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Abstract

Large language models (LLMs) have demon-
strated exceptional capabilities across a wide
range of tasks, from text generation to com-
plex problem-solving. LLM APIs provide easy
access to these models by streamlining deploy-
ment and usage. Combining LLMs with com-
plementary strengths has been shown to yield
substantial performance gains over a mono-
lithic LLM. However, invoking a fixed set of
LLM APIs for each query incurs higher API
costs and increased inference latency. To ad-
dress these limitations, we propose SkyLLM,
a system composed of a set of estimators and
an API selector, which federates multiple LLM
APIs and dynamically assigns a non-empty sub-
set of these APIs to each query prior to infer-
ence under cost and latency budgets. The se-
lected subset consists of either a single LLM
or multiple LLMs. A single LLM efficiently
handles simple queries at low cost, whereas
multiple LLMs are employed for more com-
plex queries to overcome performance limita-
tions. We evaluate SkyLLM against individual
LLMs and representative ensemble LLM meth-
ods from the literature. SkyLLM achieves the
highest accuracy under a high budget. It can
also be cost-effective, matching the most ac-
curate individual LLM while cutting costs by
67.8%.

1 Introduction

Large language models (LLMs) have become the
dominant force in natural language processing
(NLP) in recent years. Their impressive capabili-
ties have spanned a wide range of applications e.g.,
question answering, code generation, text summa-
rization, and open-ended conversation. This swift
progression has been propelled by breakthroughs
in model frameworks, particularly the Transformer
framework (Vaswani et al., 2017), in addition to
enhancements in scaling up data and training in-
frastructure (Ong et al., 2024).

In many cases, the massive size of modern LLMs
makes local deployment both computationally and
financially prohibitive, especially as many state-
of-the-art models remain closed-source12. LLM
APIs provide a streamlined solution, enabling users
to access these powerful models via cloud-based
services. By paying a usage-based fee, users can
submit queries and receive responses without the
overhead of managing hardware or model weights,
thereby lowering the barriers to LLM adoption.

The diversity in data, architectures, and hyper-
parameters causes different LLMs to exhibit vary-
ing strengths and weaknesses across tasks (Jiang
et al., 2023). Consequently, ensembling multiple
LLMs with complementary advantages can help
produce higher-quality outputs. LLM ensemble can
be broadly categorized into three types: cascading,
routing, and fusion. LLM cascading sequentially
invokes increasingly powerful models until a satis-
factory response is obtained. LLM routing directs
each query to the most suitable LLM before infer-
ence, typically using a trained router. LLM fusion
integrates outputs from multiple models, during or
after inference.

Despite their potential advantages, each of these
ensemble approaches has inherent limitations. Cas-
cading and routing methods ultimately depend on
the final output of a single LLM, thereby constrain-
ing their accuracy to the performance of the best
model in the pool. Moreover, since models are
invoked sequentially, LLM cascading increases in-
ference time, which is a critical factor for user ex-
perience, particularly in real-time applications such
as chatbots and voice assistants. While previous
studies have shown that combining multiple LLMs
can significantly enhance accuracy compared to in-
dividual models (Tekin et al., 2024), fusion-based
methods generally invoke a fixed set of LLMs for

1https://openai.com
2https://www.anthropic.com/
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each query (Yu et al., 2024), resulting in higher
API costs and longer inference times.

To address these limitations, we propose a dy-
namic ensemble approach. Given a set of LLMs,
we dynamically assign a non-empty subset of these
models to each query, based on query-specific char-
acteristics such as subject and difficulty. This sub-
set consists of a single LLM or multiple LLMs. For
more complex queries, selecting multiple LLMs
can improve accuracy at the cost of increased
API expense and latency. Conversely, for sim-
pler queries, opting for a single, well-suited LLM
achieves cost efficiency and low latency. This flex-
ible strategy aims to balance performance gains
against the overhead of higher costs and longer
inference time.

However, the dynamic ensemble framework in-
troduces several challenges. First, the combinato-
rial nature of choosing subsets expands the search
space exponentially as the number of models in-
creases, especially when each query may require
a distinct subset. Second, because the subset must
be selected prior to inference, accurately predicting
its performance (e.g., cost, latency, accuracy) is
non-trivial. Moreover, we explicitly treat cost and
latency as constraints in the selection process to
achieve a balanced trade-off, which further compli-
cates the selection process.

In this paper, we introduce SkyLLM, a unified
system that dynamically assigns a non-empty sub-
set of federated LLM APIs to each query prior to
inference. SkyLLM is designed to maximize accu-
racy while adhering to cost and latency constraints.
To implement SkyLLM, we leverage a set of esti-
mators (cost, latency, and accuracy), derived from
an open dataset containing responses and metadata
(e.g., inference time and token count) from a di-
verse set of LLMs across a large collection of train-
ing queries, to assess the expected performance of
each subset. SkyLLM then formulates the selec-
tion task as a multi-dimensional group knapsack
problem. To reduce the exponential search space,
SkyLLM employs Pareto dominance pruning to
eliminate strictly inferior subsets and then applies
dynamic programming to determine the optimal
subset of federated LLM APIs for each query.

We evaluate SkyLLM against individual com-
ponent LLMs and representative LLM ensemble
methods from the literature. Under a high budget,
SkyLLM achieves the highest accuracy. Further-
more, it demonstrates cost-effectiveness, attaining
accuracy comparable to the most accurate individ-

ual LLM while reducing costs by 67.8%.
In summary, our contributions are as follows:

• We introduce the first system that dynamically
assigns a non-empty subset(either single LLM
or multiple LLMs) of federated LLM APIs
for each query, effectively balancing accuracy
improvements with reductions in both cost
and latency.

• SkyLLM leverages a set of estimators to as-
sess the performance of each subset and for-
mulates the selection problem as a multi-
dimensional group knapsack problem. It then
employs Pareto dominance pruning to reduce
the exponential search space and applies a dy-
namic programming solver to determine the
optimal subset for each query.

• Under a high budget, SkyLLM achieves
the highest accuracy compared to individ-
ual LLMs and other representative ensemble
methods. Additionally, it demonstrates cost-
effectiveness by matching the accuracy of the
most accurate individual LLM while reducing
costs by 67.8%.

2 Background

2.1 LLM as a Service
Large Language Model (LLM) API endpoints sim-
plify access to generative AI by abstracting the
complexities of model deployment and mainte-
nance. A single API can support a wide range of
tasks, including chat, summarization, and code gen-
eration. Typical interactions involve submitting a
prompt and receiving a model-generated response.

For proprietary models, such as those offered
by OpenAI, access is exclusively provided through
official APIs, ensuring compatibility with the lat-
est updates and provider policies. In contrast,
open-source models are accessible via third-party
providers such as Together AI3 and DeepInfra4,
which offer APIs that streamline model deploy-
ment and usage.

While API-based access eliminates the opera-
tional overhead of LLM deployment, it introduces
challenges related to API costs and inference la-
tency. SkyLLM addresses these challenges by dy-
namically selecting subsets of federated LLM APIs
tailored to cost and latency constraints, effectively
balancing accuracy with reduced overhead.

3https://www.together.ai
4https://deepinfra.com/
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2.2 LLM ensemble
As discussed in Introduction, LLM ensemble strate-
gies can be broadly grouped into three categories
(cascading, routing, and fusion). We now high-
light additional details—particularly for LLM fu-
sion—and compare them from three perspectives:
accuracy, latency, and cost.
Accuracy. While cascading and routing ulti-
mately rely on a single chosen model, fusion
integrates outputs from multiple LLMs, demon-
strating greater potential for overcoming accu-
racy limitations. Token-level fusion (during in-
ference) leverages log probability information at
each generation step to enhance performance (Yu
et al., 2024), while example-level fusion compares
and merges responses from multiple LLMs post-
inference (Jiang et al., 2023). Example-level fu-
sion operates at a coarse granularity and benefits
more from larger ensemble sizes (Li et al., 2024a),
whereas token-level fusion offers a fine-grained al-
ternative, achieving accuracy gains with a smaller
ensemble (Yu et al., 2024).
Latency. Cascading sequentially invokes multiple
models until a satisfactory response is found, poten-
tially increasing inference time for complex queries.
Routing introduces a small delay due to the routing
step (Lu et al., 2024a), while fusion is constrained
by the slowest model in parallel invocation.
Cost. Ensembling multiple LLMs generally raises
API usage costs. Fusion is the most expensive, as
it invokes multiple models for every query. In con-
trast, cascading and routing may only call more
powerful (and expensive) models as needed. Cas-
cading may invoke smaller models first and then
discard their unsatisfactory responses, resulting in
moderate costs. Routing is often the most cost-
effective, as it selects only the most suitable single
model per query.

SkyLLM balances cost, latency, and accuracy
by dynamically routing queries to one or multiple
models based on query complexity. When combin-
ing multiple LLMs, it can leverage log probability
information for fine-grained token-level fusion, re-
ducing both ensemble size and API calls.

3 System design for SkyLLM

3.1 System overview
Consider a set of M test queries, denoted as
Q = {q1, q2, . . . , qM}, and a set of N large
language models (LLMs), denoted as M =
{m1,m2, . . . ,mN}, accessible via APIs. The set
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Figure 1: System overview

of possible non-empty subsets s ⊆M for a given
query q is denoted as Sq, with its size given by Zq.
Initially, Zq = 2N − 1, for all q ∈ Q. The objec-
tive is to assign the most suitable subset s ∈ Sq to
each query prior to inference, maximizing accuracy
while adhering to cost and latency constraints.

We focus on tasks where correctness is explicitly
defined, such as multiple-choice questions (MCQs).
Figure 1 provides an overview of SkyLLM, which
consists of a set of estimators and an API selec-
tor. Given user-specified cost and latency budgets,
SkyLLM leverages estimators to predict the proper-
ties(cost, latency and accuracy) of each subset for a
given test query. Estimators are built using an open
dataset T containing responses and metadata (e.g.,
inference time and token count) from all LLMs in
M across a large set of training queries.

In API selector, we formulate this selection prob-
lem as a multi-dimensional group knapsack prob-
lem. To reduce the exponential search space, we
apply Pareto dominance pruning. Then we use a
dynamic programming solver to determine the op-
timal subset for each query. Finally, the selected
APIs are invoked to generate the response.

3.2 Estimator

SkyLLM implements three estimators: an accuracy
estimator, a cost estimator, and a latency estimator.
These estimators predict the performance of subsets
for every query, aiding the API selector in making
optimal assignments.
Accuracy estimator. The accuracy estimator pre-
dicts the accuracy of subsets for a given test query
by evaluating their performance on similar queries.
For a query q, we first retrieve I similar queries
from T using their embeddings. Specifically, we
compute the embedding vector eq with a pre-
trained model and measure similarity via L2 dis-
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tance. The top I closest queries are selected as
reference samples.

For multi-LLM subsets, responses are aggre-
gated using majority voting or probability-based
fusion. If APIs provide log probability values for
possible answers, we average these values and se-
lect the answer with the highest probability. Other-
wise, majority voting determines the final response.

The accuracy of each subset s ∈ Sq on the se-
lected I similar queries is computed and denoted
as asq ∈ [0, 1], representing the estimated accuracy
of subset s on query q.
Cost estimator. The cost estimator predicts the
API cost for each subset given a test query. In-
ference cost consists of two components: input
(prompt) cost and output cost, both determined by
token count and API pricing567.

The price per input and output token for m is de-
noted as pin

m and pout
m , respectively. The number of

input tokens, T in
q , is determined using the model’s

tokenizer, while the number of output tokens, T out
q ,

is either predefined or predicted via a multilayer
perceptron (MLP) based on the query embedding
and prompt length if it is not fixed.

The total inference cost for query q ∈ Q using
subset s ∈ Sq is given by:

csq =
∑

m∈s
(
pin
m · T in

q + pout
m · T out

q

)
(1)

Latency estimator. The latency estimator predicts
the inference time, defined as the duration from
API invocation to response reception for a given
model and test query. For a query q, the inference
latency of a subset s is determined by the maximum
inference time among all models in s, assuming
parallel API invocation. The estimated latency is
given by:

tsq = maxm∈s L(m, q) (2)

where L(m, q) ∈ R denotes the estimated latency
of LLM m on query q. This latency is predicted by
an MLP trained on dataset T , using query embed-
dings as well as the number of prompt and output
tokens as input features.

3.3 API selector

The API selector determines the optimal subset as-
signment for each query based on the estimated

5https://openai.com/api/pricing
6https://www.together.ai/pricing
7https://deepinfra.com/pricing

cost, latency, and accuracy. First, it formulates the
assignment problem as a multi-dimensional group
knapsack problem. Then, it employs Pareto dom-
inance pruning to reduce the exponential search
space and applies dynamic programming to solve
the problem. Finally, the selected APIs are invoked
to generate the response.
Formulation. The objective is to maximize ac-
curacy while keeping cost within Bc and latency
within Bt. We model this as a multi-dimensional
group knapsack problem, a variant of the classical
knapsack problem in which items are divided into
groups, and we can select at most one item from
each group under multiple resource constraints.

For M test queries, each query qi has a set of
non-empty subsets Sqi of size Zqi . Each query
forms a group, and each subset is treated as an item.
The value of an item is its estimated accuracy, sub-
ject to the cost and latency constraints. The optimal
subset selection for every query is formulated as:

max
x

M∑

i=1

Zqi∑

j=1

a
sj
qi xji (3)

s.t.
M∑

i=1

Zqi∑

j=1

c
sj
qi xji ≤ Bc (4)

M∑

i=1

Zqi∑

j=1

t
sj
qi xji ≤ Bt (5)

Zqi∑

j=1

xji ≤ 1 ∀i ∈ [M ] (6)

xji ∈ {0, 1} ∀i ∈ [M ], j ∈ [Zqi ] (7)

where [X] = {1, 2, . . . , X}. The vector x =
[x1, . . . ,xM] concatenates sub-vectors xi, each of
length Zqi . Here, xi = (x1i , . . . , x

Zqi
i ) ∈ {0, 1}Zqi

indicates the selected subset (if any) for query qi.
Constraints (4) and (5) enforce cost and latency
limits, respectively, while constraint (6) ensures
that at most one subset is chosen per query.
Pareto dominance pruning. During selection, the
2N − 1 possible subsets make exhaustive search
infeasible. To reduce the exponential search space,
we apply Pareto dominance pruning, discarding a
subset if another exists that is equal or superior
in all relevant metrics (e.g., accuracy, cost, and
latency) and strictly better in at least one.

To evaluate the efficiency of this approach, we
use data from the HELM project (Liang et al.,
2023), which queries multiple models on various
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datasets via API. This dataset includes model out-
puts, question-answer pairs, and metadata such as
inference time and token count. We apply the prun-
ing strategy to the MMLU dataset (Hendrycks et al.,
2021), significantly reducing the search space, as
shown in Table 1.

N
Average # of subsets per query
Before Pruning After Pruning

10 1,023 7
13 8,191 9
15 32,767 12

Table 1: Comparison of average number of subsets
(Zq) per query before and after pruning.

Algorithm. We solve the multi-dimensional group
knapsack problem via a dynamic programming
(DP) approach. Let dp[c][l] be the highest achiev-
able accuracy under cost c ≤ Bc and latency
l ≤ Bt. We initialize dp[c][l] to zero. For each
query qi, we enumerate each subset sj ∈ Sqi , up-
dating:

dp[c][l]← max
(
dp[c][l], dp[c− c

sj
qi ][l − t

sj
qi ] + a

sj
qi

)

whenever c ≥ c
sj
qi and l ≥ t

sj
qi . We record chosen

subsets in a backtracking table. After processing
all queries, we trace back from (Bc, Bt) to recover
each query’s selected subset, yielding x1, . . . ,xM.
Complexity analysis. The algorithm runs in
O(MBcBtZm) time, where Zm = maxi Zqi is
the maximum number of subsets across all queries.
This complexity arises from iterating over each sub-
set for every cost and latency state for every query.
The space complexity is O(MBcBt), primarily
due to the backtracking table. If the estimators
are perfectly accurate, this approach guarantees an
optimal solution within the specified budgets.

4 Implementation

We implement the SkyLLM system in Python. This
section details the implementation of each com-
ponent, including the LLMs, estimators, and API
selector.
LLMs. We adopt LLMs from OpenAI (GPT-
4o, GPT-4o-mini, and GPT-3.5-Turbo) and Qwen
(Qwen-max, Qwen-plus, and Qwen-turbo). Both
OpenAI and Qwen APIs return log probabilities for
a limited number of top-ranked tokens at each gen-
erated token position: OpenAI provides up to 20
tokens, while Qwen provides up to 5. We average

Algorithm 1: Dynamic programming for
subset selection

Input :Cost budget Bc, latency budget Bt;
queries Q; subset sets [Sqi ]i∈[M ]

Output :x = [x1, . . . ,xM]
1 dp← 0(Bc+1)×(Bt+1);
2 bt← −1M×(Bc+1)×(Bt+1);
3 for i← 1 to M do
4 Retrieve({csjqi , t

sj
qi , a

sj
qi } for all

sj ∈ Sqi);
5 prev_dp← dp;
6 for sj ∈ Sqi do
7 for c← c

sj
qi to Bc do

8 for l← t
sj
qi to Bt do

9 val← prev_dp[c− c
sj
qi ][l −

t
sj
qi ] + a

sj
qi ;

10 if val > dp[c][l] then
11 dp[c][l]← val;
12 bt[i][c][l]← j;

13 xi ← 0Zqi for i = 1, . . . ,M ;
14 (c, l)← (Bc, Bt);
15 for i←M to 1 do
16 j ← bt[i][c][l];
17 if j ̸= −1 then
18 xji ← 1;
19 c← c− c

sj
qi ;

20 l← l − t
sj
qi ;

21 return x = [x1, . . . ,xM];

these probabilities across selected models to obtain
a fused distribution over possible answers and se-
lect the answer with the highest average probability.
If the desired answer is not among these tokens, its
probability is set to 0.
Estimators. For the accuracy estimator, we em-
ploy the sentence transformer all-MiniLM-L6-v2
from Hugging Face8 to map each query to a 384-
dimensional dense vector. To efficiently search
for similar queries in dataset T , we use Faiss9 to
retrieve I similar queries for each query.

In the cost estimator, model-specific API pricing
is obtained from respective providers. The number
of prompt tokens is estimated using Tiktoken10. We
apply SkyLLM to the MMLU dataset (Hendrycks
et al., 2021). Since MMLU consists of multiple-

8https://huggingface.co
9https://github.com/facebookresearch/faiss

10https://github.com/openai/tiktoken
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choice questions, the number of output tokens is
fixed at one.

In the latency estimator, inference time is pre-
dicted using a multilayer perceptron (MLP) regres-
sor consisting of a two-layer feedforward neural
network with 50 neurons per hidden layer. The
model takes the model ID, query embedding, num-
ber of prompt tokens, and number of output tokens
as input features.

After evaluating our estimators on the MMLU
dataset, we observe that the accuracy estimator
achieves a cross-entropy loss of 0.44. The average
cost per query is $7.3× 10−4. For cost estimation,
the mean squared error (MSE) is $3.1 × 10−10,
indicating highly precise cost predictions. Mean-
while, since the maximum number of output tokens
is restricted to one, the overall inference time re-
mains relatively short, with a mean inference time
of 0.54 s. Consequently, even modest network fluc-
tuations result in a comparatively large estimation
error, leading to an MSE of 0.16 s for the latency
estimator.
API selector. The API selector first enumerates all
2N − 1 possible subsets for each query, estimates
their cost, latency, and accuracy, and applies Pareto
dominance pruning to discard inferior subsets. Af-
ter pruning, we solve the multi-dimensional group
knapsack problem via dynamic programming (DP).
Since DP uses cost and latency as discrete indices,
we convert floating-point cost and latency values to
integers by multiplying by enlargement factors (αc

and αt) and applying the ceiling function. Larger
αc and αt values provide finer granularity but in-
crease DP’s time and space complexity, as the bud-
gets are also enlarged. To mitigate excessive mem-
ory usage, we employ LZ411, a high-speed lossless
compression algorithm that reduces memory con-
sumption during runtime. Once DP completes, we
retrieve the chosen subsets, invoke APIs, and en-
semble outputs for each query, ultimately returning
the final answer.

5 Experiment

5.1 Evaluation setup
Dataset. We evaluate SkyLLM on the MMLU
dataset (Hendrycks et al., 2021), which consists of
14,042 questions spanning 57 subjects. To main-
tain the original query distribution, we randomly
partition the dataset into training and test sets at an
8:2 ratio based on subjects.

11https://lz4.org/

Benchmarks. To evaluate the efficiency of our
system, we compare it not only against individ-
ual component LLMs but also with established
ensemble methods from the literature. Specif-
ically, we consider FrugalGPT (Chen et al.,
2023), RouteLLM (Ong et al., 2024), and LLM-
TOPLA (Tekin et al., 2024), which are representa-
tive approaches for LLM cascading, routing, and
fusion, respectively.

FrugalGPT employs a router to select compo-
nent LLMs in the cascade and utilizes a scoring
function to assess output reliability. If the output
meets a predefined reliability threshold, it is ac-
cepted; otherwise, the next model in the cascade
is queried. RouteLLM dynamically routes queries
between a strong and a weak LLM, balancing cost
and response quality based on query complexity.
In our setup, we designate Qwen-max as the strong
LLM and Qwen-turbo as the weak LLM, based on
their respective cost and accuracy. LLM-TOPLA
integrates responses from multiple LLMs at the to-
ken level, selecting and combining the most diverse
and complementary outputs to generate an optimal
response. In our configuration, LLM-TOPLA en-
sembles output from all individual LLMs.
Metrics. We evaluate our system based on cost
(C), latency (L), and mean accuracy (MA). Specifi-
cally, cost refers to the total API cost for processing
all test queries, while latency represents the total
inference time. To assess the system’s ability to
handle challenging queries, we introduce Hardness-
Weighted Accuracy (HA), defined as:

HA =

∑
h h ·Acch∑

h h
× 100% (8)

where h ∈ N denotes query hardness, defined as
the number of individual LLMs that fail to answer
the query correctly, and Acch is the mean accuracy
of the ensemble system on queries of hardness h.
Although the number of queries varies across hard-
ness levels, we do not incorporate query counts into
calculation. Instead, we weigh by hardness directly
to emphasize performance on difficult queries.
Hyperparameter settings. In the accuracy esti-
mator, the parameter I is set to one-tenth of the
training set size. The latency estimator is trained
using the Adam optimizer for up to 1,000 itera-
tions. Additionally, the enlargement factors αc and
αt are set to 10,000 and 10, respectively, in the API
selector to balance granularity and computational
complexity.
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5.2 Overall performance

C($) L(s) MA(%) HA(%)
qwen-max 5.84 1399 85.0 40.1
qwen-plus 0.23 1285 83.8 36.9
qwen-turbo 0.09 1363 76.0 24.1
gpt-4o 4.90 1549 82.2 36.6
gpt-4o-mini 0.29 1771 58.0 7.7
gpt-3.5-turbo 0.98 1742 69.9 21.2
FrugalGPT 6.78 2001 86.5 44.5
RouteLLM 3.18 1370 79.6 29.5
TOPLA 12.33 1771 86.3 39.9
SkyLLM-H 5.37 1601 87.1 46.0
SkyLLM-L 1.88 1559 84.5 40.6

Table 2: Comparison with individual LLMs and
representative ensemble methods in LLM cascad-
ing, routing and fusion

Table 2 compares cost, latency, mean accuracy,
and hardness-weighted accuracy across SkyLLM,
individual LLMs, and other ensemble methods.
SkyLLM-H represents the high-performance ver-
sion with a larger cost budget, while SkyLLM-L is
the cost-effective version with a lower budget.

Among individual LLMs, Qwen-max achieves
the highest accuracy. Without exceeding its cost,
SkyLLM-H attains the highest mean and hardness-
weighted accuracy, outperforming both individual
LLMs and representative ensemble methods. This
demonstrates its strong overall performance and
effectiveness in handling complex queries. Mean-
while, SkyLLM-L achieves accuracy comparable
to Qwen-max while reducing costs by 67.8%. Ad-
ditionally, SkyLLM-L offers cost advantages over
other ensemble methods.

However, SkyLLM provides limited latency ben-
efits compared to individual LLMs. A stricter la-
tency budget reduces its accuracy, as shown in
the sensitivity analysis. This is likely because, al-
though LLMs are invoked in parallel, the slowest
model determines overall efficiency. Nonetheless,
SkyLLM retains certain advantages over other en-
semble methods, possibly due to its ability to as-
sign simple queries to individual LLMs, thereby
reducing inference time.

5.3 Sensitivity analysis
Impact of parameter I . Parameter I represents
the number of similar queries whose accuracy is
used to estimate the accuracy of subsets for a given
test query. To account for variations in training set

size, we define RI as the ratio of I to the training
set size. As shown in Figure 2(a), mean accuracy
initially increases with RI . This trend occurs be-
cause larger values of I enable a more accurate
and unbiased evaluation of subsets by leveraging a
broader set of similar queries. However, when RI

exceeds 0.1, accuracy begins to decline, likely due
to the inclusion of unrelated queries as I increases,
given that MMLU spans a wide range of topics.

In contrast, hardness-weighted accuracy contin-
ues to improve. This may be attributed to the fact
that subsets with higher overall performance tend to
possess stronger problem-solving abilities, making
them more effective in handling difficult queries.
Impact of cost budget Bc. Figure 2(b) illus-
trates SkyLLM’s performance as the cost budget
increases, ranging from the minimum to the maxi-
mum cost of individual LLMs. For each budget, we
average results over four latency budgets, evenly
spaced between their minimum and maximum val-
ues. We observe that SkyLLM converges quickly,
with minimal gains in both mean accuracy and
hardness-weighted accuracy beyond a moderate
cost budget. A key factor is the strong performance
of Qwen-plus, which handles most queries at low
cost. Further accuracy improvements are limited,
as the remaining queries are more difficult and re-
quire more powerful (and expensive) LLM combi-
nations.
Impact of latency budget Bt. Figure 2(c) shows
a steady increase in both mean accuracy and
hardness-weighted accuracy as the latency budget
expands from minimum to maximum. For each la-
tency budget, we similarly average results over four
different cost budgets. This upward trend suggests
that allowing more time for inference particularly
benefits accuracy improvements. While models
like Qwen-plus achieve comparable accuracy at
a fraction of the cost (e.g., tens of times lower),
their latency advantage is less pronounced. Conse-
quently, under strict latency constraints, these mod-
els cannot be fully leveraged, preventing SkyLLM
from converging efficiently at low latency budgets.

6 Related Work

LLM cascading. LLM cascading sequentially in-
vokes increasingly large and powerful LLMs until a
satisfactory response is obtained (Chen et al., 2023;
Yue et al., 2024; Aggarwal et al., 2024; Wang et al.,
2023; Chen et al., 2024). Yue et al. (Yue et al.,
2024) propose using the consistency of a weaker
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Figure 2: Sensitivity analysis

LLM’s answer as an indicator of question difficulty
and whether to query a stronger LLM. Similarly,
Aggarwal et al. (Aggarwal et al., 2024) employ self-
verification in smaller models to determine whether
to route queries to a larger model. Despite its po-
tential benefits, cascading significantly increases
inference time due to sequential invocation, and
its accuracy remains constrained by the individual
models in the chain. In contrast, SkyLLM intro-
duces lower latency through its routing step and
parallel invocation while achieving higher accuracy
by dynamically combining multiple LLMs.

LLM routing. LLM routing directs each query to
the most suitable model before inference (Srivatsa
et al., 2024; Shnitzer et al., 2023; Lu et al., 2023,
2024b; Šakota et al., 2024; Ong et al., 2024). Un-
like cascading, which sequentially invokes models,
routing employs a pre-inference decision mecha-
nism. Shnitzer et al. (Shnitzer et al., 2023) pro-
pose a routing algorithm that leverages benchmark
datasets to train binary classifiers, enabling the se-
lection of the most suitable LLM for a given task
by learning model strengths and weaknesses from
past evaluations. Sakota et al. (Šakota et al., 2024)
introduce the FORC framework, which assigns in-
put queries to the most appropriate language model
by predicting performance via a meta-model and
estimating cost through LLM API pricing, optimiz-
ing the trade-off between cost and accuracy. Un-
like these approaches, our system flexibly routes
queries to either a single LLM or a combination
of LLMs, demonstrating greater potential for han-
dling complex queries.

LLM fusion. LLM fusion combines the outputs
of multiple LLMs, either during or after inference,
to generate a more robust final response. Fusion
during inference applies ensembling techniques at
each step of the decoding process (Yu et al., 2024;
Li et al., 2024b; Mavromatis et al., 2024; Xu et al.,

2024; Huang et al., 2024; Hoang et al., 2024). Yu
et al. (Yu et al., 2024) treat token generation as
a classification task, enabling token-level ensem-
bling and mitigating the error snowball effect dur-
ing inference. In fusion after inference, models
generate responses independently, which are then
aggregated into a final output (Jiang et al., 2023;
Wang et al., 2024; Chen et al., 2025; Schoenegger
et al., 2024). Jiang et al. (Jiang et al., 2023) ensem-
ble multiple LLMs by ranking subset outputs using
a pairwise comparison model and generating a final
response through generative fusion, leveraging the
strengths of top-ranked outputs.

While model fusion enhances accuracy, invoking
a fixed set of LLMs incurs high API costs and infer-
ence time. In contrast, SkyLLM offers greater flex-
ibility by assigning a single LLM to easy queries
and multiple LLMs to difficult queries, achieving
high accuracy while maintaining relatively low cost
and inference latency.

7 Conclusion

In this paper, we investigate the query handling
problem under cost and latency constraints. We
propose SkyLLM, a system composed of a set of
estimators and an API selector, which federates
multiple LLM APIs and dynamically assigns a non-
empty subset of these APIs to each query prior to
inference. The selected subset consists of either a
single LLM or multiple LLMs. A single LLM effi-
ciently handles simple queries at low cost, whereas
multiple LLMs are employed for more complex
queries to overcome performance limitations. We
evaluate SkyLLM against individual component
LLMs and representative LLM ensemble methods
from the literature. SkyLLM achieves the highest
accuracy under a high budget. It can also be cost-
effective, matching the most accurate individual
LLM while cutting costs by 67.8%.
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8 Limitations

When combining multiple LLMs, we utilize log
probability information. However, many APIs do
not provide token log probability data for token-
level fusion, particularly third-party providers such
as TogetherAI and DeepInfra. As a result, we must
employ majority voting to combine these models,
which typically benefits from a larger ensemble
size but may significantly increase API costs. A
potential solution is to expand the model pool to
include more diverse and cost-effective LLMs, a
strategy demonstrated to be effective through simu-
lations using data from the HELM project (Liang
et al., 2023).
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