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Abstract
Entity alignment (EA) aims to identify entities
in different knowledge graphs (KGs) that rep-
resent the same real-world objects. Traditional
EA methods typically embed entity informa-
tion into vector space under the guidance of
seed entity pairs, and align entities by calcu-
lating and comparing the similarity between
entity embeddings. With the advent of large lan-
guage models (LLMs), emerging methods are
increasingly integrating LLMs with traditional
methods to leverage external knowledge and
improve EA accuracy. However, this integra-
tion also introduces additional computational
complexity and operational overhead, and still
requires seed pairs that are scarce and expen-
sive to obtain. To address these challenges,
we propose EasyEA, the first end-to-end EA
framework based on LLMs that requires no
training. EasyEA consists of three main stages:
(1) Information Summarization, (2) Embedding
and Feature Fusion, and (3) Candidate Selec-
tion. By automating the EA process, EasyEA
significantly reduces the reliance on seed en-
tity pairs while demonstrating superior perfor-
mance across various datasets, covering cross-
lingual, sparse, large-scale, and heterogeneous
scenarios. Extensive experimental results show
that EasyEA not only simplifies the EA pro-
cess but also achieves state-of-the-art (SOTA)
performance on diverse datasets, providing a
promising solution for advancing EA tasks 1.

1 Introduction

Knowledge graphs (KGs) are structured knowledge
bases widely used in tasks such as semantic search,
recommendation systems, and question answering.
These graphs typically represent real-world objects
and their relation in the form of triples (entity-
relation-entity or entity-attribute-value) (Sun et al.,
2020). The goal of entity alignment (EA) is to iden-
tify equivalent entity pairs across different KGs

*Corresponding author. †Equal contribution.
1Code: https://github.com/alusang/EasyEA-framework

that refer to the same real-world object (Fanourakis
et al., 2023). As KGs differ in language, structure,
and schema, EA has become a challenging task
(Zhao et al., 2020; Fanourakis et al., 2023).

Traditional EA methods, such as translation-
based methods, machine learning-based methods,
and graph neural network (GNN)-based methods
(Jiang et al., 2024a), rely on symbolic and struc-
tural features to align entities across KGs. These
methods perform well in scenarios with consis-
tent naming conventions or rich relation structures
(Zhao et al., 2020). However, when applied to
large or diverse KGs, they face significant chal-
lenges, particularly due to linguistic and structural
heterogeneity. Furthermore, these methods require
large amounts of labeled data for training and fail
to incorporate external knowledge, both of which
are crucial for accurate EA (Sun et al., 2020; Zhao
et al., 2020; Fanourakis et al., 2023). Additionally,
the black-box nature of embedding similarity cal-
culations limits their interpretability and reduces
adaptability to complex EA scenarios (Jiang et al.,
2024a).

LLMs have significantly advanced various fields
with their exceptional semantic understanding, con-
textual inference, and cross-lingual capabilities.
These strengths make them particularly valuable
for tackling challenges in EA, such as bridging
the semantic gap between KGs and enriching lim-
ited entity knowledge. Recent EA methods com-
bining LLMs with traditional methods have led
to notable improvements in performance. Some
methods focus on turning entity information into
a common semantic form and using the search
abilities of LLMs to align them efficiently, such
as DERA (Wang and Chen, 2024) and Seg-Align
(Yang et al., 2024a). Others leverage the reason-
ing power of LLMs to improve alignment accuracy
and robustness through methods like multi-step rea-
soning and active learning, such as ChatEA (Jiang
et al., 2024a) and LLMEA (Yang et al., 2024b).
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While this combination enhances the accuracy of
EA, it also introduces significant resource overhead.
Specifically, methods that utilize LLMs require
not only the computational resources necessary for
smaller models but also the additional resources re-
quired by the LLM itself. This creates a challenge
in balancing resource consumption with alignment
accuracy (Jiang et al., 2024a). Furthermore, these
methods rely on entity names to supplement or en-
rich entity information using LLMs, which can lead
to potential data leakage (Wu et al., 2024), where
sensitive or proprietary data associated with the en-
tities may unintentionally influence the alignment
process.

To cope with the complexity of the current EA
task, we propose EasyEA, an efficient EA frame-
work driven entirely by LLMs, aimed at overcom-
ing the limitations of traditional models and hy-
brid models. EasyEA consists of three key stages:
(1) Information Summarization. At this stage, we
focus on using LLMs to extract semantic infor-
mation from the KG data. The LLM summarizes
the key attributes and relations of entities to cap-
ture their core semantic meanings. (2) Embedding
and Feature Fusion. In this stage, we embed the
summaries using LLMs and integrate the diverse
feature embeddings obtained to construct a holistic
and enriched representation of entities. (3) Candi-
date Selection. We propose a hierarchical strategy,
which leverages multiple views of information, en-
abling the LLM to more accurately select the most
appropriate target entities, thereby enhancing the
accuracy and reliability of EA.

Through extensive experiments on multiple
datasets, EasyEA demonstrates excellent perfor-
mance, surpassing existing state-of-the-art (SOTA)
models. Unlike traditional methods, EasyEA elimi-
nates the need for manual seed entity pair construc-
tion and additional model training, significantly
improving efficiency while ensuring high-quality
EA results. The main contributions of our frame-
work are:

• We introduce the first fully LLM-based EA
framework EasyEA, eliminating the reliance
on traditional methods and enabling an end-
to-end EA process driven entirely by LLMs.

• By relying solely on LLMs, EasyEA removes
the need for seed entity pair construction and
eliminates the need for additional training, sig-
nificantly reducing the manual effort required
in traditional EA methods.

• EasyEA framework achieves SOTA perfor-
mance on widely-used datasets, including
DBP15K, ICEWS, SRPRS, and DWY, demon-
strating its effectiveness and robustness in
challenging scenarios such as cross-lingual
alignment, large-scale KGs, heterogeneous
KGs, and sparse datasets.

2 Related Works

EA methods can generally be classified into four
categories: translation-based methods, machine
learning-based methods, GNN-based methods, and
LLM-enhanced methods.

Translation-Based Methods. Translation-
based methods, such as MTransE (Chen et al.,
2017), BootEA (Sun et al., 2018), and Transedge
(Sun et al., 2019), represent entities and relations
in a low-dimensional vector space. In these mod-
els, a relation in KGs is treated as a translation
mapping the head entity vector to the tail entity
vector (Zhang et al., 2022). These methods align
entities by minimizing the distance between the
vectors of aligned entities. While effective in ho-
mogeneous KGs, these methods face challenges in
more complex or heterogeneous graph structures,
where relations can be more complicated (Zhang
et al., 2022). Furthermore, translation-based mod-
els often struggle with cross-lingual or sparse data
settings, where the embeddings may fail to fully
capture the diversity and complexity of the data.

Machine Learning-Based Methods. Machine
learning-based methods introduce supervised or
semi-supervised learning techniques, using seed en-
tity pairs from KGs to train classifiers or regression
models. Notable machine learning-based methods
include BERT-INT (Tang et al., 2020), and Simple-
HHEA (Jiang et al., 2024b), which leverage dif-
ferent machine learning techniques to enhance EA
performance. However, these methods are heav-
ily dependent on the quality and quantity of seed
entity pairs, leading to high labeling costs. More-
over, their performance can be constrained in cross-
lingual or sparse data scenarios, where labeled data
is often scarce (Fanourakis et al., 2023).

Graph neural network (GNN)-Based Meth-
ods. GNN-based methods, such as GCN-Align
(Wang et al., 2018), MuGNN (Cao et al., 2019)
and RDGCN (Wu et al., 2019), explicitly model
the graph structure of KGs, learning high-order fea-
tures of nodes and their neighbors. These methods
show certain advantages in capturing both local
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Figure 1: The framework of EasyEA we proposed is mainly divided into three stages: (1) Information Summariza-
tion; (2) Embedding and Feature fusion; (3) Candidate selection.

and global structural information, making them
effective for EA in complex graph environments.
However, their dependence on labeled data and
high computational complexity limits their scala-
bility, especially in large-scale or heterogeneous
datasets.

LLM-Enhanced Methods. With the advent
of LLMs, EA methods have evolved into hybrid
frameworks that combine the strengths of tradi-
tional models with the semantic capabilities of
LLMs. ChatEA (Jiang et al., 2024a) enhances can-
didate selection through iterative reasoning, while
Seg-Align (Yang et al., 2024a) integrates small
language models for feature extraction and LLMs
for cross-lingual alignment. LLMEA (Yang et al.,
2024b) combines LLM insights with structural em-
beddings to improve consistency in alignment. Ad-
ditionally, DERA (Wang and Chen, 2024) encodes
entity information into text representations, improv-
ing retrieval and reducing structural-semantic in-
consistencies, and LLM4EA (Chen et al., 2024) in-
tegrates LLM-encoded knowledge with traditional
embeddings to enhance entity quality. These ap-
proaches highlight the potential of LLMs but also
introduce challenges, such as the need for computa-
tional resources (Jiang et al., 2024a). Additionally,
these methods rely on LLMs to enhance or sup-
plement entity information, which could lead to
unintended data leakage (Wu et al., 2024).

To address the limitations of traditional methods
and hybrid methods, we propose EasyEA, a fully
LLM-based EA framework. By removing reliance
on traditional techniques, EasyEA significantly re-
duces complexity while achieving competitive per-
formance across a variety of challenging datasets.

3 Problem Definition

A Knowledge Graph (KG) is represented as
KG = (V,R,A,V, T ), where V , R, A, V, and
T represent entities, relations, attribute types, at-
tribute values, and triples, respectively. Each entity
v ∈ V represents a real-world object or concept,
and each relation r ∈ R represents a relation be-
tween two entities. The set of attribute types is
denoted as A, and the set of attribute values is de-
noted as V. The set of triples T can be further
divided into two categories: relation triples and
attribute triples. Relation triples are represented as
TR = {tr = (vi, rij , vj) | vi, vj ∈ V, rij ∈ R},
where rij represents a specific relation between en-
tities vi and vj . Attribute triples are represented
as TA = {ta = (vi, ak, av) | vi ∈ V, ak ∈
A, av ∈ V}, where ak ∈ A represents the at-
tribute type (e.g., "name", "age"), and av ∈ V
represents the corresponding attribute value. Con-
sequently, the set of triples T in KG can be ex-
pressed as the union of relation and attribute triples,
i.e., T = TR ∪ TA.
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Entity Alignment (EA) involves identifying
equivalent entities across different KGs. Given
two KGs, KG1 = (V1, R1, A1,V1, T1) and
KG2 = (V2, R2, A2,V2, T2), the task is to find
a set of aligned entity pairs EA(KG1,KG2) =
{(v1, v2) | v1 ∈ V1, v2 ∈ V2, v1 ≈ v2}, where
≈ denotes semantic equivalence. In EA, entities
v1 and v2 are considered aligned when they repre-
sent the same real-world concept or object, despite
potentially different identifiers, attributes, or struc-
tures in the respective KGs.

4 Method

In this section, we describe the core process of the
EasyEA framework, which is divided into three
main stages: (1) Information Summarization, (2)
Embedding and Feature Fusion, and (3) Candidate
Selection. The framework diagram, shown in Fig-
ure 1, illustrates the overall process of these stages.

Stage 1. Information Summarization
In KGs, each entity is associated with various

types of information, such as its name, relations,
attributes, and temporal data. While datasets may
vary in the types of entity information they contain,
LLMs excel at extracting semantic representations
and summarizing them concisely. In the EasyEA
framework, we focus on three key types of entity
information: entity name, attributes, and relations.

Initially, entity names, attribute triples, and re-
lation triples are extracted from the KGs. The en-
tity names are translated into English using LLMs,
while attribute and relation triples are consolidated
into separate texts to represent entity attributes and
relations. The LLMs then summarize these texts,
compressing the information into no more than 100
words.

Our framework uses only entity name transla-
tion to avoid potential data leakage (Wu et al.,
2024), focusing entirely on the entities themselves
without involving any information mining or back-
ground inference. This strategy effectively prevents
the leakage of sensitive information and reduces
the risk of generating content related to the entity
background. Additionally, the method leverages a
key advantage of LLMs—summarization—to effi-
ciently extract information from KGs, concentrat-
ing on existing, verifiable data rather than gener-
ating new content. By limiting the summaries to
no more than 100 words, we ensure that the output
of the model emphasizes more distinctive features,
minimizing hallucinations (Sriramanan et al., 2024)

and further enhancing the differentiation of entity
characteristics.

Stage 2. Embedding and Feature Fusion
This Stage aims to enhance EA performance by

integrating multiple views of information to create
a more comprehensive entity representation. EA
datasets, such as DBP15K and ICEWS, exhibit
distinct characteristics. For instance, in the ZH-
EN subset of DBP15K, strong performance can be
achieved using only attribute information, while
the ICEWS-WIKI dataset performs well with name
information alone (Jiang et al., 2024b). These ob-
servations highlight the need to combine diverse
information sources for a more complete entity rep-
resentation.

To address this, we first encode the translated en-
tity names, attribute summaries, and relation sum-
maries in Stage 1 into embeddings EN , EA, and
ER. Once the embeddings are generated, we pro-
pose a feature fusion strategy where these embed-
dings are concatenated to form the holistic entity
embedding E, as shown in equation 1.

E = EN ∥ EA ∥ ER (1)

This approach effectively leverages the comple-
mentary strengths of each feature type, ensuring a
more comprehensive and accurate entity represen-
tation.

Stage 3. Candidate Selection
In this stage, we first compute the cosine similar-

ity between entity embedding vectors from Stage 2.
Based on these ranked similarities, the top 10 most
similar candidate entities are selected to form a can-
didate set. This refined set is processed by LLMs
to select the most likely target entity, with the final
selection corresponding to Hits@1. For each candi-
date, its name, along with three randomly selected
attribute triples and three randomly selected rela-
tion triples from the KGs, are provided as input to
the LLM.

The entity selection follows a hierarchical strat-
egy we propose: the LLM first uses name informa-
tion to identify the target. If name data is insuffi-
cient, attribute triples are used to refine the selec-
tion. If further refinement is needed, relation triples
are used as a final step. The LLM autonomously
determines the "insufficiency" at each stage based
on the completeness and relevance of the available
data, without relying on predefined thresholds.

This strategy prioritizes the most informative
features. By focusing on name information first,
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we maximize its potential for accurate entity iden-
tification. When name information is insufficient,
attribute and relation triples offer additional con-
text, improving the accuracy of entity selection.

The decision to select 10 candidate entities is
based on two factors: first, Hits@10 is a standard
metric in evaluation, ensuring consistency with
common practices; second, the reasoning capa-
bility of LLMs declines with input size, and too
many candidates can reduce accuracy (Wang et al.,
2024). The algorithmic flow of EasyEA is outlined
in Appendix A.4, with specific prompts provided
in Appendix A.7.

5 Experiments

5.1 Research Questions

RQ1: Can LLMs effectively act as summarizers
to enhance the alignment process in EA?

RQ1 explores whether LLMs can serve as sum-
marizers to enhance the EA process by refining
entity information. We evaluate their ability to sum-
marize key entity attributes and relations, improv-
ing the overall alignment across diverse datasets.

RQ2: Can LLMs effectively serve as a good
encoder for generating high-quality entity em-
beddings in EA?

This question investigates whether LLMs can
be used as encoders to generate high-quality entity
embeddings for EA, comparing their performance
with traditional methods. We focus on the qual-
ity, consistency, and generalization of embeddings
generated by LLMs.

RQ3: How can LLMs function as selectors
to improve candidate entity selection during the
EA process?

RQ3 investigates how LLMs can function as se-
lectors to enhance the selection of the most relevant
candidate entities in the EA process. We explore
how LLMs, through techniques like hierarchical
filtering or ranking, can improve the precision and
efficiency of candidate selection.

5.2 Experimental Setup

5.2.1 Datasets
DBP15K (ZH-EN, JA-EN, FR-EN) (Tang et al.,
2020) is a widely used cross-lingual dataset for test-
ing EA across KGs in different languages, focusing
on overcoming linguistic barriers. SRPRS (EN-
DE, EN-FR, DBP-WIKI15K, DBP-YAGO15K)
(Zeng et al., 2020) consists of datasets designed to

evaluate EA in sparse, heterogeneous graph struc-
tures, addressing challenges in low-resource set-
tings. ICEWS (ICEWS-WIKI, ICEWS-YAGO)
(Jiang et al., 2024b) includes datasets characterized
by high heterogeneity in graph structures and in-
formation density, testing the adaptability of the
framework to heterogeneous KG. DWY (DBP-
WIKI100K, DBP-YAGO100K) (Liu et al., 2022)
presents the main challenge of large scale, which
imposes significant computational demands for pro-
cessing and alignment, requiring substantial mem-
ory and processing power. More details about these
datasets are shown in Appendix A.1.

5.2.2 Baselines
To comprehensively evaluate the performance of
the proposed EasyEA method, we compare it with
a diverse set of existing EA methods. These base-
lines include both well-established techniques and
recent innovations, reflecting a broad spectrum
of methods in the field. The selected baselines
are grouped into four categories: (1) Translation-
Based Methods: MTransE (Chen et al., 2017),
BootEA (Sun et al., 2018), TransEdge (Sun et al.,
2019). (2) GNN-Based Methods: GCN-Align
(Wang et al., 2018), RDGCN (Wu et al., 2019),
MuGNN (Cao et al., 2019), KECG (Li et al., 2019),
Dual-AMN (Mao et al., 2021), CEA (Zeng et al.,
2020), EPEA (Wang et al., 2020), Selfkg (Liu
et al., 2022). (3) Machine Learning-Based Meth-
ods: BERT-INT (Tang et al., 2020), MRAEA (Mao
et al., 2020), MultiKE (Zhang et al., 2019), FuAlign
(Wang et al., 2023), JAPE (Sun et al., 2017), NAEA
(Zhu et al., 2019), RSN4EA (Guo et al., 2019),
Simple-HHEA (Jiang et al., 2024b). (4) LLM-
Enhanced methods: LLM4EA (Chen et al., 2024),
DERA (Wang and Chen, 2024), LLMEA (Yang
et al., 2024b), ChatEA (Jiang et al., 2024a), Seg-
Align (Yang et al., 2024a). These baselines span
a wide range of methodologies, from traditional
methods to LLM-enhanced methods, providing a
robust basis for evaluating EasyEA’s performance
against SOTA methods.

5.3 Main Experimental Results

The experimental results of EasyEA on the
DBP15K, ICEWS, SRPRS, and DWY datasets
are summarized in Tables 1, 2, 3, and 4. On the
DBP15K dataset, EasyEA achieves Hits@1 scores
of 0.997, 0.995, and 0.998 for ZH-EN, JA-EN, and
FR-EN, respectively, with perfect Hits@10 (1.000).
On the ICEWS dataset, EasyEA achieves Hits@1
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Models DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.308 0.614 0.364 0.279 0.575 0.349 0.247 0.577 0.360
GCN-Align 0.413 0.744 0.549 0.399 0.745 0.546 0.411 0.772 0.530

BootEA 0.629 0.848 0.703 0.622 0.854 0.701 0.653 0.874 0.731
RDGCN 0.708 0.846 0.746 0.767 0.895 0.812 0.873 0.950 0.901

Dual-AMN 0.861 0.964 0.901 0.892 0.978 0.925 0.954 0.994 0.970
LLMEA 0.898 0.923 - 0.911 0.946 - 0.957 0.977 -

Seg-Align 0.953 - - 0.907 - - 0.987 - -
BERT-INT 0.968 0.990 0.977 0.964 0.991 0.975 0.990 0.997 0.993

ChatEA - - - - - - 0.990 1.000 0.995
DERA 0.985 0.997 0.990 0.994 0.999 0.996 0.996 0.999 0.997

EasyEA 0.997 1.000 0.996 0.995 1.000 0.997 0.998 1.000 0.999

Table 1: Main experimental results of EasyEA on DBP15k datasets.

Models ICEWS-WIKI ICEWS-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.021 0.158 0.068 0.012 0.084 0.040
GCN-Align 0.046 0.184 0.093 0.017 0.085 0.038

RDGCN 0.064 0.202 0.096 0.029 0.097 0.042
BootEA 0.072 0.275 0.139 0.020 0.120 0.056

Dual-AMN 0.083 0.281 0.145 0.031 0.144 0.068
FuAlign 0.257 0.570 0.361 0.326 0.604 0.423

BERT-INT 0.561 0.700 0.607 0.756 0.859 0.793
Simple-HHEA 0.720 0.872 0.754 0.847 0.915 0.870

ChatEA 0.880 0.945 0.912 0.935 0.955 0.944

EasyEA 0.995 0.999 0.996 0.994 0.998 0.996

Table 2: Main experimental results of EasyEA on ICEWS datasets.

of 0.995 (WIKI) and 0.994 (YAGO), outperform-
ing models like ChatEA and Simple-HHEA. The
SRPRS results show Hits@1 of 0.998 (EN-DE),
0.996 (EN-FR), 1.000 (DBP-YAGO), and 1.000
(DBP-WIKI). Similarly, EasyEA achieves perfect
scores across all metrics on the DWY datasets,
with Hits@1, Hits@10, and MRR of 1.000 on both
WIKI and YAGO, outperforming all other models.

These results highlight the strong performance
of EasyEA, confirming that LLM-enhanced meth-
ods can serve as a superior alternative to tradi-
tional models and hybrid models for EA tasks.
This suggests that LLMs, with their ability to pro-
cess unstructured data and provide richer semantic
understanding, outperform conventional models.
EasyEA demonstrates excellent adaptability across
different languages and structures, showcasing its
effectiveness in various scenarios.

The main experimental results are obtained us-
ing GPT-3.5-Turbo for summarization, Llama3-8B-
Instruct for embedding, and GPT-4-Turbo for fur-
ther optimization.

5.4 Ablation Experiment

5.4.1 Ablation Experiments of Summarization
To evaluate the effectiveness and generalizability
of our summarization strategy, we conducted two
ablation experiments. First, we replaced GPT-3.5-
Turbo with Llama3-8B-Instruct in the summariza-
tion module to compare the performance of differ-
ent LLMs. Second, we removed the summarization
module entirely (w/o summarization) to assess its
overall contribution to entity alignment.

As shown in Table 5, replacing GPT-3.5-Turbo
with Llama3-8B-Instruct led to a slight decrease
in performance. Specifically, Llama3-8B-Instruct
achieved a Hits@1 of 0.991, Hits@10 of 1.000, and
an MRR of 0.991, compared to EasyEA’s Hits@1
of 0.997 and MRR of 0.996. In contrast, completely
removing the summarization component resulted
in a substantial performance drop, with Hits@1
falling to 0.921 and MRR to 0.927.

These results demonstrate that our LLM-guided
summarization strategy significantly contributes to
alignment accuracy by transforming redundant at-
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Models SRPRSEN-DE SRPRSEN-FR SRPRSDBP-YAGO SRPRSDBP-WIKI
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.107 0.248 0.160 0.213 0.447 0.290 0.196 0.401 0.270 0.188 0.382 0.260
MuGNN 0.245 0.431 0.310 0.131 0.342 0.208 0.175 0.381 0.240 0.151 0.366 0.220
NAEA 0.307 0.535 0.390 0.177 0.416 0.260 0.195 0.451 0.280 0.182 0.429 0.260

GCN-Align 0.385 0.600 0.460 0.243 0.522 0.340 0.319 0.586 0.410 0.291 0.556 0.380
KECG 0.444 0.707 0.540 0.298 0.616 0.403 0.350 0.651 0.450 0.323 0.646 0.430

RSN4EA 0.484 0.729 0.570 0.350 0.636 0.440 0.393 0.665 0.490 0.391 0.663 0.480
BootEA 0.503 0.732 0.580 0.365 0.649 0.460 0.381 0.651 0.470 0.384 0.667 0.480

TransEdge 0.556 0.753 0.630 0.400 0.675 0.490 0.443 0.699 0.530 0.461 0.738 0.560
MRAEA 0.594 0.818 0.666 0.460 0.768 0.559 0.485 0.768 0.574 0.509 0.795 0.597
RDGCN 0.779 0.886 0.820 0.672 0.767 0.710 0.990 0.997 0.990 0.974 0.994 0.980

Dual-AMN 0.891 0.972 0.923 0.802 0.932 0.851 0.518 0.795 0.613 0.546 0.813 0.635
BERT-INT 0.986 0.988 0.990 0.971 0.975 0.970 1.000 1.000 1.000 0.996 0.997 1.000

EasyEA 0.998 1.000 0.999 0.996 0.998 0.992 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Main experimental results of EasyEA on SRPRS datasets.

Models DWYDBP-WIKI DWYDBP-YAGO
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 0.281 0.520 0.363 0.252 0.493 0.334
JAPE 0.318 0.589 0.411 0.236 0.484 0.320

GCN-Align 0.506 0.772 0.600 0.597 0.838 0.682
MuGNN 0.616 0.897 0.714 0.741 0.937 0.810
RDGCN 0.623 0.805 0.684 0.936 0.973 0.950
BootEA 0.748 0.898 0.801 0.761 0.894 0.808
NAEA 0.767 0.917 0.817 0.778 0.912 0.821

Dual-AMN 0.869 0.969 0.908 0.907 0.981 0.935
LLM4EA 0.898 0.979 0.929 0.979 0.996 0.985
MultiKE 0.914 0.951 0.928 0.880 0.953 0.906

EPEA 0.975 0.981 0.977 1.000 1.000 1.000
SelfKG 0.983 0.998 - 1.000 1.000 -
ChatEA 0.995 1.000 0.998 - - -

EasyEA 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Main experimental results of EasyEA on DWY datasets.

tribute information into concise and semantically
meaningful representations. Even though Llama3-
8B-Instruct slightly underperforms GPT-3.5-Turbo,
it still delivers strong results, indicating that our ap-
proach is robust across different LLMs. In contrast,
removing the summarization step weakens the abil-
ity to identify distinguishing features of entities,
leading to a noticeable drop in performance, with
the accuracy decreasing from 0.997 to 0.921. Over-
all, these findings validate the effectiveness and
adaptability of our summarization method (RQ1).

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

Llama3-8B-Instruct 0.991 1.000 0.991
w/o summarization 0.921 0.932 0.927

EasyEA 0.997 1.000 0.996

Table 5: Ablation results under different summarization
settings

5.4.2 Ablation Experiments of Features
Fusion

To evaluate the contribution of different types of
entity information to embedding quality, we con-
ducted an ablation experiment where one type of
information was excluded while retaining the other
two. The results, in Table 6, show that the fusion
of all three types yields the best performance, with
Hits@1 of 0.997, Hits@10 of 1.000, and MRR of
0.996.

Removing name information (w/o name) caused
a slight decrease, with Hits@1 dropping to 0.994.
The absence of relation information (w/o relation)
led to a similar performance drop, with Hits@1
dropping to 0.990. However, removing attribute
information (w/o attribute) resulted in the most
significant performance degradation, with Hits@1
falling to 0.977.

This result strongly demonstrate the superiority
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of feature fusion strategy of EasyEA and empha-
size the importance of combining multiple types of
information for optimal EA.

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA 0.997 1.000 0.996
w/o name 0.994 1.000 0.995

w/o attribute 0.977 0.989 0.963
w/o relation 0.990 0.999 0.991

Table 6: Results of using different information for em-
bedding

5.4.3 Comparative Experiments of
Embedding with Different LLMs

We evaluated EasyEA’s ability to generalize in the
embedding stage by testing it with different LLMs.

As presented in Table 7, EasyEA demon-
strates exceptional performance even with medium-
sized LLMs (7B–8B parameters). Notably, with
LLama3-8B-Instruct, EasyEA achieves SOTA re-
sults, with Hits@1 reaching 0.997, Hits@10
achieving a perfect 1.000, and MRR scoring 0.996.
Llama2-7B-Chat and Mistral-7B-Instruct also de-
liver strong results, with Hits@1 and Hits@10 sur-
passing 0.99.

The results demonstrate that LLMs are effec-
tive encoders for EA, ensuring strong performance
across a range of models (RQ2). This highlights
EasyEA’s adaptability and potential for real-world
applications, where it maintains robust perfor-
mance even when using smaller LLMs in resource-
constrained settings.

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA 0.997 1.000 0.996
Llama2-7B-Chat 0.992 0.998 0.991

Mistral-7B-Instruct 0.991 0.997 0.991

Table 7: Results of using various LLMs for embedding

5.4.4 Ablation Experiments for Candidate
Selection

We conducted ablation experiments to assess the
impact of using LLMs to select the best matching
entities in Stage 3 of EasyEA.

The experimental results in Table 8 show a con-
sistent improvement in the Hits@1 scores when
LLMs are used as a selector. For example, with
GPT-3.5-Turbo + LLama3-8B, the Hits@1 score
improves from 0.994 to 0.997. Similarly, the

Hits@1 score for LLama3-8B + LLama3-8B in-
creases from 0.986 to 0.991, for Llama2-7B +
Llama2-7B from 0.948 to 0.983, and for Mistral-
7B + Mistral-7B from 0.931 to 0.981.

These results demonstrate that LLM-based rea-
soning significantly improves EA performance,
particularly when initial Hits@1 scores are lower.
However, when the initial score is already high, the
performance gain is less pronounced. This is due
to our focus on a simplified setup that avoids com-
plex Prompt Engineering, aiming to validate the
method’s feasibility. Overall, the findings highlight
the effectiveness of using LLMs as selectors in the
EA process(RQ3).

Settings DBP15KZH-EN
Hits@1 w/ llm Hits@1 w/o llm

EasyEA 0.997 0.994
LLama3-8B + LLama3-8B 0.991 0.986
Llama2-7B + Llama2-7B 0.983 0.948
Mistral-7B + Mistral-7B 0.981 0.931

Table 8: Results of whether to use LLMs reasoning

5.4.5 Ablation Experiments of Single Feature
Retention

we conducted ablation by removing two types of
information and retaining only one type for eval-
uation. As shown in Table 9, when only name
information (w/ name) is retained, the performance
dropped significantly, with Hits@1 falling to 0.842.
Similarly, when only relation information (w/ rela-
tion) is used, the performance is also significantly
lower, with Hits@1 dropping to 0.973. In con-
trast, retaining only attribute information (w/ at-
tribute) resulted in relatively higher performance,
with Hits@1 of 0.991, close to the performance of
the full model.

These results strongly demonstrate the superior-
ity of EasyEA’s feature fusion strategy and empha-
size the importance of combining multiple types of
information for optimal EA.

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA 0.997 1.000 0.996
w/ name 0.842 0.879 0.832

w/ attribute 0.991 0.998 0.992
w/ relation 0.973 0.990 0.956

Table 9: Results of using one information for embedding
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5.5 Efficiency Analysis

Compared to traditional methods, the EasyEA
framework significantly simplifies the EA pro-
cess and improves efficiency. Traditional meth-
ods often require constructing seed entity pairs,
which involves considerable manual effort and
complex model training. Moreover, the variety
of models and complex code structures increase
learning costs. In contrast, EasyEA leverages the
widespread use of LLMs and can be implemented
with simple, easy-to-understand code. There is
no need to construct seed entity pairs or perform
model training. By simply extracting dataset infor-
mation and passing it to the LLM, EasyEA delivers
excellent alignment results.

5.6 Cost Analysis

In this section, we analyze the costs of EasyEA
on DBP15KZH-EN dataset. EasyEA utilizes LLMs
across three stages: Information Summarization,
Embedding and Feature Fusion, and Candidate Se-
lection. The detailed cost breakdown is as follows:

Stage 1: Information Summarization. In this
stage, we use GPT-3.5 Turbo to summarize the
entity information. For the DBP15KZH-EN dataset,
with 30k entities and each containing an average
of 20 triples (10 tokens per triple), the total input
data is approximately 12M tokens. The output for
each summary does not exceed 100 tokens, leading
to an output of 6M tokens. The total cost for this
stage is approximately $3.6, considering the API
fee of $0.2 per million tokens.

Stage 2: Embedding and Feature Fusion. This
stage involves local inference using a deployed
LLM for embedding. Running on an A100-40G
GPU, this process takes less than 30 minutes, cost-
ing about $0.3.

Stage 3: Candidate Selection. For candidate se-
lection, the LLM API is used again, where up to
1.5k unmatched entities are processed. The total to-
ken usage for this stage is about 1M tokens, leading
to a cost of $0.2.

Total Cost of EasyEA. Thus, the total cost
of processing the DBP15KZH-EN dataset using
EasyEA is approximately $4.1.

6 Conclusion

This work primarily explores the feasibility of us-
ing LLMs for EA without relying on traditional

models. We propose the EasyEA framework,
which relies solely on LLMs for EA, and validate
its feasibility through extensive experiments and
ablation analysis, achieving excellent alignment re-
sults. This method eliminates the training require-
ments of traditional models and the need for seed
entity pair construction, making EA simpler and
more efficient. Additionally, we evaluate EasyEA’s
performance on multiple common datasets, achiev-
ing strong results, and introduce a simple and effi-
cient candidate selection method to further enhance
EA efficiency.

Limitations

Although EasyEA is simple, efficient, and achieves
excellent EA results, it has some limitations. For
example: (1) Limitations of structural information
in text embedding. As LLMs are generative models,
they struggle to accurately understand and utilize
the structural information of entities, leading to
an incomplete exploration of this aspect. There is
significant research potential here; (2) Hardware
resource requirements. While LLM-based methods
are faster and more efficient than traditional mod-
els, they still require certain hardware resources.
We believe this limitation will gradually be over-
come with ongoing advancements in hardware and
LLMs; (3) When Hits@1 is already very high,
further refinement with LLMs provides minimal
improvements. This indicates that in such cases,
LLMs have limited impact. Exploring how LLMs
can still offer significant gains despite high initial
performance is an area worth further research.
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A Appendix

A.1 Statistical Data of DBP15K, SRPRS,
ICEWS and DWY

All datasets are selected due to their broad range
of EA challenges, including cross-lingual, spar-
sity, heterogeneity, and large scale. Together, they
provide a comprehensive benchmark to assess the
effectiveness of EasyEA.

The information of DBP15K, SRPRS and DWY
are shown in Table 13. The DWY dataset utilized in
this work is divided into two major subsets: DBP-
WIKI and DBP-YAGO, with each subset contain-
ing 100,000 pairs of aligned entities. In the DBP-
WIKI subset, entities from the Wikidata portion are
identified by indices (e.g., Q123) instead of URLs
containing entity names. To obtain the actual entity
names, we use the Wikidata API for Python (Liu
et al., 2022).

The information of ICEWS is shown in Table 14,
following is an introduction to the dataset.

Facts represents the total number of facts in the
dataset. Facts are the basic units of a knowledge
graph, expressed as triples comprising a head entity,
a relation, and a tail entity.

Density measures the concentration of edges (re-
lations) in the graph. It reflects the complexity and
connectivity of the knowledge graph, with higher
values indicating denser structures.

Anchors specifies the number of anchor links,
which are aligned entity pairs. These are crucial
for training and evaluating EA models.

Overlapping Ratio describes the proportion of
alignable entities between the two graphs. A lower
overlapping ratio signifies higher heterogeneity and
greater alignment challenges.

Structure Similarity quantifies the similarity
of the neighborhood structures of aligned entities
across the graphs. Lower values indicate more
significant structural differences.
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Temporal indicates whether the dataset includes
temporal information, capturing timestamps for
facts and enabling temporal-aware EA research.

A.2 Model Selection and Parameters

In this experiment, we selected the Llama, Mistral,
and GPT series as backbone models. These mod-
els are open-source or widely adopted and have
demonstrated remarkable performance in related
fields. Specifically, the Llama and Mistral mod-
els are employed in the embedding stage, as prior
studies have shown their effectiveness and suitabil-
ity for such tasks (BehnamGhader et al., 2024).
These models have been extensively used in the
literature, with their performance validated through
numerous experiments. The GPT family is em-
ployed for summarization, reasoning, and selecting
target entities, primarily due to its autoregressive
architecture, which excels at handling complex de-
pendencies and generating coherent, contextually
relevant predictions. Additionally, the GPT models
leverage their extensive knowledge base, acquired
through large-scale pre-training, enabling them to
achieve high accuracy in summarization, reasoning,
and entity selection tasks. See Table 10 for details.

Usage Models

Summarization GPT-3.5-Turbo, Llama3-8B-Instruct, Llama2-7B-Chat, Mistral-7B-Instruct

Embedding Llama3-8B-Instruct, Llama2-7B-Chat, Mistral-7B-Instruct

Reasoning GPT-3.5-turbo, GPT-4o, GPT-4-trubo, Llama3-70B

Table 10: Model selection of EasyEA

For the experimental setup, we adhered strictly
to the hyperparameter configurations recom-
mended in the original publications for the base-
line models, with only minor adjustments made
to parameters such as max_tokens = 4096 and
temperature = 0.3. All experiments are conducted
in the PyTorch development environment, using an
Ubuntu machine equipped with an 40GB NVIDIA
A100 GPU. This hardware and software configura-
tion ensured both the efficiency and stability of the
experiments.

A.3 Evaluation Metrics

We use Hits@K and MRR as evaluation metrics
because they are the most classic and commonly
used in EA. Hits@K measures the proportion of
correct entities within the top K predicted results,
reflecting the model’s ranking accuracy. MRR eval-
uates the average of the reciprocals of the ranks of
the first correct entity, reflecting the model’s ability

Algorithm 1 EasyEA Algorithm

1: Input: Entity names: n1, n2, attribute triples:
TA
1 , TA

2 of entities v1 and v2, relation triples:
TR
1 , TR

2 of entities v1 and v2
2: Output: The ID of the most likely target entity

v2 for each source entity v1
3: Stage 1: Translation and Summarization
4: N1, N2 ← Translate(n1, n2)
5: SA

1 , S
A
2 ← Summarize(TA

1 , TA
2 )

6: SR
1 , S

R
2 ← Summarize(TR

1 , TR
2 )

7: Stage 2: Embedding and Fusion
8: EN

1 , EN
2 ← EmbedNames(N1, N2)

9: EA
1 , E

A
2 ← EmbedAttributes(SA

1 , S
A
2 )

10: ER
1 , E

R
2 ← EmbedRelations(SR

1 , S
R
2 )

11: E1 ← Concat(EN
1 , EA

1 , E
R
1 )

12: E2 ← Concat(EN
2 , EA

2 , E
R
2 )

13: Stage 3: Candidate Selection
14: Cand← Top-10 by Cosine Similarity(E1, E2)
15: I ← Concat(id, name, 3 ∗ ta, 3 ∗ tr)
16: v2 ← Select with LLMs(I)
17: if Name is sufficient then
18: return v2.ID
19: else if Attributes are sufficient then
20: return v2.ID
21: else
22: Use relations to finalize match and

return v2.ID
23: end if

to prioritize relevant entities. Together, these met-
rics provide a comprehensive assessment of model
performance in EA tasks.

A.4 The algorithm of EasyEA

The algorithm flow is shown in Table 1.

A.5 Comparative Experiments of Different
Feature Fusion Methods

Table 11 shows the performance of different fu-
sion methods on the DBP15KZH-EN dataset. The
Concatenation Fusion method outperformed others,
achieving the highest Hits@1 (0.997) and MRR
(0.996), indicating its effectiveness in preserving
the full information from multiple embeddings. In
comparison, Max Pooling Fusion and Mean Fusion
showed slightly lower performance, with Hits@1
scores of 0.996, respectively.

The differences in performance can be attributed
to the characteristics of each fusion method. Max
Pooling selects the maximum value from each em-
bedding, which may overlook finer details, while
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Mean Fusion averages the embeddings, potentially
losing important features. Given its superior per-
formance, Concatenation Fusion is chosen as the
preferred method for candidate selection, as it pro-
vides the most detailed and comprehensive rep-
resentation of embeddings, which is critical for
high-precision EA.

This ablation experiment focuses on the feature
fusion methods applied to the embeddings gener-
ated in Stage 1, and therefore does not include the
Candidate Selection process from Stage 3. The
primary aim is to evaluate the impact of differ-
ent fusion strategies on the quality of embeddings,
without considering the influence of subsequent
candidate selection.

Settings DBP15KZH-EN
Hits@1 Hits@10 MRR

EasyEA (Concatenation) 0.997 1.000 0.996
Max Pooling Fusion 0.996 1.000 0.995

Mean Fusion 0.996 0.999 0.995

Table 11: Performance results for different fusion meth-
ods on DBP15KZH-EN

A.6 Comparative Experiments of Candidate
Selection with Different LLMs

In this experiment, we evaluated the performance
of different LLMs (GPT-4o, GPT-4-Turbo, GPT-
3.5-Turbo, and Llama3-70B) on reasoning tasks
using a hierarchical strategy. The results in Ta-
ble 12 show that all models achieved high perfor-
mance, with GPT-4-turbo reaching the best result
at 0.997, while the others (GPT-3.5-turbo, GPT-4o,
and Llama3-70B) are similarly strong (0.996).

The results highlight the robustness of the hi-
erarchical strategy across different LLMs. There
are minor performance differences, and all models
handle the reasoning tasks effectively. The consis-
tency of results across various model architectures
suggests that the strategy is highly generalizable
and adaptable, making it a reliable approach for
EA tasks with different LLMs.

Settings Hits@1 of DBP15KZH-EN
GPT-4o GPT-4-Turbo GPT-3.5-Turbo Llama3-70B

GPT-3.5+LLama3-8B 0.996 0.997 0.996 0.996

Table 12: Comparative results of LLMs reasoning on
DBP15KZH-EN

A.7 Prompts
The prompts for translation, summary, and reason-
ing are shown in Tables 15, 16, and 17, respectively.
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Dataset Language Entities Relations Attributes Rel. Triples Attr. Triples

DBP15KZH-EN
ZH 19,388 1,701 8,113 70,414 379,684
EN 19,572 1,323 7,173 95,142 567,755

DBP15KJA-EN
JA 19,814 1,299 5,882 77,214 354,619
EN 19,780 1,153 6,066 93,484 497,230

DBP15KFR-EN
FR 19,661 903 4,547 105,998 354,619
EN 19,993 1,208 6,422 115,722 497,230

SRPRSEN-FR
EN 15,000 221 296 36,508 70,750
FR 15,000 177 415 33,532 56,344

SRPRSEN-DE
EN 15,000 222 296 38,363 62,715
DE 15,000 120 193 37,377 142,506

SRPRSDBP-WIKI
DBpedia 15,000 253 363 38,421 71,957

Wikipedia 15,000 144 652 40,159 136,315

SRPRSDBP-YAGO
DBpedia 15,000 223 320 33,748 69,355
YAGO3 15,000 30 22 36,569 22,519

DBP-WD DBpedia 100,000 330 351 463,294 381,166
Wikipedia 100,000 220 729 448,736 789,815

DBP-YG DBpedia 100,000 302 334 428,952 451,646
YAGO 100,000 31 23 502,563 118,376

Table 13: Statistical data of DBP15K, SRPRS and DWY.

Dataset Entities Relations Facts Density Anchors Overlapping Struc. Sim. Temporal

ICEWS-WIKI 11,047 272 3,527,881 319.352
5,058

45.79%
15.4%

Yes
15,896 226 198,257 12.472 31.82% Yes

ICEWS-YAGO 26,863 272 4,192,555 156.072
18,824

70.07%
14.0%

Yes
22,734 41 107,118 4.712 82.80% Yes

Table 14: Statistical data of ICEWS.

Translating Prompt
prompt = """
Translate the following entity names into English.
You must remember that you can only give me the English entity name
and cannot return any additional information.
"""

Table 15: Translating the name of entity into English
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Summary Prompt
prompt = """
You are an expert who can provide concise explanations based on entity information.
I will give you the properties of an entity in the form of triples (subject, predicate, object).
Using this information along with your general knowledge,
please provide a short description of the entity.

- The explanation should be no longer than 100 words.
- Focus on summarizing the entity based on the given information and your general knowledge.
- Do not include unnecessary details or explanations beyond the entity description.

Example:
Entity Information: (Albert Einstein, profession, Physicist),
(Albert Einstein, known for, Theory of Relativity)
Explanation: Albert Einstein was a renowned physicist best known for developing
the Theory of Relativity, a fundamental theory in modern physics.

Now, please summarize the following entity information
and return a description in English:
"""

Table 16: Summarize entity information

Reasoning Prompt
prompt = """
I will provide you with a source entity and 10 target entities.
Your task is to select the target entity that most closely matches the source entity.

Each entity has three types of information:
1. Name information
2. Attribute triples
3. Relation triples

Follow this selection process:
1. Prioritize Name information as the primary criterion.
2. If Name information is ambiguous, use Attribute triples as a secondary criterion.
3. Finally, use Relation triples as the tertiary criterion.

Once you are confident, return only the ID of the target entity you believe is the best match.
Do not include any explanations, names, or other content in your response—ONLY the ID.
"""

Table 17: LLM selects the most likely matching entity
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