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Abstract

A modal dependency structure represents a
web of connections between events and sources
of information in a document that allows for
tracing of who-said-what with what levels of
certainty, thereby establishing factuality in an
event-centric approach. Obtaining such graphs
defines the task of modal dependency parsing,
which involves event and source identification
along with the modal relations between them.
In this paper, we propose a simple yet effective
solution based on biaffine attention that specif-
ically optimizes against the domain-specific
challenges of modal dependency parsing by
integrating self-loop. We show that our ap-
proach, when coupled with data augmentation
by leveraging the Large Language Models to
translate annotations from one language to an-
other, outperforms the previous state-of-the-art
on English and Chinese datasets by 2% and 4%
respectively.

1 Introduction

At a time when we find ourselves inundated with
endless streams of new information and knowledge,
being able to identify a source of information and
the confidence level with which it is conveyed is
often helpful—if not sometimes critical—for bet-
ter understanding the context behind a text or dis-
course. Modal dependency structure (MDS) (Vigus
et al., 2019) is designed with such representation
in mind, where the events and the sources (also
known as concievers') take the center stage as the
vertices of the graph, while the edges denote (1)
source of factualiy via its direction and (2) level
of certainty via its label, which is a combination
of 3 modal strengths (Full, Partial, and Neutral)
and 2 polarities (Affirmative and Negative) based
on the annotation scheme from FactBank (Sauri
and Pustejovsky, 2009).

'In what follows, ‘conceivers’ are preferred over ‘sources.’
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Figure 1: Example of Modal Dependency Graph for
the document: “May accused the couple of shoplifting.
According to her, they had not paid for their ring.”

Figure 1 shows an example of a modal depen-
dency graph for a sample document of two sen-
tences:

(1) a. May accused the couple of shoplifting.

b. According to her, they had not paid for
their ring.

An abstract root node at the top ensures that the
structure is single-rooted. Immediately below is an
abstract author node, whose presence is implicitly
presumed for every document as its creator. In gen-
eral, an MDS typically shows heavy traffic through
the author node as a principal conceiver of various
events in the document.

In the first sentence, the author states that
May’s accusation did take place without any hes-
itation. This is represented in the MDS with a
“:full-affirmative’ edge between the author
and the ‘accused’ event node. If it were later re-
vealed that May in fact never accused the couple
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(a) Second sentence: April likely declined the request.
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(b) First sentence: “April likely declined the request,” Dr. Kim said.

Figure 2: Example of Modal Dependency Tree visualization for two sentences. Orange node represents the abstract
author node of the document. Green and yellow nodes indicate the events and conceivers respectively.

of shoplifting, we may conclude that the author is
responsible for providing the false information.

The author then relays a comment made by
May in the second sentence, indicating that the
cited statement does not necessarily reflect the
author’s point of view. This form of report-
ing, wherein the author (or some conceiver) sim-
ply reiterates information from another source,
is an important phenomenon in the MDS that is
represented with a conceiver-to-conceiver triple
(‘author’ :full-affirmative ‘May’). Since
it is May who claims that shoplifting by the
couple did happen (because it is her allega-
tion) and their paying for the ring did not,
the event nodes ‘shoplifting’ and ‘pay’ are
subsequently linked to ‘May’ conceiver node
with “:full-affirmative’ and “:full-negative’
edge labels respectively.

Figure 2 illustrates this point further by com-
paring a simple statement (Figure 2a) against a
quotation (Figure 2b). In Figure 2a, the author
does not rely on any external sources; hence, the
author is the conceiver of the events ‘declined’
and ‘request’. In addition, the use of the
term ‘likely’ indicates that the author is only par-
tially certain about the ‘declined’ event, justi-
fying the assignment of the modal edge label
“:partial-affirmative.

In contrast, Figure 2b shows the same sentence
as a quotation made by Dr. Kim. It follows that the

events embedded within the quotation ‘declined’
and ‘request’ should be connected to ‘Dr. Kim’
who is the author of the quoted statement and hence
the conceiver of the said events. It is important to
note that, while April serves as the protagonist in
both instances, she is not regarded as a conceiver
because she is not cited in any capacity.

In order to obtain such a modal dependency tree?
from text, modal dependency parsing (MDP) needs
to perform a few different tasks. First, spans of
events and conceivers must be identified and la-
beled accordingly. Second, the modal relations
must be established for the identified spans by pre-
dicting the correct modal arc and edge label.

To tackle this problem, we present a simple yet
effective solution in the form of a biaffine attention
with added support for self-loop. The merits of our
approach are as follows:

* The context scope is global.

* The introduction of self-loop allows the events
and conceivers to be discovered by the same
biaffine module that also generates modal arcs
and edge labels, leading to a highly efficient
multi-tasking setup that requires a single for-
ward pass over the entire document.

* The model closely follows the logical order of
the annotation of the modal structure during

YIn general, MDS forms a tree not a graph.
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decoding, where the conceiver identification
depends on the identification of child events.

We further experiment with data augmentation
by leveraging the Large Language Models (LLMs)
to translate annotations in English or Chinese into
the other language while preserving the annotated
spans of modal nodes and edges, resulting in a
significantly increased number of training sam-
ples. Our experiments show that the proposed
approach significantly outperforms the previous
state of the art by 2% for English and 4% for Chi-
nese. The code is available at https://github.
com/umr4nlp/mdp_biaffine.

2 Related Work

Traditionally, event factuality prediction (EFP) was
seen as a classification or regression problem that
involved rule-based (Nairn et al., 2006; Lotan et al.,
2013) or statistical approaches (Diab et al., 2009;
Sauri and Pustejovsky, 2012; Lee et al., 2015;
Stanovsky et al., 2017). With widespread adop-
tion of deep learning came a surge of neural mod-
els tackling this problem, for instance based on
LSTMs (Rudinger et al., 2018), GANSs (Qian et al.,
2018) or GNNs (Pouran Ben Veyseh et al., 2019).
Yao et al. (2021) is the first work that casted EFP
as modal dependency parsing and reported base-
line results on English, while releasing the crowd-
sourced dataset which is publicly available®. This
was followed up by a prompt-based model (Yao
et al., 2022) with the first reported results on Chi-
nese MDP trained on annotations from Liu and Xue
(2023), along with an incremental improvement for
English. With the recent integration of MDS into
Uniform Meaning Representation (UMR) (Van Gy-
sel et al., 2021), the prompt-based model has also
been used as part of the UMR parsing pipeline
(Chun and Xue, 2024). This implies that improved
modal dependency parsing performance can have
beneficial downstream impact for UMR parsing.
Given the status of the prompt-based model
as the current state-of-the-art in MDP, we briefly
summarize its core setup. Here an event and its
sentence—known as prompt—is paired with some
local context as defined by the number of sentences
before, including, and after the prompt sentence.
The parser is then trained to predict the event’s par-
ent and grand-parent conceivers from the context
sentences, based on the simplifying assumption

Shttps://github.com/jryao/modal_dependency

that an event has a chain of one or two conceivers
96% of the time (Yao et al., 2021)*.

While this is a prudent approach that alleviates
the multi-tasking complexity of the parsing process
by first focusing on events whose definition is more
widely accepted and less context-dependent than
conceivers, it is susceptible to error propagation
during decoding due to its pipelined setup. Fur-
thermore, since each event requires an individual
forward pass over the local context, both training
and decoding can be slow, particularly when pro-
cessing lengthy documents with numerous event
candidates. Finally, the simplifying assumption
that enables the approach also restricts the model
from generating certain forms of modal structures,
reducing its generalization capabilities. In contrast,
our proposed biaffine parser has a simpler end-to-
end setup that requires just a single forward pass
over the entire document and does not rely on any
simplifying assumptions.

This line of approach based on the deep biaffine
scoring mainly traces its roots to dependency pars-
ing (Dozat and Manning, 2017, 2018; Zhang et al.,
2020) but has also been explored in other areas such
as NER tagging (Yu et al., 2020) and constituency
parsing (Bai et al., 2021; Chen and Komachi, 2023).
To the best of our knowledge, however, no existing
research has examined the utility of modeling the
self-loop within the biaffine-based parsing frame-
work.

3 Approach

Motivation The primary challenge in modal
dependency parsing lies in its inherently multi-
tasking nature that consists of 4 different sub-tasks.
First step is to (1) identify spans of modal nodes,
because not all tokens participate in the modal de-
pendency structure (for instance, ‘likely’ in Figure
2). Once located, these spans must be (2) labeled
as either an event or a conceiver. This is followed
by (3) arc generation for each node and (4) label
assignment for the newly created edges.

As a result, previous approaches have primarily
relied on a pipeline framework (Yao et al., 2021,
2022). Although these efforts successfully estab-
lished a strong baseline performance, they fall short
of fully capturing the complexity of modal depen-
dency parsing due to the simplifying assumptions

*This also ignores the small possibility of event-to-event
modal relations, which occurs for 2.7% of child events from
the training dataset in constructions such as “He ‘decided’ to
‘eat’)” where ‘eat’ is a child of ‘decided.’
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Figure 3: Example of Modal Dependency Parsing for the sentence from Figure 2b: “April likely declined the request,”
Dr. Kim said. Orange nodes indicate abstract nodes for (1) the author of the document, (2) the null-conceiver which

is reserved for when the conceiver is not specified.

that constrain their structural expressiveness, such
as constraining any subtree to a depth of 2.

This study is an attempt to develop a streamlined
yet comprehensive framework capable of fully rep-
resenting the modal dependency relations without
relying on any simplifying assumptions. Although
a biaffine parser is seen as an effective solution for
dependency parsing in various contexts, its ability
to fully address the complexities of modal depen-
dency parsing is only realized when support for
self-loop is incorporated. This is because while the
biaffine parser has been conventionally used to gen-
erating arcs between different tokens, the addition
of a self-loop enables it to additionally behave as a
tagger, which enables more effective handling of
conceiver node identification while eliminating the
need for a pipelined setup. As illustrated in Fig-
ure 2, conceiver identification is a highly context-
dependent sub-task that significantly benefits from
access to the overall structural information. Our
approach of training the biaffine module to be both
a parser and a tagger provides the flexibility to
leverage partially constructed parse graphs in the
decoding process that is not afforded when using a
separate tagger.

In what follows, we provide details on model
setup and architecture.

Setup Building on the fundamental assumption
that a modal dependency structure is inherently a
tree and therefore single-headed (Yao et al., 2021),
our parser employs the biaffine attention to locate
the most suitable head for each token and to label
the newly formed edges. This is a natural way
of modeling the modal arcs and relations between
different nodes—sub-tasks (3) and (4)—which is
similar to that of a traditional dependency parsing
configuration. These arcs and relation labels are
drawn on top of the tokens in Figure 3.

However, not all phrases act as events or con-
ceivers within the modal dependency structure.
This is why MDP can be understood as a form
of sparse dependency parsing, and the non-modal
tokens must be pruned first.

To this end, we introduce self-loop for every to-
ken. Since self-loops are structurally self-evident,
it is only the predicted edge label that is of inter-
est, chosen from three possible options: ‘Event’,
‘Conceiver’ or ‘None’. When a token is labeled
‘None’, it is neither an event or a conceiver and is
hence subject to be be pruned. Otherwise, the self-
loop label is used to classify between an event and
a conceiver—sub-task (2)—as seen with the edges
below each token in Figure 3.

Meanwhile, dependency structure is arguably
not the most intuitive method of representing multi-
word spans, because some arbitrary token must
be raised as a head to ensure structural integrity.
This is also an issue for MDP as an event or a
concept may extend across multiple words but must
be treated as a single node in the MDS.

We address this by assuming that the leftmost
token is the representative head in our modeling
where there are multiple words in a node’. Any
token to the right within a multi-word span should
hence be headed by the leftmost token with a spe-
cial label of ‘:span,” which triggers a special inter-
pretation during decoding for a flat structure.

The key strength of this solution lies in its con-
sistency with the single-headedness of MDS, while
facilitating the use of the existing biaffine arc gener-
ator for span identification—sub-task (1)—without
any modifications. For instance, ‘Kim’ points to
‘Dr.” in Figure 3 with ‘:span’ edge label. There-
fore, any relation to and from ‘Dr.’ should be

Our experiments indicate that raising the right-most token
instead does not produce significantly different results.
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Biaffine

Figure 4: The network architecture diagram of our ap-
proach. ‘H’ stands for the hidden state, ‘S’ stands for the
score. ‘S_ARC’ and ‘S_REL’ represent arc and relation
prediction scores between different tokens. ‘SL_REL’
is the self-loop label score.

structurally interpreted as involving the span of
‘Dr. Kim’ as a whole.

Model Architecture Our proposed model net-
work consists of two modules: (1) a document
encoder based on a pre-trained language model
(PLM), followed by (2) a biaffine module consist-
ing of two biaffine layers that predict arc presence
and edge labels respectively. Figure 4 visualizes
the network architecture of our approach.

One of the major bottlenecks faced by the docu-
ment encoder is the input length limitation imposed
by the choice of the PLMs. This is especially rel-
evant as the typical MDP text input is generally a
multi-sentence document.

We cope with this challenge by splitting a long
input sequence into smaller segments that are em-
bedded independently, before being merged to-
gether (Yao et al., 2021). As such, we find that it is
advantageous to choose a PLM with a long context
window which can thereby reduce the frequency of
such sentence fragmentation during encoding.

The contextualized embeddings from the doc-
ument encoder are first projected into arc and re-
lation hidden states by the biaffine parser, shown
as ‘H_ARC’ and ‘H_REL in Figure 4 respectively.
Then arc and relation scores ‘S_ARC’ and ‘S_REL’
are produced by the biaffine classifier that consid-
ers the arc and relation hidden states of any two
positional tokens. While typical biaffine mecha-
nism only considers two different positions, our
model also considers self-loop. Since self-loops

are self-evident edges, only the relation label needs
to be predicted. These self-loop label scores are
denoted as ‘SL_REL’ in the figure.

Formal Definition

Formally, a document d is represented as a se-
quence of tokens (tg, ..., t—1, AUTH, NULL),
where the surface tokens are followed by two spe-
cial tokens denoting the author and the Null Con-
ceiver. A Null Conceiver is an abstract node intro-
duced in cases where the conceiver is unspecified.
Structurally, it is linked to the abstract root node
but not to the author.

Let H = (ho, wees h_1, hautH, hNULL) be the
contextualized embedding output from the docu-
ment encoder for the document d. Arc and relation
scores for ¢-th token and j-th parent candidate to-
ken is obtained by two independent biaffine scor-
ers:

9;%¢ = Biaffiney (hi, h;)
;¢ = Biaffinez (hs, hj)

During decoding, the final predictions are obtained
by taking the argmax over the constrained search
space, as discussed in greater detail in the following
section:

s~ ~arc
Ji = arg max g;

J
rgl

f; = arg max Yy
v g,r yl?]’l:?”‘

The complete set of relation labels can be found in
Table 1.

Our model attempts to minimize the negative log
likelihood which is the sum of cross entropy losses:

L= ‘C'arc + L:rel

Inference

While typical applications of dependency parsing
utilize the first-order Eisner algorithm (Gormley
et al., 2015) during decoding, it cannot be immedi-
ately applied in MDP for a couple of reasons. First,
not all tokens participate in decoding and should
be ignored. Second, the presence of a conceiver
implies presence of some child node, and therefore
only events can become the terminal nodes due to
the structural constraint of MDS.

For this reason, we design a customized bottom-
up decoding that begins by first pruning the non-
modal tokens as predicted by the label of the self-
loop. Although the self-loop label also allows
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Figure 5: Sentence (“April likely declined the request.”)
augmented with special markers for events, translated
and tagged from English (src) to Chinese (tgt).

for classification of the remaining tokens as either
event or conceiver, only the event nodes are gener-
ated at this phase, because conceivers cannot not
serve as terminal nodes in MDS. It must be noted
that whenever a new node is created, we imme-
diately look to its right position(s) to detect any
incoming :span edges. If such an edge is found,
the two tokens are consequently merged into a sin-
gle node.

Then we enter a loop where every node without a
head predicts its modal head and the corresponding
relation label, with the pruned non-modal token
positions being ignored throughout. It is only at
this point that a conceiver node is created, provided
that some node attempts to generate an arc to its
position. This is in alignment with the constraint
that a conceiver node requires existence of some
child node.

This loop may be executed multiple times, since
the initial set of newly created nodes has to find
their respective heads in the next iteration. The
loop terminates when there are no remaining event
and conceiver nodes without a head. Since there
is a limited number of tokens in a document, this
decoding loop is guaranteed to terminate. Due
to the wide rather than vertical characteristics of
a typical modal dependency tree, in practice the
decoding loop generally terminates rather quickly.

In the event of unexpected errors or inconsisten-
cies, the system defaults to attaching to the author
node with ‘: full-affirmative’ edge label to en-
sure connectedness. The pseudo-code is provided
in Algorithm 1 of Appendix E.

4 Data Augmentation with LLM

Due to the challenging and costly nature of the
MDS annotation process via crowd-sourcing (Yao
et al., 2021), the number of annotated documents
has remained the same since the initial release. In

root
full-affirmative

partial-affirmative

AUTHOR] April 7 T

Conceiver Event

Event

Figure 6: Silver annotation in Chinese translated from
the English sentence: “April likely declined the request.”

an effort to artificially increase the number of train-
ing samples, we obtain silver data by leveraging
the LLMs to translate annotated examples across
languages. Throughout this process, we strive to
maintain the spans of annotated modal events and
conceivers, because the edges are automatically re-
tained as long as the source and target vertices exist
in the translation.
This is fundamentally a two-step process.

1. Translation: an LLM translates the raw docu-
ment text from one language to another.

2. Tagging: With the translation as reference,
the LLM attempts to copy over a set of special
markers from the source sentence that indicate
spans of events and conceivers.

For instance, consider a sample sentence from
Figure 2b: “April likely declined the request.” First,
the LLM translates the raw English sentence to
Chinese (“April ] §EfE4E T 15K - ). Then, in a
separate conversation context, the LLM is given
an augmented English sentence as shown in Figure
5 as ‘src’, where the two events ‘declined’ and
‘request’ are surrounded by the special markers
‘E1” and ‘E2’ respectively®. The LLM is then in-
structed to insert the same set of special markers
‘E1’ and ‘E2’ in the Chinese translation.

Figure 5 shows a successful completion of our
data augmentation pipeline, where ‘tgt’ contains
not only the correct Chinese translation but also
the special markers that denote the same events in
English. Hence, any edges in the English anno-
tation that use these events as endpoints will be
preserved. For instance, the modal edge (‘author’
:full-affirmative ‘request’) from Figure 2b
can now be mapped to (‘author’ :full-affirmative
38 3K”), since both ‘request’ and ‘1 3K’ are

%E’ is a shorthand for an event and the integer is a unique

id assigned to each annotated span. Although not present in
the sample sentence, ‘C’ is another possibility for conceivers.
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English ||| Train | Train+Silver | Dev | Test
#Documents 289 586 32 32
#Sentences 6,825 10,276 740 759
#Tokens 151,487 293,914 17,308 17,177
#Conceivers 2,344 4,056 298 296
#Events 19,541 33,025 2,307 2,168
:full-affirmative 18,425 31,101 2,205 2,077
:full-negative 800 1,172 99 89
:partial-affirmative 1,292 2,351 165 158
:neutral-affirmative 1,368 1,871 136 140
Chinese [ Train [ Train+Silver [ Dev [ Test
#Documents 237 590 30 30
#Sentences 3,187 10,996 398 366
#Tokens 79,809 284,224 10,352 10,053
#Conceivers 879 4,349 136 116
#Events 11,679 34,284 1,464 1,318
:full-affirmative 10,879 32,339 1,383 1,257
:full-negative 331 (298%) 1,242 50 (45%) 31
:partial-affirmative 919 2,435 103 101
:partial-negative 0 (26%) 26 0(5%) 0
:neutral-affirmative 429 1,994 64 45
:neutral-negative 0 (7%) 7 0 0

Table 1: Summary statistics of English and Chinese modal dependency datasets. Conceivers does not include
Author which occurs once per document. Labels does not include Depends-on which occurs once per document.
*Numbers in parenthesis in Chinese statistics denote counts of fine-grained negative values in a 6-way fine-grained

version of the corpus.

tagged by the same special marker ‘E2’ in Fig-
ure 5. Figure 6 visualizes the final annotation in
Chinese.

In practice, the LLM is instructed to translate a
document sentence-by-sentence in a series of back-
and-forths that keeps track of its previous transla-
tions. We hypothesize that access to the entire doc-
ument text, along with its prior translations, can en-
hance the translation quality by ensuring consistent
mapping of named entities across sentences. More-
over, sentence-level translation allows the model
to focus on only a limited number of tags at a time
during the tagging phase, potentially increasing
the likelihood of preserving special markers. See
Figure 8 in Appendix D for an illustration.

5 Experiments

5.1 Corpora

The parser is trained and evaluated using the En-
glish (Yao et al., 2021) and Chinese (Liu and Xue,
2023) modal dependency corpora, whose statistics
are shown in Table 1. We follow previous work on
the train/eval/test splits for both languages.
Unlike the English dataset where all of
the negative polarity labels are merged into
a single ‘:full-negative’ label (Yao et al.,
2021), Chinese dataset additionally offers a fine-
grained version with ‘:partial-negative’ and

‘:neutral-negative’ annotations, albeit only a
few in number. It is not explicitly stated which ver-
sion is used in the experiments of Yao et al. (2022).
We report results using the fine-grained version.

5.2 Data Augmentation

During data augmentation, all train, development,
and test examples from one language are combined
into a single input. The second column of Table
1 shows the summary statistics for the training
dataset that has been augmented with the silver data
from another language. The Chinese edge labels of
‘:partial-negative’ and ‘:neutral-negative’
are mapped to ‘:full-negative’ during transla-
tion to English for consistency.

5.3 Baselines

We evaluate the performance of our parser against
the prompt-based model from Yao et al. (2022).
Since the prompt-based parser does not report con-
ceiver identification scores, we attempt to replicate
their results with the default set of hyperparameters.
We observe slightly lower scores except for the test
micro F1 on Chinese. We label this row in Table 2
as ‘Prompt-ours’.

Because the choice of the PLM for English is
different between our setup and the prompt-based
parser Yao et al. (2022), we perform another ex-
periment with the prompt-based model where the
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. English Chinese
Models Split Event Conc%iver Parsing | Event Conceiver Parsing
Prompt-based Dev 93.2 - 72.7 87.4 - 65.5
Test 91.9 - 71.9 88.6 - 63.6
Prompt-ours Dev 91.1 68.6 71.7 84.6 83.5 64.1
Test 89.7 72.1 70.8 85.3 85.2 64.7
Prompt-Longformer Dev 93.0 69.7 72.4 - - -
Test 91.0 72.0 71.3 - - -
Biaffine Dev 93.0 73.1 74.5 87.2 89.1 68.6
Test 91.8 74.7 73.3 87.5 87.3 66.7
+Silver Data Dev 93.3 72.9 74.5 87.5 88.8 69.0
Test 91.5 74.2 73.5 87.9 87.4 67.3

Table 2: Experimental results showing Event and Conceiver identification and Parsing micro-F score. The highest

values are highlighted in bold. Empty values indicate unreported results.

original bert-large-cased (Devlin et al., 2019)
is replaced with the longformer-base, leading to
slightly improved results over our replicated re-
sults. These numbers are reflected in Table 2 with
‘Prompt-Longformer’ model name.

5.4 Results

Table 2 shows overall parsing results on English
and Chinese MDP in micro F-score as average
across 3 different seeds. Our approach outperforms
the prompt-based model by about 2% in English,
while the gain is even more significant with Chi-
nese at around 4%, with more noticeable gain from
data augmentation. The implementation details
as well as experimental settings are described in
Appendix B and C.

6 Analysis

For English MDP, the conceiver identification still
remains a major bottleneck as a highly context-
dependent task that may span across multiple sen-
tences. Nevertheless, the improvement in conceiver
identification by our proposed approach is evident
with at least 2% gain across the board. Since both
the prompt-based model and ours share the gener-
ally same approach of first prioritizing event de-
tection followed by conceiver identification, we
attribute the increase to the biaffine classifier as
well as the customized decoding process.

To test this hypothesis, we perform an experi-
ment with a simple decoding that does not use the
bottom-up decoding described in Section E. Rather,
we accept the self-loop label predictions as-is and
generate the nodes in a single step, which is more
akin to the prompt-based setup. We observe a slight
dip in Conceiver Identification by 0.7 and 0.3 in
dev and test sets respectively, which suggests that
our customized decoding is indeed beneficial to the
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Figure 7: Number of sentences crossed by modal arcs
in English and Chinese training corpora, with upper
threshold at 4,000. Negative values mean the head is
located in some previous sentence, while positive values
imply otherwise.

overall parsing performance.

The experimental results also show higher im-
provement in Chinese compared to English. Since
the prompt-based model consistently shows lower
Conceiver Identification scores for Chinese as well,
the earlier discussion of the efficacy of customized
decoding process is again relevant.

In fact, it is important to emphasize that our ap-
proach is fundamentally language-agnostic aside
from the choice of pre-trained language models.
This is in contrast to the prompt-based model,
where a language-specific parameter for determin-
ing the size of the context window needs to be man-
ually adjusted (Yao et al., 2021) based on the statis-
tics shown in Figure 7, showing a bigger portion of
modal heads in prior sentences for Chinese. Com-
pared to English which is more clustered around
the current sentence, it follows that the Chinese
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modal dependency parser should be able to gener-
ate comparatively long-distance edges. Indeed, on
the development set, the average number of sen-
tences crossed by the biaffine classifier is 0.2 for
English and 0.78 for Chinese. Although the prompt-
based model comes similar for English at 0.18, it
also favors generating edges that are significantly
shorter for Chinese, at 0.62.

In terms of computational efficiency’, the
prompt-based model takes about 30 minutes per
epoch during training and 5 minutes for inference
on the development and test set. The biaffine parser
in comparison is considerably faster, requiring only
10 minutes per training epoch and 2 minutes for
inference. It is also worth noting that the prompt-
based model further requires a separate training
phase for the event tagger.

7 Conclusion

This work presents a biaffine modal dependency
parser that is simple yet effective. By incorpo-
rating self-loop, our proposed approach is able to
fully and efficiently address the multi-tasking na-
ture of modal dependency parsing. We also show
that training on silver data generated by using the
LLMs to translate the annotated samples from one
language to another leads to improved performance.
The model is evaluated on the English and Chinese
datasets and in both instances outperform the pre-
vious state-of-the-art.
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8 Limitations

MDP experiments remain focused on English and
Chinese due to the limited availability of modal de-
pendency annotations in other languages. However,
with the adoption of modal dependency structure
into Uniform Meaning Representation, more and
more annotations for low-resource languages such
as Arapaho, Cocama-Cocamilla, Navajo, Sanapana

"Using the default hyper-parameters specified in both

studies, the models consume approximately same amount
of VRAM (around 10GB) on a single RTX A6000.

and potentially additional languages may be pre-
pared and released for future model fitting.

The English parsing results may not be reflec-
tive of true parsing performance on extremely long
documents. It is by pure chance that none of the
documents in the English dataset when tokenized
is longer than the maximum context length sup-
ported by the longformer which is the PLM of
choice for English. This implies that the default
encoding method of splitting a long sequence into
smaller fragments, each of which is embedded in-
dependently and then merged, needs not occur at
any point during training and inference on the an-
notated datasets in our English experiments. It
remains to be seen how the proposed approach is
able to handle extremely long documents.

The domain of the English and Chinese datasets
is limited to newswire only, where in general the
sentences are grammatically correct and logically
coherent everywhere. The model performance is
yet to be tested in other domains.
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A Corpus Details

The publicly available English dataset (Yao et al.,
2021) contains newswire annotations from various
news media sources (Yao et al., 2022). The Chi-
nese dataset consists of newswire data from Xinhua
news agency (Liu and Xue, 2023).

B Implementation Details

2020) and x1m-roberta-base (Conneau et al.,
2020) for English and Chinese, respectively. The
choice of xIm-roberta-base is inherited from the
prompt-based approach (Yao et al., 2022). The
biaffine layer implementation is based on SuPar’.

C Experimental Details

All experiments are run on a single NVIDIA RTX
A6000 GPU and each run requires approximately
3 to 4 hours with the default hyperparameters in
Table 3. The number of parameters for English is
149,450,504 that of Chinese is 278,770,441.

D LLM Prompting for Data
Augmentation

Figure 8 illustrates the sample prompting method
for obtaining silver data. The LLM model being
used is gpt-40-2024-08-06.

E Custom Bottom-up Decoding
Pseudo-code

Hyperparameter English Chinese
PLM longformer-base | xlm-roberta-base
PLM Dropout 0.1 0.1
Max. Seq. Len. 4096 512
Batch Size 4 1
Grad. Acc. Steps 4 4
Epochs 1,000 1,000
Optim. AdamW AdamW
LR Se-5 5e-5
Weigh Decay 0.01 0.01
Warmup Prop. 0.1 0.1
Arc Hidden Dim. 512 400
Arc Dropout 0.33 0.33
Rel. Hidden Dim. 128 100
Rel. Dropout 0.33 0.33

Table 3: Hyperparameters used in experiments.

We use the Huggingface® (Wolf et al., 2020)
implementation longformer-base (Beltagy et al.,

8https://huggingface.co/docs/transformers

*https://github.com/yzhangcs/parser
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Phase 1: Document Translation

$ System Prompt:
You are an expert translator. Your mission is to accurately translate the following document
< sentence-by-sentence from English to Chinese:

May accused the couple of shoplifting.
According to her, they had not paid for their ring.

$ User Prompt 1:
Translate sentence 1 to Chinese (write only in Chinese):

May accused the couple of shoplifting.

$ Assistant Response 1:

May FEIZXX RIAMS -

$ User Prompt 2:
Translate sentence 2 to Chinese (write only in Chinese):

According to her, they had not paid for their ring.

$ Assistant Response 2:

IRPEME A UEE, HATIB0R SO a3 -

Phase 2: Sentence Tagging

$ User Prompt:
You are given a sentence in English and its translation in Chinese.

Sentence in English:

May accused the couple of shoplifting.

Translation in Chinese:

May FEFEXX RIFEE] -

You are now given the above sentence in English that has been augmented with special symbols of
> the format: <E%d>, </E%d>

<E%d> and </E%d> indicate a span of an Event.

Insert the same set of special symbols (<E1>, </E1>, <E2>, </E2>) in the Chinese translation that
<« correspond to the same Event(s):

May <E1> accused </E1> the couple of <E2> shoplifting </E2> .

$ Assistant Response:

ME<E1> FBIE</E1> XX RIT<E2> MiFi</E2> -

Figure 8: Sample prompts used to generate silver annotated data in Chinese from English gold annotations. Each
‘Phase’ represents a new conversation context with the LLM. In Phase 1, the document is translated sentence-by-
sentence. In Phase 2, each translation gets independently tagged. We avoid redundancy by only showing the tagging
process for the first sentence from the sample document.
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Algorithm 1 Custom Bottom-up Decoding

1:
2:
3:
4:
S:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Input: input_doc
Output: modal_nodes_with_heads
logits <— compute_model_logits(input_doc)
pruned_nodes <— prune_non_modal_tokens(logits) // Each token treated as a node
label_event_nodes(pruned_nodes)
while True do
headless_nodes <— find_nodes_without_head(pruned_nodes)
if headless_nodes.is_empty() then
break
end if
for all node € headless_nodes do
predicted_head <— predict_arc(node, pruned_nodes)
if NOT predicted_head.is_labeled() then
label_node_as_conceiver(predicted_head)
end if
assign_head(node, predicted_head)
end for
end while
return pruned_nodes_with_heads
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