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Abstract

When using agent-task datasets to enhance
agent capabilities for Large Language Mod-
els (LLMs), current methodologies often treat
all tokens within a sample equally. How-
ever, we argue that tokens serving different
roles—specifically, reasoning tokens versus
boilerplate tokens (e.g., those governing output
format)—differ significantly in importance and
learning complexity, necessitating their disen-
tanglement and distinct treatment. To address
this, we propose a novel Shuffle-Aware Dis-
criminator (SHAD) for adaptive token discrim-
ination. SHAD classifies tokens by exploiting
predictability differences observed after shuf-
fling input-output combinations across samples:
boilerplate tokens, due to their repetitive na-
ture among samples, maintain predictability,
whereas reasoning tokens do not. Using SHAD,
we propose the Reasoning-highlighted Fine-
Tuning (RFT) method, which adaptively em-
phasizes reasoning tokens during fine-tuning,
yielding notable performance gains over com-
mon Supervised Fine-Tuning (SFT).

1 Introduction

Recently, there has been a surge of enthusiasm in re-
searching Agents based on Large Language Models
(LLMs) (Weng, 2023; Wang et al., 2024), with the
aim of achieving human-level artificial intelligence
or beyond. Despite LLMs showcasing remarkable
capabilities in various areas, they have not inher-
ently demonstrated strong agent capabilities, such
as multi-step reasoning (Wei et al., 2022; Yao et al.,
2023; Qiao et al., 2024) and tool use (Qin et al.,
2024; Schick et al., 2023; Liu et al., 2024; Patil
et al., 2023). This shortfall has directed significant
attention toward incorporating datasets tailored for
agent tasks to enhance the agent capabilities of
LLMs (Chen et al., 2023; Zeng et al., 2023; Chen
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Thought: Based on the user's request to find the most
popular genre in the Media-Group tool, I should call
the “list genres for media group” function to
retrieve a list of genres. By doing so, I can analyze the
genres and determine which one is currently trending
based on popularity. This way, I will be able to
provide the user with the information they are looking
for regarding the most popular genre in the Media-
Group tool.

Action: list genres for media group

Action Input:| {}

Figure 1: Examples of reasoning tokens (green) and
boilerplate tokens (yellow and blue). Boilerplate tokens
can be further categorized into format tokens (yellow)
and template-connecting tokens (blue).

et al., 2024b; Zhao et al., 2023). These datasets
offer structured examples of standard reasoning
chains for solving agent tasks (Chen et al., 2024b;
Qin et al., 2024), enabling LLMs to learn from
them and thereby enhance their agent capabilities.

When leveraging these datasets to bolster LLMs’
agent capabilities, existing research often treats all
tokens within a sample equally (Chen et al., 2023;
Zeng et al., 2023; Chen et al., 2024c; Qin et al.,
2024; Zhao et al., 2023). However, we argue that
these tokens could differ substantially in learning
difficulty and importance. Given the standardized
structure of the data, tokens within a sample can
be divided into two categories as depicted in Fig-
ure 1: 1) boilerplate tokens, which include for-
mat tokens that constrain the output structure, and
template-connecting tokens that serve as standard
transitional phrases for reasoning, such as “Based
on the user’s request... By doing so... This way...";
and 2) reasoning tokens, which provide sample-
specific reasoning information crucial for task solv-
ing. Boilerplate tokens are distinctly less critical
for task solving compared to reasoning tokens and
are easier to learn due to their repetitive nature
across many samples.
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Figure 2: Loss changes for different types of tokens in
the manually sampled test data that the model fails to
answer for the regular SFT training.

It is crucial to distinguish between the reason-
ing and boilerplate components and handle them
separately. Failure to do so may result in unde-
sired effects, such as overfitting to the boilerplate
components, as depicted in Figure 2, ultimately
leading to inadequate agent capabilities. While
manually crafting regular expressions to filter out
boilerplate tokens appears to be a feasible solution,
it can be highly inefficient when dealing with data
of diverse formats. Additionally, creating regu-
lar expressions for template-connecting tokens of
transitional phrases poses challenges due to their
potential variability in language. Therefore, an
automated and adaptive approach for segregating
these components is highly desirable.

This study introduces a novel SHuffle-Aware Dis-
criminator (SHAD) to achieve automated and adap-
tive token distinction. Considering boilerplate to-
kens are usually consistent across samples, they can
be treated as sample-independent. Consequently,
shuffling the correspondence between input and
output across data samples does not alter the pre-
dictability of boilerplate tokens. However, such
shuffling introduces noise that complicates the pre-
diction of reasoning tokens, by causing mismatches
between the tokens and the input queries'. SHAD
is developed based on this principle. Specifically,
it fine-tunes an LLM model using a small portion
of shuffled data and then compares the token-level
loss between the tuned and original models to clas-
sify tokens for the target data. A token is classi-

'We will later provide practical examples in Section 3.1
to illustrate how shuffling can cause the reasoning parts of a
response to mismatch with the corresponding queries.

fied as a boilerplate token? if the loss on the tuned
model decreases; otherwise, it is classified as a
reasoning token.

Based on SHAD, we have developed a new
Reasoning-highlighted Fine-Tuning (RFT) ap-
proach, which adaptively assigns greater weights
to challenging reasoning tokens to emphasize the
learning of reasoning. This approach demonstrates
superior performance compared to existing super-
vised fine-tuning methods across several common
agent benchmarks. Further analysis reveals that our
method could effectively identify reasoning tokens
and strengthen the learning of these tokens, ulti-
mately enhancing the learning of agent capabilities
for LLMs.

The main contributions of this work are summa-
rized as follows:

* We emphasize the differences in learning diffi-
culty and importance between reasoning and boil-
erplate tokens for agent learning, highlighting the
critical importance of effectively distinguishing
between them.

¢ We introduce SHAD, a novel method that auto-
matically discriminates between reasoning and
boilerplate tokens based on their predictability
differences observed after shuffling input-output
combinations.

* We have developed a new fine-tuning method
RFT rooted in SHAD, improving the effective-
ness of learning agent capabilities for LLMs.

2 Related Work

¢ Token Differentiation. Typically, when tuning
LLMs, the sequence-level loss is optimized, treat-
ing all involved tokens equally. However, recent
studies across various domains have increasingly
recognized that tokens play different roles. For
instance, Lin et al. 2024 suggest that not all to-
kens are necessary during pretraining, especially in
domain-specific contexts, and propose leveraging
a reference model trained on high-quality data to
distinguish between token importance. Similarly,
(Yang et al.; Rafailov et al., 2024) recognize token
differences in preference learning for LLMs, and
accordingly introduce token-level rewards to better
align models with human preferences. Among ex-
isting works, Agent-Flan (Chen et al., 2024b) is the
most relevant to ours, sharing a similar motivation

These tokens would be further categorized into formatting

tokens and template connecting phrases based on their losses
if needed.
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Figure 3: Illustration of the SHAD method, which classifies tokens through three steps. In step 1, a small subset of
the data is sampled, and the output of the sampled data is shuffled. In step 2, the LLM is tuned using the shuffled
data. In step 3, tokens are classified by comparing the prediction losses between the tuned and original models.

to account for token differences in agent tuning.
However, it only considers “format tokens" as boil-
erplate tokens, overlooking template-connecting
tokens, which are more challenging to disentan-
gle from reasoning tokens. Additionally, it does
not emphasize the importance of distinguishing (or
classifying) these tokens, resulting in a fundamen-
tal difference in both the problems addressed and
the solutions proposed. We focus on automatically
disentangling reasoning tokens from boilerplate to-
kens, whereas Agent-Flan prioritizes converting
agent data into a standard conversational format.

eEnhancing Agent Capability for LLMs. To
tackle complex real-world problems, it is essential
to enhance LLMs’ agent capabilities, such as the
ability of external tool use and multi-step reason-
ing (Shen et al., 2023; Nakano et al., 2021; Yao
et al., 2022; Du et al., 2024; Paranjape et al., 2023).
Prior works (Yao et al., 2023; Shinn et al., 2023;
Pan et al., 2024; Zhao et al., 2023; Shen et al.,
2024) have focused on developing frameworks that
prompt LLMs to integrate tools better and engage
in deeper reasoning before taking action. Subse-
quent works have further constructed diverse and
well-structured agent-task benchmark datasets, e.g.,
Toolllama (Qin et al., 2024), Toolalpaca (Tang et al.,
2023), and APIGen (Liu et al., 2024), considering
these specific datasets for further tuning of LLMs
to more directly and effectively enhance their agent
abilities. Although these methods train LLMs on
agent datasets and achieve promising results, they
often struggle with overfitting and generalization
issues (Chen et al., 2024b). Our RFT with SHAD
can better utilize these datasets to learn reason-
ing, achieving superior performance on agent tasks
while maintaining good generalization ability on
out-of-distribution benchmarks.

3 Methodology

In this section, we first introduce the SHuffle-
Aware Discriminator (SHAD), which is proposed
to adaptively distinguish between reasoning and
boilerplate tokens. We then discuss how to
develop our Reasoning-highlighted Fine-Tuning
(RFT) based on the discrimination results.

3.1 SHAD: Adaptive Token Discriminator

To develop SHAD, our foundational idea is that
boilerplate tokens, which template outputs, should
be interchangeable across many samples, whereas
reasoning tokens are specific to individual samples
and cannot be swapped. Consequently, shuffling
the combination of inputs and outputs across sam-
ples does not alter the predictability of boilerplate
tokens, unlike reasoning tokens. Leveraging this
principle, we could achieve automated and adap-
tive token discrimination through the three steps
(as show in Figure 3):

1. Data Shuffle: Select a small ratio of the data
and shuffle the combinations of inputs and
outputs among the sampled items.

2. Model Tuning: Fine-tune an LLM model
using the shuffled data.

3. Classifying: Classify tokens based on the
loss change between the tuned and original
models for the target data. Compared to the
original model, if a token’s loss decreases,
it is likely a boilerplate token; otherwise, a
reasoning token.

Next, we elaborate on these three steps:

eData Shuffle. This is the core step of our method,
creating distinct predictability for the reasoning
tokens and boilerplate tokens. The shuffle is per-
formed by randomly reassigning the input-output
combinations between samples. When implement-
ing, we just select a small ratio (1%) of the tar-
get dataset and shuffle it for use in the subsequent
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Data Shuffle

Before Shuffle

As a trader, | want to evaluate the performance of the BTCUSDT
pair on Binance. Fetch the Ultimate Oscillator (UO), the Typical
Price (TP), and the Trix (TRIX) for the past month. Additionally,
provide the Stochastic (STOCH) and the Standard Deviation (STD)
for the same period. Begin!

BH U

(5

Thought: | should call the 'ultimateoscillator_for_gvantana'
Assistant. function with the arguments provided. This API call will fetch
the Ultimate Oscillator (UO), the Typical Price (TP), and the Trix
(TRIX) for the BTCUSDT pair on Binance for the past month.
Additionally, it will also provide the Stochastic (STOCH) and the
Standard Deviation (STD) for the same period. This will help me
evaluate the performance of the BTCUSDT pair and gather the
necessary data for analysis.

Action: ultimateoscillator_for_gvantana

Action Input: {

"exchange": "binance",

"interval": "1d",

"market": "spot",

"symbol": "btcusdt",

"backtracks": 30

0

Ri

After Shuffle

As a trader, | want to evaluate the performance of the BTCUSDT
pair on Binance. Fetch the Ultimate Oscillator (UO), the Typical
Price (TP), and the Trix (TRIX) for the past month. Additionally,
provide the Stochastic (STOCH) and the Standard Deviation (STD)
for the same period. Begin!

(o)
85 U

Le;

Thought: | need to call the ‘maxindex_for_twelve_data’ function
to retrieve the highest and lowest values of the selected
instrument. The API call is made with the arguments ‘interval’
set to "1day", ‘symbol’ set to "AAPL", ‘series_type" set to
"close", and ‘outputsize' set to 100. By using these arguments, |
can receive the daily data for the AAPL stock and analyze it to
find the maximum and minimum values. This will help me
provide the desired information to the user for displaying on the
trading platform.

Action: maxindex_for_twelve_data

Action Input: {

"interval": "1day",

"symbol": "AAPL",

"series_type": "close",

"outputsize": 100

0

Assistant

E

Figure 4: Example of shuffled data. After shuffling, the assistant’s responses no longer correspond to the original
queries. However, some tokens (boilerplate tokens, red) remain semantically similar to the original response and are
therefore predictable. In contrast, reasoning tokens (green) no longer align with the query, resulting in noise. Note
that *Action’ and *Action Input’ are directly copied from *Thought’ and could be considered as non-reasoning.

model tuning step, to avoid large tuning costs and
overfitting on the whole dataset.

Let (2%, 5%) denote the i-th sample for the sam-
pled dataset, with z* as the input and 3’ as the
output. Denote all the inputs of all samples as
X = [z!,..., 2], and the corresponding outputs
as Y = [y',...,y"V], where N denotes the size
of sampled dataset. We shuffle Y, and then re-
combine the inputs in X and outputs in the shuffled
Y to construct the shuffled dataset D,. This means,
for the i-th original sample (z°,"), its input
may be combined with the j-th sample’s output 17
to form a new sample (z°, ), while its output 7
may be combined with the k-th sample’s input z*
to form a new sample (z*,"). With this opera-
tion, the mapping relationship between the inputs
and outputs becomes noise for reasoning tokens,
making them unpredictable. As for the boilerplate
tokens, since they are shared across samples, their
predictability remains intact. Figure 4 provides an
example to illustrate this.

eModel Tuning. After obtaining the shuffle data,

we leverage them to fine-tune an LLM model. Note
that this tuning process uses the same LLM as our
backbone model for performing agent tasks. The
model tuning is performed according to the classic
causal language modeling. Formally,

fs = argmin Z I(z',y';0), (D
(a,y')€Ds

where 6 denotes the learnable model parameters,

and [(2';y; ) denotes the loss for a shuffled sam-
ple (2/,y') € Ds, and 65 denotes the optimized 6.
As the output is shuffled for the input, the tuned
model is only expected to learn to predict boiler-
plate tokens effectively.

oClassifying. After tuning the model with shuffled

data, we evaluate the role of each token in a target
sample by comparing the token-level prediction
loss between the tuned and original models. Given
that the tuned model should primarily learn boil-
erplate tokens, we classify a token as ‘boilerplate’
if its prediction loss decreases in the tuned model
relative to the original; otherwise, we classify it as
a ‘reasoning’ token.

Given a sample (z,y) in the target dataset, we
focus on classifying the tokens in the output part.
Formally, for the k-th token y;, in the output, we
first compute the prediction loss difference (de-
noted as LD(yy)) between the tuned and original
models as follows:

LD(yx) = ls(yx) — lo(yr), 2)

where [5(yx) and [,(yy) represent the loss calcu-
lated on the tuned model and the original model,
respectively, given by:

ls(yr) = — log(P(yk|7, y<k; 0s)),

3
(o) = — log(Plyelzs yori60). )

Here, P(yk|z, y<k;0s) and P(yk|z,y<k;0,) de-
note the predicted probabilities of the token yy

20942



from the tuned model (parameterized by 6,) and
the original model (parameterized by 6,,), respec-
tively.

Based on the calculated loss difference LD (yy),
the token is classified as follows:

boilerplate,
reasoning,

. B it LD(yx) <0
Classifier(ye) = { otherwise
Note that our token classification can be con-
ducted offline with a single forward pass of LLM
computation for each sample, without affecting the
efficiency of the subsequent agent tuning process.

3.2 Reasoning-highlighted Fine-Tuning

Agent-tuning data often follows fixed formats and
similar reasoning trajectories, making boilerplate
tokens easily learned. To prevent overfitting to
these tokens and enhance reasoning capabilities,
we propose focusing more on reasoning tokens
identified by our SHAD method during fine-tuning.
Instead of manually assigning fixed weights to
the two types of tokens, we utilize an adaptive
weight assignment to align the dynamic learning
process better. Specifically, we compare the total
losses of the reasoning and boilerplate parts, apply-
ing the softmax function to assign higher weights
to the part with the greater loss. Notably, since
the reasoning part typically exhibits a higher loss
(see Figure 6), our method naturally assigns greater
weights to emphasize reasoning learning. Further-
more, when the loss difference between the two
parts diminishes, our method can adaptively ad-
just the weights to promote a more balanced learn-
ing process for the two parts. Given the nature
of highlighting reasoning, we name our method
Reasoning-highlighted Fine-Tuning (RFT).
Formally, For each training sample 3, let:

* R;={ri,re,...,rp} be the set of reason-
ing tokens with P; tokens
e B; = {b1,ba,...,bk,} be the set of boiler-

plate tokens with K; tokens
¢ R; U B, represents all tokens in sample ¢

We first compute the average loss for each token
type in sample i:

L = Ze],c Ze

jGR jGB

where /; is the cross-entropy loss for token j.

Next, we calculate adaptive weights for sample
1 using the softmax function:

@ eXP(Zl(,i)/ 7)
“o = @ @)
exp(L,’/T) + exp(Ly’/T) @
W)= eEln)
exp(L) /) + exp(LY )7)

where 7 is the temperature coefficient of the
softmax function. A smaller 7 results in greater
weight being assigned to the part with the higher
average loss.

Finally, the re-weighted loss for sample ¢ is com-
puted as:

K £

L9 = w P LY (5)

The total training loss across all samples is:

=

1 i
Lrrr = N Z; ﬁg—z)FT (6)

where N is the total number of training samples.

4 Experiments

We now present experiments to evaluate the effec-
tiveness of our method in enhancing LLMs’ agent
capabilities, particularly in multi-step planning and
tool usage, for solving complex real-world prob-
lems. We begin by detailing the experimental setup,
followed by the analyses of the results.

4.1 Experiment Setup

Training Data. @ We use LLaMA3-8B and
LLaMA3.1-8B as the backbone models, fine-
tuning them to solve agent tasks. The train-
ing dataset is constructed from two commonly
used multi-step planning and tool-use benchmarks,
ToolBench (Qin et al., 2024) and APIGen (Liu
et al., 2024), supplemented with general data from
ShareGPT?. The general data is used to preserve
general capabilities like instruction-following, as
demonstrated in previous work (Zeng et al., 2023).
ToolBench and APIGen provide a variety of exam-
ples for solving complex real-world user queries
across different environments, all organized in a
standard agent-specific format: “Thought-Action-
Action Input" or JSON style.

3https: //huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered
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Table 1: Performance comparison between baselines, SHAD+RFT, and its variants. Accuracy is reported for BFCL,
Nexus, and T-eval, while pass rate, assessed by GPT-4, is used for StableToolBench. ‘AVG’ represents the average
performance across all evaluation datasets. The best results among baselines and SHAD+RFT are highlighted in

bold, and the second-best are underlined.

Held-In

Held-Out

Model Method StableToolbench BFCL T-eval Nexus AVG
SFT 43.1 85.9 67.0 14.0 525
Regex 36.2 81.0 54.3 6.45 445
Rho-1 24.5 82.9 68.4 19.0 48.7

LLaMA3.gg . RewardFT a4 893 663 80 520
SHAD+RFT 50.1 87.6 71.8 278 593
SHAD+«-FT 47.0 87.2 68.8 28.7 579
Regex+RFT 41.2 83.81 61.1 124  49.6
SFT 48.5 89.3 64.2 19.5 554
Regex 42.3 82.1 58.6 143 493
Rho-1 30.6 84.6 67.0 26.0 52.0

LLaMA3.1.gp . RewardFT - 82 . 882 664 191 355
SHAD+RFT 50.4 89.4 68.3 320 60.0
SHAD+a-FT 49.2 88.2 63.8 289 575
Regex+RFT 46.7 80.31 57.6 16.2  50.2

Evaluation Setting. To comprehensively evalu-
ate the proposed method, we consider two evalua-
tion settings: held-in task evaluation and held-out
task evaluation, following prior work (Zeng et al.,
2023). For the held-in setting, we use the Stable-
ToolBench (Guo et al., 2024) and BFCL (Yan et al.,
2024) benchmarks. These datasets align with our
agent tuning datasets: StableToolBench shares the
same source as ToolBench, while BFCL serves
as the leave-out evaluation data for APIGen. For
the held-out setting, we use two additional bench-
marks: 1) T-eval (Chen et al., 2024a), a compre-
hensive step-level reasoning benchmark, and 2)
Nexus (team, 2023), a complex single-step nested
tool-use benchmark. Both benchmarks provide
a diverse set of tools for LLMs to choose from,
with tasks in StableToolBench and T-eval often re-
quiring multiple steps to complete. Appendix B.1
contains more evaluation details.

Compared Methods. To evaluate our RFT method
developed on SHAD (denoted as SHAD+RFT),
we compare it against the following baselines: 1)
SFT, standard supervised fine-tuning; 2) Regex,
which uses regular expressions to distinguish for-
matting tokens from other tokens and re-weights
their losses with constant values; 2) Rho-1 (Lin
et al., 2024), which leverages a reference model
trained on high-quality data to identify noise to-
kens and then mask them during fine-tuning; and 3)

Reward-based Fine-Tuning (RewardFT) (Yang
et al.; Rafailov et al., 2024), which assigns token-
level reward scores for tuning using a DPO-based
reward model. It is important to note that Rho-
1 and RewardT were not originally designed for
agent tuning tasks; however, we have extended
them for this purpose, with implementation details
provided in the Appendix C.

In addition to the above baselines, we also com-
pare our method with two of its variants to as-
sess its core design components: 1) SHAD+a-FT,
which retains the SHAD component but assigns a
fixed weight « to reasoning tokens to emphasize
them; and 2) Regex+RFT, which preserves the
RFT weighting mechanism, but uses regular expres-
sions for the token distinction. The implementation
details of a-FT are also provided in Appendix C.

4.2 Main Results

Table 1 summarizes the performance of all com-
pared methods. From the table, we could draw two
main conclusions:

SHAD+RFT Performs Strongly. Our method,
SHAD+RFT, outperforms all baselines on all held-
in and held-out evaluation datasets, except for the
held-in evaluation BFCL with LLaMA3-8B. This
highlights the advantage of emphasizing reasoning
components in solving complex real-world prob-
lems and demonstrates the effectiveness of our
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Examples of Tokens Classified by SHAD

Thought: I should call the "
to fetch the options
of -rated , 501t
can retrieve the
available on Amazon
Action: smart_phones_for amazon_api_v2
Action Input: {}

information to suggest the

_for_amazon_api v2" arguments
Amazon. This API ers to
choice. By this API, I

of the best-rated

{

"tool_calls": [

n.n non

"name": s

]

N
s

arguments": {"level":

" "n.on;

: "json"

Figure 5: Case study of tokens classified by SHAD. The

regions represent reasoning tokens, identified by

an increase in loss on the model tuned with shuffled data compared to the original model. In contrast, the brown
regions indicate boilerplate tokens, characterized by a decrease in loss on the tuned model.

method in identifying and highlighting these parts.
Notably, while Rho-1 and RewardFT also differ-
entiate between tokens during learning, they are
not specifically designed for agent tuning to dis-
cover and emphasize reasoning tokens, resulting
in comparatively lower performance. Specifically,
Rho-1 targets identifying noise tokens to mask dur-
ing tuning, but fails to distinguish between normal
boilerplate and reasoning tokens. The RewardFT
method leverages token-level rewards from a DPO-
based reward model aligned with human prefer-
ences to differentiate tokens, but it is also not de-
signed to identify reasoning tokens that are essen-
tial for agent-specific capabilities.

Notably, we have further evaluated the general
effectiveness of our method along two dimensions:
model scale and model family. First, we extend
our experiments to the LLaMA 3.2 3B model. The
results show that our method continues to perform
better, emphasizing its effectiveness across differ-
ent model scales (Appendix E.4). Second, we com-
pare our method with SFT on the Qwen model.
The results demonstrate that our method outper-
forms SFT across all evaluation metrics, further
reinforcing its generalizability across model fami-
lies (Appendix E.5).

Both SHAD and RFT are Crucial. When com-
paring SHAD+RFT with its variants, Regex+RFT
and SHAD+a-FT, the original SHAD+RFT con-
sistently demonstrates superior performance. We
explain the results as follows:

¢ Adaptive weighting in RFT is crucial. Com-
paring the proposed SHAD+RFT with its variant

SHAD+a-FT, SHAD+RFT consistently outper-
forms, demonstrating the superiority of RFT’s
adaptive mechanism over the fixed weighting
approach of a-FT. This advantage stems from
adaptive weighting’s ability to better align with
the dynamic learning process, adaptively adjust-
ing weights for reasoning and boilerplate token
components, thereby preventing over-learning or
under-learning of either part.

* The importance of SHAD for token differ-
entiation. Replacing SHAD with Regex in
SHAD+RFT leads to a significant drop in model
performance. This highlights that the effec-
tiveness of reasoning-highlighted fine-tuning de-
pends on accurate token differentiation. The re-
sults also demonstrate SHAD’s superior ability
to disentangle boilerplate tokens from reasoning
tokens. In contrast, Regex relies solely on regular
expressions to identify formatting tokens, failing
to fully distinguish between template-connecting
tokens (one part of boilerplate tokens) and rea-
soning tokens.

This indicates that replacing either SHAD or RFT
diminishes the method’s effectiveness, affirming
the importance of both components.

5 Analysis on SHAD and RFT

In this section, we first present a case study on the
effectiveness of SHAD in distinguishing different
tokens, followed by a comprehensive analysis of
how RFT functions.

Case study of tokens classified by SHAD. To
further validate SHAD’s ability to identify reason-
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SFT Loss vs RFT Loss
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Figure 6: Training loss for SFT and our RFT (based on SHAD). Left: Overall training loss; Right: Training loss for

reasoning token part and boilerplate token part.

ing tokens, we conducted a series of case studies,
with one example of classification result shown
in Figure 5 (additional examples are provided
in Appendix G). As shown in the figure, SHAD
successfully classifies most query-dependent in-
formation related to ‘smart-phones’— as reason-
ing tokens, while formatting tokens (e.g., the at-
tribute names “Thought’ and ‘Action’) and com-
mon template-connecting tokens like ‘I should
call’ and ‘this API’ are classified as boilerplate
tokens. This outcome aligns with human under-
standing of reasoning tokens, verifying the ef-
fectiveness of our method again. Interestingly,
SHAD does not classify the entire function name
‘smart_phones_for_amazon_api_v2’ as reasoning
but only the ‘smart_phones’ portion. We think this
is may because the ‘amazon_api_v2’ part is com-
mon across many function names. Additionally,
When this function name appears in ‘Action’ field,
it is classified as boilerplate as it is derived from the
thought rather than part of the reasoning process.

We acknowledge that evaluating classification
quality ideally involves a quantitative analysis
of classification accuracy. However, this is im-
practical since obtaining ground-truth labels for
all tokens is nearly impossible, even for humans.
Nonetheless, for tokens that can be manually an-
notated, we conducted a quantitative analysis of
classification accuracy, presented in Appendix E.
The results show that our method achieves a very
low classification error rate (<3%).

RFT Enhancing Reasoning Token Learning.
Blindly treating reasoning and boilerplate tokens
equally, as done in SFT, can lead to overfitting on
boilerplate tokens while insufficiently learning for

reasoning tokens. To further verify the effective-
ness of RFT, we compare the training loss between
SFT and RFT. The results are summarized in Fig-
ure 6. The findings indicate that RFT significantly
reduces the loss for reasoning tokens while main-
taining a comparable loss for boilerplate tokens
compared to SFT, confirming that RFT effectively
enhances the learning for reasoning tokens. Addi-
tionally, we conducted case studies on the model’s
output, presented in Appendix F, to assess whether
our method improves model reasoning. The re-
sults show that our method enhances the model’s
ability to correctly apply functions in reasoning
components (e.g., providing accurate parameters)
while preventing overfitting to training formats. A
detailed discussion is available in Appendix F.

The Effect of Hyper-parameter 7. The temper-
ature coefficient 7 in Equation 4 plays a crucial
role in controlling the strength of our re-weighting
mechanism in RFT, so we next investigate its im-
pact. Specifically, we vary 1/7 within the range
of [0, 2] and analyze the corresponding perfor-
mance of SHAD+RFT (averaged over all evalua-
tion datasets). The results are illustrated in Figure 7.
From the figure, we observe that the performance of
our method initially increases and then roughly de-
creases as 1/7 increases, i.e., as gradually enhanc-
ing our re-weighting mechanism. This indicates
the importance of carefully selecting the optimal
7. Fortunately, across a wide range, SHAD+RFT
could consistently outperform regular SFT and sur-
pass most baselines (c.f., Table 1). In particular,
when 1/7 € [0.2,0.5], SHAD+RFT achieves con-
sistently strong performance. This suggests that
our method is robust to the choice of 7, and set-
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ting 1/7 in this range provides a reliable default
for practical use.
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Figure 7: The performance of our SHAD+RFT method
as the temperature coefficient 7 varies. The performance
averaged over all evaluation datasets is reported, with
LLaMA3-8B as the backbone. Notably, 1/7 = 0 means
assigning equal weights to the reasoning and boilerplate
parts, i.e., deactivating our re-weighting mechanism.

6 Conclusion

In this paper, we highlighted the importance of
distinguishing between reasoning and boilerplate
tokens and introduced a SHuffle-Aware Discrimina-
tor (SHAD) to automatically achieve this. Building
on SHAD, we further developed a new Reasoning-
Highlighted Fine-Tuning (RFT) method to en-
hance reasoning learning during LLM fine-tuning,
thereby improving agent capabilities. Extensive re-
sults demonstrated that our method significantly en-
hances LLLMs’ ability to solve complex real-world
problems. In the future, we plan to extend our
approach to the entire SFT domain and develop
more refined mechanisms, such as token-level re-
weighting, to better leverage our token differentia-
tion results.
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8 Limitations

We identify several limitations of our method in
both token differentiation and re-weighting during
training. First, the effectiveness of our approach
depends on boilerplate tokens remaining consistent
across different samples. When this consistency is
lacking, such as in cases where the diversity of boil-
erplate tokens is high, our method may fail. Second,
our distinction between reasoning and boilerplate

tokens relies on rigid, manually defined thresholds
for loss differences, which may need refinement.
Third, our weighting strategy is currently applied
only at the group level, and future optimization
may be required at the token level.

Additionally, even with improved reasoning ca-
pabilities, model outputs may still exhibit unpre-
dictable behaviors in real-world deployments, po-
tentially leading to incorrect or unsafe actions.
There’s also a risk that our approach could reinforce
certain biases present in the training data, particu-
larly if those biases are related to reasoning patterns
and tool usage decisions. Future work should inves-
tigate these risks more comprehensively. Fourth,
Our distinction between reasoning and boilerplate
tokens is based on loss differences, which may oc-
casionally result in misclassifications. If a reason-
ing token is mistakenly classified as a boilerplate
token, the model may underweight its contribution
during training, potentially weakening its reason-
ing ability, and vice versa. In an extreme case, if all
reasoning tokens are treated as boilerplate tokens
with a weight close to 0, while boilerplate tokens
are classified as reasoning tokens and assigned a
large weight, the model could lose its reasoning
ability. Therefore, a mechanism may be needed to
dynamically adjust the weighting based on classifi-
cation results.

9 Ethical Considerations

All experiments were conducted using publicly
available datasets and models, ensuring no privacy
concerns. The Toolbench and ShareGPT datasets
are licensed under Apache-2.0, while APIGen is
licensed under CC-BY-4.0. The training data was
carefully curated and processed to exclude any per-
sonally identifiable information. We have main-
tained transparency in our methodology and results,
acknowledging both the strengths and limitations
of our approach.

For the large language model use, we utilize
ChatGPT to help polish the writing at the sentence
level.
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A Detail Information of Training Datasets

We provide more details of our training datasets in
Table 2. To enable the multi-step reasoning ability
of LLM, we choose ToolBench (Qin et al., 2024)
and APIGen (Liu et al., 2024) as our basic datasets.
Following the practice in AgentTuning (Zeng et al.,
2023) and AgentFlan (Chen et al., 2024b), we also
mix ShareGPT and basic datasets for training. We
filter the obviously low-quality data that does not
follow the request format and sample 5k percent
of data from APIGen for data balance. All meth-
ods use the same dataset and do not apply token
differentiation to general data.

Dataset Data Size
APIGen 5000
ToolBench 22993
ShareGPT 93481
Total 121474

Table 2: Training Dataset detail in our experiment

B Experimental Details and Resources
Required

B.1 Evaluation Details

For the BFCL benchmark, we use BFCL V1 for
evaluation. We primarily focus on AST-based accu-
racy evaluation®. It directly measures the model’s
ability to produce syntactically and parametrically
correct function calls. We omit relevance scores
from our evaluation since APIGen has not released
the training data required for this metric. Addition-
ally, we exclude execution-based metrics due to
their inherent instability during evaluation, as they
depend on external API availability and runtime
conditions.

For StableToolBench, the pass rate is assessed by
GPT-4 following the original benchmark’s method-
ology. We specifically select three most challeng-
ing subsets - 12-Category, I3-Instruction, and I1-
Tool - as they represent complex scenarios requir-
ing sophisticated reasoning capabilities. We report
accuracy metrics on T-eval and Nexus as defined in
their original papers.

“The AST-based evaluation includes simple, multiple, par-
allel,parallel multiple

B.2 Training Details

Table 3 lists the hyper-parameters used in our
model training. For evaluation, we set the infer-
ence temperature to 1079 to ensure reproducibility.
When utilizing GPT-4 for evaluation, we follow the
practice in ToolLLM (Qin et al., 2023) and evaluate
each response 3 times.

Params LLaMA3-8B LLaMA3.1-8B
learning rate le-5 le-5
warmup radio 0.05 0.05
max length 3072 3072
batch size 32 32
gpus 8 8

Table 3: Hyperparameters used for model training.
Both LLaMA3-8B and LLaMA3.1-8B were trained on
NVIDIA A100 GPUs with a batch size of 32 and a max-
imum sequence length of 3072. Each training session
utilized 8 GPUs and took approximately 8 hours.

C Implementation Details

C.1 Implementation Details of Rho-1

For the Rho-1 baseline, we train the reference
model in self-reference setting (Lin et al., 2024).
Specifically, we sample 5% data from our train-
ing dataset to train the reference model. We fol-
low the original implementation that focuses train-
ing on H—L tokens ( i.e.,, the tokens with loss
decreased from high to low during training the ref-
erence model) and masks the other tokens.

C.2 Implementation Details of RewardFT

For the RewardFT baseline, because of the lack of
Agent preference data, we use general DPO data
ORCA DPO’ and Ultrafeedback® to train the model
as token-level reward model under the same setting
in (Rafailov et al., 2024). We calculate the token-
level reward given by the preference model, then
we follow the practice in weighted-MLE (Yang
et al., 2023), taking softmax on all token rewards
as the weight to train the model.

C.3 Implementation Details of a-FT

A simple and common method for addressing im-
balance training is to manually give a fixed weight

5https://huggingface.co/datasets/Intel/orca_
dpo_pairs

6https://huggingface.co/datasets/allenai/
ultrafeedback_binarized_cleaned
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for each type of token (Lin et al., 2020). Here
we introduce a weighting factor a € [0, 0.5] for
boilerplate tokens and 1 — « for reasoning tokens.
Let £y and L, represent the total loss for the boil-
erplate and reasoning tokens, respectively. The
re-weighted loss (denoted as L paiance) Can be
formulated as follows:

Lo—balance = oLy + (1 - a)ﬁr @)

This loss is a simple extension to CE we call o-FT
in this paper that we consider as an experimental
baseline for our proposed RFT method.

D Theoretical Analyze of SHAD

While this work primarily focuses on highlighting
the problem of token differentiation and proposing
a solution based on empirical observations, we still
want to provide some theoretical insights to better
understand our method.

Let X be the input space (user queries), Y be the
output space (model responses), Y, be reasoning
tokens, and Y} be boilerplate tokens.

SHAD shuffles input-output pairs to create mis-
aligned combinations (X', Y"), deliberately induc-
ing a distribution shift from the original distribution
P, to a shuffled distribution Ps. This shift affects
different token types differently:

For reasoning tokens ¥, and x:

* Original conditional probability: P,(y, |
X =u, y<7“)

o After shuffling: Pi(y, | X' = z,y<,) #
P,(yr | X = z,y<r), i€, Ps(Y, | X') #
Po(Yr | X)

For boilerplate tokens y; and x:

* Original conditional probability: P,(y, |
X = x,y<«) = Po(yp | y<p) (assuming
boilerplate tokens are shared across samples)

* After shuffling: P(y, | X' = z,y<p) ~
Ps(ys | y<b) = Polys | y<p) = Polye | X =
,y<p) e, Po(Yy | X') = Po(Yy | X)

The shuffled model, parameterized by 6, learns

these new conditional distributions X’ — Y.

For a sample (z, y) from the original data, the

loss difference can be approximated as:

LD(yx) = ls(yx) — lo(yx)
= —lOgP(yk ’ X/ = w7y<k708)
+10gP(yk | X :may<k790)
P X = o
:10g< (yk ‘ / xvy<k’>9 )>
Pyx | X! = 2, y<k, 05)

When evaluated on the original distribution, this
results in a distinctive pattern:

* Reasoning tokens typically show increased
loss: Is(yr | ,y<r) > lo(yr | ©,y<r), since
for (x,y) € P,, we generally have P(y; |
X = x7y<k700) > P(yk | X/ == x7y<k798)
due to 6, fitting P(Y, | X') # P,(Y, | X)

* Boilerplate tokens tend to have stable or
decreased loss: [5(ys) < l,(yp), because 0 is
trained on Ps(Y;, | X') = P, (V3 | X)

This can also be understood from a causal per-
spective:

* There is a strong causal path: Input X —
Reasoning Token Y,

* Boilerplate tokens are independent of the
input: Input X — Boilerplate Token Y

E Analysis of Token Classification

E.1 Challenges in Manual Token Annotation

The task of manually annotating tokens as either
reasoning or boilerplate presents significant chal-
lenges that make it impractical for large-scale vali-
dation. To illustrate these challenges, we present a
detailed example:

Consider the following agent response:

Thought: Based on the user's request to
fetch weather data for NewYork, I should
call the get_weather function. This API
requires the city name and will return
current weather conditions.

Action: get_weather

Action Input: {"city": "NewYork"}

In this example, while some tokens are clearly
boilerplate (e.g., "Action:", "Action Input:", "", ""),
others are more ambiguous, "Based on" could be
considered a template-connecting phrase (boiler-
plate) or part of the reasoning process, "should
call" might be viewed as either reasoning (indicat-
ing decision-making) or a standard template phrase
The structure "city name and will return” combines
both reasoning content and standard connecting
phrases

E.2 Evaluation of SHAD Classification

Given these challenges, we instead focused on eval-
uating our SHAD method against the subset of
tokens that can be clearly classified - specifically,
formatting tokens that can be identified through
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Table 4: SHAD Classification Performance on Format-
ting Tokens

Dataset Misclassification Rate  Recall
ToolBench 0.82% 0.99
APIGen 2.62% 0.97

regular expressions. We conducted this evaluation
on our two training datasets in Table 4.

The misclassification Rate is defined as:

| T'misclassified|

Misclassification Rate =
| T total|

®)

where |7 misclassified| denotes the number of in-
correctly classified formatting tokens, and |7 total|
represents the total number of formatting tokens
in the dataset. We also provide additional metrics
such as recall of the formatting tokens. Note that
while traditional metrics often include precision,
it would be misleading in our context since our
method identifies both format tokens and template-
connecting tokens as boilerplate, whereas our
ground truth only contains format tokens. There-
fore, we focus on recall to measure how effectively
our method identifies known format tokens.

The low misclassification rates shown in Table
4 on these unambiguous tokens provide strong evi-
dence for SHAD’s effectiveness in identifying boil-
erplate elements. While this evaluation only covers
a subset of all boilerplate tokens, it represents the
most objective measure possible given the inherent
ambiguity in token classification.

We acknowledge that our evaluation is limited to
formatting tokens identifiable through regular ex-
pressions, which represents only a subset of all boil-
erplate tokens. This limitation stems from the inher-
ent challenges in obtaining ground truth labels for
template-connecting tokens and reasoning tokens,
as the distinction often involves subtle semantic
differences and context-dependent interpretations.
A more comprehensive evaluation framework that
can assess classification accuracy across all token
types remains an important direction for future
work. Nevertheless, the strong performance on un-
ambiguous formatting tokens, combined with the
qualitative analysis and downstream task improve-
ments, provides reasonable confidence in SHAD’s
token classification capabilities.

E.3 Experiments with Different Model
Variants and Providers

To thoroughly evaluate the effectiveness and gener-
alizability of our proposed method, we conducted
extensive experiments across different model vari-
ants and providers. The results demonstrate that
SHAD+RFT shows consistent improvements re-
gardless of model architecture or size.

E.4 Experiments with Different Model
Variants

Table 5 presents detailed results comparing
SHAD+RFT against various baselines using the
LLaMA3.2-3B model. Our method consistently
outperforms baseline approaches across both held-
in and held-out evaluations. Notably, while
some baselines like Rho-1 achieve strong per-
formance on individual metrics (e.g., 87.5% on
BFCL), SHAD+RFT maintains more balanced per-
formance across all metrics, leading to the best
overall average performance (53.0%).

E.5 Experiments with Different Model
providers

To verify that our method generalizes beyond the
LLaMA family, we also evaluated SHAD+RFT us-
ing Qwen1.5-4B, as shown in Table 6. The results
demonstrate that our method maintains its effec-
tiveness across different model providers.

F Qualitative Analysis

In this section, we present several examples of how
model trained by our method yeild more accurate
answer than model trained by naive SFT in Figure
9. In the response generated by the na i ve SFT
model, we observe overfitting, with formatted to-
kens (yellow) and template-connect tokens (blue)
being erroneously generated. Additionally, the na i
ve SFT model exhibits hallucination, leading to rea-
soning errors (red). In contrast, our SHAD+RFT
method successfully follows the Held-Out instruc-
tions and provides accurate reasoning.

G More examples Labeled by SHAD

In Figure 8, we show several examples of tokens
classified by our SHAD method, with regions
representing reasoning tokens and brown regions
indicate boilerplate tokens.
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More Examples of Tokens Classified by SHAD

Thought: Based on the user*s request content in the

of , Romance, and Supernatural, I called the * _latest for _api
function from the Verse API. With this function, I can retrieve the

latest that matches the user’s desired genres. By the genres

and requesting , I will be able to assist the

user in finding new manga to blog about. Now, I will call the “fetch _chapters for mangav
erse_api” function to fetch the chapters for the

fetched . This will provide me with the necessary

information to present to the user and further enhance their blogging experience.

Action: fetch chapters for mangaverse api

Action Input: {}

Thought: The current API, “ _for business_st _api”, is being called with
the argument “{\n idea*:” a grooming business“\n; . By calling
this API with the user‘s idea, I can generate a comprehensive
business plan to of a mobile pet
grooming business. This will provide the user with -by guide on
to and , including s offered,

strategies, and financial projections. The purpose of
this API call is to assist the user in transforming their idea into a
business plan.
Action: businessplan_for business_starter api
Action Input: {
"idea": "Start a mobile pet grooming business"

H
{
"tool calls": [
"name": " ings", "arguments": {"n_player": " }, {"name": "
media", "arguments": {"is_id": 0}}
]
}
{
"tool calls": [
{"name": " ", "arguments": {"upc":" 789012" 1}, ¢
"name": " S ", "arguments": {"productid": " 345678
]
}
Figure 8: More case studies of tokens classified by SHAD. The regions represent reasoning tokens, identified

by an increase in loss on the model tuned with shuffled data compared to the original model. In contrast, the brown
regions indicate boilerplate tokens, characterized by a decrease in loss on the tuned model.
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Table 5: Performance comparison of SHAD+RFT across different model providers and sizes. Results show accuracy
for BFCL, T-eval, and Nexus, while StableToolBench reports GPT-4 assessed pass rates. The best results among
baselines and SHAD+RFT are highlighted in bold.

Held-In Held-Out

Model Method StableToolbench BFCL T-eval Nexus AVG
SFT 45.6 87.1 59.00 144 515
Regex 23.6 54.1 54.5 16.2  37.1
Rho-1 43.2 87.5 58.2 16.66 514

LLaMA323p RewardFT a7 87 557 155 499
SHAD+RFT 47.2 87.0 61.0 16.72 53.0
SHAD+a-FT 43.9 86.4 58.3 156 51.1
Regex+RFT 40.7 86.2 53.1 13.3 483

Table 6: Performance comparison of SHAD+RFT on Qwen1.5-4B The best results among SFT and SHAD+RFT
are highlighted in bold.

Held-In Held-Out
Model Method StableToolbench BECL Toeval Nexus VO
SET 453 847 607 171 519
Qwenl.5-4B gl AD+RFT 47.4 835 6L1 173 523

H More Example of Shuffled Data

In this section, we add more examples of shuffled
data in Figure 10 to support the state made that
shuffling the correspondence between input and
output across data samples does not alter the pre-
dictability of boilerplate tokens while reasoning
tokens are disruptive after the shuffling.

I Failure Cases

We identify two types of failure cases for SHAD,
as illustrated in Figure 11.

First, SHAD struggles to effectively distinguish
tokens originating from the shuffled training data.
This occurs because, during the shuffle training
process, the reference model may have memorized
certain samples, making those tokens appear pre-
dictable even if they are not boilerplate.

Second, the ToolBench dataset is constructed
using GPT-3.5, and some training samples con-
tain errors or inconsistencies— such as invoking
non-existent functions or exhibiting logically in-
consistent behavior. In such cases, SHAD may
incorrectly classify these erroneous tokens as rea-
soning tokens.

These observations suggest the need to limit the
amount of data used for shuffle training and to
ensure high data quality in the original dataset.
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Examples on Held-Out Benchmark Nexus

Instruction:

You are given multiple functions and a user query.

Please proceed with generating a function call for the function with the proper arguments that best answers the given prompt.

Respond with nothing but the function call ONLY, such that I can directly execute your function call without any post processing necessary
from my end. Do not use variables.

{tools}

Example 1
User Question:
Give me restaurants near me?

Response (SFT):

Function Call: find_places_near_location(['restaurant’], ‘my location', 10)

Explanation: Based on the user's query, | can see that they are looking for restaurants near their location. To fulfill this request, | will use the
"find_places_near_location" function. The current arguments for the function call are "type_of place" = ['restaurant’], "location” ='my
location'. These arguments indicate that the user is specifically interested in finding restaurants near their current location. The “radius_miles"
argument is set to 10, which means that the search will be limited to a 10-mile radius. This will ensure that the recommendations are relevant
to the user's current location.

“python

find_places_near_location(['restaurant], ‘my location', 10)

Response (SHAD+RFT):

find_places_near_location(type_of_place=[restaurant’], location=get_current_location())

Example 2
User Question:

Give me vulnerabilities, sorted by their CVSS version 2.0 scores in descending order, released between January 1, 2021 and January 31, 2021,
that match the CPE name ‘cpe:/a:microsoft:windows_10:1909' and have a Technical Alert from US-CERT?

Response (SFT):

Function call: sortCVEsByCVSSv2Score(cve_list, descending=True)

Explanation: The user wants to search for vulnerabilities associated with the CPE named 'cpe:/o:linux:linux_kernel' and sort them in
descending order by their CVSS Version 2.0 base scores. The function call 'sortCVEsByCVSSv2Score' is used to achieve this. The argument
‘cve_list' is a list of CVE objects, and the argument 'descending' is set to True to sort the CVEs in descending order.

Response (SHAD+RFT):

sortCVEsByCVSSv2Score(searchCVE(cpeName='cpe:/a:microsoft:windows_10:1909', pubStartDate="2021-01-01", pubEndDate="2021-01-
31", hasCertAlerts=True), descending=True)

Example 3
User Question:

Could you help identify CPEs that closely resemble the pattern ‘cpe:2.3:a:google:android:'? And please, limit the results to just 5.

Response (SFT):

Function call: searchCPE(cpeMatchString="cpe:2.3:a:google:android:', limit=5)

Explanation: The user wants to identify CPEs that closely resemble the pattern ‘cpe:2.3:a:google:android:', and limit the results to just 5. To
accomplish this, | will call the 'searchCPE' function with the arguments ‘cpeMatchString' set to ‘cpe:2.3:a:google:android:" and ‘limit' set to 5.
This will search for CPEs that match the given pattern and limit the results to just 5.

Response (SHAD+RFT):
searchCPE(cpeMatchString="cpe:2.3:a:google:android:', limit=5)

Figure 9: Comparison example on Held-Out Benchmark Nexus. In the response generated by the na i ve SFT
model, we observe overfitting, with formatted tokens and template-connect tokens being erroneously generated.
Additionally, the na i ve SFT model exhibits hallucination, leading to reasoning errors. In contrast, our SHAD+RFT
method successfully follows the Held-Out instructions and provides accurate reasoning, we explicitly mark the
different reasoning part in red.
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Before Shuffle

Assistant

would like to know their origin, temperature range, and
recommended watering frequency. Begin!

Thought: | received a user query asking for a list of flower
category plants in the house plant database. They
specifically mentioned wanting to know the origin,
temperature range, and recommended watering frequency
of these plants. To fulfill their request, | will call the
"get_by_category_for_house_plants" function with no
arguments, which will retrieve the desired information for
the user.

Action: get_by_category_for_house_plants

Action Input: {}

Assistant

includes eggs? Additionally, fetch me the nutrition
information for 1lb of brisket with fries and a random
diet recipe. Begin!

Thought: | called the
'breakfast_ingredient_for_recipe_finder' function with the
argument {"ingredient": "eggs"} because the user wants a
random breakfast recipe that includes eggs. By specifying
the ingredient as 'eggs', | can fetch recipes that have eggs
as one of the ingredients. This will help me suggest a
healthy breakfast recipe that includes eggs.

Action: breakfast_ingredient_for_recipe_finder

Action Input: {

"ingredient": "

}

eggs”

Data Shuffle

After Shuffle

Assistant

e

& My company is organizing a team-building event and & My company is organizing a team-building event and
user We need some entertainment. Retrieve a random user We need some entertainment. Retrieve a random
programming meme and a Chuck Norris joke for us. programming meme and a Chuck Norris joke for us.
Also, generate a Pet Pet meme using an image of our Also, generate a Pet Pet meme using an image of our
company logo. Begin! company logo. Begin!
'gl Thought: Based on the user's request, they are interested 'g' Thought: The user is requesting a driving route from New
Assistant | iN the history of NBA games and want to fetch statistics for Assistant York to Los Angeles without tolls and ferries, and they
all NBA games, including the date, home team, visitor team, would like the route geometry in GeoJSON format. To fulfill
and final scores. Additionally, they requested a trivia fact their request, | will call the "get_route_for_fast_routing"
about a significant NBA game. In order to fulfill their function with the following arguments: coordinates = "-
request, | should call the "get_all_stats_for_free_nba" 74.0060, 40.7128;-118.2437, 34.0522", exclude =
function with no arguments. This function will fetch the “toll;ferry”, geometries = "geojson", and steps = "true".
necessary information about all NBA games. By calling this <:> This will ensure that the API returns the desired route with
function, | will be able to provide the user with the desired turn-by-turn directions and the route geometry in the
statistics and trivia fact. requested format.
Action: get_all_stats_for_free_nba Action: get_route_for_fast_routing
Action Input: {} Action Input: {
"coordinates": "-74.0060,40.7128;-118.2437, 34.0522",
"exclude": "toll;ferry",
"geometries": "geojson",
"steps": "true”
}
[ J : : : : | 4 ; ; i )
gl | aminterested in growing flowering house plants. Can d | aminterested in growing flowering house plants. Can
user ~ You provide me with a list of flower category plants? | user  you provide me with a list of flower category plants? |

would like to know their origin, temperature range, and
recommended watering frequency. Begin!

Thought: The user wants details about the genre with the

ID 'rock' on Deezer. To fulfill their request, | should call the
'genre_for_deezer' function with the argument 'is_id' set

to 'rock’. This will allow me to retrieve specific information
about the 'rock' genre on Deezer.

Action: genre_for_deezer

Action Input: {

"is_id": "rock”

}

Assistant

& | want to surprise my family with a healthy breakfast. ; | want to surprise my family with a healthy breakfast.
user Can you suggest a random breakfast recipe that user Can you suggest a random breakfast recipe that

includes eggs? Additionally, fetch me the nutrition
information for 1lb of brisket with fries and a random
diet recipe. Begin!

Thought: | called the
'v1_nutrition_for_nutrition_by_api_ninjas' function with
the argument {"query": "1Ib of brisket with fries"}
because the user requested the nutrition information for
1lb of brisket with fries. By passing the query as '1lb of
brisket with fries', | can retrieve the nutrition data for this
specific food combination. This will help me provide the
user with the desired information regarding the nutritional
content of their selected meal.

Action: v1_nutrition_for_nutrition_by_api_ninjas

Action Input: {

"query": "1lb of brisket with fries”

}

Figure 10: More Example of Shuffled Data. After shuffling, the assistant’ s responses no longer correspond to the
original queries. However, some tokens (boilerplate tokens, red) remain semantically similar to the original response
and are therefore predictable. In contrast, reasoning tokens (green) no longer align with the query, resulting in noise.
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Failure Cases

Error in Original Data

Thought: Since the function "getbreadcrumbnavitem_for_betsports" fail
ed to retrieve the breadcrumbnavigation item due to an endpoint error,
I am now calling the "get banners new for betsports" function to obta
in the banners for the sports section.this API call will be successful and p
rovide the necessary information for the article.

Action: superoffer_for_betsports

Action Input: {}<|eot_id|>

In Shuffled Data

Thought: I received the user's request to store UUIDs of players in a Minecraft
plugin. They specifically asked for the UUID and corresponding names of
Kara Danvers, Barry Allen, and Oliver Queen. To fulfill this request, I called
the 'name _to uuid for minecraft uuid converter' function with the argument
'name': 'Kara_Danvers'. This API call will convert the Mojang Minecraft
username of Kara Danvers into a UUID. By doing this, I'll be able to store the
required information for the players.
Action: name to_uuid for minecraft uuid converter
Action Input: {

"name": "Kara Danvers”

b
{

"tool calls": [

n.n

"name": "purgequeue", "arguments": {"phone id": "1234567890"} },

n.n

"name": "purgequeue", "arguments": {"phone id":"9876543210"}}

]
j

Figure 11: Failure Cases. We identify two types of failure cases for SHAD: 1)In shuffled Data, where data is
sampled for shuffle train, 2) Error in Original Data, SHAD may misclassify the error in the original data as reason
tokens.
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