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Abstract
In real-world scenarios, cross-domain slot fill-
ing in spoken language understanding remains
a significant challenge due to data scarcity. Pre-
vious works exhibit limited generalization abil-
ity in the target domain, demonstrating effec-
tive knowledge transfer only on seen slots while
performing poorly on unseen slots. Although
large language models (LLMs) can alleviate
this issue to some extent, they underperform
on seen slots compared to small models. To
address these challenges, we introduce a novel
framework that harnesses the power of a small
model to augment the inferential capabilities of
LLMs without additional training. Initially, we
utilize target domain samples synthesized by
LLMs as pre-calculated demonstrations, which
are curated and chosen using confidence met-
rics derived from a small model. We further
extract slot predictions from the small model
to fully exploit its robust learning of familiar
slots. Finally, during the inference process for
test inputs, we integrate these demonstrations
and slot prediction insights as references to en-
hance the slot filling performance of LLMs.
Experiments on a slot filling dataset and a
NER dataset including eight cross-domain set-
tings show our framework achieves the best
results. Our codes are publicly available at
https://github.com/SIGSDSscau/SLSF.

1 Introduction

Slot filling is a core component in dialogue sys-
tems that aids in understanding user needs, directly
impacting task completion rates and user experi-
ence. The task involves extracting and categoriz-
ing slot entities (such as artist or playlist) from
user utterances. Previous slot filling studies (Ku-
rata et al., 2016; Wang et al., 2018; Qin et al.,
2019) use a single-domain training and evaluation
learning paradigm. Thanks to the rapid advance-
ments in deep learning and the abundant labeled
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Figure 1: The average performance of different slots
across seven different domains on SNIPS using four
methods. "All", "Seen", and "Unseen" respectively rep-
resent all slots, slots that appear in both the source and
target domains, and slots that only appear in the target
domain. "Zero data" means there are no examples to
select, while "Source data" indicates selecting examples
from the source domain.

training data, the paradigm gains significant mo-
mentum. However, there remain issues of time-
consuming efforts and difficulties in obtaining la-
beled data. As a result, researchers start explor-
ing cross-domain slot filling (CDSF) to transfer
annotation-rich knowledge of multiple source do-
mains to annotation-scarce target domains, which
aims to improve cross-domain performance.

Traditional methods (Lee and Jha, 2019; Shah
et al., 2019; He et al., 2020; Shi et al., 2023; Liu
et al., 2022b) involve training a model in the source
domain and achieving good performance in the tar-
get domain. However, they can only learn features
of unseen slots from a limited number of similar
seen slots, which leads to low unseen slot perfor-
mance, as shown by AdaE in Figure 1. With the in-
creasing capabilities of LLMs (Sarkar et al., 2023;
Imran et al., 2024; Li et al., 2024), we test their per-
formance on different slots in CDSF under various
settings, as shown in Figure 1. Although LLMs
perform exceptionally well on unseen slots, their
performance on seen slots still falls short compared

21299

https://github.com/SIGSDSscau/SLSF


to small models.
In this paper, we aim to explore how small mod-

els assist LLMs in integrating their own strengths
and enhancing LLMs’ overall performance with-
out additional training. Specifically, we do not
use source domain samples as demonstrations. As
shown in Figure 1, while the presence of slots in
these samples similar to the target domain can en-
hance LLMs’ performance, there are some irrele-
vant noisy slots or text that degrade performance
on unseen slots. So we utilize samples generated
by LLMs as demonstrations that are similar to the
target domain. However, LLMs suffer from halluci-
nation issues, leading to inevitable noisy synthetic
samples. Therefore, we proposed a data curation
mechanism to effectively alleviate the harmful syn-
thetic sample problem. Our approach is inspired
by the principles of learning theory that show the
state changes of samples during training, offering
crucial insights into the sample’s value (Arpit et al.,
2017; Arora et al., 2019; Li et al., 2020). A syn-
thetic sample that is dynamically mispredicted or
has ambiguous predictions could potentially harm a
model. With a curation model trained on the source
data, we analyze the learning evolution of synthetic
samples and curate these by evaluating their evolu-
tion of confidence. Based on this, we select suitable
demonstrations from the curated dataset for each
test input. To further leverage the robust learning of
familiar slot types by the small model, we provide
the small model’s predictions to LLMs as refer-
ences. Finally, by combining the selected high-
quality synthetic demonstrations, small model’s
prediction and test input, we input them into LLMs
to obtain more accurate final prediction results.

Overall, our main contributions can be summa-
rized as follows: (1) To the best of our knowledge,
we are the first to explore completing CDSF using
LLMs’ inference without training it. (2) We pro-
pose a method that leverages LLMs to synthesize
samples as demonstrations of In-context learning,
enhancing its understanding of slots in the target
domain. (3) We propose a novel framework that
leverages small models to augment the slot filling
capability of LLMs. In our framework, we explore
different strategies to curate synthesized samples,
select samples with relatively high confidence as
demonstrations for LLMs learning and provide slot
prediction as reference from small models, leverag-
ing the small model’s effective learning of familiar
slots. (4) Experiments demonstrate that the perfor-
mance of our proposed framework improves sig-

nificantly on different slots and eight cross-domain
settings in CDSF compared to baselines.

2 Related Work

Cross Domain Slot Filling. Previous approaches
(Bapna et al., 2017; Shah et al., 2019; He et al.,
2020; Wang et al., 2021) utilize meta-information
such as slot descriptions and slot instances to cap-
ture the semantic relationship between slot types
and the user query. However, these models only
learn surface mappings of slot types between differ-
ent domains and perform poorly on unseen slots in
the target domain. To alleviate this problem, recent
approaches (Zhang and Zhang, 2023; Shi et al.,
2023) adopt a contrastive learning framework to
learn a generalized feature representation. Combin-
ing learnable prompts and slot descriptions (Luo
and Liu, 2023) and proposing a prompt-based hier-
archical pipeline with three innovations (Wei et al.,
2024) achieves more accurate cross-domain perfor-
mance. Nevertheless, the generalization capability
of these models is limited due to a lack of learning
in the target domain slots.

Aimed at enhancing this ability, some methods
(Du et al., 2021; Liu et al., 2022b) treat slot fill-
ing tasks as machine reading comprehension tasks
to enhance the semantic interaction between slots
and user queries, and further pre-train models on
large-scale external MRC datasets. Other methods
(Yan et al., 2022; Li et al., 2023) frame the task as
a language generation task to leverage the rich pre-
training knowledge of large-parameter generative
models. Both of these methods introduce general
knowledge to better answer slot values correspond-
ing to certain slots lacking knowledge. However,
their performance on unseen slots still falls short.

Moreover, recent studies (Imran et al., 2024;
Sarkar et al., 2023; Li et al., 2024) of LLMs show
strong generalization in zero-shot and few-shot sce-
narios for different tasks. So we explore the perfor-
mance of LLMs on our task, surpassing previous
methods on unseen slots. However, LLMs still fall
short in overall performance on CDSF (Wei et al.,
2024). Therefore, we leverage small models to sup-
plement the performance deficiencies of LLMs.
Demonstrations in In-context Learning. Some
works explore generating various demonstrations
in ICL (Lyu et al., 2023; Xie et al., 2024). Xie et al.
(2024) use LLMs to make predictions on the un-
labeled NER corpus as demonstrations. However,
CDSF has a more challenging zero-shot setting,
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Query: is it nice now in  beda
Slot Filling:
slot type |slot value
timeRange |now 
city |beda

Query: what is the weather going to be in seattle wa next month
Slot Filling:
slot type |slot value |Proability
timeRange |next month |0.267
city |seattle |0.193
state |wa |0.258

Small model
as curation model

Dcur

DemonstrationsDescription of slot filling task Small model prediction

Step 4: 
Inference with
Demonstrations 
and Small Model
Prediction

will    it    be     cloudy     in       tatamy
timeRange

  0      0     0    0.17 (low)  0   0.245 (high)

city

Step 1:
Demonstrations
Generation

Step 2:
Demonstrations
Selection

Step 3: 
Slot Filling
Prediction from
Small Model

slot type |slot value
weather |cloudy
city |tatamy

    Stage 1: Given {Slot type Set} and {Target Domain},
Select some most relative slot combinations.

    Stage 2: First, given a slot combination and a domain,
you need to provide a corresponding slot value for each
slot type. Then, using these related slot values, generate a
user query with a given {Tatget Domain}.

Demonstrations

Small model prediction

Dcur

Query: what is the weather going to be in seattle wa next month
Slot Filling:
slot type |slot value |confidence
timeRange |next month |0.267
city |seattle |0.193
state |wa |0.258

Retrieval: Nearest

Avg Confidence
0.2625

Rerank: Avg Confidence

(pre-calculated)

Query: what is the weather going
to be in seattle wa next month
Slot Filling:
slot type |slot value
timeRange |next month
city |seattle
state |wa

LLM
as data generator

Query: is it nice now in  beda
Slot Filling:
slot type |slot value
timeRange |now 
city |beda

Query: is it nice now in  beda
Slot Filling:
slot type |slot value
timeRange |now 
city |beda

slot_type |slot_value |confidence
timeRange |cloudy      |low
city |tatamy |high
The low confidence indicate that uncertain
about the slot value.

Test input will it be cloudy in tatamy

Test input will it be cloudy in tatamy

    Identify potential slot types from
query and fill in the corresponding
slot values for each slot type. The slot
types should come from the provided
list, and the slot values should come
from the query.

Original
Data

Small model as prediction model

LLM
as inference model

Figure 2: The overview of our proposed framework for cross-domain zero-shot slot filling with LLMs.

where there are no samples from the target domain.
Therefore, we first use LLMs to generate samples
of target domains as a demonstration corpus.

Previous methods randomly select examples
from training data (Brown et al., 2020; Lewkowycz
et al., 2022), which may hinder the potential of
LLMs. So retrieval-based method (Mishra et al.,
2022; Luo et al., 2023; Scarlatos and Lan, 2024) is
intensively investigated. Recent works (Wu et al.,
2023; Peng et al., 2024; Xie et al., 2024) adopt a
select-then-rank framework, ranking the demon-
strations selected by the k nearest neighbors (Near-
est, (Liu et al., 2022a)) method based on different
reordering techniques. Xie et al. (2024) use self-
consistency (SC, (Wang et al., 2023)) scores to
rerank the selective samples. This approach in-
volves using unlabeled corpora for multiple invo-
cations of LLMs, consuming more resources and
it is difficult to apply to our task where lack tar-
get domain data. Furthermore, small models can
be used to evaluate the quality of sample labeling
(Seedat et al., 2024). So we utilize small models
to get label confidence of synthesized samples and
use it to select suitable samples as demonstrations.

3 Method

As shown in Figure 2, our framework is divided
into four steps. In the first step, we use LLMs
to generate target domain samples and use a small
model to curate a high-quality synthetic dataset as

a demonstration corpus. The corpus can be pre-
calculated and saved for LLMs’ inference. Then,
we retrieve some similar demonstrations using
Nearest method for each test input, then select
more suitable demonstrations from these based on
Average Confidence. Next step, we obtain the slot-
filling predictions for the test input from the small
model to provide reference information for LLMs.
In the final step, we combine suitable demonstra-
tions, slot-filling predictions of a small model, and
test input, and input them into LLMs to infer the
final result. The last three steps are iterated to gen-
erate slot filling results for each test input.

3.1 Step 1: Demonstrations Generation

3.1.1 Original Data Generation
Directly selecting candidate slots and synthesizing
samples in a prompt makes it difficult to control
the generation of diverse synthetic data. Therefore,
we decompose the task of generating data into
two-stage subtasks to alleviate this issue. We
first select multiple slot combinations as seeds,
and then use them for data synthesis to ensure
the balance and diversity of data categories. The
complete template is shown as Appendix C.1.
Stage 1: Slot Combinations Selection. During
this stage, our aim is to select diverse and relevant
slot combinations as seeds for generating samples.
Utilizing all slots or random slots from the target
domain for data synthesis poses challenges for
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LLMs in understanding the relationships among
different slots, resulting in the generation of
semantically confused, low-quality samples.
Therefore, we construct an in-context prompt
to select more relevant slot combinations by
combining some examples from the source data.
Stage 2: Data Synthesis. For ease of annotation
and to generate high-accuracy labels, we create a
Chain of Thought (COT) prompt template. We
use natural language to describe the task process
and provide examples for LLMs to learn the
relationships between certain slots and their values.
The template involves initially generating values
for each slot within the slot combination, which
are subsequently used to create synthetic samples.
Finally, we annotate these using the IOB2 format,
where B- marks the beginning of a slot, I- indicates
a continuation of a slot, and O denotes non-slot
words. For example, generating the slot value pair
"city: big delta" and the sample "weather for big
delta", the annotation would be "O O B-city I-city".

3.1.2 Data Curation
The two-stage data generation approach com-
bines examples from the source domain and COT
prompts to generate samples, making the syntactic
structure, language style, and quality of the syn-
thesized samples closer to the target distribution.
However, LLMs exhibit hallucination phenomena,
leading to deviation from the real distribution. To
improve the relevance of this distribution to the
target domain, we establish a data curation mecha-
nism to eliminate potentially mislabeled tokens.

Throughout the training process of the small
model, we save some different checkpoints and
gain insights into the evolution of token predictions
from them. Some tokens are predicted accurately,
while others present challenges, potentially due to
erroneous labels, resulting in incorrect predictions.
Hence, we utilize these checkpoints as the founda-
tion of our curation mechanism.
Learning Evolution. Here we demonstrate how to
observe the learning evolution of each token. To
ensure higher accuracy of each synthesized sample
during the learning state, we choose a small model
and train it on the source data as our curation model.
The model progresses through different check-
points, forming a collection: T = {t1, t2, . . . , tn},
where tn represents the model at the n-th check-
point. We indicate the predicted logits for slot type
y of slot value v in sample x by using the n-th

checkpoint reflecting the learning state:

Ln(x, v)y =
1

S

S∑

i=1

[tn(x, vi)]yi, (1)

where S denotes the token number of slot value.
Our objective is to use the average slot type log-
its of corresponding slot value within each token
across the curation model’s n checkpoints to assess
the quality of the synthesized samples.
Curation Metrics. To enhance the evaluation of
the quality of synthesized samples, inspired by
(Kwon et al., 2020; Seedat et al., 2022, 2024), we
employ Confidence for sample (x, y, v) to serve as
data curation metrics. For the set of checkpoints T ,
the confidence is defined as the following marginal:

P̄T (x, y, v) =
1

n

n∑

i=1

Li(x, v)y. (2)

Curation Strategies. Based on the confidence, we
define a threshold α for filtering and a Average
Confidence: Avg(x, y) = 1

J

∑J
j=1 P̄T (x, y, vj)

to evaluate all labels confidence of a test input,
which J denotes the slot value number of input
x. We investigate the following three strategies
for curating the original data. (1) Value-level fil-
tering, which drops the predicted slot value v if
P̄T (x, y, v) < α. (2) Value-level replace, which
replace the slot type of v with the type predicted by
the small model if P̄T (x, y, v) < α. (3) Sentence-
level filtering, which drops the synthesized sample
x if Avg(x, y) < α. After filtering, we obtain the
curated data as Dcur.

3.2 Step 2: Demonstrations Selection
To dynamically select more relevant and accurate
examples, we design a method based on seman-
tics and Average Confidence for selecting demon-
strations. When a test input arrives, we retrieve
K samples from Dcur using Nearest method and
rerank these by recalculating Avg(x, y) after the
filter. Finally, we select the top-M samples using
these rerank-scores as the demonstrations Crank:

I = argTopM
j∈{1,...,K}

Avg(xj , yj), (3)

Crank = {(xq, yq) | q ∈ I} . (4)

3.3 Step 3: Slot Filling Prediction from Small
Model

To further utilize small models for robust learning
of familiar to the target domain, we input test inputs

21302



into the best checkpoint from the curation model
to obtain predicted slot value pairs. Then, we use
Equation (2) to compute the confidence scores for
each predicted slot value pair. In diverse domains
with varying lengths of slot label lists, the standards
for high-confidence labels differ. LLMs face dif-
ficulties in comprehending the reliability signified
by the confidence levels of slot-value pairs. By set-
ting a dynamic confidence threshold β in different
target domains, when the confidence is below this
threshold, it indicates that the prediction reliability
is low. Otherwise, it is more reliable. By convert-
ing confidence scores into natural language descrip-
tions and organizing it into a slot value pair table
as shown in Figure 2, LLMs use more proficient
natural language-based confidence assessments to
obtain more accurate slot predictions.

3.4 Step 4: Slot Filling with Demonstration
and Small Model Prediction

For each test input, we first select appropriate syn-
thetic samples as demonstrations. Subsequently,
the test inputs are inputted into a small model to
obtain a reference table containing slot filling pre-
dictions and corresponding confidences. Lastly, we
combine these with the task description and test
input to create a powerful template. We feed it into
LLMs to produce a final slot filling prediction:

ŷ = LLM(Desc; Crank;D;x), (5)

where Desc denotes a natural language descrip-
tion of the slot filling task and D denotes the table
of small model prediction results. The complete
prompt template for slot filling is provided in the
Appendix C.2.

4 Experiment

4.1 Setup
Datasets and Settings. Following previous works
(Shi et al., 2023; Li et al., 2023), we conduct exten-
sive experiments on SNIPS (Coucke et al., 2018):
It defines 39 different slot types spanning 7 do-
mains with each domain having its slot types and
around 2000 annotated samples. For each domain,
we select it as the target domain and other domains
as the source domain. So we obtain seven cross-
domain experimental settings. The source domain
samples are used to train a small model. We set
aside 500 samples in the target domain for valida-
tion to select the best model, which is used to test
the remaining samples. We also test the remaining

samples with LLMs.
Baselines. We employ two types of baselines to
compare with our method:

• Model scale. Small model training with
source data (AdaE (Shi et al., 2023) and
RCSF (Liu et al., 2022b)); LLM (ICL with
different data).

• Retrieval methods. Random baseline ran-
domly selects in-context examples for each
testing sample. BM25 (Robertson and
Zaragoza, 2009) uses BM25 to calculate the
word-overlap similarity between samples and
test input, and select the high similarity sam-
ples as demonstrations. Nearest (Liu et al.,
2022a) uses the nearest neighbors of a given
test sample as the corresponding in-context
examples. Nearest + SC ranking (Xie et al.,
2024) first retrieve K nearest neighbors and
select samples with the top-k sample-level SC
scores as demonstrations.

Implementation Details. We employ ChatGPT-
3.5-turbo API as the sample generator and infer-
ence model with a temperature coefficient of 0. We
used Nearest retrieval to obtain four examples from
the source domain as demonstrations for sample
generation. In each experimental setup, we synthe-
size 2000 samples. The settings of other LLMs are
shown in the Appendix A.2. For robust learning
state acquisition, we employ AdaE (Shi et al., 2023)
as the small model and choose three checkpoints ev-
ery ten epochs. We set α and β to (λ+(1/labels)),
which labels denotes the label number of different
target domains. We set both λα and λβ to 0.1. We
use the Nearest method to retrieve 100 candidates
for each input, and then rank 5 candidates using
Avg Confidence. Each domain is run three times.

4.2 Main Results
The main results are given in Table 1. Regarding
this, the observations and analyses are as follow:
(1) Compared to traditional small models
trained with supervised learning, LLMs still ex-
hibit limitations in CDSF. Although LLMs outper-
form the RCSF baseline in few-shot scenarios, the
performance improvement remains marginal.
(2) Compared to using source domain data
as ICL examples, leveraging generated data sig-
nificantly improves the performance of LLMs
across three retrieval methods: "Random" (8.19%),
"BM25" (7.98%), and "Nearest" (8.09%). These
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Model↓Domain→ ATP GW BR PM RB SCW SSE Avg. F1
Small Model (Traning with Source Data)

RCSF (Liu et al., 2022b) 54.35 63.49 65.36 53.51 36.51 69.20 33.50 55.76
AdaE (Shi et al., 2023) 61.13 42.35 69.87 36.24 33.25 70.81 34.06 49.67

LLM (ICL with Zero Data)
ChatGPT 37.36 0.21 63.93 0.34 63.00 1.24 67.47 0.57 52.51 0.31 52.21 0.49 40.87 0.41 53.91

LLM (ICL with Source Data)
Random 53.44 0.93 53.18 0.75 67.29 0.38 70.66 1.31 48.74 1.51 58.51 0.60 31.16 0.48 54.71
BM25 (Robertson and Zaragoza, 2009) 54.75 0.45 55.67 0.77 67.11 0.81 71.61 0.38 48.16 0.33 59.53 0.78 36.72 0.56 56.22
Nearest (Liu et al., 2022a) 54.31 0.09 56.20 1.48 69.13 0.92 70.60 0.41 50.85 0.57 60.24 0.84 33.41 0.40 56.39

LLM (ICL with Curated Data)
Random 55.63 1.31 60.31 0.76 68.84 0.94 71.28 0.84 68.15 0.69 68.36 0.61 47.74 1.37 62.90
BM25 (Robertson and Zaragoza, 2009) 56.62 0.59 62.23 0.84 71.63 0.52 73.19 0.85 69.44 1.04 68.11 0.34 48.21 0.75 64.20
Nearest (Liu et al., 2022a) 55.81 0.84 62.44 0.11 69.62 0.52 75.95 0.69 70.75 0.17 68.62 0.26 48.17 1.25 64.48
Nearest + SC ranking (Xie et al., 2024) 57.31 0.38 61.29 0.19 70.48 0.22 73.31 0.89 67.73 0.25 69.52 0.78 47.19 0.31 63.83
Nearest + Ours 56.09 0.70 64.13 0.51 72.24 0.68 77.56 0.59 73.82 0.46 68.78 0.96 50.44 0.67 66.15

LLM (ICL with Curated Data and SMP)
Random 68.22 0.51 66.78 0.57 76.33 0.94 72.65 1.46 65.72 1.31 71.04 0.85 47.28 0.18 66.86
BM25 (Robertson and Zaragoza, 2009) 67.24 0.37 66.62 1.63 77.23 0.55 70.67 0.83 65.58 0.85 71.40 0.61 48.93 0.44 66.81
Nearest (Liu et al., 2022a) 70.95 1.36 67.07 1.09 77.79 0.54 70.70 0.69 65.58 0.18 71.02 1.35 49.57 0.75 67.53
Nearest + SC ranking (Xie et al., 2024) 71.17 0.98 62.63 0.63 73.21 1.24 69.60 0.43 57.90 1.29 70.98 0.51 47.74 0.84 63.68
Nearest + Ours 71.99 0.52 69.47 1.07 76.72 0.68 73.08 0.54 66.38 1.10 71.48 0.27 50.68 0.27 68.54

Table 1: Slot filling performance (F1-scores) of different models for different target domains on SNIPS. "ATP",
"BR", "GW", "PM", "RB", "SCW" and "SSE" denote AddToPlaylist, BookRestaurant, GetWeather, PlayMusic,
RateBook, SearchCreativeWork and SearchScreeningEvent, respectively. "Avg." denotes average, and "SMP" refers
to Small Model Prediction. Best results are highlighted in bold. Right subscript numbers are standard deviations.

results demonstrate the effectiveness of incorporat-
ing high-quality synthetic data into ICL for LLMs.
(3) Compared to other retrieval methods, our ap-
proach consistently achieves superior performance
across various settings. Further analysis reveals
that the "SC ranking" method exhibits a perfor-
mance decline compared to its predecessor, which
we attribute to two potential issues in the synthetic
data: text distribution shift and erroneous label-
ing. These issues may degrade model consistency.
In contrast, our method effectively mitigates these
challenges by using small models to obtain highly
confident synthetic examples, enabling the retrieval
of more correct examples for LLMs.
(4) The performance is further improved when
leveraging predictions from small models. How-
ever, a closer analysis reveals performance degra-
dation in the "PM" and "RB" domains. This can
be attributed to the relatively lower performance
of small models in these domains, which may mis-
guide the slot predictions of LLMs. In contrast,
performance improvements are observed in most
other domains, demonstrating the effectiveness of
the small model prediction approach.

4.3 Further Ablation Studies
In Table 1, we present the main ablation studies
about the effectiveness of synthetic data as exam-
ples, our rerank method and SMP. To validate the
robustness of other components of our framework,
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Figure 3: The performance comparison of different slot
combination selection strategies.

we conduct additional ablation studies.
Different Slot Combination Strategies. To vali-
date the effectiveness of our slot combination se-
lection method, we investigate two alternative ap-
proaches for data synthesis: (1) All Slots: directly
selecting all slot types, and (2) Random Slots: ran-
domly selecting multiple slot types as combination.
As shown in Figure 3, both methods exhibit per-
formance degradation. Specifically, the Random
Slots performs worse, due to the loss of relevant
slot types as combinations, such as "playlist" and
"playlist owner.". This results in difficulty gener-
ating samples to learn the relevance of slots. Our
method uses LLMs to select relevant slot combina-
tions, which can effectively alleviate this issue.
Different Data Curation Strategies. Our per-
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Figure 4: The average performance of seven target domains on SNIPS across different model scale settings.

Data Curation Strategy F1
LLM (ICL with Original Data) 62.97

w/ Value-level replace 65.31
w/ Sentence-level filtering 65.63
w/ Value-level filtering 66.15

Table 2: Average F1-scores about different data curation
strategies.

formance comparison of the three different data
curation strategies is shown in the Table 2. All
three methods achieve performance improvements.
Specifically, the Value-level replace method show
limited improvements, likely due to incorrect slot
type replacements. Meanwhile, the coarse-grained
Sentence-level filtering approach may discard too
much useful information. In contrast, the token-
level filtering method effectively retain more valu-
able information without introducing additional
noise, leading to superior performance.
Different LLMs Performance. Figure 4 presents
the average performance evaluated using various
LLMs ranging in size from 1.5B to 34B, with full
model details in the Appendix A.2. The results
demonstrate that all ICL methods achieve better
performance as the model size increases, whereas
random ICL method tends to produce unstable re-
sults. Notably, our approach consistently outper-
forms previous methods. Specifically, for the Orig-
inal Data setting, our method achieves the most
significant performance improvement compared to
other methods. This is attributed to the limited
number of effective examples in this setting, where
our approach demonstrates superior capability in
retrieving useful examples. Additionally, as the ex-
perimental settings provide more information and
the model scale increases, the performance gains
become more pronounced, indicating that larger-
scale models can better leverage the diverse and

Model↓Setting→ All Seen Unseen
Small Model (Traning with Source Data)

AdaE 49.67 65.80 21.23
LLM (ICL with Zero Data)

ChatGPT 53.90 52.22 53.68
LLM (ICL with Source Data)

Nearest 56.39 59.60 46.14
LLM (ICL with Curated Data)

Nearest + SC ranking 63.83 61.25 53.18
Nearest + Ours 66.15 62.36 58.36

LLM (ICL with Curated Data and SMP)
Nearest + SC ranking 63.68 66.29 50.77
Nearest + Ours 68.54 69.40 56.61

- Unseen Slots Prediction 67.73 69.86 53.20
- Seen Slots Prediction 66.75 62.03 60.15

Table 3: Average F1-scores on seen and unseen slots.

effective information provided by our framework.

4.4 Further Analysis

4.4.1 Slot Generalization
In the cross-domain scenario, since the model’s
limited exposure to the knowledge of unseen slots,
it encounters challenges when attempting to fill
them. The meanings of seen slots may vary across
different domains, leading to misclassification. We
divide the dataset into seen and unseen groups
and evaluate them separately. From Table 3, our
method has high performance on different slots.
Specifically, ChatGPT performs high on SNIPS for
unseen slots. Our methods surpasses it by 4.68%
and 2.93%. Otherwise, our method surpasses AdaE
by 3.6% in seen slots. Although SMP adversely
affects the performance of certain slot predictions,
leading to a decline in the performance of unseen
slots, the substantial improvements in seen slots
result in an overall performance gain. However, ex-
clusive reliance on seen slot predictions results in
suboptimal performance for unseen slots. We posit
that this limitation arises from the LLM’s inher-
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Figure 5: The value number, and model performance
on different thresholds on SNIPS.

ent classification bias, where tokens from unseen
slots are systematically misassigned to seen cate-
gories. Our method overcomes this limitation by
leveraging AdaE’s capability in accurately identi-
fying unseen slots, which significantly improves
the model’s overall robustness. In summary, our
approach is better able to combine the strengths of
small model and LLMs in various slots and signifi-
cantly compensate for the shortcomings.

4.4.2 Impact of Different Thresholds

In this section, we conduct studies on different
thresholds in our framework. We adjust the λ
of (λ + (1/labels)) to fine-tune thresholds. The
analysis is in the Appendix B and is as follows:
Impact of Value-level filtering Threshold.
Figure 5 presents the impact of different λα

values on the quantity of slot values in Dcur

and the performance of the model. We observe
that as the threshold increases up to 0.1, the
model performance improve significantly. The
improvement is accompanied by a sharp decrease
in the quantity of slot value pairs. Beyond the
threshold of 0.1, although the quantity continues to
decrease, the model performance keeps declining.
This implies that filtering out low-quality slot
value pairs with appropriate confidence threshold
is necessary to improve LLMs’ performance.
Impact of High or low Confidence Threshold.
We investigate the impact of varying the threshold
λβ on three key aspects as illustrated in Figure 6.
We observe that as the threshold increases up to
0.1, both the accuracy of overridden predictions
and the model performance improve significantly.
The improvement is accompanied by a sharp
increase in the quantity of overridden instances.
Beyond the threshold of 0.1, although the quantity
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Figure 6: The override accuracy, override quantity, and
model performance on different thresholds on SNIPS.

Model F1
(Wu et al., 2022) 75.06
AdaE (Shi et al., 2023) 75.29
ours (w/o SMP) 75.82
ours (w/o Curated Data) 78.12
ours 79.54

Table 4: F1-scores on cross-domain NER dataset.

of overridden instances continues to rise, the
accuracy of overridden declines, leading to a slight
degradation in model performance. This suggests
that attempting to override high-confidence slot
predictions negatively impact model performance.

4.4.3 Case Study
Figure 7 presents a case study, where "Gold la-
bel" denotes the ground truth annotation for the
test input. The baseline model "With source data"
misclassifies "elise and alma" as "party size de-
scription." In contrast, the "With Original Data"
approach correctly predicts the slot due to learning
from relevant slot value pair in the demonstrations.
However, it still makes an incorrect prediction in-
fluenced by the noisy slot-value pair "time range |
sunday". Ours "With Curated Data" mitigates the
impact of such erroneous slot-value pairs and cor-
rects the prediction. Finally, by incorporating SMP,
LLMs recognizes that "brasserie" is semantically
closer to "restaurant" but does not belong to the
"restaurant name" type, thus predicting the correct
slot as "restaurant type."

4.5 Results on Cross Domain NER
Following AdaE (Shi et al., 2023), we evaluate our
framework in a cross-domain NER setting. The sta-
tistical information of the NER setting is shown in
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Query: book a table for marva  at theme park eats 
in minnesota for a unique experience this sunday
Slot Filling:
slot type |slot value
party size description |marva 
state |minnesota
time range |sunday

Demonstrations

Small Model Prediction

(1) With Source Data (3) With Curated Data

Final Prediction

Demonstrations

Final Prediction

slot type       |predicted slot value|confidence
time range |this week          |low  
restaurant name|brasserie          |low
state        |mh                 |high
city            |ravensdale         |high

time range (this week); restaurant type (brasserie); state (mh); city (ravensdale); party size description (elise and alma)Gold label

(2) With Original Data
Demonstrations

Final Prediction
slot type       |slot value
time range |this week
restaurant type |brasserie
state        |mh
city            |ravensdale
party size description|elise and alma

slot type       |slot value
time range |week
facility  |brasserie
state        |mh
city |ravensdale
party size description|elise and alma

slot type       |slot value
time range |this week
facility |brasserie
state |mh
city        |ravensdale
party size number |elise and alma

(4) With Curated Data and SMP
Demonstrations

Follow (3) With Curated Data

Final Prediction
slot type       |slot value
time range |this week
restaurant type |None
state        |mh
city            |ravensdale
party size description|elise and alma

book a spot for elise and alma at a brasserie in ravensdale mh for this weekTest input

Query: how is the weather going to be this 
week in roseau ia
Slot Filling:
slot type |slot value
timeRange |this week
city |roseau
state |ia
...

Query: book a table for marva  at theme park eats 
in minnesota for a unique experience this sunday
Slot Filling:
slot type |slot value
party size description |marva 
state |minnesota
time range |sunday
... ...

Figure 7: An example of four type of different information on the "GetWeather" target domain.

Appendix A.1. As shown in Table 4, our approach
demonstrates strong adaptability to this scenario,
outperforming previous competitive baselines. Fur-
thermore, the integration of curated data and small
model predictions contributes to performance im-
provements.

5 Conclusion

To fully leverage the complementary strengths of
small models and LLMs, we propose a training-
free, small model-assisted framework for cross-
domain zero-shot slot filling with LLMs. Our
framework significantly improves performance
across eight corss-domain settings on two datasets.
Comprehensive experimental analysis demon-
strates the effectiveness and robustness of our
framework.
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Limitations

This work focuses on exploring the cross-domain
zero-shot slot filling or NER task. The investigation
of this paradigm on other IE tasks has not been
studied yet. We explore the commonly-used self-
consistency method to compare with our approach.
Additionally, there may exist alternative methods
to evaluate the quality of synthetic samples, which
could be investigated in future work.
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A Other Experiment Settings

A.1 Setting of NER Task

Following AdaE (Shi et al., 2023), we conduct
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Split↓ Dataset→ CoNLL-2003 CBS SciTech News
Train 15.0k -
Dev 3.5k -
Test 5.6k 2.0k

Table 5: The statistical information of the NER task

settings remain consistent with the main experi-
ments. The statistical information of the NER task
is shown in Table 5.

A.2 Other LLMs Setting

To investigate the generalizability of our frame-
work, we utilize other LLMs to generate data and
inference for all test inputs, such as Qwen1.5-34B-
Chat-AWQ1, Qwen1.5-14B-Chat2, Qwen2.5-7B-
Instruct3 and Qwen2-1.5B-Instruct4. For these
models, we maintain a similar experimental setup
to ChatGPT. We use the same prompt template as
Figure 2 and the same temperature coefficient of
0 to maintain the stability of the output. For the
decoding strategy parameters, we set the top-k to
5 and top-p to 0.9. Additionally, we utilize vllm
(Kwon et al., 2023) to reduce the memory foot-
print and accelerate inference. Therefore, we can
generate data and inference on two RTX 3090.

B Impact of Other Thresholds

Impact of ICL Example Quantities. We grad-
ually increase the number of in-context examples
(denoted as k) from 3 to 7. The results are presented
in Figure 8(a). As shown, increasing the number
of in-context examples within a certain range fur-
ther improves model performance with our method.
This suggests that additional examples can effec-
tively leverage the potential of LLMs. However,
providing an excessive number of examples may
degrade performance, due to the introduction of
noise in LLMs’ generation process. Notably, our
method consistently outperforms other baselines
across different values of k, demonstrating its ro-
bustness and generalizability.
Impact of Condidate Example Quantities. As
mentioned earlier, our method consists of two mod-
ules: Nearest selection and Avg Confidence re-
ranking. The selection module reduces the search
space of in-context examples to accelerate the over-
all process. Therefore, we investigate the impact

1https://huggingface.co/Qwen/Qwen1.5-32B-Chat-AWQ
2https://huggingface.co/Qwen/Qwen1.5-14B-Chat
3https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
4https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
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Figure 8: The impact of two types of example quantities
on model performance.

of the number of candidates selected by the Near-
est module. The results in Figure 8(b) illustrate
the performance with five in-context examples us-
ing the Qwen1.5-34B model. We observe that our
method consistently outperforms the Nearest base-
line, and increasing the number of candidates fur-
ther augments performance. However, when the
number of candidates exceeds 120, model perfor-
mance declines, likely due to the introduction of
noisy samples from an large candidate pool.

C Prompts

C.1 Data Generation Prompts

We show the prompts used to generate data in Table
6. Multiple slot type combinations are chosen ac-
cording to the target domain and its associated label
set in the first stage. These combinations are then
utilized to create prompt templates for the second
stage, facilitating the generation of varied synthetic
samples. In the Slot Combinations Selection, we
introduce two conditions within the prompts: "In-
clude only slot combinations that appear together
in a user query” and "Provide reasoning for your
selection”. Additionally, "Ensure all slots have
been used" is introduced to ensure combination di-
versity. Finally, we construct the final prompt by
combining some examples selected from the source
data to fully harness the few-shot capabilities of
LLMs. In the Data Synthesis, we create a Chain of
Thought (COT) prompt in conjunction with target
domain details to generate samples in two steps.
We use natural language to describe the task pro-
cess and provide examples for LLMs to learn the
relationships between certain slots and their values.
The prompt involves initially generating values for
each slot within the slot combinations, which are
subsequently used to create synthetic samples. To
prevent the inclusion of any extraneous or irrele-
vant slot values in the synthesized sample, we add
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Stage 1: Slot Combinations Selection
Task Description:
I would like you to help me select some slot combinations from a set of slot types.
Conditions:
1. The values corresponding to the slots in the combination can appear in the same user query.
2. The user query only includes the selected slots, avoid including other slots.
3. Provide the reasoning process along with the slot combinations.
In-Context Examples:
(domain): AddToPlaylist
(slot type set): music_item; playlist_owner; entity_name; playlist; artist
1. (slot types selected): playlist_owner; entity_name; playlist
1. (inference): "add sugarolly days to my list your favorite slaughterhouse" only include selected slots.
2. (slot types selected): music_item
2. (inference): "please add this this tune to the playlist" only include selected slots.
Input:
Now, given a new domain: PlayMusic. and given a new list of slot types: Slot Type Set of PlayMusic.
Please select 10 slot combinations and their corresponding reasoning processes.
Stage 2: Data Sythesis
Task Description:
First, given a selected set of slot types and a domain, you need to provide a corresponding slot value
for each slot type. Then, using these related slot values, generate a user query with a given domain.
Conditions:
1. The user query cannot contain words corresponding to slots other than the selected slot.
2. Generate samples as diverse as possible. In-Context Examples:
case1:
(domain): AddToPlaylist
(slot type combination) :artist;music_item;playlist
Fisrt, (type</res>value): artist</res>kj 52;music_item</res>track;playlist</res>te quiero
Then, (generate sample): add a kj 52 track to the te quiero playlist
Input:
Now, given a new domain: PlayMusic. and given a new slot types: A Slot Combinations.
Please help me generate 20 samples of the domain using these slot types.

Table 6: Two-stage data generation prompt.

the condition "The sentence can only contain slot
combinations of slot values.” to the prompt. In the
end, we obtain a set of generated samples for the
target domain.

C.2 Slot filling prompt
The overall prompt template, as shown in Table
7, primarily consists of three components: task
description, demonstrations, and small model pre-
diction results.
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Task description
When I provide you a list and a query, please answer with the following format:
A table containing two columns with the column headers as (slot type, slot value).
You need to identify potential slot types from the query and fill in the corresponding slot values
for each slot type from the query.
The slot types should come from the provided list, and the slot values should come from the query.
A token only has a slot type. For example,
Demonstrations
Given a query: add the song perfect to my wedding playlist.
answer:
|slot type|real slot value|
|———|—————–|
| playlist owner | my |
| playlist | wedding |

Given a query: include the dance track in the party mix playlist:
answer:
| slot type | real slot value |
|————|——————–|
| entity name | dance track |
| playlist | party mix |

... (Omit some examples)
Small model prediction results
|slot type|predicted slot value|reliability|
|———|———————|———–|
| playlist | stress relief | high |
The low reliability indicate that uncertain about the slot type.
Output
Now, I give you a list: [’music_item’, ’playlist_owner’, ’entity_name’, ’playlist’, ’artist’],
and a new query: add camille to the this is lady antebellum playlist.
Please answer:

Table 7: Slot filling prompt.
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