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Abstract

Grammatical Error Correction (GEC) involves
detecting and correcting the wrong usage
of grammar. While large language models
(LLMs) with in-context learning (ICL) capa-
bilities have shown significant progress on var-
ious natural language processing (NLP) tasks,
their few-shot performance on GEC remains
suboptimal. This is mainly due to the challenge
of retrieving suitable in-context demonstrations
that capture error patterns instead of semantic
similarity. In this paper, we demonstrate that
LLMs can inherently capture information re-
lated to grammatical errors through their in-
ternal states. From these states, we extract
the Grammatical Error Representation (GER),
an informative and semantically neutral encod-
ing of grammatical errors. Our novel GER-
based retrieval method significantly boosts per-
formance in ICL settings on multilingual GEC
datasets, improving the precision of correction.
For high-resource languages, our results on
8B-sized open-source models match those of
closed-source models such as Deepseek2.5 and
GPT-4o-mini. For low-resource languages, our
F0.5 scores surpass the baseline by up to a fac-
tor of 1.2. This method provides a more precise
and resource-efficient solution for multilingual
GEC, offering a promising direction for inter-
pretable GEC research.1

1 Introduction

Grammatical Error Correction (GEC) is an impor-
tant research field in natural language processing
(NLP), as it requires language models to under-
stand the syntax, semantics, and pragmatics un-
derlying the subtle structures of natural sentences
(Bryant et al., 2023). Initially considered a spe-
cific case of machine translation (Yuan and Briscoe,
2016; Junczys-Dowmunt et al., 2018), GEC has

*Corresponding author
1Code is publicly available at https://github.com/

viniferagy/GER.

Input: She has swim for 14 hours. 
Prediction: She has swum for fourteen hours.

Input: 
John has 
traveled for 
about a week.
Label: 
John has been 
traveling for 
about a week.

Input: 
Legend with 
a history of 
500 years
Label: 
A legend with 
a history of 
500 years

Input: She has swim for 14 hours. 
Prediction: She has been swimming for 14 hours.
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Figure 1: A minimal working example demonstrating
the workflow of representational retrieval. Given an
erroneous input with predictions containing both under-
correction (marked in red) and over-correction (marked
in blue), we first transform the error information de-
tected by the model into the Grammatical Error Rep-
resentation (GER). Then, we retrieve GER-adjacent
demonstrations from the error database, which exhibit
error patterns similar to those in the input. These demon-
strations guide the model to make more precise correc-
tions and alleviate over-corrections.

evolved with two dominant approaches. Text-
to-text methods (Katsumata and Komachi, 2020;
Sun et al., 2021; Ingólfsdóttir et al., 2023) con-
struct pairs of erroneous input and corrected out-
put sentences and train encoder-decoder models,
while text-to-edit approaches (Stahlberg and Ku-
mar, 2020; Omelianchuk et al., 2020) rely on the
encoder’s capabilities to identify errors and make
corrections.

As Large Language Models (LLMs) come to
prominence, they have achieved considerable re-
sults in GEC (Maeng et al., 2023; Zeng et al., 2024).
However, LLMs that are not specifically adapted
for GEC tasks face two main challenges: mis-
alignment and over-correction (Loem et al., 2023).
These models often produce corrections misaligned
with human-annotated labels, and they may over-
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correct error-free parts, rewriting them into more
fluent forms. This behavior violates the Minimum
Edit Distance principle (Nagata and Sakaguchi,
2016) that humans are accustomed to following
when correcting grammatical errors.

Since few-shot inference is widely used to bridge
alignment gaps in downstream tasks through in-
context learning (ICL), LLM-based GEC systems
have leveraged correction examples from databases
to improve performance and interpretability (Davis
et al., 2024; Song et al., 2024). However, vanilla
retrieval methods based on sentence embedding
or k-nearest neighbors (kNN) struggle to meet the
unique needs of grammatical error selection (Vas-
selli and Watanabe, 2023). Grammatical errors are
typically localized structural issues that are inde-
pendent of word meanings, but model embeddings
combine syntax and semantics into a single vector,
making it failed to retrieve samples with similar
error patterns.

In this paper, we argue that despite the align-
ment problem in GEC tasks, language-proficient
models can smoothly distinguish wrong from right
and identify error patterns. This suggests that we
should focus less on the generation capabilities
of LLMs, but more on their internal knowledge
about grammatical errors. We probe for two key
questions: How does a language model encode
grammatical errors internally? and can we extract
grammatical error representations that are disen-
tangled from semantics?

To answer, we introduce a novel method to
extract the Grammatical Error Representations
(GER), a precise and interpretable representation
of grammatical errors with less semantic noise, for
guiding the retrieval of in-context demonstrations.
Specifically, we compute error vectors (EV) by
applying PCA to the difference between the hid-
den states of erroneous and correct tokens. We
then project the hidden states of errors onto the
EV to obtain the GER. As shown in Figure 1, our
GER preserves the proximity of fine-grained errors:
during retrieval, each detected error aligns with
similar error patterns. Additionally, over-corrected
tokens are queried for similar over-correction cases
in the database, improving the precision of the cor-
rection process. During inference, the number of
retrieved examples dynamically adjusts based on
the detected errors in the sentence, allowing for
more efficient use of computational resources.

We conduct extensive experiments to demon-
strate our consistent outperformance on GEC

datasets across five languages. Without addi-
tional training or generation, we obtain high-quality
and interpretable demonstrations for ICL. Our re-
sults surpass state-of-the-art (SOTA) GEC retrieval
methods, increasing F0.5 by up to 9 points for high-
resource languages like English, and by a factor of
1.25 for low-resource languages like Estonian. On
open-source 8B-sized models, our approach yields
results comparable to contemporary closed-source
LLMs like Deepseek2.5 (Liu et al., 2024a) and
GPT-4o-mini (Achiam et al., 2023).

Our contributions are summarized as follows:

• We introduce a novel method to disentangle
grammatical errors from semantic information
and into grammatical error representations
(GER), a high-quality encoding for grammati-
cal errors.

• We develop an effective retriever to query
examples with similar error patterns based
on GER, enabling powerful ICL with LLMs
across multilingual datasets.

• To the best of our knowledge, we are the first
to explore the relationship between grammati-
cal errors and LLM representations, offering
new insights for utilizing LLMs’ representa-
tions to guide GEC tasks.

2 Related Works

2.1 Grammatical Error Correction

Grammatical Error Correction (GEC) systems have
wide applications in proofreading, education, and
second language acquisition (Kaneko et al., 2022;
Caines et al., 2023; Liang et al., 2023). Re-
search has primarily focused on two Transformer-
based approaches: sequence-to-sequence genera-
tion (Yuan and Briscoe, 2016; Junczys-Dowmunt
et al., 2018; Li et al., 2022) and sequence-to-edit
tagging (Awasthi et al., 2019; Omelianchuk et al.,
2020). Given the local and sparse nature of gram-
matical errors, researchers often generate synthetic
data (Stahlberg and Kumar, 2024), incorporate ad-
ditional information (Zhang et al., 2022; Fei et al.,
2023), or add extra processing steps during infer-
ence (Lai et al., 2022; Zhou et al., 2023; Zhang
et al., 2023; Li and Wang, 2024) to boost per-
formance. Recent work also explores LLMs for
GEC, either through direct correction generation
(Loem et al., 2023) or instruction tuning (Fan et al.,
2023). Despite challenges like over-correction and
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misalignment in LLMs (Vasselli and Watanabe,
2023), human evaluations often rate their correc-
tions highly (Zeng et al., 2024).

2.2 Interpretable Representations in LLMs
Although LLMs are often seen as black boxes due
to their vast number of parameters, recent research
has shown that they develop emergent structures
within their representations (Elhage et al., 2021;
Zou et al., 2023). In the simplest case, a single
dimension within the model is sufficient to char-
acterize a specific behavior (Arditi et al., 2024;
Sheng et al., 2024); more complex circuits may in-
volve dozens of neurons distributed across different
layers interacting to form meaningful components
(Wang et al., 2023). These interpretable compo-
nents can be understood and controlled through
techniques like adding, deleting, replacing, or tun-
ing (Liu et al., 2024b; Wu et al., 2024). Our work
is the first to explore and utilize LLMs’ representa-
tions related to grammatical errors.

2.3 In-Context Learning in GEC
LLMs have demonstrated the ability to align their
generated results to the knowledge domain and
style of several in-context examples (Brown et al.,
2020; Saakyan and Muresan, 2024). The few-shot
inference paradigm avoids the additional param-
eters and computational costs of fine-tuning with
downstream tasks.

The selection of examples in the prompt largely
affects the performance of ICL. Researchers have
increased retrieval results by filtering the data, (He
et al., 2021; Peng et al., 2023) or optimizing query
encodings and retrieval algorithms (Li and Qiu,
2023; Wang et al., 2024). The most helpful exam-
ples usually share similar encodings to the query,
along with sufficient diversity to increase informa-
tion entropy. However, for GEC tasks, the selection
goal is hard to achieve. Due to the entanglement
of syntax and semantics, the error encodings tend
to retrieve examples with similar meanings instead
of analogous error types (Vasselli and Watanabe,
2023; Song et al., 2024). Recent works tackle
this entanglement by having models write error
explanations, which are then used to retrieve er-
rors based on the explanation embeddings (Li et al.,
2025). Despite the improved retrieval performance,
these methods still suffer from coarse sentence-
level granularity and the semantic noise introduced
by generated explanations. Moreover, no work has
yet addressed the issue of over-correction.

3 Methods

In this section, we describe a novel method for
extracting vectors that characterize grammatical
error information and using them to create seman-
tically neutral grammatical error representations
(GER). GER from the training dataset is stored in
a database, where each error is associated with its
original and corrected texts. During inference, the
model retrieves similar correction examples based
on GER to guide corrections, with the flexibility
to dynamically adjust the number of examples de-
pending on the complexity of the input sentence.
The final GEC prediction is generated by combin-
ing the retrieved examples with a correction tem-
plate.

3.1 Extraction of Error Vectors
Given a GEC dataset S = {(x(k), y(k))}Nk=1, each
sample consists of a potentially erroneous text x
and its parallel corrected text y. x is prompted with
an initial correction prompt, which can be zero-
shot or filled with random initial demonstrations2.
During the generation of the initial prediction ŷ, we
extract the hidden state at the i-th position from the
t-th layer of the model, denoted as h(t)

i , obtaining
the set H(t). The choice of the specific layer t is
discussed in 5.2. For simplicity, the subsequent
formulas omit the layer index.

ŷ = LLM
(
promptinit(x)

)
(1)

H(t) =
{
h
(t)
i | ∀i ∈ {1, . . . , |ŷ|}

}
(2)

By comparing x and ŷ, we identify all edits made
by the LLM and collect the set of edited positions
E and unedited positions U . The corresponding
hidden states, HE and HU , contain the information
necessary for the model to decide whether to cor-
rect. The difference between these sets captures
the directions that guide the model from copying
the original text to making corrections - precisely
the information related to grammatical errors. We
multiply this difference by a random sign variable
αe,u ∈ {−1, 1}, which randomly changes the sign
to enhance the weight of the error-related directions
in the principal components.

E = {i | Align(x, ŷ)[i] = Edited}|ŷ|i=1

U = {i | Align(x, ŷ)[i] = Unedited}|ŷ|i=1

(3)

2The selection of examples in the initial prompt is dis-
cussed in Section 5.3.
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Input: John has traveled for over a week. 
Pred: John has been traveling for over one week.

Decoder Block t

PCA
EV Projector

Grammatical Error 
Reprsentation

(GER)

Key

Value
Input: John has traveled for over a week.

Label: John has been traveling for over a week.

Error
DB

Top-K Error Samples

Your job is to fix grammatical mistakes, awkward phrases,
spelling errors, etc. ...
<Error sample 1> …<Error sample K> ...
<Input> She has swum for 14 hours. </Input>

Pred: She has been swimming for 14 hours.

Error
DB

Input: She has swim for 14 hours.
Pred: She has swum for fourteen hours.

Error Vector
(EV)

Decoder Block t

EV Projector

Representation Construction Representation-based Retrieval

Query

Figure 2: The pipeline for proposed representational retrieval for few-shot GEC. Left: The hidden states that
best reflect the error information are extracted and transformed through PCA to obtain error vectors (EV). The
projections onto EV, denoted as grammatical error representations (GER), are stored as keys in the database. Right:
During inference, GER of the test input serves as the query to retrieve similar error patterns to aid correction.

HE = {hi | ∀i ∈ E}
HU = {hi | ∀i ∈ U} (4)

∆H = {αe,u(he − hu) | ∀e ∈ E , ∀u ∈ U} (5)

We apply Principal Component Analysis (PCA)
to the difference ∆H, yielding a set of principal
components R. As shown in Section 5.1, R encap-
sulates information related to grammatical errors,
with the first principal component r1 representing
the simplicity of the error, indicating how easy it
can be corrected. The first two principal compo-
nents are sufficient for encoding simple error types
disentangled from the text’s meaning. We desig-
nate R as the error vectors (EV) of the model.

∆H = UΣR⊤ (6)

3.2 Construction of GER Database
For each correction e ∈ E , we average the differ-
ence between he and all corresponding hu ∈ HU in
the same sentence, canceling out noise from token
meanings and positional embeddings. We then ap-
ply PCA, projecting onto m principal components3

3The choice of dimensions for GER is discussed in Sec-
tion 5.1.3.

to obtain the grammatical error representation
(GER) p(m)

e . We omit dimension labeling where it
is not necessary. GER serves as the key, with the
corresponding pair (x, y) as the label, to construct
the GER database D.

∆h̄e =
1

|U|
∑

u∈U
(he − hu) (7)

p(m)
e =

[
r1, r2, ..., rm

]⊤
∆h̄e, ∀e ∈ E (8)

D = {(pe → (x, y)) | ∀(x, y) ∈ S, ∀e ∈ E} (9)

3.3 Retrieval of In-Context Demonstrations
During inference, the test input x̃ ∈ S̃ undergoes
the pipeline from Equation (1)-Equation (5) to ob-
tain GER for every edit, which is then used as the
query qe to retrieve the Ke nearest neighbors from
D.

N (qe) =
{
(pe → (x, y))(j)

}Ke

j=1
⊆ D (10)

Thanks to the fine-grained error encoding, we dy-
namically allocate the number of retrieved demon-
strations Ks based on the complexity of each sen-
tence’s errors. Sentences deemed error-free by the
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model are not assigned examples, saving compu-
tational resources for sentences with more errors.
We further reveal in Section 5.1 that the magnitude
of the first dimension of GER |p(1)

e | correlates with
the simplicity of the error. Therefore, we prioritize
retrieval for errors that have small |p(1)

e |, further
optimizing resource allocation4.

The retrieved examples are concatenated and
combined with a few-shot correction template to
prompt the final GEC prediction. The inference
pipeline is illustrated in Figure 2. and the prompts
used are listed in Appendix A.4.

4 Experiments

4.1 Datasets, Models, and Metrics

We evaluate the proposed method on five GEC
datasets across four languages to testify to GER’s
ability to encode and retrieve errors. Following the
multilingual setup in Li et al. (2025), we process
the training dataset and use LlamaIndex (Liu, 2022)
to construct the database and retriever.

For high-resource English (EN), we use the
W&I+LOCNESS (Bryant et al., 2019) as the train-
ing dataset, and the CoNLL-14 (Ng et al., 2013)
and BEA-19 (Bryant et al., 2019) datasets for test-
ing. For medium-resource German (DE), we use
the Falko-Merlin (Boyd, 2018) dataset for both
training and testing. To showcase the generalizabil-
ity of our method, we also include low-resource
Romanian (RO) and Estonian (ET). For Romanian,
we choose the RONACC (Cotet et al., 2020) train-
ing and test datasets; for Estonian, we use the Tartu
L2 learner corpus (Rummo and Praakli, 2017) as
the database and the L1 (Tartu-L1) as the test data.5

Since GER requires the model’s internal states,
all experiments are conducted using recent open-
source multilingual LLMs, including Meta’s
Llama3.1-8B-Instruct (Dubey et al., 2024) and
Qwen2.5-7B-Instruct (Yang et al., 2024) by Tongyi.
Adhering to the dataset-specific evaluation pipeline
for each language, we use the ERRANT toolkit
(Bryant et al., 2017) to align edits between initial
and final predictions. For evaluation, we apply
M2Scorer (Dahlmeier and Ng, 2012) for CoNLL-
14, Falko-Merlin, and Tartu-L1, while ERRANT
for BEA-19 and RONACC.

4We describe the exact logic of dynamic selection in Ap-
pendix A.5.

5The detailed statistics of GEC datasets are placed in Ap-
pendix A.1.

Our method is compared with the following base-
lines:

• Random: Random selection of in-context
demonstrations from the database;

• Semantic: kNN retrieval based on input text
embeddings (Khandelwal et al., 2021);

• BM25: A term-based ranking function widely
used in information retrieval (Robertson et al.,
2009);

• Explanation: Retrieval based on the similarity
of LLM-generated explanations for erroneous
sentences (Li et al., 2025).

All experiments are conducted in an 8-shot set-
ting. For all baseline methods, we retrieve 4 erro-
neous and 4 correct examples, following Li et al.
(2025). Since our method dynamically determines
the number of examples needed for each sentence,
we retrieve 4 examples for each error and ensure
that the average demonstration number is 8.

4.2 Main Results
During preliminary experiments, we found that the
construction of examples in the initial prompt sig-
nificantly affects results. Thus, we present results
in two configurations: "GER-Vanilla" refers to
generating the initial predictions using the vanilla
initial prompt, and "GER-IPE" (GER with Initial
Prompt Enhancement) adds 8 randomly chosen ex-
amples into the initial prompt.

As Table 1 demonstrates, our GER-based re-
trieval methods consistently outperform other
baseline methods in both prompt settings. In
the GER-IPE setting, our method exceeds the
explanation-based SOTA by 4.36 and 4.56 points
on the English CoNLL-14 and German Falko-
Merlin datasets, respectively. Moreover, the BEA-
19 dataset achieves a 9.15-point higher F0.5 than
the semantic SOTA, nearly a 20% improvement.
GER-Vanilla still results in an improvement of
around 3-5.6 points above SOTA, testifying to the
effectiveness of our GER extraction and retrieval
process.

On low-resource languages, GER retrieval yields
even better results. For Romanian, the F0.5 score
improves by 6.67 points, while Estonian shows
a 2.46 points improvement (nearly 20%). In
GER-Vanilla, results are about 1 point lower but
still surpass the SOTA. We hypothesize that low-
resource languages benefit more from examples to
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Model Method
English German Romanian Estonian

CoNLL-14 BEA-19 Falko-Merlin RONACC Tartu-L1
P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

Llama3.1
(8B)

Random 54.02 52.60 53.73 44.20 63.43 47.05 59.62 54.53 58.53 35.64 40.70 36.55 12.55 22.34 13.76
Semantic 55.21 51.56 54.44 45.51 62.84 48.17 60.03 54.15 58.75 39.33 43.77 40.14 12.74 22.52* 13.95

BM25 54.58 51.58 53.95 44.18 62.95 46.98 59.65 58.53 58.80 40.32 45.45 41.25 - - -
Explanation 55.00 53.04 54.60 45.24 63.26 47.97 60.35 54.79 59.15 38.64 44.78 39.72 13.38 23.09 14.61
GER-Vanilla 58.60* 55.33 57.92* 47.86* 65.67* 53.75* 66.39 55.88 62.46* 45.08* 46.14 45.29* 16.18* 19.45 16.74*

GER-IPE 60.11 54.75* 58.96 55.63 67.28 57.63 65.54 57.34* 63.71 48.53 45.61* 47.92 16.37 20.57 17.07

Qwen2.5
(7B)

Random 54.43 53.50 54.24 44.84 63.62 47.65 55.25 48.06 53.65 29.73 26.06 28.91 7.11 16.35 8.02
Semantic 55.27 52.65 54.73 45.48 63.40 48.21 57.81 48.57 55.76 35.76 30.43 34.55 6.93 19.30 7.95

BM25 54.11 52.25 53.73 44.67 63.89* 47.53 57.21 50.18* 55.65 36.28 34.21* 35.84 - - -
Explanation 55.67 51.60 54.81 47.22 62.31 49.62 57.33 47.63 55.08 30.17 29.53 30.04 7.16 19.10* 8.18
GER-Vanilla 55.78 56.94 56.00* 49.12* 63.24 51.41* 61.09* 48.15 57.97* 36.58* 34.36 36.11* 8.59* 12.51 9.16*

GER-IPE 57.53 55.62 57.13 52.37 67.37 54.81 60.31 51.90 58.42 37.75 32.69 36.62 9.19 13.50 9.82

Table 1: Results on multilingual GEC datasets by different retrieval methods. "Random" refers to retrieval baseline
by random selection; "Semantic", "BM25", and "Explanation" retrieve demonstrations based on text embedding,
BM25 matching, and LLM-generated explanations, respectively. "GER-Vanilla" refers to our representation-based
retrieval methods, and "GER-IPE" refers to GER with Initial Prompt Enhancement. The best results are marked in
bold, and the second-best results are marked with an asterisk (*).

Backbone Method Lang EN DE ET
F0.5

Fine-tuned GEC Single Model
gT5 xxl Rothe et al. (2021) Mono 65.7 76.0 -
NLLB Luhtaru et al. (2024) Multi 65.2 73.9 63.2
BART Zhou et al. (2023) Mono 69.6 - -

Inference of LLMs
GPT-3.5-Turbo Davis et al. (2024) - 57.2 - -
GPT-3.5-Turbo Tang et al. (2024) - 58.8 - -
Deepseek2.5 Li et al. (2025) - 59.4 63.4 22.7
GPT-4o-mini Li et al. (2025) - 58.7 65.6 19.9*
Llama3.1 (8B) Ours - 59.0* 63.7* 17.1

Table 2: The comparison of state-of-the-art (SOTA)
models on multilingual GEC datasets. "EN", "DE", and
"ET" stand for the CoNLL-14, Falko-Merlin, and Tartu-
L1 datasets, respectively. Fine-tuned language models
are labeled with their training data in the "Lang" column,
where the "Mono" models are tuned separately for each
language, and the "Multi" models with multilingual
mixed data. The best results are marked in bold, and the
second-best results are marked with an asterisk (*).

help the model grasp syntax and generate correc-
tions, as discussed in Section 5.3.

On the Qwen2.5 model, the results follow a sim-
ilar trend to Llama3.1, confirming the generaliz-
ability of our approach across models. However,
the advantage is slightly lower for low-resource lan-
guages, likely due to Qwen2.5’s smaller pre-trained
corpus for these languages.

4.3 Comparison with SOTA

Current datasets reveal a persistent performance
disparity in GEC tasks: while fine-tuned special-
ist models achieve state-of-the-art (SOTA) results
across multilingual benchmarks (see Table 2), in-
context learning (ICL) with LLMs exhibits signifi-
cant accuracy gaps. Our representational retrieval
method manages to achieve results comparable to
some closed-source models on high-resource En-

Method EN DE RO
TP(↑) FP(↓) FN(↓) TP(↑) FP(↓) FN(↓) TP(↑) FP(↓) FN(↓)

Random 1529 1315 1389 3239 2227 2694 970 1752 1413
BM25 1484 1235 1393 3311 2237 2652 1080 1603 1300
Expl. 1515 1244 1350 3258 2121 2712 1067 1694 1316
GER 1613 1098 1348 3423 1807 2540 1081 1153 1296

Table 3: TP/FP/FN counts across datasets on Llama3.1-
8B. "Expl." stands for the Explanation baseline. For TP,
the larger the better; For FP/FN, the smaller the better.

glish and German, including Deepseek2.5 (Liu
et al., 2024a) and GPT-4o-mini (Achiam et al.,
2023). These promising results demonstrate the po-
tential of utilizing interpretable components within
the model to better align with human concepts and
annotations of grammatical errors.

4.4 Over-correction mitigation

To clarify the mechanism behind our method’s
effectiveness, we report the True Positive (TP),
False Positive (FP), and False Negative (FN) statis-
tics using Llama3.1-8B in Table 3. Compared to
the best-performing baseline, our GER method re-
duces FP by up to 30% (e.g., from 1603 to 1153 in
RONACC). This indicates that the performance im-
provement stems primarily from substantial gains
in precision, driven by a significant reduction in
FP, while recall remains relatively stable (i.e., with
only modest increases in TP). The mitigation of
over-correction is particularly pronounced in low-
resource languages such as Romanian, where mod-
els exhibit a higher propensity for overcorrecting.

4.5 Model Scalability

To further demonstrate the effectiveness of our
method on larger models, we applied GER to
Qwen2.5-14B-Instruct (Yang et al., 2024). The
results are presented in Table 4. Larger mod-
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Method EN DE ET
P R F0.5 P R F0.5 P R F0.5

Random 49.2 58.0 50.7 51.8 50.6 51.6 6.5 18.1 7.5
Expl. 50.6 56.2 51.6 52.9 52.1 52.7 6.7 20.3 7.7
GER 54.3 58.5 55.1 55.2 52.9 54.7 9.0 14.2 9.7

Table 4: Results for the CoNLL-14, Falko-Merlin, and
Tartu- L1 datasets on Qwen2.5-14B. "Expl." stands for
the Explanation baseline.
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Figure 3: Distribution of the first GER component
with respect to error/correct (up) and confusion matrix
(down).

els exhibit a tendency towards excessive correc-
tions, which can improve recall but reduce preci-
sion. By primarily mitigating over-correction, our
method ensures robust performance generalization
on larger models.

5 GER Analysis

5.1 Encoding Capacity of GER
The different principal components calculated by
PCA, referred to as error vectors (EVs), capture
various levels of error-related information in natu-
ral sentences. Our preliminary exploration of the
first few EVs shows that the first EV represents the
model’s recognition and ranking of grammatical er-
rors, while the second EV captures simple informa-
tion about error types, such as tense issues. In the
following analysis section, unless stated otherwise,
we use the GER-IPE setup with Llama3.1-8B.

5.1.1 The First EV: Error Detector
We illustrate the first component of GER (first
GER) obtained from the English training dataset
in Figure 3. The figure presents a clear bound-

Method EN DE ET
P R F0.5 P R F0.5 P R F0.5

Dynamic 60.1 54.8 59.0 65.5 57.3 63.7 15.1 20.1 15.9
Random 59.8 52.6 58.2 64.1 55.5 62.2 13.9 20.0 14.8
Reverse 60.7 50.3 58.3 65.2 54.6 62.8 14.4 17.8 15.0

Table 5: Ablation of different demonstration selection
methods of GER.

ary between erroneous and correct tokens along
the direction of the first EV, achieving classifica-
tion accuracy over 98% for correct tokens and over
65% for erroneous tokens, on par with SOTA LMs
and superior to LLMs in end-to-end GED tasks
(Luhtaru et al., 2024). The first GER can thus serve
as an effective error detector.

Moreover, the magnitude of the first GER quan-
tifies correction simplicity in a relatively quantita-
tive manner. We classify predicted tokens using the
confusion matrix and plot the distributions of True
Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) in Figure 3. Cases
with a larger first GER magnitude are more likely to
represent precise corrections, whereas those with
smaller values often correspond to failed correc-
tions (FP, including over-corrections and incorrect
corrections).

Consequently, we design a dynamic demonstra-
tion selection method that prioritizes errors with
small first GER values for demonstration allocation.
This approach conserves computational resources
for errors prone to failed corrections, which require
reference to examples for successful resolution. In
Table 5, we conduct an ablation study on this selec-
tion method by comparing random example selec-
tion (Random) with prioritizing retrieval for errors
having a large first GER (Reverse). The results val-
idate the efficacy of our dynamic selection method.

5.1.2 The Second EV: Simple Error Classifier
On the first EV, we can distinguish between the
wrong and the correct, but one dimension fails to
provide detailed information. Introducing the sec-
ond EV enables recognition of basic grammatical
patterns. To validate this progression, we create a
specialized test set6 containing:

• Sport-domain sentences with present perfect
progressive (ppp) tense errors;

• Art-domain sentences with simple past (sp)
tense errors.

Cross-domain probes are designed as:
6Specific samples of the test set are placed in Appendix C.
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Figure 4: Distribution of different encoding methods
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to present perfect progressive/simple past tense errors.
Cross-domain probes are marked as stars.

Dim. EN DE ET
P R F0.5 P R F0.5 P R F0.5

128 59.5 54.5 58.4 65.2 57.3 63.4 14.4 19.4 15.2
256 59.7 53.6 58.4 65.2 57.2 63.4 15.1 20.1 15.9
512 59.8 54.3 58.6 65.5 57.3 63.7 14.7 20.1 15.5
1024 60.1 54.8 59.0 65.4 57.4 63.6 14.9 20.4 15.8
2048 60.0 54.4 58.7 65.1 56.9 63.3 14.3 20.7 15.2

Table 6: Results across different dimensional configura-
tions of GER.

• Art-domain samples with ppp errors;

• Sport-domain samples with sp errors.

Figure 4 shows that while semantic embeddings re-
trieve semantic-similar but error-mismatched exam-
ples, our 2-dimensional GER successfully clusters
analogous errors across domains, demonstrating
the proximity and semantic neutrality of GER.

5.1.3 Dimensionality Trade-offs in GER
Increasing the dimensionality of GER (m in p

(m)
e )

enhances its ability to encode fine-grained error
patterns, but simultaneously amplifies the semantic
noise it contains, causing GER to extract exam-
ples with semantic similarities over those sharing
similar error types. Experimental results across
different dimensional configurations are presented
in Table 6: the more resources the model has about
a particular language, the more dimensions it needs
to encode errors in that language. At reduced di-
mensions, GER fails to distinguish complex errors;
on the other hand, when the dimensions are too
large, GER can identify some nuanced error cases
but introduce more error-irrelevant samples, result-
ing in higher recall and lower precision.

5.2 Layer Selection
We select the layer used to extract GER based on
the performance of grammatical error detection.
The error detection performance with respect to

each layer of the model is juxtaposed with the ex-
plained variance ratio of the first principal com-
ponent in PCA (first EVR) in Figure 5. From the
upper figures, a spike of the first EVR is clearly
depicted, coinciding with the most accurate layer
in the lower images. The specific choice of layer
differs with each model but maintains high consis-
tency within the model across all languages, and
all in the medium of the model (the 21st layer for
32-layer Llama3.1, and the 12th layer for 28-layer
Qwen2.5). This suggests to us that there are spe-
cific components within the layer that are responsi-
ble for understanding and processing grammatical
error information. We leave further research to
future work.

5.3 Demonstration Selection for Initial
Prompt

As observed in Section 4.2, even randomly se-
lected examples in the initial prompt significantly
improve results, although they affect the initial pre-
diction and not the final output. We attribute this
improvement to two factors: first, the few-shot
initial prompt helps activate the model’s correc-
tion capability and aligns the generate outputs with
the example format. This alignment is particu-
larly noticeable in low-resource languages such
as Estonian, where zero-shot predictions usually
include English tokens, introducing noise that hin-
ders the PCA process for extracting EV. Second,
from within the model, the initial prompt aligns EV
inside the model toward the actual error space. Fig-
ure 6 reveals that the first explained variance ratio
(EVR) increases as more initial examples are added,
indicating that the model is refining its error space
with each new demonstration. This suggests that
the examples selected by GER may help the model
better characterize the error space, which can be
used iteratively in another round of generation to
optimize EV. We leave this iterative approach for
future work.

6 Conclusion

In this paper, we delve into the internals of LLMs
and develop a novel method for extracting precise
and interpretable grammatical error representations
(GER) with less semantic noise. The effective-
ness of GER in encoding fine-grained error patterns
enables the retrieval of high-quality error demon-
strations, improving the few-shot performance of
LLMs on GEC across diverse language settings.
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Our preliminary exploration and successful uti-
lization of LLMs’ internal states highlight the po-
tential of utilizing the model’s inherent knowledge
to strengthen GEC performance, alignment, and
interpretability, all without the need for additional
components or training resources.

Limitations

Our work explores and leverages the knowledge re-
lated to error correction within large models. How-
ever, the few-shot GEC capabilities of LLMs are
far from fully realized. The latter dimensions of
our proposed error vectors contain detailed, fine-
grained knowledge about error classification and
correction, but they are difficult to separate, vi-
sualize, and utilize effectively. In addition, we
did not address the scenario where long sentences
with multiple errors outpace the utility of the 8-
shot examples. In such cases, slicing the long
sentence into smaller segments may yield better
performance.

While we have encoded errors and used them for
example retrieval in this work, the error informa-
tion could be applied more broadly in the model’s
prediction pipeline, such as in controlling the de-
coding process. Future work could investigate sim-
pler ways of representing error information, or de-
velop methods to comprehensively combine and
summarize this information for more effective ma-
nipulation of model-generated grammatical error
corrections.
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A Experimental Settings

A.1 Dataset Statistics
Our dataset usage is shown in Table 7. The training
data samples used to construct the database are
initially filtered by length with a minimum of 10 to
ensure quality.

A.2 Language Diversity
Our language selection aligns with prior multilin-
gual GEC studies (Luhtaru et al., 2024; Stahlberg
and Kumar, 2024), taking into account the diversity
of language families.

• Germanic (English, German) and Romance
(Romanian) languages: Both Indo-European,
but from different branches.

• Uralic (Estonian): a non-Indo-European lan-
guage with agglutinative grammar and no
grammatical gender, unlike the others. As
a linguistically distant and low-resource lan-
guage, Estonian showcases the breadth of
GER’s applicability.

We acknowledge the value of testing additional
languages (e.g., Czech, Chinese) and will explore
this in future work.

A.3 Model Settings
We utilize open-source LLMs such as Llama3.1-
8B-Instruct and Qwen2.5-7B-Instruct to implement
representation extraction and demonstration re-
trieval.

To ensure reproducibility, we applied determin-
istic decoding (with temperature set to 0 and top_p
set to 1.0) during inference. For the "Random"
baseline, samples were selected using three differ-
ent random seeds, and the results were averaged.
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Training Dataset (As Database) Test Dataset
Language Name #Erroneous #Correct Name #Total

English W&I+LOCNESS 20185 6839
CoNLL-14 1312
BEA-19 4477

German Falko-Merlin 11801 1916 Falko-Merlin 2337
Romanian RONACC 6974 108 RONACC 1519
Estonian Tartu-L2-Corpus 7156 4 Tartu-L1-Corpus 1453

Table 7: The statistics of GEC dataset used in experiments. For the training datasets, #Erroneous represents the
number of erroneous samples, and #Correct refers to the number of correct samples. For the test datasets, #Total
indicates the total number of samples.

A.4 Prompt Settings

Throughout the entire experiment pipeline, we use
the same prompt for GEC task as prior works (Tang
et al., 2024; Davis et al., 2024; Li et al., 2025), to
form a fair comparison. The correction prompt is
shown in Table 8.

A.5 Dynamic Selection Setting

Dynamic example selection was introduced to en-
sure fair benchmarking against prior 8-shot base-
lines. During inference:

• Given a test set of size N and Ke retrieved
samples per edit, we obtain the GER for each
edit in the test set and sort them in ascending
order based on the first dimension of GER.

• Then, we select the top N ∗K/Ke edits and
use their corresponding samples to extract
demonstrations.

B Time Efficiency

Our GER method can be divided into two parts:

• Example Selection: Requires one forward
pass over test data to extract GER. Compared
to previous methods (e.g., Li et al. (2025)),
which need to generate explicit explanations,
our approach achieves a 50x speedup (average
explanation length L ≈ 50 in Li et al. (2025)).

• Few-shot Inference: With selected demonstra-
tions, our inference latency matches that of
standard 8-shot inference, without additional
overhead.

C Cross-domain demonstration set

In Section 5.1.2, we used the web version of
Deepseek-v3 to build 100 sport-domain sentences
with present perfect progressive (ppp) tense errors,

and 100 art-domain sentences with simple past (sp)
tense errors. We then created cross-domain probes
such as art-domain samples with ppp errors and
sport-domain samples with sp errors to show the
proximity and semantic neutrality of our GER. The
created cases are demonstrated in Table 9.
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You are a language expert who is responsible for grammatical, lexical, and orthographic error corrections given an input sentence. Your job is to
fix grammatical mistakes, awkward phrases, spelling errors, etc. following standard written usage conventions, but your corrections must be
conservative. Please keep the original sentence (words, phrases, and structure) as much as possible. The ultimate goal of this task is to make the
given sentence sound natural to native speakers without making unnecessary changes. Corrections are not required when the sentence is already
grammatical and sounds natural.
There is an erroneous sentence between ‘<erroneous sentence>‘ and ‘</erroneous sentence>‘. Then grammatical errors in the erroneous sentence
will be corrected. The corrected version will be between ‘<corrected sentence>‘ and ‘</corrected sentence>‘.
<erroneous sentence>text</erroneous sentence>
<corrected sentence>label</corrected sentence>
...
<erroneous sentence>text</erroneous sentence>
<corrected sentence>label</corrected sentence>
<erroneous sentence>source</erroneous sentence>
<corrected sentence>

Table 8: The prompts for the proposed method. {text} and {label} means the input text and correct sentence (label)
for labeled GEC data. {source} represents the test input text.

Domain Error Type Case

Sport ppp Input: I have jogged along the riverbank for 45 minutes.
Label: I have been jogging along the riverbank for 45 minutes.

sp Input: Yesterday, she try to hold her breath underwater.
Label: Yesterday, she tried to hold her breath underwater.

Art ppp Input: Marcel Duchamp submits a urinal to an art show in 1917.
Label: Marcel Duchamp submitted a urinal to an art show in 1917.

sp Input: For the entire week, Georgia O’Keeffe has painted her first giant flower close-up.
Label: For the entire week, Georgia O’Keeffe has been painting her first giant flower close-up.

Table 9: The showing cases of manually constructed test set used in Section 5.1.2.
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