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Abstract

Accurately identifying adversarial techniques
in security texts is critical for effective cy-
ber defense. However, existing methods face
a fundamental trade-off: they either rely on
generic models with limited domain precision
or require resource-intensive pipelines that de-
pend on large labeled datasets and task-specific
optimizations—such as custom hard-negative
mining and denoising—resources rarely avail-
able in specialized domains. We propose
TECHNIQUERAG, a domain-specific retrieval-
augmented generation (RAG) framework that
bridges this gap by integrating off-the-shelf re-
trievers, instruction-tuned LLMs, and minimal
text—technique pairs. First, our approach miti-
gates data scarcity by fine-tuning only the gen-
eration component on limited in-domain exam-
ples, circumventing resource-intensive retrieval
training. Second, although conventional RAG
mitigates hallucination by coupling retrieval
and generation, its dependence on generic
retrievers often introduces noisy candidates,
thereby limiting domain-specific precision. To
address, we enhance the retrieval quality and
domain specificity through a zero-shot LLM
re-ranking that explicitly aligns retrieved candi-
dates with adversarial techniques. Experiments
on multiple security benchmarks demonstrate
that TECHNIQUERAG achieves state-of-the-art
performances without extensive task-specific
optimizations or labeled data, while compre-
hensive analysis provides further insights.

1 Introduction

Uncovering new adversarial behaviors is critical
for strengthening defenses against rapidly evolv-
ing cyber threats. These behaviors, defined by the
tools, techniques, and procedures used by attackers,
reveal how adversaries plan and execute attacks
and impact systems and data. By identifying and
analyzing the traces or artifacts left behind, secu-
rity analysts can map low-level actions to higher-
level concepts, such as ractics (i.e., strategic ob-

Example of text to (sub-)techniques annotated pairs

Monero miner scripts are
and piped to “bash” using a SSH
session as the with private key from

“/tmp/TeamTNT.”

1.

2.

3. T1059.004: Unix Shell

4. T1021.004: Remote Services: SSH
5. T1552.004: Private Keys

Figure 1: Example of MITRE ATT&CK techniques and
sub-techniques highlighted in text with corresponding
colored (implicit) indicators. IDs with "." denote sub-
techniques (e.g., T1098.004).

jectives like "lateral movement"), techniques or
fine-grained sub-techniques (i.e., tactical methods
like "Debugger Evasion"), and procedures (i.e., im-
plementation details like "using PowerShell for cre-
dential dumping"). The findings are shared with
other experts through public channels and threat in-
telligence services via security reports and detailed
descriptions, to strengthen defenses, anticipate pos-
sible threats, and improve incident response.

The MITRE ATT&CK framework has estab-
lished itself as the industry standard for catego-
rizing and mapping adversarial behaviors (Corpo-
ration, 2022). This framework provides a com-
prehensive knowledge base of adversarial zactics,
techniques, and procedures (TTPs), built from real-
world threat intelligence and incident response data.
It uses a hierarchical matrix structure to systemat-
ically organize and classify adversary behaviors.
The broad adoption of the ATT&CK framework
presents a significant operational challenge: secu-
rity analysts must manually map ambiguous threat
descriptions from incident reports (such as the ex-
ample shown in Fig 1) to standardized ATT&CK
(sub)-techniques—a time-intensive process that
demands expert knowledge. This manual task
has motivated research into automated adversarial
technique identification, which aims to systemati-
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cally label text segments with their corresponding
ATT&CK technique and sub-technique 1Ds.

Prior approaches for (sub-)technique annotation
adopt two primary paradigms: (1) Multi-class clas-
sification that directly map text to (sub-)technique
IDs (You et al., 2022; for Threat-Informed Defense,
2023), which, while straightforward to implement,
struggle with class imbalance and require extensive
labeled training data; and (2) Retrieval/ranking ap-
proaches that evaluate semantic similarity between
the text and (sub-)techniques. Early methods like
Ladder (Alam et al., 2023) & AttackKG (Li et al.,
2022a) introduce basic similarity-based ranking.
Text2TTP (Kumarasinghe et al., 2024) advanced
this through hierarchical re-ranking with fine-tuned
embeddings, while NCE (Nguyen et al., 2024) im-
proved similarity learning using dual-encoder ar-
chitectures. Recently, Inte]lEX (Xu et al., 2024) em-
ployed LLMs in both retrieval and zero-shot learn-
ing settings to assess (sub-)technique relevance.

Although promising, the current methods are
constrained by a critical trade-off: they either rely
on general-purpose models lacking domain exper-
tise or require large-scale labeled datasets and com-
putationally intensive training pipelines. Retrieval
approaches, for instance, require extensive hard-
negative mining to distinguish fine-grained (sub-
)techniques while classification models demand
curated, balanced training sets—resources rarely
available in this specialized domain. Compounding
this issue, despite MITRE ATT&CK framework
defines over 550 adversarial (sub-)technigues, only
approximately 10,000 annotated examples are pub-
licly available (Kumarasinghe et al., 2024; Nguyen
et al., 2024), severely limiting generalization.

To address these dual challenges, we propose
TECHNIQUERAG, a domain-specific retrieval-
augmented generation (RAG) framework for (sub-
)techniques annotation task that bridges generic
and specialized models while eliminating depen-
dency on resource-intensive pipelines or large la-
beled data. Unlike conventional approaches, TECH-
NIQUERAG integrates three key components: (a)
off-the-shelf retrievers for candidate extraction (b)
instruction-tuned LLMs to re-rank candidate (sub-
Jtechniques (c) minimal text-(sub- )technique pairs
used exclusively for fine-tuning the generator. Our
approach mitigates data scarcity by fine-tuning only
the generation component on limited in-domain ex-
amples while leveraging a novel re-ranking frame-
work that uses generic off-the-shelf LLMs without
fine-tuning to explicitly align retrieved candidates

Re-ranker

MITRE —_—
ATT&CK Top-K retrieved pairs R o

Text-Techniques
paired data D1

Retriever R q

malware connects to C2 ..
custom encoding

Re-ranked pairs

Text-Techniques exemplars
1."P exe file e
from 45.33.12.x", [T1059.001, T1105] 7w Frozen
2. "Multiple failed RDP attempts from
192.168.1.x", [T1110.001, T1021.001]
3. "New registry key in
HKEY_LOCAL_MACHINE\\SOFTWARE\\
Microsoft\\Windows\\CurrentVersion\\

Run", [T1547.001]
‘éb Generator |sp
G Y |Techniques
Security Text

Figure 2: Overview of TECHNIQUERAG.

J Trainable

with adversarial (sub-)techniques, thereby enhanc-
ing domain specificity. Fig 2 shows an overview.

While LLMs offer promising capabilities for
ranking adversarial (sub-)techniques, this task
poses challenges beyond their standard pre-training
and alignment objectives. Unlike traditional rank-
ing tasks—such as those encountered in question-
answering—security technique ranking requires
distinguishing among subtly different ATT&CK
(sub-)technique that may co-occur in a text with-
out explicit indicators (see Fig 1). Consequently,
conventional re-ranking frameworks like RankGPT
(Sun et al., 2023), though effective for general
search, struggle with the nuanced demands of
security-specific ranking. To address, our frame-
work prompts LLMs to engage in explicit, step-
by-step reasoning about (sub-)technique relevance,
considering both high-level techniques and fine-
grained sub-techniques. This structured decompo-
sition not only enables more precise ranking but
also captures hierarchical relationships among (sub-
Jtechniques as in the ATT&CK framework.

In experiments, we evaluate our framework on
three benchmarks, addressing both single-label and
multi-label prediction tasks for (sub-)techniques.
Results demonstrate that TECHNIQUERAG signifi-
cantly outperforms various baseline approaches,
including classification-based, retrieval/ranking-
based, and hybrid methods. Furthermore, it
achieves comparable or superior performance to
vanilla RAG approaches, even when utilizing pow-
erful LLMs like GPT-4o.

2 Related Work

Table 1 presents a comparison of the methods pro-
posed for the (sub-)technique 1D annotation task.
These methods can be categorized into three groups
based on their characteristics

Text-based Feature Extraction Initial ap-
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Method Problem Formulation

Key Features

TRAM (for Threat- Classification
Informed Defense, 2023)

TTPDrill (Husari et al., Matching/Ranking
2017a)

AttacKG (Li et al., 2022b) Matching/Ranking
TIM (You et al., 2022) Classification
LADDER (Alam et al., Matching/Ranking
2023)

NCE (Nguyen et al., 2024)  Matching/Ranking
Text2TTP (Kumarasinghe Matching/Ranking
et al., 2024)

IntexEX (Xu et al., 2024) Hybrid (Retrieval and Eval-

Utilizes n-gram frequency features
Employs TF-IDF and BM25 for text retrieval

Leverages knowledge graph representations
Incorporates textual and lexical features
Uses sentence encoder embeddings

Applies task-adapted dual-encoder embeddings
Enhances dual-encoder retrievals with a cross-encoder
embedding filter model

Combines sentence/entity-based search with LLM-based

uation) evaluation of candidate outputs
TechniqueRAG (Ours) Retrieval Augmented Gener- Integrates any retriever with LLM-based re-ranking and
ation (RAG) fine-tuned generation

Table 1: Overview of methods proposed for automatically mapping security text to Mitre ATT&CK (sub-)technique..
Our proposed TECHNIQUER AG leverages a flexible RAG framework by combining off-the-shelf retrievers, a novel
LLM-based re-ranking mechanism, and a fine-tuned generator, distinguishing it from prior approaches.

proaches to (sub-)technique identification utilized
classical text representations: bag-of-words models
utilizing TF-IDF (Legoy et al., 2020; Tsai et al.,
2020), n-gram frequencies (Legoy et al., 2020; for
Threat-Informed Defense, 2023), and word embed-
dings (Legoy et al., 2020) as features for multi-
class & multi-label classifiers. Later works en-
hanced representation through syntactic parsing
to extract (subject, verb, object) patterns (Husari
et al., 2017b) & knowledge graph alignment (Li
et al., 2022b) to capture contextual relationships in
threat behaviors.

Neural Text Embedding Approaches
Transformer-based language models (Reimers
and Gurevych, 2019) enabled semantic similarity-
based technique identification through neural
embeddings. Early approaches used pre-trained
encoders to embed threat behaviors, either
handling multi-sentence descriptions (You et al.,
2022) or specific attack patterns (Alam et al.,
2023), evaluating relevance through embedding
similarity. (Kumarasinghe et al., 2024) advanced
this through a multi-stage architecture combining
fine-tuned cross-encoder and dual-encoder models
to balance effectiveness and efficiency. (Nguyen
et al.,, 2024) further developed this approach
using a dual-encoder architecture with alignment
components, leveraging both scratch-trained
embeddings and domain-specific models.

LLM Applications The application of LLMs
to technique identification has yielded important
insights. (Kumarasinghe et al., 2024) found that
Normally, LLMs perform poorly compared to fine-
tuned smaller models due to hallucination issues.
To address, (Xu et al., 2024) introduced a hybrid ap-

proach combining zero-shot classification, retrieval,
and LLM-based validation while we propose RAG
to enhance reliability and reduce errors.

3 Method

We present TECHNIQUERAG, a domain-specific
retrieval-augmented generation (RAG) framework
for adversarial technique (or sub-technique) anno-
tation. Unlike conventional approaches that rely on
task-specific optimizations and extensive labeled
data, TECHNIQUERAG effectively integrates re-
trievers, instruction-tuned LLMs and small-scale
text-techniques paired data. We first provide an
overview of our approach, followed by details on
the key components: (i) retriever and (ii) LLM-
based re-ranking (ii) generator fine-tuning. Fig 2
presents an overview of our system.

3.1 Problem Formulation and Overview

Let X = {z1,29,...,2,} denote a set of se-
curity texts (e.g., attack behaviors) and Y =
{y1,Y2,...,ym} denote the set of adversarial (sub-

Jtechniques (e.g., MITRE ATT&CK IDs). For a
given security text, its annotation is represented
as a sequence Y = (y1,¥2,-..,Yy;), Where each
y; € Y and I < m. We define Y* as the set
of all finite sequences over Y, so that Y € Y™,
We assume access to a small paired dataset D =
{(z1, Y1), (z2,Y2),...,(zn, Yn)} of threat de-
scriptions and the corresponding set of ground-
truth (sub-)techniques. Given an input text x €
X, the task is to predict the corresponding (sub-
Jtechniques Y, C Y™,

Our framework, TECHNIQUERAG, comprises
three modules: (1) a retriever R, (2) an LLM-based
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re-ranker R, and (3) a generator LLM G. Given
an input =9, the retriever R first retrieves the top-
K relevant pairs R, from the dataset D based on
their similarity to the query text. The re-ranker R
processes the retrieved pair of annotated text, R,
to produce an ordered sequence R ., which is then
augmented with the input sequence x to form the
generator context C, = x @ R, where @ denotes
concatenation. To conform to the context length
of the generator G, the user may select £ < K re-
ranked pairs for augmentation. These augmented
pairs serve as exemplars that guide the generation
process and help to reduce hallucination. Finally,
the generator G produces the target output Y, from
the augmented input C,. (See Fig 2). In the follow-
ing subsections, we provide detailed descriptions
of the retriever R, the LLM-based re-ranker R, and
the generator G used in TECHNIQUERAG.

3.2 Retriever R

The retriever module processes a query security
text 9 by leveraging a retrieval corpus Dp to fetch
most relevant candidate pairs. In our setting, due to
the lack of additional data, we employ the paired
dataset D both as the retrieval corpus Dy and as the
training data for the generator G. To prevent data
leakage during its training, we explicitly exclude
29 from Dpg, defining it as:

Dr = {(l’Z,YZ) | (:L'l,YZ) eDANzx; # :Eq} .

The retriever R returns the top-K pairs R, =
{(xﬁ’Y{%)v ($§7Y2R>7 A ("E%’Ylpé)} C Dg,
where each pair (acZR, YIR) corresponds to a secu-
rity text and its associated (sub-)techniques from
Dp, along with their (lexical/semantic) similarity
sim(z9,zF) > sim(x9, :Uf) Vj > i. Any off-
the-shelf retriever (e.g., sparse: BM25 or dense:
pre-trained sentence embedding model) can be em-
ployed as R. While our approach is generic and
further domain adaptation of R may improve per-
formance, it is important to note that D only has be-
havior description and (sub-)technique annotation
pairings (z;, Y;) without specifying the absolute
relevance of x; with any of the individual (sub-
Jtechniques within the sequence of ground truth
technique annotations Y;. As a result, training R
solely with heuristic losses, such as in-batch nega-
tives, leads to sub-optimal adaptation. Furthermore,
no hard negatives or denoising data are available.
Therefore, instead of fine-tuning a retriever, we em-
ploy an off-the-shelf retriever as R and enhance it
through re-ranking, as detailed below.

3.3 Re-Ranker R

To address data scarcity and enhance domain-
specific precision, our re-ranker R refines the can-
didate set retrieved by R using an instruction-tuned
large language model. Unlike generic prompting
frameworks for ranking (e.g., RankGPT (Sun et al.,
2023)), which lack domain-specific knowledge, our
re-ranker employs a novel prompting framework
specifically designed for adversarial technique an-
notation that addresses three key challenges de-
scribed below.

Explicit Reasoning for Implicit Mapping: Secu-
rity texts rarely provide explicit rationales for tech-
nique mappings. For example, the text “malware
connects to C2 using custom encoding” implies
both command-and-control (TA0O11) and defense
evasion (TA0005) tactics, but doesn’t directly state
this relationship. R instructs the LLM to decom-
pose such implicit connections through structured
reasoning:

Prompt and Response: Break Down the Query

# Decompose the given security query into distinct
attack steps or phases.

# Identify any implied or explicitly mentioned behav-
iors that indicate specific adversarial (sub-)techniques.

Query: “malware connects to C2 .. custom encoding”

Step 1: Identify core behavior — C2 communication
with encoding

Step 2: Map to tactics — Command and Control +
Defense Evasion

Step 3: Link to techniques — T1071 (C2 Protocol) +
T1027 (Obfuscation)

Balanced Consideration of Multiple Techniques:
Security activities often involve multiple fech-
niques simultaneously. R prompt ensures com-
prehensive coverage through parallel evaluation by
instructing to explore each possible technique.

Prompt and Response: Multiple Techniques

# Consider that the query may involve multiple (sub-
Jtechniques. (both direct and implied).

Query: “malware connects to C2 .. custom encoding”

Primary Technique: T1071 (Application Layer Proto-
col)

Rationale: Direct C2 communication behavior
Secondary Technique: T1027 (Obfuscated Files or
Information)

Rationale: Custom encoding for evasion

Fine-Grained Relevance w.r.t Sub-Techniques:
Certain techniques have multiple sub-techniques
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and some do not. Our framework evaluates sub-
tle distinctions among them to inform the overall
ranking of different techniques (with and without
sub-techniques). For instance:

Prompt and Response: Fine-grained Relevance

# Map each identified step or behavior to the most
appropriate technique or sub-technique (if available
for each corresponding technique). For each matching
technique, explain the connection between the query
and the corresponding adversarial behavior.

Query: “PowerShell script encoded in base64 down-
loads malware from remote server”

Technique Analysis:

1. T1059 (Command and Scripting Interpreter)

- T1059.001 (PowerShell): Direct match for script
execution

- Confidence: High due to explicit PowerShell usage
2. T1027 (Obfuscated Files)

- No sub-techniques apply to basic encoding

- Confidence: Med. as common obfuscation method

Final Ranking: T1059.001 > T1027

Rationale: Sub-technique analysis reveals credential
access as primary intent with process injection as sup-
porting mechanism

The complete system prompt to guide the LLM
through this structured analysis is provided in Ap-
pendix E. This hierarchical, reasoning-based ap-
proach enables R to reorder candidates while main-
taining alignment with ATT&CK’s taxonomy, ad-
dressing ambiguities in initial retrieval. To address
the challenge of processing large candidate sets
within the LLM’s context window, we utilize the
sliding window mechanism as in Sun et al. (2023).

3.4 Generator G

To adapt the LLLM generator G that produces the
final annotations of the adversarial technique Y,
from an augmented input C,, we fine-tune it using
D as the training set. As discussed in Section 3.1,
the augmentation process concatenates the original
query x with the re-ranked candidate pairs R, (i.e.,
x @ Ry), specifically as following:

C, = x [text] xT° [technique] Y [text]
aX [technique] YX ... [text]
zF [technique] Y,
where “[]” denotes separator tokens, x; and Y
are parallel data (e.g., x; is the security text and
Y; = (y15,Y25,---Ym,) is the corresponding
(sub-)technique sequence.

We train the generator model G minimizing the
negative log-likelihood of the ground-truth (sub-

)technique annotations Y, = (Y12, Y22, - - - » Yi.z)

conditioned on the augmented input C,.:

!
L=— Z Zlong(yi,x | Cp).

(z,Yg)eD =1

To mitigate hallucination, G is constrained to gen-
erate outputs from the re-ranked candidate set C,.
This design ensures that the final predicted (sub-
Jtechniques are both contextually grounded in x
and consistent with the adversarial taxonomy pro-
vided by the exemplars in C,.

4 Experiment Setup

4.1 Data and Implementation

We assess the capability of TECHNIQUERAG to
accurately map threat behaviors to (sub-)technique
IDs. We consider both single-label (I = 1) and
multi-label (! > 1) prediction setups. Follow-
ing previous works, we evaluate on three publicly
available benchmark datasets: Tram (for Threat-
Informed Defense, 2023) as a single-label dataset,
and the Procedures and Expert datasets (Nguyen
et al., 2024) representing single-label and multi-
label settings, respectively. We report perfor-
mances on the test sets of these datasets, training
our model on the combined training sets. Rather
than developing separate models for fechnique and
sub-technique prediction, we train a single model
for sub-technique prediction. This is motivated
by the fact that sub-technique annotations provide
a more fine-grained representation that inherently
includes the broader technique identifier (e.g., in
T1050.001, T1059 is the technique and 001 is the
sub-technique). When evaluating for technique
prediction, we simply truncate the sub-technique
component. As the retriever R, we use BM25 with
K = 40 and k£ = 3. For the frozen re-ranker R,
we employ DeepSeek v3 (Liu et al., 2024) (with
temperature set to 0) , processing retrieved candi-
dates in batches of 40 with an overlap of 20. The
trainable generator G is implemented using an 8B
Ministral Instruct model (MistralAl, 2024). Fine-
tuning is performed with LLaMa-Factory using
LoRA (Hu et al., 2021), with a learning rate of
10~*, LoRA rank r = 8, and o = 4. For genera-
tion, we use a sampling temperature of 0.7, a top-p
value of 0.1, and a context length of 2048 tokens.
Our source code, datasets, and models are publicly
available on GitHub!.

"https://github.com/qcri/TechniqueRAG
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Tram (Single-label)

| Procedures (Single-label) | Expert (Multi-label)

Model
Prec. Rec. F1 | Prec. Rec. F1 | Prec.  Rec. F1
Retrieval-based Methods
NCE 90.30 78.90 84.22 | 84.10 80.60 82.31
Text2TTP 51.59 2136 30.22 | 7476 74.65 74.70
BM25 67.86 64.74 6626 | 32.54 3248 32.51 N/A
RankGPT 61.93 58.56 60.20 | 59.40 59.33 59.37
Our Re-Ranker 64.69 6143 63.02 | 8546 85.29 85.37
Generative Models
GPT-40 38.28 4998 4335 | 5142 64.04 57.04 2091 3296 25.59
w/ CoT+Ref 43.52 67.20 52.83 | 51.84 78.47 62.43 38.19 48.67 42.80
DeepSeek v3 43774  65.69 52.51 | 50.87 78.13 61.62 40.17 46.89 4327
w/ CoT+Ref 43.68 66.36 52.68 | 51.55 75.86 61.39 36.39 49.25 41.85
Ministral 8B 7.68 31771 1236 | 7.07 30.79 11.50 847 19.63 11.84
w/ CoT+Ref 1494 2621 19.03 | 16.58 29.29 21.17 16.88 17.17 17.02
IntelEx 60.67 70.71 65.31 | 61.13 75.07 67.39 48.03 41.88 44.74
RAG Models
GPT-4 (RAG) 55.50 70.64 62.16 | 71.34 88.06 78.82 4749 55.76 51.30
DeepSeek v3 (RAG) 54.59 7736 64.01 | 6643 91.57 77.00 40.94 60.86 48095
Ministral 8B (RAG) 51.88 57.61 54.60 | 6140 69.81 65.34 4321 3523 38381
TECHNIQUERAG 76.00 72.14 74.02 | 91.11 91.06 91.09 75.16 37.67 50.19

Table 2: Results in technique prediction. CoT+Ref: Chain-of-Thought w/ Reflection. The num of predicted labels
are fixed for ranking models while generative models determines at runtime, hence compared in Section 5.3.

4.2 Baselines and Evaluation Metrics

Retrieval/Ranking-only Methods These in-
clude state-of-the-art approaches that rely solely
on retrieval and re-ranking w/o using generative
models. We compare w/ NCE (Nguyen et al.,
2024) for contrastive domain-specific learning,
Text2TTP (Kumarasinghe et al., 2024), which com-
bines bi-encoder semantic search w/ cross-encoder
re-ranking, underlying BM25 retriever baseline,
and RankGPT (Sun et al., 2023) re-ranking frame-
work that uses same BM?25 retrievals. As NCE is
not released we report from (Nguyen et al., 2024).

Generation-based Methods Direct Generation:
We evaluate against powerful LLMs including GPT-
4, DeepSeek V3, and Ministral 8B. For each model,
we implement both direct prompting and chain-
of-thought approaches with self-reflection (Shinn
etal., 2024). Retrieval-Augmented Generation: We
compare against IntelEX (Xu et al., 2024), a hybrid
retrieval and LLM-judge approach. Additionally,
we implement retrieval-augmented versions of the
above LLMs using text and identical exemplars
from our retrieved and re-ranked pairs (Cy).

Evaluation Metrics Following previous works,
we evaluate performance on two settings: (i) for
single-label technique and sub-technique predic-
tion task, we use standard Precision, Recall, and
F1 scores; (ii) for multi-label tasks, we adopt a
differentiated evaluation protocol. Our evaluation
consists of: (1) End-to-End Evaluation: comparing

our model’s adaptive label predictions with genera-
tive baselines, as both can dynamically determine
the optimal number of labels—a capability that
retriever-only methods lack; and (2) Ranking Anal-
ysis: evaluating our re-ranker against all retriever
or ranking methods using standard ranking metrics
(Precision, Recall, and F1) at k={1,3}.

S Results and Analysis

5.1 Technique-Level Performance

Table 2 reports the performance of various mod-
els on the technique prediction task across three
datasets with increasing diversity: Tram (single-
label with 198 unique), Procedures (single-label
with 488 unique), and Expert (multi-label with 290
unique) techniques and sub-techniques. Among
retrieval-based methods, NCE achieves the high-
est F1 score on Tram (84.22%), reflecting its
strength in a constrained label space. However, as
the diversity increases, NCE’s performance drops
markedly—for example, on Procedures it only
reaches an F1 of 82.31%

In contrast, our proposed TECHNIQUERAG ex-
cels consistently. On Procedures, TECHNI-
QUERAG attains an F1 score of 91.09%, demon-
strating its superior ability to generalize in a high-
diversity, single-label setting. Although on the
Expert dataset proprietary model GPT-40 (RAG)
achieves a marginally higher F1 (51.30% vs.
TECHNIQUERAG’s 50.19%), the overall perfor-
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Tram (Single-label)

| Procedures (Single-label) | Expert (Multi-label)

Model
Prec. Rec. F1 | Prec. Rec. F1 | Prec.  Rec. F1
Retrieval-based Models
NCE 77.00 6580 70.96 | 7570 71.88 73.74
Text2TTP 42.62 4041 4149 | 71.08 70.94 71.01
BM25 4841 46.56 4747 | 2417 24.17 24.17 N/A
RankGPT 43.03 4097 4197 | 51.19 51.12 51.16
Our Re-Ranker 50.76 48.45 4958 | 84.21 83.98 84.10
Generative Models
GPT40 27.62 3634 3138 | 4242 55.04 4791 16.69 2426 19.77
w/ CoT+Ref 3233 4991 3924 | 4390 68.33 53.46 3224 37775 34.78
DeepSeek v3 30.97 47.07 37.36 | 40.98 64.23 50.04 34.60 35.87 3522
w/ CoT+Ref 33.28 5147 4042 | 4147 61.63 49.58 30.79 37.14 33.67
Ministral 8B 372 2199 6.37 325  17.32 5.47 6.65 1472 9.17
w/ CoT+Ref 10.96 21.34 1448 | 7.17 1353 9.37 1274  11.60 12.14
IntelEx 53.09 63.33 57.76 | 53.07 67.77 59.53 43.55 3352 37.88
RAG Models
GPT40 (RAG) 39.29 52.84 4507 | 64.11 81.63 71.82 41.77 45.87 43.73
DeepSeek v3 (RAG) 39.31 58.54 47.04 | 59.72 86.47 70.65 3591 48.06 41.11
Ministral 8B (RAG) 3494 40.86 37.67 | 53.41 63.75 58.12 3290 28.24 30.39
TECHNIQUERAG 72.69 68.74 70.66 | 91.11 88.09 88.11 70.06 30.21 42.22

Table 3: Performance Comparison for sub-technique prediction task (in percentage). Note: CoT+Ref: Chain-of-
Thought with Reflection. Retrieval-based methods are not applicable for the multi-label Expert dataset.

mance averaged across the three datasets signifies
the effectiveness of our open-source framework.
When we compute the average F1 score, TECHNI-
QUERAG achieves approximately 80.76%, com-
pared to only about 58.11% for GPT-40 (RAG).
This substantial improvement underscores that our
model is more robust, particularly in handling di-
verse and complex adversarial scenarios.

5.2 Sub-Technique-Level Performance

Table 3 presents the results at the sub-technique
level. A similar trend is observed. At finer granu-
larity, our method maintains dominance on Proce-
dures (our F1 88.11 vs NCE’s 73.74) while match-
ing Tram’s performance gap (F1 70.66 vs NCE’s
70.96). This again posits our effectiveness for com-
plex and robust threat annotation. The performance
gap between our model and other generative and
RAG baselines widens further at the sub-technique
level. While GPT-40 (RAG) achieves a slightly
higher F1 score on the Expert dataset (43.73 vs
our 42.22), the overall results across all datasets
demonstrate that our approach generalizes more ef-
fectively to complex, high-diversity environments.

5.3 Single-Label versus Multi-Label Settings

Our experiments in Table 2 and 3 reveal that multi-
label prediction poses significant challenges in
compare to single-label. For example GPT-40
achieves a F1 score of 76.75 in Procedure while
only 19.77 in Expert). While retrieval augmented

generation enhances all generative models, gains
in open-source LLMs remain low such as using
Ministral RAG without our finetuning scores a F1
of 30.39 in Expert. Adapting to the domain TECH-
NIQUERAG boosts it up to 42.22 tailing the RAG
score of GPT-40’s 43.73. Furthermore, in Table
4 we compare all the ranking based models with
our re-ranker framework—showing a large margin
gains over all. These significant F1 improvements
both in single and multi-label setup confirm the
effectiveness of our model in real-world scenarios.

5.4 Ablation Study

Enhancement with Our Re-Ranker Our compre-
hensive evaluation in Table 2, 3 and 4 clearly indi-
cate that our re-ranker not only outperforms all the
ranking based methods but also enhance the overall
end-to-end performances. In addition to our model,
all the generative models (e.g., DeepSeek) in RAG
setups using our re-ranked exemplars achieves no-
table gains over their direct or CoT+Ref inferences.

Gains over Other Fine-Tuning Methods We
also validate the effectiveness of our RAG-based
domain adaptation methods over zero-shot and
CoT+Ref based methods. For zero-shot, we fine-
tune our same Ministral model on the same train-
ing data but without exemplars and for CoT+Ref
based methods we followed the Alpaca approach
(Taori et al., 2023) where for our same train data
using DeepSeek v3 as the teacher model with the
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Technique Level

Sub-Technique Level

Model
@1 @3 @1 @3
P R F1 P R F1 \ P R F1 P R F1

NCE 745 236 359 — — 483 | 731 182 29.1 — — 399
Text2TTP 535 261 351 374 49.1 424 | 49.0 21.3 302 344 397 36.8
BM25 51.6 214 302 355 404 378 | 459 156 233 31.0 299 305
RankGPT 567 253 349 374 466 415 | 497 198 284 348 378 363
Our Re-Ranker 71.3 353 472 446 599 511 | 669 29.0 405 471 542 504

Table 4: Performance of Ranking Methods on Expert Dataset (Multi-Label). ’-’ refers to results not reported.

CoT+Ref prompt we synthesis a new traindata and
then fine-tune the Ministral model. Results in Fig
3 shows our approach achieves the highest gain in
both target tasks in all benchmark datasets.

5.5 Qualitative Analysis

Running Example. We provide in Appendix A a
concrete example from Expert dataset that shows
the predictions of our Re-Ranker and how TECHNI-
QUERAG generator improved it. We also provide
examples of the prompts in RankGPT and ours
with detailed responses with our re-ranker LLM
DeepSeek V3 in Appendix E.

Error Analysis Analysis reveals few challenges:

Under-prediction. The model often captures pri-
mary techniques while missing related techniques
in the same attack pattern (e.g., identifying T1055
but missing associated techniques like T1106)

Contextual errors. (i) Confusion between similar
techniques within the same tactic family specially
for Command and Scripting Interpreter techniques
(T1059.%) (i1) Missing implicit or contextual tech-
niques not explicitly stated (iii) Difficulty capturing
logical relationships between techniques

Hierarchical issues. Struggles with parent-child
technique relationships and sometimes generates
invalid sub-technique IDs

Re-ranker limitations. Missed techniques due
to ambiguous queries and compound statements,
affecting the Generator through propagation

Technique similarity. Challenges in distinguish-
ing between fechniques with overlapping descrip-
tions and keywords (e.g., phishing-related tech-
niques T1598.003, T1566.002, T1204.001)

Class Imbalance Effects. The severe data imbal-
ance fundamentally impacts model performance -
only 47 out of 203 techniques (23.2%) have more
than 50 training samples. Techniques with abun-
dant data show high precision and recall, while rare
techniques suffer from both misclassification and
under-prediction.

We present detailed analysis in Appendix C .
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Figure 3: F1 scores for different fine-tuning methods.

6 Conclusion

Annotating threat intelligence texts with adversarial
techniques from the MITRE ATT&CK framework
is a manual and time-intensive task that security
analysts must perform daily. Its automation re-
quires methods capable of accurately identifying
techniques and sub-techniques across hundreds of
possibilities while handling complex security ter-
minology, diverse text formats, and limited labeled
data. We introduce TECHNIQUERAG a retrieval-
augmented fine-tuning approach designed to tackle
these challenges effectively. Our comparative anal-
ysis demonstrates that TECHNIQUERAG estab-
lishes a new state-of-the-art, outperforming both
semantic ranking models and other LL.M-based
methods in adversarial technique annotation.
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7 Limitations

Obtaining large, balanced parallel datasets of threat
descriptions and ground truth technique annota-
tions remains a significant challenge due to the
reliance on domain expertise for accurate annota-
tion. Although our approach mitigates data scarcity,
two key limitations may impact performance:

1. Limited Technique Coverage: Coverage of
techniques is often insufficient. Even the
MITRE ATT&CK knowledge base lacks pro-
cedural examples for many techniques and
sub-techniques.

2. Sparse Technique Annotations: Existing
datasets typically contain very few technique
annotations per example, with many instances
in our data having only a single technique la-
bel. During fine-tuning, this bias toward mini-
mal technique labeling limited our method’s
ability to generalize effectively. To mitigate
this, we oversampled examples with multi-
label technique annotations. However, our
method rarely assigned more than two tech-
nique labels per input query, leading to low re-
call, particularly on the Expert dataset, which
consists almost exclusively of multi-label ex-
amples.

3. Annotation Inconsistencies Some model pre-
dictions marked as errors represent valid tech-
nical interpretations not included in gold
standard annotations. For example, the fol-
lowing sentence: “SMOKEDHAM was ob-
served using UltraVNC to establish a con-
nection to the IP address and port pair
81.91.177[.]54[:]7234 that has been observed
in past UNC2465 intrusions.” had T1571:
Non-Standard Port as the only ground truth
label. However, if we analyze it carefully,
we see that the threat actor used UltraVNC,
so T1021.005: Remote Services - VNC ex-
ists in the given description. Our model cor-
rectly predicted it, but missed the 77571: Non-
Standard Port. This highlights challenges in
maintaining consistent annotation standards
for complex attack patterns.
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Appendix
A Running Example

In Figure 4, the given text describes various execu-
tion techniques used by attackers, such as launch-
ing executables and DLLs in memory, leveraging

schtasks.exe to modify task schedules, and exe-
cuting PowerShell commands. The ground truth
labels identify the relevant MITRE ATT&CK tech-
niques: T1059.001 (PowerShell) is explicitly men-
tioned in “The ability to launch custom PowerShell
commands,” T1053 (Scheduled Task/Job) and its
sub-technique T1053.005 (Scheduled Task) are ref-
erenced in “The ability to leverage schtasks.exe to
add or modify task schedules.” The RAG output
provided partial alignment with the ground truth
labels but included T1218.011 (Rundll32), which
is not explicitly mentioned. However, this retrieval
step helped the LLM Output by reinforcing correct
predictions ensuring T1059.001 and T1053.005
were present while also introducing T1053. Ad-
ditionally, the LLM expanded the predictions to
include T1071.001 (Web Protocols), which does
not appear relevant in this case.

Example of TECHNIQUERAG Output

The ability to launch a .exe or .dll file in memory.
The ability to leverage ‘“‘schtasks.exe” to add or
modify task schedules. The ability to launch

. The ability to leverage a
standalone executable to load the DLL if the attacker
otherwise has no way of doing so.

Ground Truth Labels:
1.

2. T1053: Scheduled Task/Job
3. T1053.005: Scheduled Task/Job: Scheduled Task

RAG Output (Our Re-ranker):

1. TI1218.011: System Binary Proxy Execution:
RundlI32
2.

3. T1053.005: Scheduled Task/Job: Scheduled Task

LLM Output (TECHNIQUERAG):
1.

2. T1053: Scheduled Task/Job

3. T1053.005: Scheduled Task/Job: Scheduled Task
4. T1071.001: Application Layer Protocol: Web
Protocols

Figure 4: Example of MITRE ATT&CK techniques and
sub-techniques highlighted in text with corresponding
colored (implicit) indicators. IDs with "." denote sub-
techniques (e.g., T1059.001). Greyed-out IDs indicate
incorrect predictions.

B Data Statistics

Tables 5 and 6 shows the details of the employed
datasets. The Expert split consists of actual sen-
tences from full reports published by threat in-
telligence vendors. These sentences are multi-

20922


https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
https://aclanthology.org/2024.findings-eacl.25/
https://aclanthology.org/2024.findings-eacl.25/
https://aclanthology.org/2024.findings-eacl.25/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

label, meaning they can be associated with mul-
tiple MITRE ATT&CK techniques. In contrast, the
Tram split contains incomplete sentences, such as
“opens cmd.exe on the victim”, “searches for spec-
ified files”, or “icacls . /grant Everyone:F /T /C
/Q”, often presenting isolated technique references
without sufficient context. Tram is single-label,
meaning each sentence corresponds to only one
technique. The Procedures split, extracted from
the MITRE knowledge base, consists of complete
sentences that summarize a single technique men-
tioned in a report. These sentences provide struc-
tured descriptions of attack techniques but are also
single-label. In total, the training splits contain
499 unique techniques, covering approximately
78% of the 637 techniques available in the MITRE
ATT&CK Enterprise Framework.

Table 5: Dataset Statistics

Dataset Split Avg Word Count  Data
Expert Train 38.00 472
P Test 71.42 158
Procedures Train 13.36 10,999
v Test 13.43 1768
T Train 2.94 3469
ram Test 21.22 726

Table 6: Dataset statistics. S+7 denotes the joint count
of techniques and sub-techniques.

Tech- Avg. # Avg. #
Dataset Texts  S+T niques Labels Tokens
TRAM 4797 193 132 1.16 23
Procedures 11723 488 180 1.00 12
Expert 695 290 151 1.84 72

C Error Analysis

Common Errors. Analysis of the prediction er-
rors reveals several systematic patterns in MITRE
ATT&CK technique classification. The most fre-
quent error type involves under-prediction, where
the model identifies only the most prominent tech-
nique while missing other techniques that are part
of the same attack pattern. For example, when ana-
lyzing process injection scenarios, the model often
identifies the primary technique (77055: Process
Injection) but fails to capture associated techniques
like T1106: Native API or specific sub-techniques
like 71055.001: Dynamic-link Library Injection.
Another common pattern involves confusing sim-

ilar techniques within the same tactic family, par-
ticularly between various Command and Scripting
Interpreter techniques (T1059.%). The model also
demonstrates a tendency to miss contextual tech-
niques that are implied but not explicitly stated in
the text, such as failing to identify 7/082: Sys-
tem Information Discovery when enumeration of
system resources is described as part of a larger
operation. Additionally, there is a notable pattern
of missing data staging and encoding techniques
(T1074, T1132) when they are described as part of
exfiltration workflows.

C.1 Contextual Inference Failures.

The model demonstrates limitations in capturing
implicit relationships, often missing techniques that
are logical precursors or consequences of explicitly
described actions. It frequently identifies primary
techniques while missing related concurrent tech-
niques within the same attack pattern.

Class Imbalance Effects. The severe data im-
balance fundamentally impacts model performance
- only 47 out of 203 techniques (23.2%) have more
than 50 training samples. Techniques with abun-
dant data show high precision and recall, while rare
techniques suffer from both misclassification and
under-prediction.

C.2 Dependency on Re-ranker

In several cases, some (sub- )techniques are omitted,
likely due to ambiguous language in the query or
an overemphasis on the most actionable part of a
compound query for example. This, error further
propagate to our Generator, which uses output from
Re-ranker as few-shot examples.

C.3 Similar Techniques

Several techniques within the MITRE ATT&CK
framework share significant similarities and often
use overlapping keywords, which can influence our
initial BM25 rankings. For instance, T1598.003,
T1566.002, and T1204.001 are all phishing-related
techniques that have similar descriptions with mi-
nor distinctions.

D Different Domain Adaptation Methods
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Table 7: Performance Comparison of TECHNIQUERAG Across Domain Adaptation techniques Levels (Percentage
Scores)

Model Tram Procedures Expert
Technique Sub-Technique Technique Sub-Technique Technique Sub-Technique
P R F1 P R F1 | P R Fl1 P R F1 | P R F1 P R F1
Zero-shot 657 749 699 600 692 643 | 858 874 86.6 858 874 86.6 | 41.3 483 445 351 376 363
+ CoT+Ref 64.1 667 654 520 543 531|774 843 807 69.1 769 728 | 486 41.7 449 424 335 374

TECHNIQUERAG 76.0 72.1 740 727 687 707 | 91.1 911 911 911 88.09 88.11 | 752 377 50.2 701 302 422

E Prompts

Vanilla RankGPT Prompt and Output

# System Prompt:
You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the query.

## Objectives:
I will provide you with {num} passages, each indicated by a number identifier [ ].
Rank the passages based on their relevance to the query.

## Given Passages:
{Passage 1: Description}
{Passage 2: Description}

{Passage n: Description}

## Query:

Monero miner scripts are downloaded from TeamTNT’s server and piped to bash using an SSH session on
the underlying host as the root user by supplying the private key from /tmp/TeamTNT. Later, the private key
/tmp/TeamTNT is removed as well.

## Output

T1552.004 > T1098.004 > T1563.001 > T1021 > T1555.002 > T1573.002 > T1546.004 > T1496 > T1059.004
> T1611

Figure 5: Example RankGPT prompt and its corresponding output. Green colored IDs are the correct ones.
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Re-ranker Prompt

# System Prompt
Act as an expert security analyst specializing in ranking a given list of MITRE ATT&CK techniques by their relevance
to a security query.

## Objectives:
1. Determine if the given query describes an adversarial or attack behavior.
2. If it does, identify and rank the most relevant techniques and sub-techniques from the provided list.

## Instructions for Ranking:

1. Break Down the Query:

- Decompose the security query into distinct attack steps.

- Identify explicit and implied adversarial behaviors.

2. Match Techniques:

- Map each behavior to relevant techniques/sub-techniques.

- Consider multiple relevant techniques.

3. Provide Explanation:

- Explain the connection between the query and the matched techniques.

## Final Output Format:
After reasoning, output the final ranking as: [Technique A] > [Technique B] > [Technique C] > ...
No variations or extra formatting allowed.

## Given Techniques:
{Technique 1: Description}
{ Technique 2: Description}

{ Technique n: Description }

## Query:
Monero miner scripts are downloaded from TeamTNT’s server and piped to bash using an SSH session on the underlying
host as the root user by supplying the private key from /tmp/TeamTNT. Later, the private key /tmp/TeamTNT is removed.

## LLM Output

The query describes an attack involving the following key steps and techniques:

Initial Access: The attacker gains access to the host via SSH using a private key stored in /tmp/TeamTNT. This aligns
with T1552.004 (Unsecured Credentials: Private Keys) and T1021.004 (Remote Services: SSH).

Execution: The attacker downloads Monero miner scripts and pipes them to bash. This involves T1059.004 (Command
and Scripting Interpreter: Unix Shell).

Persistence: The attacker uses SSH with a private key, which could imply persistence via T1098.004 (Account
Manipulation: SSH Authorized Keys).

Resource Hijacking: The Monero miner script indicates T1588.001 (Obtain Capabilities: Malware) for downloading and
executing the miner.

Key Techniques Identified: T1552.004: Exploitation of private keys for SSH access.

T1021.004: Use of SSH for remote access.

T1059.004: Execution of scripts via Unix shell (bash).

T1098.004: Potential persistence via SSH authorized keys.

T1588.001: Downloading and executing Monero miner scripts (malware).

Ranking Explanation:

Passages [1], [2], [6], [7], [8], [40] are highly relevant as they directly address the techniques used in the query. Passages
(31, (51, [9], [101, [111, [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39] are less relevant as they describe techniques not directly involved
in the query.

Final Ranking:

T1552.004 > T1098.004 > T1021.004 > T1059.004 > T1588.001 > T1496 > T1563.001 > T1546.004 > T1611 >
T1140

Figure 6: Example re-ranker prompt and its corresponding output. Green colored IDs are the correct ones.
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Self-Relflection Prompt

Your task is to analyze a given text describing malware behavior, extract the associated MITRE ATT&CK
techniques to this text, explain their relevance to it.

#i# Context:

The MITRE ATT&CK framework is a globally-accessible knowledge base of adversary tactics and techniques
based on real-world observations. It’s used by cybersecurity professionals to better understand and defend against
cyber threats.

## Your Task:
Analyze the following text. Extract all the associated MITRE ATT&CK technique and provide a detailed
explanation of why each technique is relevant to the text.

#i# Instructions:

Follow these steps to provide your analysis:

1. <thinking>: Explain your thought process as you analyze the given cyber threat description. Identify key
actions, tools, or methods mentioned that could correspond to MITRE ATT&CK techniques in 30 words.

2. <reflection>: Reflect on your initial analysis. Consider if you’ve missed any potential techniques or if any of
your initial thoughts need revision. Think about the confidence level of your associations in 30 words.

3. <output>: Based on your thinking and reflection, output the final list of MITRE ATT&CK techniques as
technique IDs and their names. For example:

<output>

- T1221: Template Injection

- T1205.001: Traffic Signaling - Port Knocking

</output>

Ensure you use these exact tags (<thinking>, <reflection>, and <output>) in your response.

## Output Format:

<thinking>

Based on the given cyber threat description, I can identify several key actions and tools that correspond to MITRE
ATT&CK techniques:

1. [Insert relevant observations from the text]

2. [Continue with more observations]

These observations suggest the following potential MITRE ATT&CK techniques:
- [List potential techniques with brief explanations]
</thinking>

<reflection>

Upon reflection, I should consider the following:

1. Are there any subtle indicators in the text that I might have overlooked: [Your answer in 20 words or less for
question 1]

2. Have I considered the full context of the attack, including potential preliminary or subsequent steps not
explicitly mentioned? [Your answer in 20 words or less for question 2]

3. Are there any techniques I’ve identified that might not be fully supported by the given information? [Your
answer in 20 words or less for question 3] [Add any additional reflections or revisions to the initial analysis]
Confidence level: [State the confidence level in the identified techniques]

</reflection>

<output> [List the final list of the extracted MITRE ATT&CK techniques as technique IDs and their names.]
</output>

Figure 7: The employed prompt in self-reflection.
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