation rather than in-depth
methodological discussions. Consequently, a sur-
vey of recent advances in LLM uncertainty estima-
tion that synthesizes recent progress is crucial, of-
fering a solid foundation for future development in
the field. (iii) Besides surveys focusing on natural
language processing (Fomicheva et al., 2020; Baan
et al., 2023), there are three existing surveys con-
centrating on LLM uncertainty estimation. How-
ever, each has notable limitations. Specifically,
Huang et al. (2024a) dedicates a substantial portion
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of its content to traditional DNN uncertainty esti-
mation rather than focusing on LLMs. Geng et al.
(2024) shifts its attention to uncertainty calibration
and the applications of LLM uncertainty estima-
tion, rather than providing a deep exploration of the
core techniques. Similarly, Shorinwa et al. (2024)
devotes much of its content to benchmarks and ap-
plications while lacking a complete view of the
uncertainty estimation methods on LLMs.

This work focuses on studying the uncertainty
estimation methods within the context of LLMs,
introducing a new taxonomy from the perspective
of LLMs. We center our scope around techniques
applicable during the inference stage. We focus
on the uncertainty estimation methods, exclud-
ing confidence calibration methods (Zhou et al.,
2023; Detommaso et al., 2024) from our scope.
Besides, we emphasize the methods that do not re-
quire additional data (Ren et al., 2023; Kumar et al.,
2023; Tonolini et al., 2024) or model modifications
(Huang et al., 2023a; Liu et al., 2024), ensuring
the broad applicability of this survey. Furthermore,
this survey conducts a thorough evaluation of repre-
sentative uncertainty estimation approaches across
various datasets and domains. Built on the insights
from our evaluations, we postulate two interesting
future directions for LLM uncertainty estimation.

2 Uncertainty Sources in LLM

There are two primary sources of uncertainty:
aleatoric and epistemic uncertainties (Kendall and
Gal, 2017; Hiillermeier and Waegeman, 2021). In
the context of LLMs (Gao et al., 2024; Ahdritz
et al., 2024; Hou et al., 2024), these sources mani-
fest in the following ways:

* Aleatoric uncertainty refers to the uncer-
tainty inherent in the data. For LLMs, this
arises from ambiguous or incomplete infor-
mation and inherent properties of natural lan-
guage itself. Examples include vague or con-
textually dependent prompts, as well as lin-
guistic phenomena where multiple valid inter-
pretations or responses naturally coexist.

» Epistemic uncertainty reflects the model’s
lack of knowledge or understanding. In LLMs,
this occurs when the model encounters unfa-
miliar concepts or data that are underrepre-
sented in its training set. This type of uncer-
tainty can potentially be reduced by improving
the training datasets and models.

3 Uncertainty Estimation in LLMs

3.1 Problem Definition and Overview

Token generation in LLMs. LLMs output re-
sponses in an auto-regressive manner, predict-
ing the probability distribution of the next token
given the prompt and the previously generated
tokens. We denote the model as f, the prompt
as x, and the generated response (or the answer)
as 7, which consists of N tokens, denoted as
{z1,22,23,-+ ,2n}. The tokens can be either
words, subwords, or characters from a predefined
vocabulary Z. At each step of token generation,
the model computes the conditional probability dis-
tribution over the vocabulary for the next token,
based on the prompt x and all previously gener-
ated tokens r; = {21, 22, , zj—1}. The prob-
ability distribution for the ¢-th token is given by
p; = Softmax(f(x,r<;)). Here, p; is a vector of
length | Z|, with each entry representing the proba-
bility of a specific token in Z being chosen as the
next token. It allows strategies such as sampling
or beam search to choose from these token can-
didates according to their probabilities. Such an
auto-regressive process ends when # of generated
tokens reaches a preset number or LLM generates
the end-of-sequence (EOS) token.
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Figure 2: Illustration of uncertainty versus confidence.

It is important to note that uncertainty is the in-
nate nature of LLMs, regardless of whether we
estimate it. Now, we provide an intuitive under-
standing of uncertainty and how to estimate it.

How to estimate uncertainty and confidence?
Following the conceptualization by Lin et al.
(2024), we illustrate the process as shown in Fig-
ure 2. For each input &, an LLM model has an
underlying response distribution for it (). For
ease of illustration, we assume the distribution is
a normal distribution N (u, 0?). Uncertainty esti-
mation is to estimate the underlying variance o2.
For example, the sample variance of M different

responses 1, - - - , Tps (@) can be an estimator for
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Figure 3: Taxonomy of uncertainty estimation methods on LLMs.

the variance, which indicates the variations of re-
sponses (U in Figure 2).

There are generally two types of confidence, i.e.,
overall confidence C' and the confidence C; associ-
ated with each response candidate r;. The overall
confidence C' is complementary to U, i.e., the pre-
cision 1/0? of the distribution is a confidence C
to the input. The associated confidence is related
to x and the tokens in a specific response r;. To
provide the final response to answer the input x
given sampled responses, some literature resort to
majority voting to select the most-voted response
. (@) (Wang et al., 2023), while others choose
to generate one extra response 7pr41 with low-
temperature settings (@) (Farquhar et al., 2024).

Survey papers overview. Figure 3 categorizes all
the uncertainty estimation papers for LLM into four
classes: verbalizing methods, latent information
methods, consistency-based methods, and seman-
tic clustering methods. We review each of them
through Sections 3.2 - 3.5.

3.2 Verbalizing Methods

Engineered Prompt Output

Input ‘Where is the Eiffel b Itisin
9 i LLM
Where is the | Transform Wowiart Pfovule ‘tl];le ! ! Paris. My
Eiffel Tower? | @ answet 2 ong Wi [2) confidence
your confidence to i50.9
that answer. —

Figure 4: Illustration on verbalizing methods.

Figure 4 demonstrates the main workflow of ver-

balizing methods. Firstly, the input is transformed
into an engineered prompt that explicitly asks the
model to provide both an answer and its confi-
dence level (@). Secondly, the LLM processes
this prompt and generates an output that includes
the answer and a verbalized confidence score (@),
representing its self-assessed certainty about the
correctness of its response.

Lin et al. (2022a) pioneers this cohort of ef-
forts. As the capabilities of LLMs continue to
develop, they can provide reasonable confidence
under proper guidance, even without fine-tuning.
Subsequently, Tian et al. (2023) proposes three ver-
balizing variants: (i) Generate multiple response
candidates with confidence scores and select the
highest-rated one as the final response, (ii) de-
rive the response and confidence through two
rounds of prompt-and-answer interactions, and (iii)
use words instead of numerical values to indicate
the confidence. Recently, Harsha Tanneru et al.
(2024) introduces two methods inspired by Chain-
of-Thought (CoT) prompting. The first method
requests the LLM to assign an importance score
to each word in the input, while the second one
prompts the LLM to provide confidence for each
reasoning step in the response. Finally, LLM will
offer a final confidence score for the overall re-
sponse. Beyond that, Xiong et al. (2024) presents a
systematic framework for verbalizing methods with
three parts: prompting, sampling, and aggregation.
It employs specific confidence-eliciting prompts
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and generates diverse response samples containing
confidence scores. After that, the final confidence
score is derived through inter-sample agreement or
response ranking information.

While verbalizing methods offer intuitive and
straightforward uncertainty estimation, they face
significant limitations. Kadavath et al. (2022)
shows that LLMs tend to be over-confident in their
answers as the reinforcement learning from human
feedback (RLHF) nature pushes LLMs to do so.

3.3 Latent Information Methods

Input White-box
Where is the LLM
Eiffel Tower?

Output  copfidence

. . [Calculation [ Confidence
in Paris
N o 2) Score

- -7 1 ~

Itis

——— e e M s

< &

Figure 5: Illustration on latent information methods.

Figure 5 illustrates the concept of latent infor-
mation methods. First of all, the LLM is prompted
to provide an output to the input (). Of note, la-
tent information methods require a white-box LLM,
which offers latent information in the output, such
as the full probability distribution over each gen-
erated token. Subsequently, this method leverages
the generated information to estimate the uncer-
tainty/confidence score via specific metrics or mea-
sures (@). We refer the readers to Section A.2 for
the formula of different latent information methods.

Jiang et al. (2021) directly uses the predicted
probability of the response tokens to measure the
confidence score. Manakul et al. (2023) proposes
to use the negative log-likelihood of the response
tokens, either average or maximum across tokens,
to serve as an uncertainty measure. The averaged
negative log-likelihood across tokens is also known
as perplexity (Ren et al., 2023). In contrast, Kada-
vath et al. (2022) proposes a method that prompts
the model to evaluate its answers by answering true
or false, using the latent probability associated with
“True” as the confidence score.

The analysis of token probabilities can be ex-
tended beyond a single response for more robust
uncertainty estimation. Portillo Wightman et al.
(2023) proposes to average the predicted probabil-
ities across multiple responses. Ling et al. (2024)

picks the key token from the responses and aggre-
gates them into a distribution, and the uncertainty is
from the entropy of the distribution. Kadavath et al.
(2022) considers all the tokens in the responses,
calculates the probability for each response us-
ing token probabilities, and measures uncertainty
through the entropy of the response distribution,
called predictive entropy. However, varying re-
sponse lengths can introduce undesirable noise to
the estimation. To address this limitation, Malinin
and Gales (2021) proposes the length-normalized
entropy, incorporating the response length based
on predictive entropy. Furthermore, Bakman et al.
(2024) proposes to replace the length normalization
by assigning a weight to each token with a BERT
model to consider both the sequence length and the
semantic contribution of tokens.

While the methods above only require access to
the probability value of the response tokens, the fol-
lowing papers would require access to the complete
probability distributions: Manakul et al. (2023)
computes the entropy of the probability distribu-
tion for each generated token, using either the mean
or maximum entropy as the uncertainty. Zhang
et al. (2023a) proposes an uncertainty metric that
combines the sum of negative log probabilities and
entropy, while also considering token importance,
preceding context, and token properties such as en-
tity type and token frequency. For multiple-choice
questions, Jiang et al. (2023) presents a specialized
methodology. It computes probability distributions
over potential options for each response sample and
aggregates these distributions to form an ensemble
probability distribution for uncertainty estimation.
Ahdritz et al. (2024) introduces a heuristic two-
stage method. Initially, the LLM is prompted to
generate multiple next-token candidates. Subse-
quently, through a "repeated prompt" mechanism,
the model produces the next token. The final uncer-
tainty score is then computed from the probability
distribution of these next tokens.

Beyond the methods using the probability distri-
butions of tokens in the response, some researchers
utilize the hidden states of LLMs. Chen et al.
(2024a) proposes to use the embeddings in the
middle layer of LLMs to construct a covariance
matrix for responses, which captures the correla-
tion relationships among them. By manipulating
the eigenvalues of the covariance matrix, the degree
of divergence among responses can be estimated
and considered an uncertainty measure. Differ-
ent from this approach, Sriramanan et al. (2024)
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constructs a covariance matrix within a single re-
sponse, where each row corresponds to a token in
the response. The log-determinant of this covari-
ance matrix is then calculated as an uncertainty
metric. Additionally, it proposes another method
based on the internal components of the attention
mechanism. Specifically, it calculates the sum of
the log-determinants of each self-attention head’s
kernel similarity map, which serves as an alterna-
tive measure of uncertainty.

3.4 Consistency-based Methods

Input Output
: Ve . . i
Where is the Itis in Paris —
Eiffel Tower? (1) tisn Parls ©| Ssimilarity
%) Scores
o —————— ~ Outputs %
I{ Paraphirased I'| It’s located Z o
i Input | i) B ~ Confidence
| Where can I LLM| ] : £ Calcufation
LEiffel Tower? | : g‘ Confidence
/’ It is in Rome |— Score

\___RepeatM times

Figure 6: Illustration of consistency-based methods.

Figure 6 illustrates the workflow of consistency-
based methods. First, LLM gives an output to
the original input (€)). Second, the input is para-
phrased to maintain the same meaning as the origi-
nal one but has different contents, where LLLM is
prompted to answer this changed input. Such pro-
cess is repeated M times to generate various sam-
pled outputs (@). Third, the similarities between
the original output and each sampled output are
computed (@). Finally, the confidence score is cal-
culated based on derived similarities (@)). We refer
the readers to Section A.3 for detailed mathemati-
cal definitions of this consistency-based method.

The fundamental principle of consistency-based
methods is that response consistency typically cor-
relates with confidence levels, a.k.a. high response
variability suggests higher uncertainty, while con-
sistent responses indicate greater confidence.

Cole et al. (2023) introduces sampling diversity
and sampling repetition. Sampling diversity quanti-
fies the ratio of unique answers to the total number
of samples, while sampling repetition measures the
proportion of samples that align with the most fre-
quent answer. Extending this framework, Lyu et al.
(2024) enhances the sampling repetition metric by
incorporating the most frequent and second-most
frequent responses in its analysis. Hou et al. (2024)
presents a more nuanced approach by introducing
clarification-based uncertainty estimation. It first

generates multiple clarifications for the input and
then produces responses based on these clarified
inputs. The estimated uncertainty combines two
parts: one from answer frequency distribution and
the other from input clarification variance.

While the methods primarily focus on analyzing
answer agreement patterns to estimate uncertainty,
more methods emphasize evaluating the similar-
ities among responses (@). For domain-specific
tasks, targeted metrics like BLEU (Papineni et al.,
2002) and CodeBLEU (Ren et al., 2020) have been
successfully applied to machine translation and
code generation tasks, respectively (Huang et al.,
2023b). In general question-answering scenarios,
token-level similarity metrics such as BERTScore
(Zhang et al., 2020) and RougeL (Lin, 2004) have
been widely adopted (Huang et al., 2023b; Man-
akul et al., 2023; Gao et al., 2024). Moving beyond
token-level comparisons, more sophisticated ap-
proaches that capture semantic relationships have
emerged, including SentenceBERT and NLI-based
methods (Wang and Holmes, 2024; Gao et al.,
2024; Chen and Mueller, 2024; Zhang et al., 2024).
SentenceBERT computes the cosine similarity be-
tween two sentences using embeddings generated
by the Sentence Transformer model. The NLI-
based method leverages natural language inference
(NLI) classifiers to categorize sentence relation-
ships as entailment, neutral, or contradiction, re-
garding the probability the NLI classifier assigns
to the “entailment” class as the similarity score.
Moreover, Harsha Tanneru et al. (2024) proposes
token importance uncertainty and CoT uncertainty.
The former quantifies uncertainty through token
agreement and token rank metrics, while the latter
evaluates inter-step relationships using NLI classi-
fication techniques.

The generation of diverse LLM outputs in step
@ represents another critical avenue for enhancing
consistency-based methods. Harsha Tanneru et al.
(2024) presents two fundamental approaches: sam-
ple probing, which employs semantically equiva-
lent prompts, and model probing, which manip-
ulates temperature settings to introduce output
stochasticity. Chen and Mueller (2024) introduces
a method that modifies CoT steps specifically for
prompts employing CoT techniques. Additional ap-
proaches have been proposed by Gao et al. (2024),
including the strategic insertion of dummy tokens
(such as newline characters and tab spaces) and
modifications to system messages within prompts.

While most methods estimate confidence by av-
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eraging similarities among responses in step (@),
Lin et al. (2024) proposes using the number of se-
mantic sets as a measure of uncertainty. These
semantic sets are defined as “semantic equivalent”
subsets, which are grouped from all responses us-
ing an NLI classifier.

Notably, consistency-based methods are compu-
tationally expensive due to the need for multiple
inferences. While some approaches rely on auxil-
iary modules, such as an NLI classifier, their com-
putational cost is considerably lower than that of
performing an LLM inference. As a result, the
computational overhead is primarily dominated by
the number of inferences required.

3.5 Semantic Clustering Methods
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Figure 7: Illustration on semantic clustering methods.
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Figure 7 depicts the workflow of semantic clus-
tering methods, which leverages both the latent
information and the semantic relationships among
responses to offer a more comprehensive estima-
tion of the uncertainty. The first two steps are sim-
ilar to the consistency-based methods, where the
LLM generates responses to the original input and
its paraphrased versions (€)-@). Next, instead of
calculating the similarities, the sampled outputs
are partitioned into clusters with a new probability
for each cluster (@). Finally, the probability distri-
bution over these clusters calculates a confidence
score (@). The motivation for semantic clustering
methods stems from the limitations of consistency-
based approaches, which can only deliver a perfect
uncertainty score when the responses use identical
wording. However, in reality, responses may con-
vey the same meaning through varied expressions.
Therefore, semantic clustering of the responses is
proposed to deal with the limitations. We refer the
readers to Section A.4 for the formula of different
semantic clustering methods.

Kuhn et al. (2023) introduces semantic entropy
for uncertainty estimation. The method comprises
three phases: generation (€)-@), clustering (@),
and entropy estimation (@). In step @, a bi-

directional entailment algorithm is employed to
cluster semantically equivalent responses. It as-
sesses the entailment relationship between each
pair of responses, considering them to express the
same meaning if they mutually entail each other.
The entailment relationship can be determined with
the help of an NLI classifier or by simply request-
ing a general-purpose LLM. The uncertainty is the
entropy calculated from the cluster probabilities
in step @. In case there is no access to the token
probability, Farquhar et al. (2024) introduces dis-
crete semantic entropy, extending the work of Kuhn
et al. (2023), which leverages the frequency of each
cluster to calculate an entropy as the uncertainty.

While the above method clusters the responses
explicitly, some methods propose implicit cluster-
ing. Duan et al. (2024) introduces sentence rele-
vance scores between each response pair, which
is more effective over long sentences than the bi-
directional entail algorithm in the work of (Kuhn
et al., 2023). Fadeeva et al. (2024) proposes to
further alleviate the impact of claim-type uncer-
tainty by grouping words into several claim types.
Besides, it only requires one-time inference by se-
lecting the top-k choices of words using the latent
information to generate different responses.

In contrast to these latent-information-dependent
techniques, some semantic clustering methods op-
erate without requiring access to such information.
Lin et al. (2024) proposes to treat generated re-
sponses as nodes and obtain the degree matrix and
the graph Laplacian matrix from the pairwise sim-
ilarities of the responses. Correspondingly, this
method defines several uncertainty and confidence
measures from the matrices. Nikitin et al. (2024)
further considers the distances between the clusters.
The method encodes similarities among responses
via positive semidefinite unit trace kernels. It offers
a more fine-grained uncertainty measure using the
von Neumann entropy of these kernels.

4 Evaluation

4.1 Metrics

We use two primary metrics to evaluate the uncer-
tainty estimation: AUROC (Area Under the Re-
ceiver Operating Characteristics curve) (Bradley,
1997) and AUARC (Area Under the Accuracy-
Rejection Curve) (Nadeem et al., 2009). Both met-
rics range from 0 to 1, with higher scores reflecting
better uncertainty estimation methods. § B contains
more details about AUROC and AUARC. Of note,
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while some research (Huang et al., 2024c; Chen
et al., 2024b) propose novel metrics for uncertainty
estimation, they focus more on the calibration abil-
ity. In alignment with established practices in the
field (Kuhn et al., 2023; Farquhar et al., 2024), our
evaluation primarily emphasizes a method’s profi-
ciency in discriminating between correct and incor-
rect answers based on the estimated uncertainty.

4.2 Evaluated Methods

We select several representative methods from each
method category as follows:

* Verbalizing methods (Verb): We evaluate the
28 (Tian et al., 2023) method that asks for
confidence in a second-round dialogue.

* Latent information methods (Latent): We se-
lect the self-evaluation method (Ptrue) (Kada-
vath et al., 2022), perplexity (Perp), predictive
entropy (PE), length-normalized entropy (LN-
E), and the method leveraging hidden states
of LLMs (INSIDE) (Chen et al., 2024a).

* Consistency-based methods (Consis): We
adopt four similarity measures: BERTScore,
RoughL, cosine similarity from BERT em-
beddings (Cosine), and the “entailment” prob-
ability from an NLI classifier (NLI). The con-
fidence score is averaged from similarities.

» Semantic clustering methods (Cluster): We
include semantic entropy (SE) and discrete
semantic entropy (DSE).

4.3 Model Settings

We use LLaMA3.1-8B-Instruct (Llama Team,
2024) in our experiments. Following (Farquhar
et al., 2024), we first set the temperature = 0.1 and
generate an answer as the final answer. Then, we
set the temperature to be 1 and generate 20 answers,
which are used for methods that need extra sam-
ples. We employ the multinomial sampling as the
decoding strategy and set top_k equal to 50. Due
to the varying types of questions and domains, we
used the same model to determine the correctness
of an answer. The prompts used are in § C.

4.4 TIllustrative Results

Figures 8 - 12 show the ROC and ARC with
the corresponding AUROC and AUARC values
in the legend for five different datasets (Details
about the datasets are in § E). For the AU-
ROC and AUARC values from the legend, we
color-coded the “best”, ‘“2nd best”, “3rd best”,
“3rd worst” , “2nd worst” , and | “worst” .
Truthful QA (Figure 8) is a benchmark designed
to evaluate the truthfulness of language models in
answering questions spanning 38 categories (Lin
et al., 2022b). The questions in the dataset ap-
pear in a multiple-choice form, providing the LLM
with clear guidance and ensuring a fixed response
format. Therefore, most of the uncertainty is epis-
temic uncertainty. In the ROC curve, Perp and
INSIDE (@) demonstrate the lowest performance,
close to random guessing. The ROC curve of 2S
(@) starts with the steepest rise, indicating most
responses assigned with high confidence are cor-
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Figure 10: TriviaQA: ROC (left), ARC (right) curves, and AUROC and AUARC.
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Figure 11: GSMS8K: ROC (left), ARC (right) curves, and AUROC and AUARC.
rect. In the ARC curve, the worst-performing TriviaQA (Figure 10) is a reading comprehen-

method (@) shows no improvement in accuracy
as the rejection rate increases until the rejection
rate is high. Although 2S (@) shows a slower ini-
tial improvement, it enjoys higher improvements
afterward, again demonstrating its high accuracy
for high-confidence answers. 28 achieves the best
performance on this dataset, showing that LLMs
can tell their uncertainty, especially when this is
mainly epistemic uncertainty.

SciQ (Figure 9) is another multiple-choice Q&A
dataset, with a collection of science-focused ques-
tions (Welbl et al., 2017). In the ROC curve, Perp
(@) performs like random guessing (analogous to
TruthfulQA), whereas all other methods achieve
significantly better performance, including Ptrue
(®). Most of the methods (@) achieve a very high
True Positive Rate (TPR) when the False Posi-
tive Rate (FPR) approaches 0.4, indicating they
assign most of the low confidence scores to neg-
ative samples correctly. As for AUARC, most
methods exhibit similar performance, as the dataset
is considered simple for the LLM, evidenced by
a high initial accuracy of about 0.95 (@). How-
ever, the accuracy of Perp (@) decreases from the
very beginning, resulting in the worst AUARC. In
contrast, Ptrue (@), another variant of the latent
information-based method, gains better accuracy
with higher rejection rates. The difference between
Perp and Ptrue shows the aggregated predicted
probability of tokens is not well-calibrated, but the
probability of answering the true/false of the entire
response is well-calibrated.

sion dataset where no context is provided in our
settings (Joshi et al., 2017). As a free-form Q&A
dataset, it allows responses to a question to vary
while still expressing the same meaning. There-
fore, the aleatoric uncertainty caused by language
ambiguity in questions and responses exists. The
ROC curve reveals that 2S and Perp () demon-
strate relatively poor performance. In contrast, NLI
(@) achieves the highest performance. In the ARC
curve, the accuracy of 2S and Perp (@) deterio-
rates as the rejection rate increases from 0.5, while
DSE (@) achieves the highest AUARC score.
GSMBSK (Figure 11) is comprised of math prob-
lems that need reasoning steps to solve (Cobbe
et al.,, 2021). The responses thus can be more
diverse than TriviaQA due to the variability in
reasoning steps. Hence, the aleatoric uncertainty
is even higher. The results on AUROC demon-
strate that INSIDE (@) performs below random
guessing. On the contrary, NLI, DSE, and SE (@)
maintain more gains on TPR with the increase of
FPR. A noteworthy observation is that NLI and
SE (@) achieve positive TPR even when FPR =0
because they perfectly classify the high-confidence
responses. In the ARC curve, this phenomenon is
once again reflected that these methods achieve per-
fect accuracy when considering only the top 20%
high-confidence responses (€). From the point
where the rejection rate is 0, better methods exhibit
faster rates of improvement (@), while the worst
one (i.e., INSIDE) has a negative rate ().
Comparing the TriviaQA and GSM8K datasets,
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Figure 12: SimpleQA: ROC (left), ARC (right) curves, and AUROC and AUARC.

NLI, SE, and DSE perform the best on the free-
form questions. They all consider the entailment
relationship among responses, which can tremen-
dously eliminate the aleatoric uncertainty and thus
better estimate epistemic uncertainty. By doing so,
they obtain better final results.

SimpleQA (Figure 12) is a recent Q&A dataset
that presents significant challenges for state-of-the-
art LLM models as of 2024 (Wei et al., 2024). In-
terestingly, in the ROC curve, methods (@) that
traditionally demonstrate superior performance on
other datasets exhibit notably poor outcomes here.
2S and Ptrue (@) emerge as the top performers,
distinguished by their ability to maintain low FPR
while TPR approaches 1. In the ARC curve, there
is no accuracy improvement for NLI and DSE as
the rejection rate increases (@)). Notably, LN-E
(@) becomes the highest because its accuracy con-
tinues to grow after the rejection rate passes 0.8,
while others drop. Although SimpleQA is still a
free-form dataset, NLI, SE, and DSE do not show
their superior performance here. It shows they can-
not estimate the epistemic uncertainty well if it is
too big, postulating whether current benchmarks
adequately evaluate LLM uncertainty estimation.

5 Future Directions

Uncertainty estimation benchmark. We need a
dataset specifically designed for uncertainty esti-
mations on LL.Ms. Existing datasets are designed
to evaluate the capability of LLMs (not their uncer-
tainty). They always have unambiguous questions,
resulting in low aleatoric uncertainty. We antici-
pate three rules for designing this dataset: First, it
should incorporate a diverse set of question types,
including general Q&A problems, math problems,
translation problems, etc. Second, the questions
should have varying difficulty levels, from simple
to extremely challenging. Finally, the dataset can
control the degree of ambiguity for the questions
to directly evaluate the uncertainty.

Uncertainty estimation method enhancement.

Uncertainty estimation for long responses remains
under-explored. While some papers propose to
break long responses into shorter segments and pro-
cess each part individually (Zhang et al., 2024; Far-
quhar et al., 2024), they ignore the inter-sentence re-
lationships that are critical for capturing the overall
uncertainty of the response. Further, the large vo-
cabulary in long responses challenges the effective-
ness of consistency-based and semantic clustering
methods. Current uncertainty estimation methods,
predominantly validated on short-answer scenar-
ios, may not adequately address the complexities
inherent in longer, multi-step reasoning processes.

6 Conclusion

This survey paints a comprehensive landscape
for uncertainty estimation methods on LLMs dur-
ing the inference stage, classifying them into
four classes: verbalizing, latent information,
consistency-based, and semantic clustering meth-
ods. We further enrich our survey with extensive
evaluations and promising future directions.

7 Limitations

This survey contains three limitations, mainly due
to space constraints. First, we omitted detailed
methodological explanations for various methods
from the main text. Second, we did not evaluate
and report the results of all the introduced meth-
ods. Finally, we exclude the literature that does
not surround the inference stage of LLMs. We ac-
knowledge these limitations and remain open to
academic discussion and collaborative efforts to
address them in future work.
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A Mathematical Formulation of the

Methods

A.1 Common notations

We list some common notations in Table 1 for math-
ematical definitions.

Notation | Description

f Large language model

T Input

T4 The -th sampled response

T The most-voted response from samples

N Number of tokens in a response

M Number of sampled responses

R; The i-th response cluster

K Number of response clusters

2 the ¢-th token in a response

VA Vocabulary of the large language model
T<i All tokens before the i-th token

i The probability distribution for the i-th token
Dz The probability for the token z;

P The probability of something

a(r;,r;) | Similarity score between r; and 7

U Estimated uncertainty

C Estimated overall confidence score

C; Estimated confidence score for response 7;

Table 1: Common notations and descriptions.

A.2 Latent Information Methods

Average over negative logarithm likelihood (Per-
plexity) (Manakul et al., 2023; Ren et al., 2023):

1 N
U= _m Z logpzi
i=1
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Maximum over negative logarithm likeli-
hood (Manakul et al., 2023):
i€l,N]

U = max(~log p.,),

Ptrue (Kadavath et al., 2022):

C= p(Ztrue |$,)a

where 2. is the token for “true”, and z’ is the
designed prompt to ask LLM to decide whether the
answer is true or false.

Predictive entropy (Kadavath et al., 2022):

‘TJ|

=37 Z Zlogsz

jlz—

Length-normalized entropy (Malinin and Gales,
2021):

;1

ar Z Z log Pz,

Average over tokens’ probability distribu-
tions (Manakul et al., 2023; Ren et al., 2023):

=2 Z > piologp;,

where o is the element-wise multiplication, and the
second ) . means sum over all the elements in a
vector.

Maximum over tokens’ probability distribu-
tions (Manakul et al., 2023):

> piologp;),

where o is the element-wise multiplication, and
means sum over all the elements in a vector.
INSIDE (Chen et al., 2024a):

U = max(— i€ [l,N],

U= —log det(X + o)

Z log(A

where X is the covariance matrix, o is a small
regularization term, I is an identity matrix, and
A; is the ¢-th eigenvalue of the matrix 3 + al.
Specifically,

=V -J;-V, V=[v,vs, - ,vn],

where v; is the representative embedding for r;,
Jg=1;— ;lil Nl% represents the centering ma-
trix, and d corresponds to the dimension of the
embeddings.

A.3 Consistency-based Methods
Sampling diversity (Cole et al., 2023):

K
-1 —
¢ M

Sampling diversity (Cole et al., 2023):

MZH

where 1() is the indicator function.
First-second-distance-based (FSD) method (Lyu
et al., 2024):

1 M
S
=1

where 1() is the indicator function, and 7. denotes
the second most-voted answer.

Variation ratio (VR) (when the final response is
74) (Huang et al., 2023b):

_’r‘*

M S alrirg)

U=1-== Mo
M

Variation ratio (VR) (when the final response is
rr+1) (Huang et al., 2023b):

ity alrs, Tat1)

M
Based on VR and VRO, using different similarity
calculation methods for a(-, -) can achieve different
estimated uncertainty.

U=1-

A.4 Semantic Clustering Methods
Semantic entropy (Kuhn et al., 2023):

K
— > p(R)log p(Ry),
k=1
where
|7'_7|
P(Rk) = Y exp( = ‘Zlogpm
'I’jERk ‘]

Discrete semantic entropy (Farquhar et al., 2024):

K
—> " p(Ry,) log p(Ry,),
k=1
where
p(Ry) = |Ri|/K
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Dataset Year | Question Answer
... . A) Miami and
What are some cities that get more rainfall than Seattle? New Orleans get
TruthfulQA| 2021 | A) Miami and New Orleans get more rainfall than Seattle. .
B) No cities get more rainfall than Seattle. more rainfall than
. Seattle.
C) Seattle gets the most rain.
D) It’s always raining in Seattle.
Who proposed the theory of evolution by natural selection?
SciQ 2017 | A) darwin A) darwin
B) Linnaeus
C) shaw
D) Scopes
TriviaQA | 2017 | Who was the man behind The Chipmunks? David Seville
Janet’s ducks lay 16 eggs per day. She eats three for break-
fast every morning and bakes muffins for her friends every
GSMSK 2021 | day with four. She sells the remainder at the farmers’ mar- | 18
ket daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?
SimpleQA | 2024 | Who received the IEEE Frank Rosenblatt Award in 20107 | Michio Sugeno

Table 2: Samples from each dataset.

B Detailed Explanation of AUROC and
AUARC

AURQOC: For each response, we consider it as a
positive sample (correct) or a negative sample (in-
correct) based on whether it matches the ground-
truth label. The ROC curve is then created by plot-
ting the true positive rate (TPR) against the false
positive rate (FPR). To derive TPRs and FPRs, the
accepted confidence threshold is changed to get dif-
ferent Predicted Positives and Negatives (i.e., PP
and PN), where a response with confidence higher
than the threshold is regarded as PP or PN other-
wise. The AUROC is the area under the ROC curve,
measuring the discriminability of confidence scores
to distinguish between correct and false responses.

AUARC: Accuracy-Rejection Curve (RAC) is
specifically designed for uncertainty estimation,
which plots how the accuracy on the accepted sam-
ples changes as more low-confidence answers are
rejected. The area under it indicates the uncertainty
estimation’s ability to maintain high accuracy when
low-confidence answers are rejected.

C Prompts

The prompt for Q&A questions is as follows:

System:

You are a highly knowledgeable assistant. An-
swer the following question as briefly as pos-
sible.

... (several few-shot examples)

User:

[Question]

The prompt for correctness decisions is as fol-
lows:

User:

We are assessing the quality of answers to the
following question: [Question]

The expected answer is: [Gt_answer]

The proposed answer is: [Predicted_answer]

Within the context of the question, does the
proposed answer mean the same as the ex-
pected answer? Respond only with yes or no.
Response:

D Detailed Explanation of Dataset

We give a sample for each dataset in Table 2.
TruthfulQA (Lin et al., 2022b) is a benchmark de-
signed to evaluate the truthfulness of language mod-
els in generating answers to questions. It consists of
817 questions spanning 38 diverse categories such
as health, law, finance, and politics. The dataset
is intentionally crafted with questions that humans
may answer falsely due to misconceptions or false
beliefs
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Dataset Metric 2S Ptrue Perp PE LN-E INSIDE BERTScore RougeL Cosine NLI SE DSE
AESLC AUROC 0.530 0.526 0.506 0.585 0.593  0.578 0.576 0.582 0.593 0.543 0.584 0.554
AESLC AUARC 0.383 0.387 0358 0.435 0435 0430 0.421 0.426 0.439 0.406 0.426 0.403
WMT14 De-En  AUROC 0.529 0.688 0.479 0490 0.636  0.502 0.624 0.621 0.662 0.613 0.639 0.568
WMT14 De-En  AUARC 0.785 0.881 0.789 0.797 0.855  0.800 0.847 0.846 0.866 0.832 0.855 0.806

Table 3: Supplementary Results on AESLC and WMT14 De-En.

SciQ (Welbl et al., 2017) is a dataset with 13,7K
multiple-choice science questions spanning top-
ics such as biology, chemistry, earth science, and
physics. We chose to test our method using its
validation set, which contains 1K samples.
TriviaQA (Joshi et al., 2017) is a large-scale read-
ing comprehension benchmark containing over
650K question-answer-evidence triples, designed
to challenge models with complex, compositional
questions and diverse evidence sources. In our ex-
perimental setup, we do not provide context to the
LLM but directly ask it the questions. We selected
2K samples from the validation set for testing.
GSMSK (Cobbe et al., 2021) is a dataset of 8.5K
high-quality linguistically diverse grade school
math word problems. Each problem requires 2
to 8 steps to solve, using elementary arithmetic op-
erations (4, —, X, +). In our experiments, we in-
cluded reasoning steps in the examples provided in
the prompts, and we used their test dataset, which
consists of 1.32K samples.

SimpleQA (Wei et al., 2024) is a benchmark con-
sisting of 4,326 short, fact-seeking questions de-
signed to evaluate the factual accuracy of large
language models. It covers a diverse range of top-
ics, including science, politics, art, and so on. The
Latest LLMs showed poor accuracy and calibration
results on this result. We used 2K samples from
the dataset for testing.

E Supplementary Results

We supplement our experiments by including
two additional datasets to evaluate summariza-
tion (AESLC (Zhang and Tetreault, 2019)) and
machine translation (WMT14 De-En dataset (Bo-
jar et al., 2014)) tasks. The results are shown
in Table 3. The results on the AESLC dataset
are consistent with those observed on the Sim-
pleQA dataset, as both exhibit high epistemic un-
certainty. The aleatoric uncertainty for the machine
translation task lies between that of the multiple-
choice Q&A and free-form Q&A datasets. Con-
sequently, we observe comparable performance
between consistency-based methods and semantic
clustering methods on this task.
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