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Abstract

The goal of document-level relation extraction
(DocRE) is to identify relations for a given
entity pair within a document. As a multi-
label classification task, the most commonly
employed method involves introducing an adap-
tive threshold. Specifically, for an entity pair,
if the scores of predicted relations exceed the
threshold, the relations exist. However, we ob-
serve two phenomena that significantly weaken
the model’s performance in DocRE: (1) as
the label space (the number of relations) ex-
pands, the model’s performance gradually de-
clines; (2) the model tends to prioritize pre-
dicting high-frequency relations in the long-tail
problem. To address these challenges, we pro-
pose an innovative Adaptive Multi-Threshold
Loss (AMTL), which for the first time pro-
poses to partition the label space into differ-
ent sub-label spaces (thus reducing its over-
all size) and learn an adaptive threshold for
each sub-label space. This approach allows
for more precise tuning of the model’s sensitiv-
ity to diverse relations, mitigating the perfor-
mance degradation associated with label space
expansion and the long-tail problem. Moreover,
our adaptive multi-threshold method can be
considered as a general framework that seam-
lessly integrates different losses in different
sub-label spaces, facilitating the concurrent
application of multiple losses. Experimental
results demonstrate that AMTL significantly
enhances the performance of existing DocRE
models across four datasets, achieving state-
of-the-art results. The experiments on the con-
current application of multiple losses with our
framework show stable performance and out-
perform single-loss methods. Code is available
at https://github.com/xhm-code/AMTL.

1 Introduction

Document-level relation extraction (DocRE) (Yao
et al., 2019) aims to identify one or more relations
* Corresponding author.
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Figure 1: (a) Performance of ATL- and HingeABL-
based models as the label space expands. (b) Rela-
tion scores for head (high-frequency) and tail (low-
frequency) relation classes.

for an entity pair in documents. Unlike sentence-
level relation extraction tasks, DocRE needs to han-
dle longer texts, cross-sentence relations, and more
complex contextual dependencies with diverse se-
mantic structures. The increasing demand for ac-
curate relation identification in tasks like question
answering (Cao et al., 2022), knowledge graph con-
struction (Ye et al., 2022), and event extraction
(Liu et al., 2024) has made DocRE a key area of
research in information extraction.

DocRE, as a multi-label classification task, tradi-
tionally employs binary cross-entropy loss (BCE)
to learn a global threshold. Specifically, for each
entity pair, if the relation scores exceed the global
threshold, the model determines that corresponding
relations exist. However, the global threshold fre-
quently fails to adapt to the characteristics of all en-
tity pairs, resulting in suboptimal performance. To
address this limitation, Zhou et al. (2021) propose
an adaptive threshold loss (ATL), which introduces
an adaptive threshold for each entity pair so that the
scores of positive classes are significantly higher
than the threshold, while the scores of negative
classes are much lower than the threshold1.

1R is a set of predefined relations in DocRE tasks, where
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Although ATL effectively alleviates the prob-
lem of the global threshold, it is still insufficient
when dealing with the long-tail problem2. To fur-
ther address the long-tail problem, Wei and Li
(2022) propose an adaptive multi-label loss (AML),
while Wang et al. (2023) propose an adaptive hinge
balance loss (HingeABL). Both methods are in-
spired by the hinge loss (Hearst et al., 1998) and
enhance the model’s ability to distinguish between
tail classes and difficult-to-classify relations (where
the relation scores are close to the threshold) by
widening the gap between positive and negative
classes. Similarly, Tan et al. (2022a) propose an
adaptive focal loss (AFL) based on the focal loss,
which is designed to pay more attention to the tail
classes to cope with the performance degradation
caused by the long-tail problem.

The above losses use only one adaptive thresh-
old for each entity pair and fail to fully consider
the diversity of relations. Specifically, for an entity
pair, its relation scores are compared with only one
threshold. In the DocRE task, the types of relations
are often diverse, with each relation having differ-
ent semantics. For example, the DocRED (Yao
et al., 2019) and Re-DocRED (Tan et al., 2022b)
datasets include 96 different predefined relations.
However, we observe the following two phenom-
ena in the DocRE task: Firstly, as shown in Fig.
1(a), the performance of models based on the ATL
and the state-of-the-art HingeABL decreases sig-
nificantly as the label space3 expands. Secondly,
in the long-tail problem, the models tend to pre-
dict the head classes, as shown in Fig. 1(b), where
the head classes’ scores are generally higher than
those of the tail classes, which gives the models an
excessive preference for the head classes.

To address the performance degradation caused
by the expansion of label space and the challenges
posed by long-tail problem, we propose a novel
multi-label classification loss, the Adaptive Multi-
Threshold Loss (AMTL). Specifically, AMTL in-
novatively proposes to partition the label space
into different segments based on the frequency of
relation occurrences, and introduces an adaptive

positive classes PT ⊆ R represent the relations that exist for
an entity pair, while negative classes NT ⊆ R represent the
relations that do not exist, where R = PT ∪NT .

2In DocRE datasets, specific relations within the predefined
relation set R appear with higher frequency (commonly re-
ferred to as head classes), while others occur less frequently
(referred to as tail classes), resulting in the long-tail problem,
also known as the class imbalance problem.

3Label space refers to the number of relations in DocRE.

threshold for each segment. Our approach effec-
tively reduces the label space size and enables dif-
ferent thresholds for head and tail classes, allow-
ing for precise tuning of the model’s sensitivity to
diverse relations. Further analysis indicates that
the adaptive multi-threshold method serves as a
general framework that seamlessly integrates ATL-
based losses by introducing them into segments,
facilitating the concurrent application of multiple
losses. Moreover, our experiments demonstrate
that AMTL exhibits effective generalization capa-
bilities; specifically, it can be trained on incom-
pletely labeled datasets while maintaining good
prediction performance on fully labeled datasets.

Our contributions are as follows:

• A novel loss, AMTL, is introduced, which
for the first time proposes to partition the la-
bel space into multiple segments and learn
an adaptive threshold for each segment. This
effectively mitigates the performance degra-
dation associated with the expansion of label
space and the long-tail problem.

• The adaptive multi-threshold method can be
considered as a general framework that seam-
lessly integrates ATL-based losses by intro-
ducing them into segments, facilitating the
concurrent application of multiple losses.

• The AMTL is thoroughly evaluated on four
DocRE datasets, revealing consistent perfor-
mance enhancements and effective general-
ization capabilities across various backbone
models and achieving state-of-the-art (SOTA)
results compared to baseline methods.

2 Related Work

Existing DocRE methods can be broadly divided
into the following categories:

(1) Improvements in Representation Capabil-
ity. By designing new model structures or enhanc-
ing existing ones, semantic relations in documents
are captured more accurately, leading to improved
classification performance. For example, GAIN
(Zeng et al., 2020), ATLOP (Zhou et al., 2021), Do-
cuNet (Zhang et al., 2021), KD-DocRE (Tan et al.,
2022a), DREEAM (Ma et al., 2023), AA (Lu et al.,
2023), SRF (Zhang et al., 2024), REwNCRL (Xu
et al., 2024), and TTM-RE (Gao et al., 2024).

(2) Optimization of Loss. By designing new
losses, the model’s performance in DocRE can be
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significantly improved, particularly when address-
ing complex scenarios such as long-tail problem
and multi-label classification. Notable examples
include ATL (Zhou et al., 2021) and its extensions,
such as Balanced-Softmax (Zhang et al., 2021),
AML (Wei and Li, 2022), AFL (Tan et al., 2022a),
SSR-PU (Wang et al., 2022), NCRL (Zhou and Lee,
2022), PEMSCL (Guo et al., 2023), and HingeABL
(Wang et al., 2023).

(3) Plugin-based Approach. Such methods
exhibit strong generalization capabilities and can
be integrated as modular components into various
model architectures, further enhancing model per-
formance. For example, LogicRE (Ru et al., 2021),
MILR (Fan et al., 2022), BCBR (Liu et al., 2023),
P3M (Wang et al., 2024), and JMRL (Qi et al.,
2024). Among these, LogicRE, MILR, and JMRL,
as a logical reasoning module, can explicitly cap-
ture the long-range dependencies between entities.

3 Methodology

We first define the task of DocRE, followed by an
introduction to the most commonly used loss in
this task, adaptive threshold loss (ATL). Finally,
we present our proposed improvement based on
ATL, the adaptive multi-threshold loss (AMTL).

3.1 Problem Formulation

Given a document D and an entity pair T =
(es, eo), where es is the subject and eo is the object,
the DocRE task is to predict the subset of relations
for T from R ∪ {NA}. Here, R denotes the set
of predefined relations, such that R = PT ∪ NT ,
with NA indicating the absence of any relation. The
positive classes PT ⊆ R are the relations that ex-
ist between es and eo; if no relation exists, PT is
empty. Conversely, the negative classes NT ⊆ R
are relations that do not exist between es and eo; if
there is no relation, NT = R.

3.2 Adaptive Threshold Loss

The adaptive threshold loss (ATL) (Zhou et al.,
2021) is a widely used multi-label classification
loss in DocRE. In ATL, as shown in Eq. (1), the
set R of predefined relations is divided into two sub-
sets: positive classes PT and negative classes NT .
Additionally, ATL introduces a threshold class TH.
During training, the loss aims to make the scores
of positive classes PT significantly higher than the
scores of the TH class, and the scores of negative
classes NT significantly lower than the scores of

the TH class. In testing, if the relation scores ex-
ceed the TH class, the relations are considered to
exist; otherwise, they are assumed not to exist.

L1 = −
∑

r∈PT

log


 exp(logitr)∑

r′∈PT∪{TH}
exp(logitr′)




L2 = − log


 exp(logitTH)∑

r′∈NT∪{TH}
exp(logitr′)




LATL = L1 + L2

(1)

3.3 Adaptive Multi-Threshold Loss

The ATL-based losses employ an adaptive thresh-
old, where relation scores for an entity pair exceed-
ing this threshold are classified as positive classes
PT , while scores below it are deemed negative
classes NT (Wei and Li, 2022; Tan et al., 2022a;
Wang et al., 2023). However, as we have detailed
in Section 1, an adaptive threshold fails to fully
consider the diversity of relations and cannot ad-
equately address the challenge of model perfor-
mance degradation caused by label space expan-
sion and the long-tail problem.

To overcome these limitations, we introduce an
adaptive multi-threshold loss (AMTL), as shown
in Fig. 2. Specifically, we rank the label occur-
rence frequencies in the train set in descending
order to differentiate between head and tail classes,
partitioning the label space into multiple sub-label
space segments. For each sub-label space segment,
we set an adaptive threshold to reduce the overall
size of the label space. This method allows us to
apply different thresholds for head classes and tail
classes, effectively alleviating the long-tail problem
and label space expansion problem.

Positive ClassesTH Classes Negative Classes

TH r1 r3 r1 r4 r5 r10 r7 r9r2 r8 r6

Loss Based on Adaptive Single Threshold

TH1 r1 r2 r3 r4 TH2 r6 r7 r8 r9r1 r10

Our Loss: Adaptive Multi-Threshold Loss

r5

Figure 2: Comparison of ATL-based losses and AMTL.

Moreover, to reduce variability among thresh-
olds and ensure model consistency and stability
across TH classes, we apply a weighted average,
as shown in Eq. (2). Here, i denotes the i-th sub-
label space segment, n represents the number of
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sub-label space segments, and λ is the coefficient
for the weighted average.

logitiTH =

logitiTH +
n∑

j=1,j ̸=i

logitjTH

λ
(2)

Using Eq. (2), we compute the loss for the i-th
sub-label space segment, which includes contribu-
tions from both positive and negative classes, as
shown in Eq. (3).

L3
i = −

∑

r∈Pi
T

log




exp(logitr)∑
r′∈Pi

T

exp(logitr′) + exp(logitiTH)




L4
i = − log




exp(logitiTH)∑
r′∈N i

T

exp(logitr′) + exp(logitiTH)




(3)

Finally, we obtain our Adaptive Multi-Threshold
Loss (AMTL), as shown in Eq. (4):

LAMTL =
1

n

n∑

i=1

(
Li
3 + Li

4

)
(4)

3.4 Adaptive Multi-Threshold Framework

Our proposed adaptive multi-threshold method can
be viewed as a general framework, which seam-
lessly integrates ATL-based losses by introducing
the same or different losses in different segments
as shown in Fig. 3, thus facilitating the joint appli-
cation of multiple losses.

TH Classes Space-Segment

TH1 TH2

Adaptive Multi-Threshold (AMT) Framework

Space-Segment1 Space-Segment2 THn Space-Segmentn

Loss1 Loss2 Lossn

Figure 3: Our adaptive multi-threshold (AMT) general
framework for collaborating losses in DocRE.

As shown in Eq. (5), Li represents the i-th loss
function, which consists of the i-th TH class and
the i-th sub-label space segment, n represents the
number of sub-label space segments. Furthermore,
the update of the i-th TH class can also be per-
formed using Eq. (2).

LAMT =
1

n

n∑

i=1

Li (5)

Dataset Split #Docs. #Rels. #Triples.

DocRED
train 3,053 96 38,180
dev 1000 96 12,323
test 1000 96 -

DWIE
train 602 65 14,403
dev 98 65 2,624
test 99 65 2,495

Re-DocRED
train 3,053 96 85,932
dev 500 96 17,284
test 500 96 17,448

DocGNRE
train (GPT) 3,053 96 96,505

train (mGPT) 3,053 96 103,561
test 500 96 19,526

Table 1: Statistics of datasets.

4 Experimental Settings

4.1 Datasets and Evaluation

We conduct experiments on four datasets: DocRED
(Yao et al., 2019), DWIE (Zaporojets et al., 2021),
Re-DocRED (Tan et al., 2022b), and DocGNRE
(Li et al., 2023), with details provided in Table 1
and Appendix B.

Following Yao et al. (2019), we employ F1 and
Ign-F1 as evaluation metrics. The Ign-F1 score
is computed by excluding relational facts that are
shared between the train and dev/test sets from the
F1 calculation.

4.2 Baselines

To conduct a comprehensive comparison and anal-
ysis of the superiority of AMTL, we compare it
with the three categories of work discussed in
Section 2. First, we evaluate the performance of
AMTL on several competitive models, including
GAIN (Zeng et al., 2020), ATLOP (Zhou et al.,
2021), DocuNet (Zhang et al., 2021), KD-DocRE
(Tan et al., 2022a), DREEAM (Ma et al., 2023),
and TTM-RE (Gao et al., 2024). Notably, these
baseline models employ different losses: ATLOP
and DREEAM use ATL loss, KD-DocRE adopts
AFL loss, DocuNet applies Balanced-Softmax loss,
and TTM-RE utilizes the SSR-PU loss. We as-
sess the performance of replacing these losses with
AMTL loss. Moreover, we compare AMTL with
existing DocRE losses. Additionally, we compare
AMTL with plugin-based methods. We also per-
form a detailed experimental analysis of our AMT
framework.

4.3 Implementation Details

We use BERTbase (Devlin et al., 2019) and
RoBERTalarge (Liu et al., 2019) as encoders and
utilize code from public repositories of various
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baseline models for our experiments. To ensure
the stability of the results, we conduct experiments
with five different random seeds (5, 42, 65, 66,
233) and take the average as the final result. All
experiments are conducted on NVIDIA 3090 GPU.

Moreover, we set the number of sub-label space
segments to 4 (n = 4) for the DocRED, Re-
DocRED, and DocGNRE datasets, and 3 (n = 3)
for the DWIE dataset. Based on our experience, the
suggested value for the parameter λ is the number
of sub-label space segments minus 0.5 for the first
three datasets, while for the DWIE dataset, it is
recommended to take it as the number of sub-label
space segments.

5 Main Results and Analysis

We conduct experiments to answer the following
research questions about our main contributions,
Adaptive Multi-Threshold Loss (AMTL) and Adap-
tive Multi-Threshold (AMT) framework:
• Q1: How effective is our AMTL loss when ap-

plied to different models? (Section 5.1)
• Q2: How does the performance of our AMTL

loss compare to other losses? (Section 5.2)
• Q3: How effective is our adaptive multi-

threshold framework AMT compared to existing
adaptive single-threshold methods? (Section 5.3)

5.1 Different DocRE Models with AMTL

To evaluate the effectiveness of AMTL loss applied
to different models, we replace the losses of various
models with AMTL.

As shown in Table 3, AMTL consistently im-
proves performance across multiple competitive
models on several datasets. Specifically, using
RoBERTalarge as the encoder, the F1 score on the
Re-DocRED test set improves by an average of
1.85, while Ign-F1 increases by 1.87. Similarly,
when DocGNRE (mGPT) is used as the train set,
the F1 score on the DocGNRE test set rises by 2.72
on average, with a corresponding gain of 2.64 in
Ign-F1.

Moreover, we note that the improvement on the
TTM-RE (Gao et al., 2024) model is particularly
significant. On the Re-DocRED dev set, F1 in-
creases to 81.72 and Ign-F1 to 80.86, with im-
provements of 3.59 and 2.81, respectively; on the
test set, F1 increases to 82.02 and Ign-F1 to 81.19,
with gains of 2.07 and 2.99, respectively, achieving
SOTA performance on both dev and test sets.

Loss Combination Dev Test

F1 Ign-F1 F1 Ign-F1

ATL+AFL+AML+SAT 75.19 73.95 74.75 73.49
ATL+AFL+NCRL+SAT 75.06 73.94 74.59 73.47
ATL+HingeABL+PEMSCL+AFL 75.52 74.29 75.18 73.98
ATL+ATL+AML+AFL 75.43 74.23 75.10 73.94

Table 2: Results of the collaboration of multiple losses
with our AMT framework, using ATLOP as the repre-
sentation module and BERTbase for encoding.

5.2 Different Loss Methods

To evaluate the performance of our loss AMTL
against other losses for DocRE, the results pre-
sented in Table 4 demonstrate that AMTL achieves
better performance by outperforming all compara-
tive losses in terms of both F1 and Ign-F1 scores.

Specifically, on the Re-DocRED test set, our
proposed AMTL achieves an F1 score of 75.63,
surpassing the previous best result obtained with
HingeABL loss by 0.48. Similarly, the Ign-F1
score reaches 74.44, representing a 0.60 improve-
ment over HingeABL loss. On the DocGNRE test
set, AMTL attains an F1 score of 71.34, exceeding
HingeABL loss by 0.36, while the Ign-F1 score
improves by 0.44 to 70.34. These results indicate
that AMTL exhibits superior performance in the
DocRE task compared to other losses.

5.3 Multiple Thresholds vs. Single Threshold

To demonstrate the effectiveness of our adaptive
multi-threshold (AMT) framework compared to
existing single-threshold methods, we conducted
two sets of experiments. The first set uses the same
loss in each sub-label space segment within the
AMT framework, as shown in Table 5, while the
second set applies different losses in each sub-label
space segment, as presented in Table 2.

Table 5 shows that the AMT framework con-
sistently improves F1 and Ign-F1 metrics, particu-
larly in methods based on ATL, AML, AFL, and
HingeABLSAT . For instance, on the Re-DocRED
test set, AMT increased ATL’s F1 by 2.34 and Ign-
F1 by 1.98, while AFL’s F1 improved by 1.53 on
the dev set. Additionally, Table 2 demonstrates that
combining different losses maintains stable perfor-
mance and outperforms single-threshold methods,
further validating the AMT framework’s robust-
ness. However, we did not find a clear pattern for
the optimal loss combination, which we plan to
explore further.
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Model Dev Test
F1 F1 with AMTL Ign-F1 Ign-F1 with AMTL F1 F1 with AMTL Ign-F1 Ign-F1 with AMTL

Re-DocRED with BERTbase
ATLOP (Zhou et al., 2021) 73.97 † 75.80 (+1.83) 73.04 † 74.59 (+1.55) 73.29 75.63 (+2.34) 72.46 74.44 (+1.98)
DocuNet (Zhang et al., 2021) 74.62 △ 76.22 (+1.60) 73.60 △ 74.91 (+1.31) 74.48 △ 76.01 (+1.53) 73.53 △ 74.73 (+1.20)
KD-DocRE (Tan et al., 2022a) 74.66 △ 75.92 (+1.26) 73.68 △ 74.78 (+1.10) 74.55 △ 75.63 (+1.08) 73.64 △ 74.53 (+0.89)
DREEAM (Ma et al., 2023) 74.13 † 76.10 (+1.97) 73.68 † 75.34 (+1.66) 73.75 † 75.71 (+1.96) 73.33 † 74.98 (+1.65)
TTM-RE (Gao et al., 2024) 75.51 † 78.97 (+3.46) 74.31 † 78.03 (+3.72) 75.71 † 78.72 (+3.01) 74.55 † 77.81 (+3.26)

Re-DocRED with RoBERTalarge
ATLOP (Zhou et al., 2021) 77.63 * 80.09 (+2.46) 76.88 * 79.15 (+2.27) 77.73 * 79.97 (+2.24) 76.94 * 79.04 (+2.10)
DocuNet (Zhang et al., 2021) 78.16 * 79.62 (+1.46) 77.53 * 78.54 (+1.01) 77.92 * 79.71 (+1.79) 77.27 * 78.66 (+1.39)
KD-DocRE (Tan et al., 2022a) 78.65 * 79.73 (+1.08) 77.92 * 78.73 (+0.81) 78.35 * 79.45 (+1.10) 77.63 * 78.46 (+0.83)
DREEAM (Ma et al., 2023) 77.60 † 79.80 (+2.20) 77.20 † 79.19 (+1.99) 77.94 ⋄ 79.98 (+2.04) 77.34 ⋄ 79.40 (+2.06)
TTM-RE (Gao et al., 2024) 78.13 ⋄ 81.72 (+3.59) 78.05 ⋄ 80.86 (+2.81) 79.95 ⋄ 82.02 (+2.07) 78.20 ⋄ 81.19 (+2.99)

DWIE with RoBERTalarge
ATLOP (Zhou et al., 2021) 76.65 77.19 (+0.54) 72.47 73.13 (+0.66) 81.39 81.85 (+0.46) 76.83 77.44 (+0.81)
DocuNet (Zhang et al., 2021) † 76.46 77.04 (+0.58) 72.69 72.98 (+0.29) 81.32 81.55 (+0.23) 77.20 76.91 (-0.29)
KD-DocRE (Tan et al., 2022a) † 76.55 77.00 (+0.45) 72.01 73.52 (+1.51) 80.92 81.05 (+0.13) 75.67 77.22 (+1.55)

DocGNRE (GPT) with BERTbase
ATLOP (Zhou et al., 2021) 73.89 † 75.98 (+2.09) 73.07 † 74.85 (+1.78) 68.74 † 71.22 (+2.48) 68.06 † 70.24 (+2.18)
DREEAM (Ma et al., 2023) 74.23 † 76.07 (+1.84) 73.76 † 75.30 (+1.54) 68.24 ‡ 71.28 (+3.04) 68.89 † 70.63 (+1.74)
TTM-RE (Gao et al., 2024) 75.44 † 78.93 (+3.49) 74.33 † 77.96 (+3.63) 71.14 † 74.02 (+2.88) 70.19 † 73.19 (+3.00)

DocGNRE (GPT) with RoBERTalarge
ATLOP (Zhou et al., 2021) 77.61 † 80.11 (+2.50) 76.96 † 79.18 (+2.22) 72.90 † 75.47 (+2.57) 72.36 † 74.67 (+2.31)
DREEAM (Ma et al., 2023) 77.75 † 79.74 (+1.99) 77.28 † 79.14 (+1.86) 72.90 ‡ 75.47 (+2.57) 72.97 † 74.97 (+2.00)
TTM-RE (Gao et al., 2024) 78.16 † 81.59 (+3.43) 77.30 † 80.74 (+3.44) 73.72 † 77.05 (+3.33) 73.01 † 76.35 (+3.34)

DocGNRE (mGPT) with BERTbase
ATLOP (Zhou et al., 2021) 73.80 † 76.01 (+2.21) 73.00 † 74.85 (+1.85) 68.81 † 71.04 (+2.23) 68.16 † 70.02 (+1.86)
DREEAM (Ma et al., 2023) 74.30 † 75.92 (+1.62) 73.84 † 75.15 (+1.31) 68.00 ‡ 71.44 (+3.44) 68.83 † 70.81 (+1.98)
TTM-RE (Gao et al., 2024) 75.54 † 78.97 (+3.43) 74.33 † 78.05 (+3.72) 71.59 † 74.14 (+2.55) 70.54 † 73.35 (+2.81)

DocGNRE (mGPT) with RoBERTalarge
ATLOP (Zhou et al., 2021) 77.70 † 80.34 (+2.64) 77.02 † 79.37 (+2.35) 72.99 † 75.40 (+2.41) 72.44 † 74.56 (+2.12)
DREEAM (Ma et al., 2023) 77.72 † 79.89 (+2.17) 77.34 † 79.27 (+1.93) 73.29 ‡ 75.71 (+2.42) 72.80 † 75.21 (+2.41)
TTM-RE (Gao et al., 2024) 78.15 † 81.64 (+3.49) 77.29 † 80.83 (+3.54) 73.84 † 77.17 (+3.33) 73.12 † 76.50 (+3.38)

Table 3: Performance of different DocRE models with AMTL loss. We replace the losses of various models with
AMTL. Results with † are our reproduction, ‡ from Qi et al. (2024), * from Lu et al. (2023), △ from Xu et al.
(2024), and ⋄ from the original paper. For DocGNRE, lacking a dev set, we evaluate using Re-DocRED dev set.

Loss Function Re-DocRED DocGNRE
F1 Ign-F1 F1 Ign-F1

ATL (Zhou et al., 2021) 73.29 * 72.46 * 68.74 † 68.06 †

Balanced-Softmax (Zhang et al., 2021) 73.68 * 72.85 * 68.84 † 68.13 †

AML (Wei and Li, 2022) 72.60 * 71.78 * 67.86 † 67.11 †

AFL (Tan et al., 2022a) 74.15 * 73.20 * 69.45 † 68.69 †

NCRL (Zhou and Lee, 2022) 73.87 † 72.79 † 69.20 † 68.27 †

SSR-PU (Wang et al., 2022) 73.00 † 71.53 † 69.54 † 68.29 †

PEMSCL (Guo et al., 2023) 73.98 † 73.06 † 69.46 † 68.70 †

HingeABLSAT (Wang et al., 2023) 73.46 * 72.61 * 69.15 † 68.41 †

HingeABLMeanSAT (Wang et al., 2023) 74.68 * 72.90 * 70.83 † 69.25 †

HingeABL (Wang et al., 2023) 75.15 * 73.84 * 70.98 † 69.90 †

AMTL (Our Loss) 75.63 (0.48↑) 74.44 (0.60↑) 71.34 (0.36↑) 70.34 (0.44↑)

Table 4: Results of different losses on the Re-DocRED test set (trained on the Re-DocRED train set) and the
DocGNRE test set (trained on the DocGNRE (GPT) train set). † indicates our reproduction, and * from Wang et al.
(2023). All results use ATLOP (Zhou et al., 2021) as the representation module and employ BERTbase for encoding.

Loss Function Dev Test
F1 F1 with AMT Ign-F1 Ign-F1 with AMT F1 F1 with AMT Ign-F1 Ign-F1 with AMT

ATL (Zhou et al., 2021) 73.93† 75.80 (+1.87) 73.04† 74.59 (+1.55) 73.29* 75.63 (+2.34) 72.46* 74.44 (+1.98)
Balanced-Softmax (Zhang et al., 2021) 74.00† 74.25 (+0.25) 73.14† 73.30 (+0.16) 73.68* 73.89 (+0.21) 72.85* 72.96 (+0.11)
AML (Wei and Li, 2022) 73.04† 74.49 (+1.45) 72.17† 73.38 (+1.21) 72.60* 73.91 (+1.31) 71.78* 72.79 (+1.01)
AFL (Tan et al., 2022a) 74.36† 75.89 (+1.53) 73.36† 74.63 (+1.27) 74.15* 75.54 (+1.39) 73.20* 74.29 (+1.09)
SSR-PU (Wang et al., 2022) 73.57† 74.06 (+0.49) 72.09† 72.46 (+0.37) 73.00† 73.80 (+0.80) 71.53† 72.20 (+0.67)
PEMSCL (Guo et al., 2023) 74.50† 75.38 (+0.88) 73.55† 74.11 (+0.56) 73.98† 74.93 (+0.95) 73.06† 73.67 (+0.61)
HingeABLSAT (Wang et al., 2023) 74.06† 75.47 (+1.41) 73.19† 74.29 (+1.10) 73.46* 75.39 (+1.93) 72.61* 74.25 (+1.64)
HingeABL (Wang et al., 2023) 75.61† 75.72 (+0.11) 74.39† 74.54 (+0.15) 75.15* 75.49 (+0.34) 73.84* 74.35 (+0.51)

Table 5: Performance comparison of our adaptive multi-threshold framework AMT and existing single threshold
methods based on different losses on the Re-DocRED dataset. “with AMT” means using our adaptive multi-
threshold framework AMT in Fig. 3, where each sub-label space segment in the framework uses the same loss as
the single threshold method, and n = 4 (n represents the number of segments in the framework). All the results use
ATLOP (Zhou et al., 2021) as the representation module and employ BERTbase for encoding. Results marked with †
are from our reproduction, * from Wang et al. (2023).
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6 Further Analysis

To further investigate our method’s performance,
we answer the following research questions:
• Q4: Does the AMT framework alleviate the long-

tail problem? (Section 6.1)
• Q5: How effective is our AMTL loss in mitigat-

ing performance degradation due to label space
expansion? (Section 6.2)

• Q6: How does our AMTL loss perform on
weakly supervised generalization? (Section 6.3)

• Q7: How does our AMTL loss compare to differ-
ent plugin-based methods regarding performance
when integrated into the model? (Section 6.4)

• Q8: What is the training cost of our AMTL loss?
(Section 6.5)

• Q9: How do our AMTL loss and HingeABL loss
perform on different models? (Section 6.6)

• Q10: Is a larger segment number n always better
for datasets with more labels? (Section 6.7)

• Q11: What is the impact of hyperparameters
(segment number n, weighted average λ, label or-
derings) on the performance of our AMTL loss?
(Section 6.8)

6.1 Analyzing the Long-Tail Problem

In order to analyze the impact of AMT framework
on long-tail problem, we first rank all predefined
relations in descending order based on their fre-
quency in the Re-DocRED train set. Subsequently,
these relations are grouped into four categories:
Head-10 (the top 10 relations), Mid-76 (relations
ranked 11th to 86th), Tail-20 (the bottom 20 rela-
tions), and Tail-10 (the last 10 relations).

As shown in Table 6, the AMT framework im-
proves F1 scores across four bands and effectively
alleviate the long-tail problem. In the Head-10,
AMT framework increases F1 score of ATL from
77.25 to 79.35. In the Tail-20, AFL’s F1 score rises
from 48.17 to 53.07. For the Tail-10, AMT frame-
work boosts F1 scores of AFL and PEMSCL by
6.40 and 3.53, respectively.

6.2 Analyzing the Label Space Expansion

To verify the effectiveness of our proposed AMTL
loss in mitigating performance degradation from
label space expansion, we compare it with three
other losses.

As shown in Fig. 4, the F1 scores of the four
losses decrease as the label space expands. How-
ever, in most cases, the model with our AMTL loss
consistently achieves higher F1 scores across dif-

Loss Head-10 Mid-76 Tail-20 Tail-10
ATL 77.25 67.15 44.90 40.76
with AMT 79.35 69.83 53.52 42.49
AML 76.51 65.60 43.60 35.29
with AMT 78.07 67.61 45.35 41.42
AFL 77.47 67.73 48.17 41.77
with AMT 79.14 69.85 53.07 48.17
Balanced Softmax 77.43 66.29 47.51 35.53
with AMT 77.74 67.54 46.80 38.27
PEMSCL 78.16 68.82 48.46 42.78
with AMT 78.84 69.94 50.73 46.31
SAT 77.36 67.24 46.48 38.27
with AMT 78.77 70.15 53.40 46.46
HingeABL 79.06 69.10 51.51 45.41
with AMT 79.24 69.86 48.99 45.13

Table 6: F1 results for the long-tail problem on the Re-
DocRED dev set, using ATLOP as the representation
module and employing BERTbase for encoding.
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AML loss
HingeABL loss
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Figure 4: The effect of label space expansion on model
performance is analyzed using different losses on the
Re-DocRED dev set, with ATLOP as the representation
module and BERTbase for encoding.

ferent label spaces. For instance, when the size
of label space is 20, the F1 score with AMTL is
78.10, compared to 77.06 with ATL; as the label
space expands to 96, AMTL achieves an F1 score
of 75.80, while ATL drops to 73.97. Notably, the
advantage of AMTL becomes more pronounced
in larger label spaces (e.g., with 80 and 96 labels).
These results indicate that the AMTL effectively
mitigates performance degradation caused by la-
bel space expansion. Additionally, we observe that
compared to the other three losses, the performance
degradation of AMTL loss is more gradual as the
label space expands.

6.3 Weakly Supervised Generalization Ability
Following Qi et al. (2024) and Gao et al. (2024), we
evaluate the weakly supervised generalization of
AMTL by training on the incompletely annotated
DocRED dataset and testing on the more compre-
hensively annotated Re-DocRED dataset.

The results presented in Table 7 indicate that
AMTL significantly outperforms several competi-
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Model F1 Ign-F1

GAIN (Zeng et al., 2020) * 41.68 41.26
LogicRE-GAIN (Ru et al., 2021) * 41.89 (+0.21) 41.53 (+0.27)
MILR-GAIN (Fan et al., 2022) * 43.17 (+1.49) 42.89 (+1.63)
JMRL-GAIN (Qi et al., 2024) * 49.58 (+7.90) 47.85 (+6.59)
AMTL-GAIN (Ours) 58.40 (+16.72) 57.24 (+15.98)

ATLOP (Zhou et al., 2021) * 41.95 41.67
LogicRE-ATLOP (Ru et al., 2021) * 42.73 (+0.78) 42.47 (+0.80)
MILR-ATLOP (Fan et al., 2022) * 44.72 (+2.77) 44.30 (+2.63)
JMRL-ATLOP (Qi et al., 2024) * 47.54 (+5.59) 47.32 (+5.65)
AMTL-ATLOP (Ours) 58.88 (+16.93) 58.04 (+16.37)

Table 7: Weakly supervised generalization compari-
son results: training on DocRED and testing on Re-
DocRED. Results with * are from Qi et al. (2024), and
all methods employ BERTbase for encoding.

tive methods, including LogicRE (Ru et al., 2021),
MILR (Fan et al., 2022), and JMRL (Qi et al.,
2024). Specifically, AMTL-ATLOP achieves F1
and Ign-F1 scores of 58.88 and 58.04, respectively,
marking improvements of 16.93 and 16.37 over
the baseline ATLOP model. Furthermore, com-
pared to the JMRL-ATLOP model, AMTL-ATLOP
exhibits increases of 11.34 and 10.72 in F1 and
Ign-F1 scores, respectively. These improvements
suggest that AMTL not only possesses the ability
to learn effectively from noisy data but also ex-
hibits superior performance when confronted with
datasets that feature more comprehensive and pre-
cise annotations. This further validates the strong
generalization capability and robustness of AMTL
in DocRE tasks.

6.4 Comparison with Plugin-based Methods
To evaluate the performance of our AMTL loss in
comparison with different plugin-based methods,
we integrate the AMTL loss and the competitive
logical reasoning plugin JMRL (Qi et al., 2024)
into the DREEAM (Ma et al., 2023) model for
comparison.

The results in Table 8 indicate that AMTL out-
performs JMRL in terms of F1 score. In the AMTL-
DREEAM configuration using BERTbase for encod-
ing, the F1 score improves by 3.44 compared to
DREEAM, demonstrating a significant enhance-
ment. Furthermore, AMTL-DREEAM improves
F1 by 2.36 over JMRL-DREEAM. These results
suggest that the AMTL loss exhibits a competitive
advantage in overall performance.

6.5 Analyzing Cost
To verify the time cost of our loss, we compare
the training times of different losses. As shown
in Table 9, the training time of the AMTL loss
under the ATLOP-backbone framework is 41.91

Model P R F1

DocGNRE (GPT) with RoBERTalarge
DREEAM * 84.92 63.86 72.90
JMRL-DREEAM * 83.83 (-1.09) 65.92 (+2.06) 73.81 (+0.91)
AMTL-DREEAM 84.67 (-0.25) 68.07 (+4.21) 75.47 (+2.57)

DocGNRE (mGPT) with BERTbase
DREEAM * 81.71 58.23 68.00
JMRL-DREEAM * 82.55 (+0.84) 59.39 (+1.16) 69.08 (+1.08)
AMTL-DREEAM 79.78 (-1.93) 64.68 (+6.45) 71.44 (+3.44)

Table 8: A comparison of our AMTL loss with plugin-
based method JMRL, based on the DocGNRE test set
results. Results marked with * are from Qi et al. (2024).

Loss Training Time

ATL (Zhou et al., 2021) 40.04 minutes
AML (Wei and Li, 2022) 40.23 minutes
SSR-PU (Wang et al., 2022) 88.42 minutes
HingeABL (Wang et al., 2023) 40.13 minutes
AMTL (Ours) 41.91 minutes

Table 9: Comparison of training time for various losses
using the ATLOP-backbone framework. All losses are
trained for 30 epochs with a batch size of 4 on Re-
DocRED dataset, using BERTbase for encoding.

minutes, which is comparable to other losses (such
as ATL, AML, and HingeABL). This indicates that
our method achieves similar training time while
maintaining good performance.

6.6 AMTL Loss vs. HingeABL Loss on
Different Models

To further verify the effectiveness and advantages
of our proposed AMTL loss, we conduct two
sets of experiments. One investigates the perfor-
mance of AMTL and the SOTA HingeABL loss
across categories with varying frequencies, while
the other evaluates how different models perform
when trained with AMTL and HingeABL.

Performance Comparison Under Different Mod-
els. The experimental results in Table 10 show
that AMTL consistently outperforms HingeABL
across all models and encoder settings (BERTbase
and RoBERTalarge). The improvements in F1 score
range from 0.11 to 0.48, while Ign-F1 gains reach
up to 0.70. These consistent gains demonstrate the
effectiveness and robustness of the AMTL loss.

Long-Tail Problem Performance with Different
Models. To further compare the performance of
AMTL and HingeABL losses across different rela-
tion frequency categories, we conduct experiments
using various backbone models, as shown in Table
11. AMTL consistently outperforms HingeABL,
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Model
F1

(HingeABL)
F1

(AMTL)
Ign-F1

(HingeABL)
Ign-F1

(AMTL)

with BERTbase
ATLOP 75.15 75.63 (+0.48) 73.84 74.44 (+0.60)
DocuNet 75.72 76.01 (+0.29) 74.59 74.73 (+0.14)
KD-DocRE 75.16 75.63 (+0.47) 73.96 74.53 (+0.57)
DREEAM 75.42 75.71 (+0.29) 74.28 74.98 (+0.70)

with RoBERTalarge
ATLOP 79.79 79.97 (+0.18) 78.82 79.04 (+0.22)
DocuNet 79.43 79.71 (+0.28) 78.39 78.66 (+0.27)
KD-DocRE 79.34 79.45 (+0.11) 78.26 78.46 (+0.20)
DREEAM 79.85 79.98 (+0.13) 78.80 79.40 (+0.60)

Table 10: Performance comparison of AMTL loss and
HingeABL loss on the Re-DocRED test set.

Model Head-10 Mid-76 Tail-20 Tail-10

ATLOP
+HingeABL 79.06 69.10 51.51 45.41
+AMTL 79.24 (+0.18) 69.86 (+0.76) 48.99 (-2.52) 45.13 (-0.28)

DocuNet
+HingeABL 79.51 69.75 52.22 43.18
+AMTL 80.14 (+0.63) 70.10 (+0.35) 54.82 (+2.60) 51.81 (+8.63)

KD-DocRE
+HingeABL 78.88 69.22 53.05 42.60
+AMTL 79.68 (+0.80) 69.97 (+0.75) 54.67 (+1.62) 46.49 (+3.89)

Table 11: Experimental results comparing AMTL loss
and HingeABL loss on different base representation
modules and four categories, using the F1 of BERTbase
on the Re-DocRED dev set.

especially on low-frequency categories (Tail-20
and Tail-10). For example, with DocuNet, AMTL
improves F1 by 8.63 on Tail-10; with KD-DocRE,
the gain is 3.89. When ATLOP is selected as the
representation module, AMTL outperforms Hinge-
ABL on high-frequency categories, but it does not
outperform HingeABL on two of the less frequent
categories. These overall results further indicate
that AMTL performs better on both high-frequency
and less frequent categories.

We analyze the reasons as follows: While Hinge-
ABL reduces the impact of easily predictable nega-
tives and emphasizes challenging minority classes,
it still uses a single threshold and overlooks differ-
ences across relations. In contrast, our AMTL loss
partitions the label space and learns adaptive thresh-
olds for each sub-space, allowing finer adaptation
to relation-specific characteristics, which better mit-
igates long-tail problem and avoids over-filtering.

6.7 Effect of Sub-label Space Number on
Overall Threshold and Recall.

To further investigate the effect of the number n
of sub-label space segments on the model, we con-
ducted experiments summarized in Table 12. Intu-
itively, a larger n should benefit datasets with more
labels, as it enables more precise control over the
model’s sensitivity to different types of relations.

Sub-label
Space

Number
2 3 4 5 6 7 8 9

Overall
Threshold

10.68 11.74 12.24 12.58 12.71 12.91 13.03 13.08

Recall 78.31 73.24 72.85 70.49 69.69 69.05 69.12 68.79

Table 12: Effect of sub-label space number on overall
threshold and recall.

However, experimental results reveal that increas-
ing the number of sub-label space segments also
raises the overall threshold, which is defined as
the average of the thresholds across all subspaces.
This increase in threshold subsequently leads to a
decline in recall.

This is because each subspace’s threshold is in-
fluenced not only by its own prediction distribution
but also by those of other subspaces (see Eq. 2).
As a result, finer label space partitioning tends to
raise confidence thresholds for positive predictions,
filtering out more low-confidence relations and thus
lowering recall.

6.8 Analyzing Hyperparameters

To evaluate the impact of the hyperparameters (in-
cluding the segment number n, the weighted av-
erage coefficient λ, and the label orderings) on
performance, we conduct experimental analyses,
with detailed results provided in Appendix A.

7 Conclusion

We propose a novel adaptive multi-threshold loss,
AMTL, which effectively mitigates the perfor-
mance degradation caused by label space expansion
and the long-tail problem in DocRE tasks. AMTL
first proposes to partition the label space into mul-
tiple segments and assign an adaptive threshold
for each segment. Moreover, we design a multi-
threshold framework that enables the collabora-
tive application of multiple losses across differ-
ent label space segments, which outperforms the
single-threshold methods used in prior work. Ex-
periments show that AMTL significantly improves
the predictive performance of various models and
achieves SOTA results on four datasets, further
demonstrating its superiority. AMTL also exhibits
effective generalization capabilities, performing
well on both partially labeled and fully labeled
datasets. Since our method is independent of spe-
cific models, it holds potential for wide applicabil-
ity in other multi-label classification tasks.
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Limitations

Despite our AMTL loss and AMT framework
demonstrating advantages in the DocRE task, there
are still some limitations. Firstly, although our
AMT framework effectively combines different
losses and maintains stable performance, identify-
ing a clear pattern for the optimal loss combination
remains challenging, and we plan to investigate this
further in future work. Moreover, as demonstrated
in our experiments, the AMTL loss demonstrates
more effective than other losses in mitigating per-
formance degradation caused by label space expan-
sion. However, when the number of relation types
increases to 96, our model experiences a certain de-
gree of performance decline compared to its perfor-
mance with 20 relation types. This raises concerns
about its scalability to real-world scenarios, where
the number of relation types may be significantly
larger. The performance of our approach on such
scenarios remains unexplored.
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A Hyperparameter Analysis

A.1 Analyzing Sub-label Space Segments

To evaluate the impact of the number n of sub-label
space segments on performance, we partition the
label space into 9 segments. Fig. 5 illustrates the
F1 score variations for our proposed loss, AMTL,
as the number of sub-label space segments changes.
When the number of segments is 1, AMTL can
be regarded as equivalent to ATL. As the number
of segments increases beyond 1, we insert a new
segment for every ten labels. For example, with 2
segments, one is inserted before the first label and
another after the tenth label.

The F1 score peaks at 75.80 when the number
of sub-label space segments is 4. However, as
the number of segments increases beyond 4, the
F1 score begins to decline, eventually dropping to
75.06 with 9 segments. This suggests that an exces-
sive number of segments may reduce the model’s
performance, likely due to more scores of predicted
relations exceeding the threshold, resulting in an
increased number of positive classes.
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Figure 5: Performance with different numbers of sub-
label space segments, evaluated on the Re-DocRED
dev set, using ATLOP as the representation module and
BERTbase for encoding.
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Figure 6: Performance varies with changes in the λ
value, evaluated on the Re-DocRED dev set, using AT-
LOP as the representation module and BERTbase for
encoding.

A.2 Effect of λ in AMTL
As shown in Fig. 6, the model’s performance ex-
hibits a clear fluctuation with changes in the λ
value. When λ is set to 3.5, the model achieves
the optimal F1 score of 75.80 on the Re-DocRED
dev set. In contrast, when the λ value is too high or
too low, the performance of the model significantly
deteriorates. For instance, at λ = 6, the F1 score
drops to 57.32. This indicates that the λ value has a
significant impact on the model’s performance, and
selecting an appropriate λ is crucial for achieving
the best results.

A.3 Effect of Label Ordering in AMTL
Table 13 compares performance under three la-
bel ordering strategies: our proposed ordering, the
original ordering, and random ordering, on the Re-
DocRED dev set.

As shown in Table 13, the model with AMTL us-
ing our proposed label ordering achieves the high-
est F1 score of 75.80 and Ign-F1 of 74.59, out-
performing the other configurations. Specifically,
the model with the original label ordering achieves
a slightly lower F1 score of 75.51 and Ign-F1 of
74.27, while the random ordering results in a simi-

Method on Re-DocRED Dev Set F1 Ign-F1

ATLOP 73.93 73.04
ATLOP with AMTL (Our Ordering) 75.80 74.59
ATLOP with AMTL (Original Ordering) 75.51 74.27
ATLOP with AMTL (Random Ordering) 75.48 74.34

Table 13: Results with different label ordering.

lar performance with an F1 score of 75.48 and Ign-
F1 of 74.34. These results highlight the importance
of label ordering in improving model performance.

B Detailed Description of the Datasets

DocRED (Yao et al., 2019), is a large-scale, manu-
ally annotated dataset constructed from Wikipedia,
and it is one of the largest datasets in DocRE. The
dataset consists of 5,053 documents, with 3,053
used for training, and 1,000 each for development
and testing.

DWIE (Zaporojets et al., 2021) is an entity-
centric dataset that contains four natural language
processing subtasks. To ensure consistency, we fol-
low the method of Ru et al. (2021) to process the
original DWIE dataset, resulting in 602 documents
for training, 98 for development, and 99 for testing.

Re-DocRED (Tan et al., 2022b) is built on the
DocRED (Yao et al., 2019) dataset, addressing the
annotation errors and gaps of DocRED, and offer-
ing more accurate and comprehensive annotations.
The dataset includes 3,053 documents for training,
500 for development, and 500 for testing.

DocGNRE (Li et al., 2023) is a dataset that uses
the powerful generative capabilities of ChatGPT
to expand and enhance the Re-DocRED dataset. It
includes two training sets (GPT set and mGPT set)
and a test set. The test set is generated through
distant supervision using ChatGPT and has under-
gone rigorous manual verification to ensure high
quality and reliability, making it suitable for accu-
rate model evaluation. Each of the two training
sets contains 3,053 documents, while the test set
contains 500 documents.

21007


