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Abstract

Large language models (LLMs) generally uti-
lize a consistent data distribution throughout
the pretraining process. However, as the
model’s capability improves, it is intuitive that
its data preferences dynamically change, in-
dicating the need for pretraining with differ-
ent data at various training stages. To achieve
it, we propose the Perplexity Difference (PD)
based Preference Curriculum learning (PDPC)
framework, which always perceives and uses
the data preferred by LLMs to train and boost
them. First, we introduce the PD metric to
quantify the difference in how challenging a
sample is for weak versus strong models. Sam-
ples with high PD are more challenging for
weak models to learn and are more suitable
to be arranged in the later stage of pretraining.
Second, we propose the preference function to
approximate and predict the data preference of
the LLM at any training step, so as to complete
the arrangement of the dataset offline and en-
sure continuous training without interruption.
Experimental results on 1.3B and 3B models
demonstrate that PDPC significantly surpasses
baselines. Notably, the 3B model trained on 1T
tokens achieves an increased average accuracy
of over 8.1% across MMLU and CMMLU.

1 Introduction

Large language models (LLMs) have shown im-
pressive performance on various tasks after being
pretrained on vast amounts of data (Touvron et al.,
2023; Dubey et al., 2024; Liu et al., 2024). As
LLMs undergo extensive pretraining, their capabili-
ties steadily improve, which influences their perfor-
mance and data preferences (Yu et al., 2024). Exist-
ing methods of uniformly sampling data throughout
the pretraining process are suboptimal because they
overlook the model’s evolving data preferences
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Figure 1: PD-based Preference Curriculum Framework.

(Wettig et al., 2024; Abbas et al., 2023; Sachdeva
et al., 2024).

Recently, some research has shifted the focus to
data influence on model capability during pretrain-
ing (Evans et al., 2024; Yu et al., 2024; Koh and
Liang, 2017; Ko et al., 2024). A typical method
named MATES considers the changing data influ-
ence on models but requires interrupting the train-
ing process to select more preferred data based on
the model’s current state, which disrupts training
continuity and stability (Yu et al., 2024). A similar
issue arises in JEST (Evans et al., 2024).

In this paper, we introduce perplexity (Ziegel
et al., 1976) difference (PD) to quantify the dif-
ference in how challenging a sample is for LLMs’
final and early checkpoints and use PD to gain
a deeper understanding of model characteristics.
We further propose a novel PD-based Preference
Curriculum learning framework, PDPC, as shown
in Figure 1. It perceives LLMs’ data preference
at any training step and uses the preferred data to
continuously pretrain LLMs without interruption,
thereby boosting their performance. To this end,
PDPC needs to solve three major challenges:

How to dynamically perceive preferences with-
out interrupting pretraining. Ideally, training
would be paused at any training step to calculate
PD using the model’s current state, allowing for
data sampling from the preference distribution like
MATES (Yu et al., 2024). However, to ensure con-
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tinuity and stability in pretraining, we propose an
offline processing method to approximate the ideal
dynamic preference adjustment. First, we calcu-
late PD for all samples offline using both the fully
trained checkpoint and an early checkpoint of the
experimental model. Then, we develop a prefer-
ence function to predict the model’s preference for
data with specific PD characteristics, enabling the
pre-organization of data according to the model’s
preferences at various training stages. Because the
data is fully arranged offline, the training of the
experimental model proceeds without interruption.

Calculating PD for the entire dataset is pro-
hibitively expensive. Typically, the sizes of ex-
perimental models and the pretraining dataset are
quite large. Training an experimental model us-
ing the entire dataset in a random sampling set-
ting is very costly. Moreover, calculating PD
values offline necessitates inferring the entire
dataset twice—using both early and final check-
points—which is extremely costly. Essentially,
the differences between various model states can
be captured by the disparity in trained FLOPs:
the early checkpoint corresponds to fewer trained
FLOPs, whereas the final checkpoint corresponds
to more. Naturally, we can approximate the FLOPs
difference by using two reference models (RMs)
with fewer parameters compared to the experimen-
tal model, pretraining them on the same data scale.
The smaller and larger RM play the roles of the
early checkpoint and the final checkpoint, respec-
tively. This approach significantly reduces both
pretraining and inference costs.

How to use PD to orderly arrange pretraining
data. Data with high PD are challenging for weak
models but well-suited for strong models due to the
increased capacity. Conversely, data with low PD
are less sensitive to model capability differences
and can be understood by both strong and weak
models. From the perspective of FLOPs, the early
stages of training an experimental model can be
seen as involving a weak, smaller model, while
later stages involve a strong, larger model. Thus,
placing high-PD data in the later training stages can
enhance the model’s ability to fit these challenging
samples, whereas low-PD data can be trained ear-
lier since they are less sensitive to model capability.
This establishes a natural curriculum learning prin-
ciple for the pretraining: begin with low-PD data
and progress to high-PD data. Following the princi-
ple, we propose an S-shape function that effectively

models preferences throughout training. Further,
to maintain diversity in each batch, we use the con-
centration of low-PD data rather than PD itself as
the output of the preference function.

By overcoming the challenges, PDPC can al-
ways perceive and use the data preferred by LLMs
to pretrain and boost them. Notably, PDPC only
arranges the given data without performing data
selection. In summary, our work has the following
contributions: (1) We propose PD to measure the
difference in the fit of strong and weak models to
samples, pointing out that high-PD data is challeng-
ing for weak models and is suitable to be arranged
in the later pretraining stage. (2) We propose a
novel PDPC framework that always perceives and
uses the data preferred by LL.Ms to train and boost
them, and ensures uninterrupted continuous train-
ing, which serves as the last data preprocessing
step. (3) Experimental results show significant per-
formance improvements over baselines. Notably,
the 3B model trained on 1T tokens with PDPC
demonstrates an average accuracy increase of 4.1%
across all benchmarks and 8.1% across MMLU
and CMMLU.

2 PD-based Preference Curriculum

In this section, we propose PDPC, which always
perceives and uses the data preferred by LLMs to
pretrain and boost them. Notably, PDPC only orga-
nizes the given data without performing selection,
which can serve as the final data preprocessing step
before pretraining.

2.1 Problem Formulation

Given a pretraining dataset D following a uniform
distribution, we aim to arrange it into a form that
better aligns with the oracle distribution O¢p,;,
which represents the ideal data distribution pre-
ferred by the model. To achieve this, we aim to
find the optimal preference function f* that ad-
justs the joint distribution of all batches { By }X_,
to closely approximate Oyp, 3.

f* = argmin Divergence (Pyz,}, O,))

K (D
s.t. UBk =D, By=f <Ik{> )
k

where P(p, ) represents the joint distribution of the
batches, and K is the total number of batches.
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2.2 PD-based Data Partitioning

Perplexity Difference (PD). We begin by intro-
ducing the concept of PD. Consider two models,
the weak model M, and the strong model My, both
trained on an identical dataset D. Given a sample
x, the PD is defined as:

_ PPLy,(2) ~ PPLy, (1)

PD(x)

PPLy (z) ’
1 o
PPLy, () = exp(—L— Zlog P(xi|x<t)),
T =1

2
where PPLyy, (x) and PPLyy, () are the per-
plexity values of the sample = calculated using
M, and M, respectively. L, denotes the token
length of the sample x, and x; represents the ¢-th
token. "*" indicates weak or strong.

PD indicates the extent to which the strong
model outperforms the weak model on a given sam-
ple. Low PD indicates that the strong model M
and the weak model M,, have a similar level of fit
to the sample x. Conversely, a high PD value sug-
gests that M outperforms M, in fitting the sample
x, implying that the sample is more challenging for
M, to learn. There are very few samples whose
perplexity in M,, is smaller than in M, accounting
for less than 0.01%, and we ignore them.

Data Partitioning. An intuitive method for data
arrangement is to sort the pretraining data by PD
from low to high. However, this method is subop-
timal. As shown in Figure 8 and 9 of Section 3.5,
data with extremely high and extremely low PD
values differ significantly. Sorting by PD creates
batches with overly homogeneous samples, lack-
ing the diversity essential for pretraining LLMs
(Sachdeva et al., 2024).

To solve this issue, we propose to partition data
into distinct parts based on mutually exclusive PD
ranges. During each pretraining step, data from
each part is mixed in varying proportions. Formally,
given a pretraining dataset D, we calculate the PD
for each data point x, denoted as PD,,. We then sort
D in ascending order based on PD,, and partition it

evenly into n parts, D1, Da, ..., Dy:
D
|Di|:|n|, Vie{l,2,...,n}, 3)

For any 7 < j, the condition holds that:

Vz € D;,Vy € D;, PD, <PD,, (4

2.3 Definition of the Preference Function

We introduce a preference function f(p) to cap-
ture the model’s preferences for different PD par-
titions at any training step. The function maps
the pretraining progress p to a proportion vector
a = [ag, 9, ..., ay], where «; denotes the frac-
tion of data from the ¢-th domain in the current
batch. The training completion rate p is defined as:
p= % where k is the current training step and K
is the total number of training steps. The function
f(p) is defined as

s.t. Zai(p) =1, ©)

which determines how the proportion of each part
changes as training progresses.

To ensure full utilization of data from all parts
by the end of the training, we establish the con-
straint fol a;(p)dp = L foralli € {1,2,...,n}.
In each training step, the current proportion vec-
tor ¢ guides the proportional selection of samples
from each part D;. These selected samples are then
combined to form a new mixed batch, which is
used for the training step.

2.4 Exploration of the Preference Function

Following the CL principle discussed in Section 1,
PDPC starts the training process using low-PD
data and gradually moves to high-PD data. To
implement this, we sort the pretraining data and par-
tition them into n parts, allowing us to explore the
model’s preference for mixing ratios of data with
different PD values at various pretraining steps. We
discuss different scenarios:

(1) When n = 1, the training process involves
randomly selecting individual samples from the
dataset for each training step.

(2) When n = |D|, each part corresponds to a sin-
gle sample, which is equivalent to performing a full
sample-level sorting of all the data.

(3) When 1 < n < |D|, each training step will in-
clude data from different parts. Finding the optimal
function f* is a complex problem that involves sub-
stantial costs.

We focus on the case where n = 2 because it
effectively captures the essential differences be-
tween low-PD and high-PD data while remaining
computationally manageable. Essentially, n = 2
partitions the data into high-PD and low-PD parts.
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To guide the offline organization of pretraining
data, We introduce a PD-based preference func-
tion f(%), which predicts the proportion of low
PD data that the model prefers at different training
steps k. However, directly optimizing the prefer-
ence function f is challenging. To solve this issue,
we propose a function search method' to approx-
imate f*. To ensure equal volumes of high and
low PD data and align with the model’s data prefer-
ences, it is crucial to choose the right function. This
function ensures that the proportion b of low PD
data matches the pretraining completion p = %,
expressed as b = f(p), and must meet specific
criteria:

Firstly, based on the CL principle, the function
f(p) should exhibit a decreasing trend, gradually
increasing the proportion of data with high PD to
raise the curriculum difficulty.

Secondly, to ensure that the total amount of data
with high PD and low PD stays equal, the func-
tion can be symmetric about the point (0.5,0.5),
satisfying f(0.5 +A) =1 — f(0.5 — A), where
A € (0,0.5).

(@) B,

Function f(p)
=
e
=
o]
=

() B,

< High PD

reference Function

Low PD

Figure 2: Left: Preference Functions and Right: a com-
parison of different data sampling methods, the regions
highlighted in green represent the preferred data.

We initially search for three representative func-
tions as candidates: the linear function f7(p), the
Z-shape function fz(p), and the S-shape function
fs(p), as shown in the left part of Figure 2. f1.(p)
represents a steady decline, while fz(p) indicates
a sudden, distinct change. To introduce a balance
between the two, we also incorporate an S-shape
function form.

fr(p) =k (p—0.5)+0.5, (6)
1—-X, ifp<0.5

= 7

fz(p) {)\7 itp> 0.5 (7N

'We also discuss an annealing-based iterative optimization
approach in Appendix B to approximate f*.

Algorithm 1 PD-based Preference Curriculum Learning

1: Input: dataset D, total iterations K, batch size NV

2: Output: trained model 6 x

3: Initialize model parameters 6o

4: Train RMs on i.i.d. subset of D

5: Calculate PD: for all samples in D using RMs

6: Partition D into 2 sub-domains A} and A%/9".

7: Explore and determir}e the form of preference function:
8 [() = Temee-osn

9: fork=0to K — 1do
10: Calculate pretraining progress p = %
11: Get the proportions vector:
12: lo1, 2] <= [f(p), 1 — f(p)]
13: Sample from the two domains to form Bj:
14: By ={x |z~ ABS}o, nU{z |z~ AWV N
15: Train the model on By, and update 0y,
16: end for

1
T 1+ exp(a(p —0.5))’

where k € [—1,0), A € [0,0.5), a modulates the
steepness of the curve.

Essentially, assuming that at step ¢ the model
prefers high PD data, traditional methods (Figure
2(a)) dilute the benefits of high PD data with less
favorable low PD data, similar to average pooling.
In contrast, PDPC (Figure 2(b)) clusters preferred
data within each batch, resembling the effect of
Max-Pooling on this data.

fs(p) (®)

3 Experiments

3.1 Experimental Setup

General Setting We train two experimental mod-
els: a 1.3B model using 100B randomly selected
tokens from the SlimPajama dataset (Soboleva
et al., 2023), and a 3B model on a bilingual dataset
containing 1T tokens, which comprises 500B to-
kens each of Chinese and English data, sourced
from domains such as books(Gao et al., 2020),
blogs(Baumgartner et al., 2020), patents(Sharma
et al., 2019), Common Crawl(Penedo et al., 2024),
and Wikipedia, similar to the Matrix dataset(Zhang
et al., 2024a). We train 100M and 700M reference
models (RMs) on an i.i.d. subset with 50B tokens
from SlimPajama for the 1.3B setting, and 100M
and 1.3B RMs on an i.i.d. subset with 500B tokens
for the 3B setting, respectively. All models were
trained using the Llama architecture(Touvron et al.,
2023) within the Megatron framework (Shoeybi
et al., 2019), utilizing the Adam optimizer. We set
the batch size to 640 and the context window length
to 8192. The initial learning rate is set to 2e-4, with
a warm-up phase of over 375M tokens. We adopt a
cosine learning rate schedule and set weight decay
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to 0.1. A full pretraining run of the 3B model on 1
trillion tokens, utilizing 512 Ascend 910B NPUs,
requires approximately 180 hours.

Evaluation We employ the Im-evaluation-
harness (Gao et al., 2021) to measure the models’
performance on the following benchmarks:
ARC-E (Clark et al., 2018), ARC-C (Clark et al.,
2018), SciQ (Welbl et al., 2017), HellaSwag
(Zellers et al., 2019) and PIQA (Bisk et al., 2020),
which include tasks like knowledge question
answering and commonsense reasoning. For
the 3B model, we add benchmarks like MMLU
(Hendrycks et al., 2020), CMMLU(Li et al., 2024),
and CEVAL(Huang et al., 2023), which cover
multi-domain knowledge and complex reasoning
tasks, presenting challenges absent in 1.3B models.
We employ in-context learning for evaluation
following QuRating (Wettig et al., 2024). Standard
accuracy is used as the final metric for all tasks.

Baselines We compare PDPC with Random and
several basic curriculum learning approaches: (1)
Random: Each batch is randomly selected from the
entire dataset, corresponding to the case of n =1
in our framework. (2) PPL: PPL directly measures
how well a model fits the data. We use two 700M
models, each trained separately on the SlimPajama
and Matrix subsets, to annotate their correspond-
ing data. (3) QuRating (Wettig et al., 2024): We
select the Education Value in QuRating as the dif-
ficulty indicator for curriculum learning. (4) Se-
quential: We fully sort the data based on PD, PPL,
and Qurating, arranging them in either ascending
or descending order.

3.2 Main Results

Table 1 and 2 present our primary experimental
results, revealing several key insights:

Effectiveness of our PDPC framework. PDPC
with n = 2 consistently outperforms all baselines,
regardless of the metric used, showing significant
performance and convergence improvements over
the baseline. Notably, the 3B model trained on 1T
tokens with PDPC demonstrates an average accu-
racy increase of 4.1% across all benchmarks and
8.1% across MMLU and CMMLU, highlighting
the effectiveness of our framework. Figure 3 de-
picts performance improvements in the 1.3B and
3B models as training progresses, with our method
significantly outperforming Random in the latter
half of pretraining. In this phase, data dominated

AVG. Score
°© 2 2 2 2 2 2 o

AVG. Score
s o o o o @

000 12500 15000 17500 20000 22501 0 50000 75000 1000001250001500001
Iteration Iteration

(a) 1B AVG. w/ steps. (b) 3B AVG. w/ steps.

MMLU Score
e o o o o
CMMLU Score
e o o o
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0326 ~\--\/"~-N'\M
& 75600 5

0000 75000 100000125000150000175
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000 75000 100000125000 150000175
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(c) 3B MMLU w/ steps. (d) 3B CMMLU w/ steps.

Figure 3: Few-shot downstream performance with re-
spect to training steps for Random and (PDPC, PD, S.).

by high PD is crucial, especially in the 3B model,
highlighting the effectiveness of transitioning from
low to high PD data, which significantly boosts
model performance and promotes emergent capa-
bilities.

The Sequential method can somewhat constrain
model performance. Sorting pretraining data by
PD from low to high Sequential-PD-Low2High
can outperform Random but falls short of the
PDPC-PD-S. strategy. This limitation arises be-
cause sorting strictly by PD reduces data diversity,
leading to homogeneity that restricts the model’s
ability to handle complex tasks. In extreme cases,
if the dataset contains duplicate samples, a com-
plete sort would likely place identical samples in
the same batch, which is detrimental to improving
pretraining efficiency.

PD performs better than other metrics in the
Preference CL framework. Comparison of the
results from Preference CL-PPL-S., Preference CL-
Qu.Edu-S., and PDPC-PD-S. shows that using PD
as a metric yields the best results, particularly on
the ARC-C and SciQ datasets. PD can accurately
reflect the relative difficulty and complexity of sam-
ples, which aligns well with the CL principle dis-
cussed in Section 1. In contrast, relying solely on
PPL or educational value may not effectively cap-
ture the differences in sample difficulty required
for this CL principle.

3.3 Ablation Study

Impact of PD calculation methods We focus on
two main factors: (1) Size of the RM: We use PD
calculated from various model combinations. (2)
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Method | Metric Order | ARC-E ARC-C SciQ HellaSw. PIQA AVG.
- - Random | 565 236 85.8 342 67.3 535

PD High2Low | 547 %% 218 871 ™ 3371 67817 5304

PD Low2High | 56,1 *** 213%7 862 34477 67677 531 %

Sequential PPL High2Low | 455 +'9 2060 7120 3037 63790 463Y72

PPL Low2High | 47.8*% 17947 727 201 P 624 460777

QuEdu  High2Low | 57277 264 7% 854% 3307 a2t 5361

QuEdu  Low2High | 568 1° 260 ™% 841t 335Y7 6791 537102

PPL SR. 56.1 ¥ 2411 87810 3394 741" 5397104

Proference CL PPL S. 56.1 *4 2640 8553 342 %0 475102 537403

Qu.Edu SR 56.7 12 249 ™3 8621 33610 669%* 5377102

Qu.Edu S. 55.5 410 248 ™% 8787 3407 6741 53974

PD SR. 56.7 10 249™ 8621 336%C 6741 53877

PDPC PD S. 57.3 1% 266" 879 337Y% 68017 5471

Table 1: Downstream tasks results on 1.3B models with 100B tokens. We report accuracy for each task, and the best
performances are marked in bold. Abbreviations: HellaSw. = HellaSwag, AVG. = Average, S.=S-shape Function,

S.R.=S-shape Reverse Function.

Method  Metric Order \ ARC-E ARC-C SciQ PIQA MMLU CMMLU CEVAL AVG.
- - Random |  68.6 33.7 946 760 277 27.5 27.2 50.8
PDPC PD S. | 697 ™ 358™' 95377 7637 358 ™ 356 ™' 361 549 ™

Table 2: Downstream tasks results for different settings after training 3B models on 1T tokens.

Choice of the RM: We use early and late check-
points from a randomly trained 1.3B model to cal-
culate PD and compare it with PD from RMs. The
experimental results, as shown in Figure 4, demon-
strate that regardless of the scale of the RM or the
calculation method chosen, the results consistently
outperform Random. This validates the robustness
of our framework regarding PD calculation meth-
ods. Additionally, PD from the 100M-700M RMs
slightly outperforms that from the early/end mod-
els, further supporting our hypothesis that approxi-
mating the early and late checkpoints of the model
with RMs is valid, as they are comparable in terms
of training FLOPS.

55.00 54.88

54.75 54.74

GLJ 54.50
S

A 54:25
(9 54.00
<>( 53.75

ssso ..5347 L.

53.25

Figure 4: Ablation on PD calculation methods.

Investigation of different preference functions
Table 3 presents the effects of the three preference
functions in Section 2.3. The S.R. function is an
explored variant of the preference function and is
symmetric to the S-shape function with respect
to the linear function. Experimental results indi-
cate that the S-shape function outperforms other
functions. Its slower initial decline compared to
the linear function and S.R. function highlights the
importance of starting with enough low-PD data
and gradually introducing high-PD data to enhance
performance. The Z-shape function, which uses
only low-PD data initially and high-PD data later,
slightly outperforms Random. The linear, Z-shape,
and all S-shape parameter settings outperform Ran-
dom, confirming the robustness of our framework.

3.4 Analysis

Loss Analysis We sample 500M tokens from
SlimPajama as test set to compare test loss with
Random on the 1.3B setting. Figure 5(a) shows
that PDPC'’s test loss initially declines slowly, then
rapidly decreases, achieving a lower loss than
Random by incorporating higher PD data later
in training. The S-shape function effectively helps
to minimize loss. Additionally, Figure 5(b) demon-
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Function type H.P. | ARC-E ARC-C SciQ HellaSw.  PIQA AVG.
Random - 56.5 23.6 85.8 342 67.3 535
Z-shape - 55.6 %% 236 " 862™* 338%* 689 1° 5361

Linear - 55570 23910 g77 ™Y 340 0 73 %0 5377102
a=2.5 5717 248™%  876™% 340'? 67577 5427
S-shape a=5.0 5750 260 ™ 877 ™Y 343 674 s46™!
a=75 564 254 872 ™ 342 0 689 ™0 5447
a=10.0 5737 26670 879™' 337 6807 5477

Table 3: Downstream tasks results for different preference functions. We report accuracy for each task, and the best
performances are marked in bold. Abbreviations: H.P. = Hyper-parameters.

--v‘"'"'V"*—'"T\'},’"‘f;v Lh J«La MHMJMJM
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aaaaa

(a) Relative loss vs. Random.
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(
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(d)3B gradient norm w/ steps.

(c) Training loss vs. Random.

Figure 5: (a) Relative test loss and (b) gradient norm
during model training of 1B model. (c)Training loss
and (d) gradient norm during 3B model training.

strates that our method stabilizes the gradient norm,
ensuring smoother model convergence. In the 3B
model experiments (Figure 5(c) and 5(d)), the S-
shape function significantly outperforms Random.
It accelerates early loss reduction, speeds up con-
vergence, and achieves a lower final loss.

PPL Distribution of low-PD and high-PD data
As shown in Figure 6, examining the perplexity
distribution across data with varying PD values
reveals that samples with low PD exhibit lower
perplexity. This observation aligns with the trends
illustrated in Figure 5c, where training with low-
PD data leads to a rapid decrease in training loss
during the initial stages, providing the model with
a clear direction for gradient optimization. Notably,
even when handling with high-PD data in later
stages, the model maintains steady loss reduction,
ultimately achieving a minimized training loss.

Spearman correlation coefficient of PDs from
different RM sizes We evaluate the Spearman
correlation coefficients between different PD types,

o

005
o035 Low PD
2030 High PD o

0.025

Low PD
High PD
0.020
0015 002
0.010
001
0005 || |
oo LIl vl I
I 10 20 30 a0 50 0 [ pY) 20 30 0

50 60

(a) PPL of 100M RM. (b) PPL of 700 RM.

Figure 6: PPL distribution of low-PD and high-PD data.

as shown in Figure 7, and find a strong correlation
among PDs derived from RMs of varying sizes,
which indicates calculating PD with smaller RMs
produces results consistent with larger RMs, opti-
mizing computational resources.

1.00
0.75
PD (100M-700M)
0.50
0.25
PD (100M-1.3B) 0.00

—-0.25
-0.50
PD (700M-1.3B)
-0.75

-1.00

Figure 7: Spearman correlation coefficient of PDs from
different RM sizes.

3.5 Case Study

Data Source Distribution Our analysis of 25M
texts from Slimpajama (Soboleva et al., 2023) re-
veals significant differences in distribution and se-
mantics between high-PD and low-PD data. High-
PD data mainly comes from Wikipedia and Com-
monCrawl, while low-PD data is sourced from
arXiv and GitHub, as seen in Figure 8. The signif-
icant performance improvement of PDPC in later
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stages is largely attributed to the higher proportion
of high-quality data from sources like Wikipedia,
which primarily appears in high-PD data and is less
prevalent in low-PD data.

(a) Normalization along do- (b) Normalization along PD

mains. partitions.

Figure 8: Data distribution across different sources.

To understand the semantic structure of the data,
we use T5 (Raffel et al., 2023) to generate dense
vector representations of texts collected in two
ways: (a) uniformly from different PD partitions,
and (b) from extreme PD intervals (top/bottom
10%) after sorting. We then apply t-SNE for di-
mensionality reduction. Figure 9 illustrates the
semantic visualization of the data points. Uniform
sampling results in high and low PD data being
evenly distributed in semantic space, indicating
semantic diversity. In contrast, extreme PD sam-
pling leads to distinct semantic spaces, explaining
the suboptimality of Sequential-PD-Low2High, as
it may result in a lack of data diversity in some
batches during training, thereby affecting model
performance.

Data Quality Distribution We use 4 raters from
QuRating(Wettig et al., 2024) to assess data quality.
Figure 10 shows consistent quality distributions in
both low-PD and high-PD parts, ensuring uniform
quality throughout the pretraining process and pre-
venting the model from learning from lower-quality
data at any stage.

Stability of PD We evaluate the Spearman cor-
relation coefficients between different PD types
(as shown in Figure 7) and find a strong corre-
lation among PDs derived from RMs of varying
sizes, which indicates that PD is a relatively stable
metric. Calculating PD with smaller RMs yields
results consistent with larger RMs, saving compu-
tational resources. Furthermore, larger size discrep-
ancies among RMs result in broader PD distribu-
tions, which enhance data differentiation (detailed
in Figure 12 of Appendix C.2). This finding is
supported by ablation tests, which show that PD
calculations using models ranging from 100M to

High PD
60
75 - * LowPD
. . 4

(a) Uniform sampling. (b) Extreme sampling.

Figure 9: Analysis of semantic distributions.
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Figure 10: Distribution of low-PD and high-PD data
across different quality dimensions.

1.3B yield the best results. Additionally, PD main-
tains a consistent distribution across domains. For
instance, the PD between 100M and 700M models
generally appears to follow a normal distribution
with an approximate mean of 0.27. Partitioning
and organizing data using PD ensures that the data
at each training step does not skew towards specific
sub-domains, allowing the model to encounter a
diverse range of data throughout the entire training
process.

Semantic Properties Analysis To explore the se-
mantic features of high-PD and low-PD data, we an-
alyze 1,000 samples randomly sampled from each
part using 10 criteria focused on semantic features.
These criteria encompass polysemy, specialized
terminology, cultural context, logical reasoning,
humor, ethical dimensions, intricate sentence struc-
tures, scientific concepts, emotional nuances, and
background knowledge. Each criterion is clearly
defined for GPT-40 to assess with "yes" or "no"
responses. More details about the prompt can be
found in the Appendix C.4. Figure 11 shows that
PD is independent of other linguistic features. Par-
titioning and organizing data with PD maintains di-
versity in semantic properties, ensuring that model
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Figure 11: Semantic properties differences of low-PD
data and high-PD data.

performance is not restricted by data homogeneity.

4 Related Works

Data preprocessing is crucial in LLM pretrain-
ing, ensuring dataset quality and integrity. Tradi-
tional methods use expert-crafted rules to filter low-
quality data and remove duplicates (Raffel et al.,
2020; Rae et al., 2021; Laurengon et al., 2022; Com-
puter, 2023; Penedo et al., 2024; Duan et al., 2025).
Enhanced approaches leverage target data sources
or proxy models for curation (Wenzek et al., 2020;
Xie et al., 2023; Marion et al., 2023). Automated
data selection using classifiers is gaining traction;
for example, Du et al. (2022) employed logistic re-
gression to evaluate data quality, and other studies
have developed sophisticated scoring mechanisms
(Zhang et al., 2024b; Sachdeva et al., 2024). QuRat-
ing (Wettig et al., 2024) uses multiple raters to as-
sess data contributions. Curriculum Learning (CL)
complements these efforts by organizing training
data from simple to complex, improving learning
efficiency and generalization (Forestier et al., 2022;
Soviany et al., 2021). In NLP, CL enhances mod-
els, such as in word embeddings (Collobert and
Weston, 2008) and neural machine translation (Pla-
tanios et al., 2019). Recently, CL’s application in
LLM pretraining is also growing (Wu et al., 2024).

5 Conclusion

In this paper, we propose PDPC to address the limi-
tations of consistent data distribution in pretraining
LLMs. PDPC perceives the models’ preferences
and utilizes different, model-preferred data as the
models’ capabilities improve to enhance their per-
formance. We introduce PD as a data metric and
incorporate the preference function based on PD
to predict data preferences, enabling the offline

organization of data and ensuring uninterrupted
pretraining. Experiments show that PDPC sig-
nificantly outperforms the baselines, with the 3B
model achieving an average improvement of 8.1%
over Random on MMLU and CMMLU.

6 Limitations and Future Works

Exploration of additional PD partitions This
study primarily focuses on the scenario where
n = 2, analyzing concentration mixing curves and
systematically blending two subsets with higher
and lower PD in accordance with training progres-
sion. However, we have not yet explored dividing
the training data into more than two subsets to as-
sess whether further performance enhancements
are attainable. In future research, we plan to in-
vestigate cases where n > 2 and develop novel
methodologies for addressing learning curves.

Iterative update of learning curves We deter-
mine the S-shaped learning curve through func-
tional exploration and use it as the basis for arrang-
ing the data sequence to train the model. In fact,
we can also start from the newly trained model,
re-explore new learning curves, and iteratively up-
date our curriculum learning path. Optimizing the
learning curve through multiple iterations could be
one of our future research directions.
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A Ethical Considerations

Due to the influence of training data, LLMs are
prone to generating untruthful or socially harmful
content. We aim to mitigate this issue by enhancing
the reliability of model training and the model’s
final performance through the proposed training
data adjustment framework. Additionally, training
LLMs incurs substantial time and financial costs.
Therefore, exploring ways to maximize the effi-
ciency of training data utilization will be key to
addressing this problem and can also contribute to
reducing global carbon emissions.

B Preliminary Exploration of Iterative
Optimization of Preference Functions

When employing a grid search methodology, the
size of the solution space scales as n” , where T rep-
resents the number of training steps. Consequently,
an increase in the number of parts n results in an
exponential expansion of the solution space.

In Section 2.3, we introduce a curriculum learn-
ing method that partitions pretraining data into 2
parts and identifies the S-shape preference function
through theoretical analysis. This method is simple
and efficient. However, in resource-rich scenarios,
we also offer a more precise approach to simu-
late the model’s preferences at different pretraining
stages, as shown in Algorithm 2. Specifically, after
using the discovered preference function to guide

21191


https://arxiv.org/abs/1911.06849
https://arxiv.org/abs/1911.06849

the model’s pretraining, we conduct annealing ex-
periments on checkpoints from different stages to
explore the model’s preferences for data mixing ra-
tios. Based on these preferences, we fit the model’s
preference function to guide the next round of pre-
training. This process is iterated until the model’s
performance converges.

B.1 Proportion Preference Annealing
Experiment

In this subsection, we aim to systematically explore
the model’s preference for data mixing ratios based
on PD at different pretraining stages. This process
is crucial for understanding the dynamic changes in
model preferences during the pretraining process
and provides empirical evidence for optimizing
curriculum learning strategies.

Firstly, we construct the dataset required for the
annealing experiment. Based on the median of PD
values, samples are divided into two parts: low-
PD data and high-PD data. We create 11 different
annealing datasets where the proportion of low-
PD data takes values of 0%, 10%, 20%, ..., 100%.
To enhance data diversity, each dataset is supple-
mented with 30% of samples that share the same
distribution as the pretraining data, and the mixed
samples remain consistent across all datasets. This
design ensures the robustness and comparability of
the experimental results.

The annealing experiments are conducted at var-
ious stages of model pretraining to evaluate the
model’s preference for data mixing ratios at differ-
ent training progressions. We perform experiments
on checkpoints from 8 pretraining stages, corre-
sponding to pertraining progress of 0%, 12.5%,
25%, 37.5%, 50%, 62.5%, 75%, 87.5%, and 100%.
At each checkpoint, we evaluate the model using
all 11 annealing datasets and record the model’s
performance across different mixing ratios.

By conducting annealing experiments at check-
points throughout the pretraining stages, we obtain
a series of preference data points (p, b), where p
represents the pretraining progress, and b denotes
the model’s preference for the proportion of low-
PD data at that stage. Specifically, for each stage p,
b is defined as the proportion of low-PD data that
optimizes model performance, i.e.,

= arg mﬁax/\/l(ﬁ), )

where M(f3) denotes the comprehensive perfor-
mance metric of the model on the annealing dataset

Algorithm 2 Iterative Optimization of Preference Func-
tions

1: Input: Pretraining dataset D, initial preference function
f(p), termination threshold €
: Output: Iteratively trained model 0 x
: while not converged do
Partition D into 2 sub-domains A%% and A}}fgh.
Construct the annealing dataset D; with the proportion
of low-PD data set to 3;:

6 Bi € {0%,10%, . ..,100%}
7 for p in {0%,12.5%, ...,100%} do
8 Retrieve the model checkpoint 6,
9 Evaluate model performance M, (c) on {D;}i24
10 Record preference b, = arg max. My(c)
11 end for
12 Use PCHIP to fit b = f(p) from data points (p;, b;)
13: if change in f(p) between iterations < e then
14: Break
15: end if
16 fork=0to K —1do
17 Calculate pretraining progress p = %
18 Get the proportions vector:
19 [061, 052] — [f(p)7 1- f(p)]
20 Sample from the two domains to form Bj:
21: Br = {32 ~ Alpog}al.]\/ U {LE ~ A}If-,zj%h}QQ.N
22: Train the model on By, and update 60,
23: end for

24: end while

with the proportion of low-PD data .

In our study, to fit the changes of preference of
LLMs during pretraining, we employ the Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP)
method. Given experimental data points (p;, b;),
the PCHIP method constructs local cubic poly-
nomials to ensure monotonicity and smoothness
within each interval. Specifically, for each interval
[Di, pi+1), PCHIP generates a cubic polynomial:

Si(p) = ai(p—pi)* +bi(p—pi)* +ci(p—pi) + di,

(10)
where coefficients a;, b;, ¢;, d; are determined by
satisfying interpolation conditions, derivative con-
tinuity, and monotonicity conditions. These condi-
tions ensure that the fitting curve not only passes
through all data points but also maintains mono-
tonicity within each interval, preventing overfitting.

We apply the interpolation function to a uni-
formly distributed set of points from O to 1 to obtain
a continuous function curve of concentration pref-
erence b as it varies with pretraining progress p.
We constrain the values of the fitted curve between
0 and 1. This method effectively captures the trend
of model preferences for datasets at different pre-
training stages, providing a reliable foundation for
subsequent analysis.
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B.2 Iterative Curriculum Learning

After completing the proportion preference anneal-
ing experiment and successfully fitting the prefer-
ence function b = f(p), we apply this function to
optimize curriculum learning strategies, guiding
the pretraining process of the model. Specifically,
based on the fitted function f(p), we dynamically
determine the optimal proportion b of low-PD data
during training according to the current pretraining
completion p.

However, it is important to note that the integral
of the fitted preference function over the interval
[0, 1] may not equal 0.5. This implies that, under
this configuration, the amounts of low-PD and high-
PD data used may not be equal. To ensure the
reasonable utilization of all data, we calculate the
integral of the function over [0, 1] to determine the
quantile threshold for dataset division. The specific
formula is:

1
/0 f(p)dp = o (11)
where « guides to adjust the data allocation ratio.

After pretraining is completed, we conduct the
proportion preference annealing experiment again
to obtain updated preference data points (p;, b;),
and refit the preference function f(p) based on
these data. This process continues iteratively un-
til the following termination condition is met: the
change in the preference function between two con-
secutive iterations is below a predefined threshold.
This method ensures that the model’s data prefer-
ence is precisely adjusted and optimized.

C Experimental Details

C.1 Computational Efficiency Analysis

In our experiments, computational efficiency dur-
ing the pretraining stage remained consistent across
methods. The main differences in computational
cost arise from the additional steps required be-
fore pre-training, specifically the training of raters
or RMs, as well as the associated data labeling
procedures. We estimate the computational cost
of QuRating (Wettig et al., 2024) and our method
based on scaling laws (Rae et al., 2021), as summa-
rized in Table 4.

Method FLOPs Major Components
QuRating 2.6 x 10?2 Rater training + full-data inference
PDPC 6.7 x 10%0 RMs training + PPL inference

Table 4: Computational cost before pretraining.

QuRating requires one forward pass and one ad-
ditional backward pass for each comparison sample
during rater training, beyond standard pre-training.
The training set consists of 500K samples, each
with 512 tokens. After rater training, a single in-
ference pass over the entire 100B-token dataset is
performed to generate difficulty scores. According
to scaling laws (Rae et al., 2021), the total compu-
tational cost is approximately 2.6 x 10%° FLOPs.

PDPC involves training two RMs—of sizes
100M and 1.3B—on a 50B-token subset. Both
models then perform PPL inference over the full
100B-token dataset. The total estimated computa-
tional cost amounts to approximately 6.7 x 10%°
FLOPs. Although PDPC incurs higher computa-
tional cost, this additional cost is justified by its
substantial gains in downstream performance, as
demonstrated in our experiments.

C.2 PD distribution across different domains

As illustrated in Figure 12, large size discrepan-
cies among RMs result in broader PD distributions,
which enhance data differentiation. This finding is
supported by ablation tests, where the 100M-1.3B
PD calculations yielded the best results. Addition-
ally, PD maintains a consistent distribution across
domains. This stability makes PD a reliable metric.
Organizing training data by PD ensures it does not
skew towards specific sub-domains, allowing the
model to encounter diverse data at every stage.

C.3 Detailed performance on the benchmarks

In this section, we explore the detailed performance
across various benchmarks. Figure 13 illustrates
how these metrics evolve during training. We com-
pare the performance of Random and PDPC-PD-S.,
across pretraining iterations.

Our experiments involved training a model with
3 billion parameters on a dataset containing 1 tril-
lion tokens. This large-scale training setup effec-
tively demonstrates our approach’s superior perfor-
mance. The results highlight the gains in accuracy
and performance achieved by our method, showcas-
ing its clear advantages over Random. We affirm
the potential of the PDPC-PD-S. methodology in
enhancing model performance, particularly when
faced with diverse and challenging benchmarks.
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Figure 12: PD distribution across different domains.
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Figure 13: Few-shot downstream performance on various benchmarks with respect to pretraining iterations for
Random and PDPC-PD-S.. We train a 3B model over 1T tokens, demonstrating superior performance with our

approach.
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C.4 Prompts for Case Study

The prompt and specific rules used in Section 3.5 to analyze the linguistic features of data across different
PD intervals are as follows.

Prompts for Property Recognition

You are a language model training data annotator. Your task is to identify whether the given text
possesses the following characteristic: {Property}

The text to be annotated is:
{text}

Please determine whether the given text possesses this characteristic according to the above
rules. The output format should be "Because..., my answer is 'X"." where X must be either "yes"
or "no." You should remain objective and refrain from adding any further comments after
making your choice.

{Property} is from one of the following rules:

Rules for Property Recognition

1. Does the text contain polysemous words? Polysemous words may make understanding more
difficult.

2. Does the text use specialized terminology? Specialized terminology may require specific
domain knowledge to understand.

3. Does understanding the text require specific cultural background knowledge? Cultural
background dependence may increase the complexity of understanding.

4. Does the text require logical reasoning to understand? Logical reasoning adds depth to
understanding.

5. Does the text contain elements of humor? Humor may affect the way the text is understood.
6. Does the text explore ethical or moral issues? This may increase the depth of thought.

7. Does the text use complex sentence structures? Complex sentence structures may increase the
difficulty of understanding.

8. Does the text contain scientific or technical concepts? These concepts may require specific
knowledge to understand.

9. Does the text express obvious emotional tones? Emotional tones may affect the understanding
of the text.

10. Does understanding the text require additional background knowledge? Background
knowledge requirements may affect the comprehensibility of the text.
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D Case Study

Table 5: Samples are divided into 10 PD quantiles, with two samples representing each quantile.

0-10%

Sample 1: The need to practice good self-care doesn’t change in this working environment, but how you accomplish this
goal might. Much of Arel’s own self-care regimen needed to be adjusted."I was used to weekly massage and monthly
chiropractic care. That was gone," she explains. "I am used to runs and yoga and time to meditate in complete silence.
That was gone, too." ...

Sample 2: 1 have to ask you, why’d you—wha—wha-why are you peeing right here?Creepy Guy: What?Kumar: I mean...
why’d you pee right next to me when you could like, choose that bush, or—?Creepy Guy: Well, this bush looked like I
should pee on it. Why are you peeing on it?Kumar: Well, no one was here when I chose this bush.Creepy Guy: Oh, so
you get to pee on it and no one else does? Huh?Kumar: ...

10-20%

Sample 1: boolean insertventas() String sql "INSERT INTO ventas (id_venta, venFechaventa, venld_cliente, venldad-
ministrador, venTotalventa) VALUES (NULL, *" + vent() "*, " clasu.getld_usuarios() "’, ’1’, *" + pnlProductos.totall +
"”)"; try con cn.getConnection(); ps = con.prepareStatement(sql); ps.executeUpdate(); return true; catch (SQLException
ex) Logger.getLogger(LogicaSql.class...

Sample 2: In terms of providing shorter stay parking, Bell Street multi storey car park is identified as a long stay car
park, and the tariffs are so designed to encourage the use of the facility by all day / half day parkers with more flexible
tariffs available at other car parks and the on street spaces around the vicinity allow for parking for up to one hour.I have
commented that there is no short term (30 minutes to 2 hour) parking available at the West Bell Street multi-storey car
park and ...

20-30%

Sample 1: Maybe it just sagslike a heavy load. Or does it explode? by Langston HughesIn 1849, Elizabeth Blackwell
became the first woman to graduate from a U.S. medical school in N.Y.In 1864, Rebecca Lee Crumpler became the first
black woman to graduate from a U.S. medical school in New England.In 1915, women represented approximately 5% of
the physician workforce in the U.S.In 1983, women represented approximately 1/3 of U.S. medical school matriculants

Sample 2: FILED UNDER SEAL PURSUANT TO PROTECTIVE ORDER rise to a direct infringement claim against
it. See, e.g., Akami Techs., Inc. v. Limelight Networks, Inc., 797 F.3d 1020, 1023 (Fed. Cir. 2015) (noting entities are
liable for performance they control). The evidence further shows that Badoo Software Limited and Badoo Limited are
also intimately involved in Badoo Trading’s creation and ownership of the infringing Bumble application...

30-40%

Sample 1: ... ] myself should be a castaway. Young’s Literal: but I chastise my body, and bring it into servitude, lest
by any means, having preached to others — I myself may become disapproved.As noted earlier, Paul now applies the
example from the Greek sports arena directly to himself ("I discipline... I myself") and does so that he might present
himself as an example or model for other believers to imitate (cp 1Co 4:16, 11:1, 1Th 1:6, cp Heb 6:12, He 13:7, 3Jn
1:11)...

Sample 2: ... (B) of from about 0.1 to about 10.0% w/v of a bioadhesive polymeric stabilizer selected from the
group consisting of:(i) polyethylene-polypropylene oxide tri-block co-polymers of the formula;(polyethylene oxide)a
-(polypropylene oxide)b -(polyethylene oxide)c wherein PA4 a is 46, 52, 62, 75, 97, 98, 122, or 128; PA4 b is 16, 30, 35,
39,47, 54, or 67; and PA4 c is 46, 52, 62, 75, 97, 98, 122, or 128;(ii) polyvinyl alcohol,(iii) polyvinyl pyrr......

40-50%

Sample 1: ... as foreigners seem to have trouble believing about the trees. A second year passed before the fruit split
open, and I came out, and several siblings, with hair like Sapham and wings like Pham, and we have no gender because
we are not animals but fruit and we like to sing, too, and we like to fly, and we like to be loyal, and we like to love. The
tree opened up and flew away and when it was done only twigs and a few blue leaves remained, and then they blew away,
too, and we were all born, and ready to live...

Sample 2: ... She had a World Series poker face, and it never slipped. He wondered if she’d had a plan of her own, given
how long she went without looking rattled. Maybe she assumed he was in Lenny’s corner. Maybe she’d been lining up a
double hit.Looking at it now though, it surprised him, how easily he’d committed to killing Lenny. Not that he regretted
it, but clearly he was risking fatal penalties, stepping in on a Garcia job and smoking one of their guys. He could live
with the risk, but he’d never thought about it at the time...

50-60%
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Table 5: (continued)

Sample 1: "We had him just where we wanted him—but it’s a fine line." Were they talking about him? They must be. Or
was it just arrogance to think that? "I really don’t see what has changed," Cheng Li said. "If anything, we’re closer to the
result we want." Connor felt his head begin to pound. If they were talking about him, what did this mean? Had they had
something to do with what had happened to Grace? He remembered in a flash Grace saying that Cheng Li had known
her plan...

Sample 2: ...in which, I suspect, the most diverse directions of my work will come together.Added to this is an external
incentive. Next year Toledo, I hear, is to be the scene of a big Greco exposition: not only would I like scrupulously to
avoid this occasion, I fear that this hitherto still so uninterrupted earthly constellation, which is Toledo, will after this
congestion be left changed, popularized, so that this is almost the last moment for surprising it in its remoteness.Now it
goes against me, dear friend, to give in to this important decision...

60-70%

Sample 1: ... The stringy, yet short, dark-skinned Mawikizi returned the salute with a smile. "I pulled some serious
strings to haul you out here this quick, Keyes." He held the door open for Keyes, and it banged shut behind them once the
lieutenant stepped through. "Walk with me." The rough rock-tunneled corridor stretched out in front of them. Mawikizi
led Keyes down past offices, shouldering past privates and officers who stood to attention as he walked by. Keyes glanced
oft down a subcorridor, seeing barracks in the distance...

Sample 2: ... The United States District Court (federal) hires court reporters for its courts, including those within New
York State. No test is required. When vacancies occur, announcements for experienced reporters are posted in places such
as the NYSCRA website. Reporters who meet stated criteria are told how to apply. Selected candidates are rigorously
interviewed for appointment to this important judicial arena. Realtime certification has become a prerequisite for most
federal court reporting positions...

70-80 %

Sample 1: ... For example, though the Gaon railed against the potentially negative effects of synagogue attendance, it is
obvious that women did go to the synagogue. Few shared his jaundiced view, though others did point out the possible
pitfalls. Similarly, the Gaon’s horror at the prospect of his daughters strolling in the street could not be a guide for the
many women who spent their days pursuing their family’s livelihood in the marketplace.Beyond the sphere of ritual
behavior, a woman was expected to fulfill a religious role analogous to her social function and reflecting her status in
society—that is, woman as religious facilitator...

Sample 2: ... Assuming that the amplitude is larger than b’ the switching time is determined by the frequency
sweeping rate o. Once the magnetic moment is captured intoautoresonance, its nonlinear precession frequency is locked
to the instantaneous excitation frequency f(t) = fo + at (remember that o < 0).If we define the switching time 7 as
the time it takes for the moment to cross the energy barrier and knowing that the frequency vanishes atthe top of the
barrier. At the top of the energy barrier, the precession reverses from counter-clockwise toclockwise...

80-90%

Sample 1: ... The manipulation and processing of stereo image sequences demand higher costs in memory storage,
transmission bandwidth, and computational complexity than of monoscopic images. This chapter investigates scenarios
for cost reduction by using reversible watermarking. The basic principle is to embed some data by reversible watermarking
instead of either computing or storing/transmitting it. Storage and/or bandwidth are reduced by embedding into one
frame of a stereo pair the information needed...

Sample 2: .. Rosengarten pitched the third and fourth innings and Guillozet closed it out. Barhorst finished 2 for 2 at the
plate. The Tigers tied in a nonconference game on Monday in Covington. Jackson Center scored two runs in the top of
the seventh but Covington scored four runs in the bottom of the inning to tie it. The Tigers scored two runs in the third in
three in the fourth, but the Buccaneers scored five in the fifth to tie it 5-5. Jackson Center took the lead with two runs in
the sixth. Jackson Center had 10 hits and five errors while Covington had three hits and three errors...

90-100%

Sample 1: ... In fact, it might be fair to say that in this member of an inferior race, there were as many animal
characteristics as human ones, but they were gentle and caressing animal ways. He had nothing of the wild animal in
him, but rather the physiognomy of a good and faithful dog, like a courageous Newfoundland dog, who can become
man’s friend and not just his companion. Indeed, he came at the sound of his name, like one of those devoted animals, to
rub himself against the master whose hand gripped his own...

Sample 2: ...the whole world has transformed right into a Global City. Details is passed into every corner of the world
within minutes. This raising appeal gave rise to numerous information as well as material organizing websites on the net
.Wpengine deals pay as you go August 2018 Web holding service is a solution which enables the companies as well
as individuals to put information and web content online. . It has many kinds and also groups. Following are its main
categories. Wpengine deals pay as you go August 2018 Exactly what is the objective of web organizing...
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