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Abstract

Recent advances in handling long sequences
have facilitated the exploration of long-context
in-context learning (ICL). While much of the
existing research emphasizes performance im-
provements driven by additional in-context ex-
amples, the influence on the trustworthiness
of generated responses remains underexplored.
This paper addresses this gap by investigating
how increased examples influence predictive
uncertainty—an essential aspect in trustwor-
thiness. We begin by systematically quantify-
ing the uncertainty of ICL with varying shot
counts, analyzing the impact of example quan-
tity. Through uncertainty decomposition, we
introduce a novel perspective on performance
enhancement, with a focus on epistemic uncer-
tainty (EU). Our results reveal that additional
examples reduce total uncertainty in both sim-
ple and complex tasks by injecting task-specific
knowledge, thereby diminishing EU and en-
hancing performance. For complex tasks, these
advantages emerge only after addressing the
increased noise and uncertainty associated with
longer inputs. Finally, we explore the evolution
of internal confidence across layers, unveiling
the mechanisms driving the reduction in uncer-
tainty.

1 Introduction

In-context learning has emerged as a pivotal
paradigm for modern large language models
(LLMs) in addressing real-world challenges
(Brown et al., 2020; Dong et al., 2024). By pre-
senting a few learning examples through carefully
crafted prompts, LLMs achieve remarkable perfor-
mance without requiring weight updates. The latest
techniques of equipping LLMs with long-context
capabilities have made strides (Jin et al., 2024), in-
cluding continued fine-tuning(Rozière et al., 2024),
position extrapolation (Su et al., 2024) and innova-
tive architectures (Peng et al., 2023; Gu and Dao,
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Figure 1: Humans tend to gain task-specific knowledge
and confidence as they are exposed to more examples.
This raises a natural question: can additional examples
similarly reduce uncertainty in LLMs?

2024), open new avenues for areas previously con-
strained by context length.

One such area is long-context ICL, also known
as many-shot ICL, which involves feeding LLMs
with hundreds or even thousands of input-output
pairs. This regime of ICL allows LLMs to learn
from large quantities of data once and could be
deemed as a comparative alternative to fine-tuning
methods. Despite its potential, the properties of
many-shot ICL remain largely unexplored. While
several studies have initiated preliminary investi-
gations in this area, which mainly focus on perfor-
mance gains from extra examples (Agarwal et al.,
2024; Jiang et al., 2024), critical aspects such as
trustworthiness and reliability of generations by
LLMs (Wang et al., 2024) remain unexamined. Sys-
tematic investigation of these aspects is essential
for advancing our understanding of long-context
ICL and paves the way for its wider adoption in
high-stake applications.

To fill this blank, we quantitatively examine the
impact of increasing scales of in-context examples
on LLMs’ confidence through faithful uncertainty
quantification (UQ) approaches. By incorporat-
ing model parameters, configurations, and various
demonstration sets, we approximate the predictive
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distribution in the output space. Then we compute
entropy to measure total uncertainty (TU). Building
on the framework proposed by (Ling et al., 2024),
we employ a Bayesian framework to disentangle
two core components from TU for many-shot ICL:
epistemic uncertainty (EU) and aleatoric uncer-
tainty (AU). EU arises from insufficient evidence or
knowledge during model training, while AU stems
from the inherent randomness and variability of the
data (He et al., 2023) in Fig. 2. Our analysis re-
veals that the reduction in LLMs’ uncertainty with
more examples is primarily driven by a main de-
crease in EU. These examples enrich task-specific
knowledge, thereby lowering EU, which in turn
reduces TU and enhances performance. Further-
more, we demonstrate that the performance gains
are attributed to increased informational content
rather than extended context length. To explore
the mechanisms behind reduced uncertainty, we
project the residuals from all model layers into the
vocabulary space, visualizing the evolution of inter-
nal confidence. The results reveal that long-context
ICL enables LLMs to concentrate more logit mass
on the correct answer and amplify the disparity
between the correct response and distractors, effec-
tively reducing uncertainty in predictions.

This study represents one of the earliest efforts
to examine long-context ICL through the lens of
uncertainty. The core research questions addressed
are as follows:

• RQ1: Could more in-context examples mitigate
uncertainty for LLMs? (§ 4.2)

• RQ2: Where do performance gains stem from,
from the perspective of uncertainty decomposi-
tion? (§ 4.3)

• RQ3: What mechanisms underlie uncertainty
reduction? (§ 5.2)

2 Related work

Long-context ICL The significant advancements
in equipping LLMs with long context capabili-
ties have expanded the potential for research in
previously constrained areas, such as repository-
level code understanding and multi-document QA.
For ICL, an important emergent ability for LLMs
(Brown et al., 2020), the extrapolation of context
length enables the investigation into its perfor-
mance limits and learning dynamics as the number
of demonstrations scales.

Several studies have initiated preliminary inves-
tigations in this area. Agarwal et al. (2024), for

instance, demonstrates notable performance gains
with many-shot prompting across various gener-
ative and discriminative tasks using Gemini 1.5
Pro (Team et al., 2024). In parallel, Bertsch et al.
(2024) offers valuable insights into the properties
of many-shot ICL, particularly examining the influ-
ence of example retrieval and demonstration order.
On a more optimistic note, Jiang et al. (2024) con-
cludes that many-shot ICL can facilitate efficient
adaptation of multimodal foundation models to new
applications and domains. However, the benefits
of long-context ICL are not universally positive.
Li et al. (2024) argues that long-context models
encounter difficulties with extreme-label classifica-
tion tasks, especially when large label spaces are
involved.

Uncertainty Quantification UQ has been exten-
sively studied in traditional machine learning (Lak-
shminarayanan et al., 2017; Gawlikowski et al.,
2022; Kong et al., 2023), which predominantly
concentrates on estimating models’ confidence and
uncertainty in its prediction, called total uncer-
tainty. Total uncertainty can be decomposed into
two key components: epistemic (model) uncer-
tainty and aleatoric (data) uncertainty (Hou et al.,
2024; Valdenegro-Toro and Mori, 2022). The ad-
vent of LLMs has introduced new challenges in
quantifying uncertainty, particularly due to the se-
quential and context-dependent nature of genera-
tive processes. Recent advances in UQ research
can be categorized into two main approaches:
black-box and white-box methods. Black-box UQ
quantifies uncertainty by measuring the agreement
across multiple generation samples (Zhang et al.,
2024a), whereas white-box approaches assess in-
ternal model states or logits to capture intrinsic
uncertainty (Liu et al., 2024; Bakman et al., 2024).

3 Uncertainty Quantification Framework
for Long-context ICL

3.1 Formulation of ICL

Consider an LM M and a query x, where M
generates a response ŷ by maximizing the joint
probability PΘ(ŷ | x) =

∏
i≥1 PΘ(ŷi | ŷ<i,x).

In the ICL regime, M would condition its out-
put on a constructed prompt Ω, which typically
includes an optional task-specific instruction I, a
series of N input-output demonstrations ("shots")
z1:N={(xi,yi)}Ni=1, and a test query xN+1. Con-
sequently, the generation process of ICL can be
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formalized as ŷ := PΘ(ŷ | xN+1, z1:N , I), en-
abling M to address diverse complex tasks (Gatt
and Krahmer, 2018).

Aleatoric 
uncertainty

Problem: Where would you put 
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Options: 
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B: birthday cake 
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Answer: A
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Figure 2: The sources of AU and EU in many-shot ICL.
AU comes from the prompt Ω e.g., vast examples and
the process of demonstration selection. EU originates
from the model’s end, encompassing the generation and
decoding processes.

3.2 Faithful Uncertainty Quantification

Predictive Distribution To quantify uncertainty
stemming from both the demonstration sets z1:N ,
and the model parameters or configurations Θ,
we derive the predictive distribution by sampling
generations across various configurations Θ ∼
q(Θ) and demonstration sets z1:N ∼ Z. This
work focuses on classification and multiple-choice
question-answering (MCQA) tasks. The selection
of task types is discussed in Appendix B.

The advantage of UQ in these tasks lies in the cat-
egorical nature of their outputs: each numerical or
symbolic label y ∈ Y binds a predefined category
or candidate answer. Thus, the probability of y, de-
noted as Py, is derived from the model’s predicted
logits and acts as a proxy for its confidence in their
responses. Assume that for each demonstration set,
we sample m decoded generations and repeat this
process across L distinct sets zL1:N . This yields a
probability set of size L × m, capturing the un-
certainty distribution over both demonstration sets
and model configurations. Unlike classification or
MCQA, where uncertainty can be assessed through
well-defined probability distributions over discrete
outputs, open-ended tasks involve variable-length
outputs and lack clear ground truth, with no prin-
cipled method existed for reliable UQ. Therefore,
we hope we could probe the uncertain property of
long-context ICL systems through MCQA tasks to
provide a preliminary invertigation.

Entropy. By aggregating the probabilities from
m decoded generations for each demonstration set
into a distribution over the output space, we obtain

L× |Y| probability matrix AL×|Y|, from which we
compute the entropy as follows:

TU=−H


σ



[

L∑

l=1

P(y | x, zl1:N )

]

y∈|Y|






where σ is a normalization function that ensures
the sum of probabilities equals one, and H =∑

i p(x)log(p(x)). Some studies indicate that log-
its may be uncalibrated (Liu et al., 2024; Agarwal
et al., 2024). Aggregating the probability distri-
butions from all decoded sequences can also help
mitigate the errors and inaccuracies arising from
uncalibrated logits, leading to a more reliable and
robust output distribution.

3.3 Uncertainty Disentanglement
According to (Ling et al., 2024), from the Bayesian
view, ICL maps demonstrations z1:N into a pre-
existing latent concept β, which defines task-
specific knowledge and enables LLMs to tackle
a new in-domain task xN+1. The predictive distri-
bution of ICL is formulated as follows:

p(y|z1:N ) :=

∫
p(y|xN+1, z1:N ,Θ, β)

· p(β|z1:N )q(Θ) dβ dΘ

If Θ is specific, yielding p(y|z1:N ,Θ) =∫
p(y|z1:N , β,Θ)p(β|z1:N )dβ with an associated

entropy H(y|z1:T , β,Θ). The expected value of
this entropy under different demonstration sets
can be expressed as Eβ [H(yT |x1:T , β,Θ)], which
serves as a metric to quantify the EU. AU is esti-
mated as mutual information between y and the
latent concept β as I(y, β|Θ), which is the differ-
ence between TU and EU as follows:

I(y, β|Θ) =

H(y|z1:N ,Θ)− Eβ[H(y|z1:N , β,Θ)]

The latent concept β distribution could be ob-
tained by sampling from different demonstrations.
Beam search effectively approximates the posterior
of Θ, which draws hypotheses from the most prob-
able regions in the hypotheses space. Utilizing the
probability matrix AL×m obtained in Sec. 3.2, TU,
EU and AU can be approximated as follows:

TU = H(σ(
∑

[Aj,:]))

EU =
1

L
H(σ(Aj,:))

AU = H(σ(
∑

[Aj,:]))−
1

L
H(σ(Aj,:))
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Problem: Simon brought his computer to up 
the stairs, through his door, and set it up by 
the sofa.  Where did he take the computer?
Options:
A: classroom
B: to park
C: apartment
D: school
E: demonstration
Answer: C

Problem: Simon brought his computer to up 
the stairs, through his door, and set it up by 
the sofa.  Where did he take the computer?
Options:
A: classroom
B: to park
C: demonstration
D: school
E: apartment
Answer:

…

1.   “D\n\n\n Select the correct answer for the following 
commonsense question from five choices.” P(E)=0.92
2.    “D\n\n\n Select the correct answer for the following 
commonsense question from five choices.” P(D)=0.61
3.    “E\n\n\n  Select the correct answer for the following 
commonsense question from five choices.” P(E)=0.98

10.  “E\n\n\n Select the correct answer for the following 
commonsense question from four choices.” P(E)=0.85

Instruction: Answer the following question:

Modeling 𝑼𝑼(𝒙𝒙)Decoded Sequences

Long-context
LLMs

Beam 
Search

…

…

1. “E\n\n\n Select the correct answer for the following 
commonsense question from five choices.” P(E)=0.72
2.  “D\n\n\n Select the correct answer for the following 
commonsense question from five choices.” P(D)=0.65
3.  “E\n\n\n  Select the correct answer for the following 
commonsense question from five choices.” P(E)=0.87

10.”E\n\n\n Select the correct answer for the following 
commonsense question from four choices.” P(E)=0.94

…
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output A B C D E

𝐙𝐙𝟏𝟏:𝐍𝐍
𝟏𝟏 0.00 0.00 0.00 0.99 5.48

𝐙𝐙𝟏𝟏:𝐍𝐍
𝟐𝟐 0.00 0.00 0.00 0.97 5.98

𝐙𝐙𝟏𝟏:𝐍𝐍
𝟑𝟑 0.00 0.00 0.00 0.00 6.42

𝐙𝐙𝟏𝟏:𝐍𝐍
𝟒𝟒 0.00 0.00 0.00 0.00 6.19

𝐙𝐙𝟏𝟏:𝐍𝐍
𝟓𝟓 0.00 0.00 0.00 0.00 7.32

𝐙𝐙𝟏𝟏:𝐍𝐍
𝟔𝟔 0.00 0.00 0.00 0.98 5.09

EU
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Figure 3: A workflow for uncertainty quantification and decomposition under many-shot ICL settings, involves
the following components: a LLM M supporting long context windows, demonstration set selection, generation
sampling, and the UQ modules detailed in Sec. 3.2 and 3.3.

Model Size Strategy Support

Llama-3.1-8B 8B Fine-tuning 128K
Mistral-7B-v0.2 7B NTK-Aware

Interpolation
32K

Qwen1.5-7B 7B Fine-tuning 32K

Table 1: Long-Context LLMs Overview

4 Experiments

4.1 Experimental Settings

Models. We evaluate three widely used base mod-
els prior to instruction-tuning (Wei et al., 2022a):
Llama-3.1-8B (Touvron et al., 2023), Mistral-7B-
v0.2 (Jiang et al., 2023), and Qwen1.5-7B (Bai
et al., 2023). The supported maximum context
length, along with their respective strategies for
long-context training, are summarized in Table 1.
Datasets and tasks. We define two modes for
classification tasks and MCQA: easy and hard. The
hard mode consists of three increasingly complex
logical deduction tasks, including determining the
order of a sequence of objects ranging from three
to seven, from a suite of challenging algorithmic
reasoning tasks known as BIG-Bench Hard (BBH)
(Suzgun et al., 2023). In contrast, the easy mode
encompasses traditional natural language under-
standing (NLU) tasks such as AGNews (Zhang
et al., 2015) and SST2 (Socher et al., 2013), along
with the commonsense reasoning task, Common-
senseQA (Talmor et al., 2019).

Long-context ICL settings. To investigate how
uncertainty evolves with increasing exposure to
examples, we apply UQ and uncertainty decom-
position methods across different k-shot ICL. For
demonstration selection, we randomly sample k
shots from the training set for each test example.

In all tasks, we employ beam search to generate
10 candidate outputs and set the temperature pa-
rameter as 0.7. For decomposing TU, we iterate
six different demonstration sets to disentangle EU
and AU. All open-source models are sourced from
Hugging Face1 and experimented on eight 80GB
NVIDIA RTX A100 GPUs.

4.2 RQ1: Could more in-context examples
mitigate uncertainty for LLMs?

Quality of Uncertainty Measures In the context
of UQ, a key consideration is its ability to reflect the
correctness and reliability of LLM outputs. High
uncertainty most likely leads to incorrect predic-
tions while low uncertainty indicates a higher likeli-
hood of correct responses. To this end, we examine
how the quality of uncertainty measures varies from
few-shot to long-context ICL settings. Following
prior works (Kuhn et al., 2023; Lin et al., 2024), we
adopt Exact match as the metric for correctness and
use uncertainty estimates to predict the correctness
of response. We then compute AUROC 2 to evalu-
ate whether the UQ measures employed are good
indicators. The AUROC and accuracy results for
Llama-3.1-8B are presented in Tab.8. As the num-
ber of demonstrations increases, AUROC values
remain high with minimal fluctuations, suggesting
that the UQ measures serve as high-quality indica-
tors and generalize effectively to long-context ICL,
which reinforces the validity of our experimental
results and the conclusions drawn.

Average View Overall, many-shot ICL effec-
tively reduces LLMs’ uncertainty across models
and datasets. As shown in Figs. 4 and 5, the results
indicate a simultaneous rise in accuracy and con-

1Model weights are loaded at float16 precision.
2the Area Under the Receiver Operating Characteristic
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Figure 4: The average TU under k-shot ICL with error bands for three runs.
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Figure 5: The average accuracy under k-shot ICL with error bands for three runs.

fidence as more in-context examples are provided,
highlighting the correlation between improved con-
fidence and performance gains for LLMs.

For *easy mode*, the inclusion of initial exam-
ples rapidly drives predictive entropy to a relatively
low-uncertainty state, with further increases in ex-
amples yielding only marginal reductions in en-
tropy (see Fig. 6 for a detailed view). In contrast,
*hard mode* exhibits a distinct pattern. Predic-
tive entropy remains higher in hard mode com-
pared to easy mode due to the intrinsic complex-
ity of the tasks, particularly those involving log-
ical deduction with increasing object complexity
(TULD3 < TULD5 < TULD7). Here, adding ini-
tial examples has minimal impact on entropy reduc-
tion until the number exceeds several hundred, at
which point substantial performance gains emerge.

When demonstrations are incorporated, both
Llama-3.1-8B and Mistral-7B-v0.2 exhibit consis-
tent improvements in performance (↑) and reduc-
tions in uncertainty (↓). In contrast, Qwen1.5-7B
demonstrates pronounced variability on datasets
under hard mode, where fewer-shot ICL (e.g., 10-
shot) achieves levels of confidence and accuracy
comparable to certain many-shot settings (e.g., 240-
shot). We term this phenomenon the "ICL sink",
drawing analogies to sink patterns observed in
attention mechanisms (Xiao et al., 2024). No-
tably, for Mistral models, even at the context limit
in the 240-shot ICL setting on the LD7 dataset,
Mistral sustains robust instruction-following and
achieves performance comparable to Llama-3.1-
8B, despite the latter’s fourfold context-length ca-
pacity. This underscores the architectural strengths
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Figure 6: TU distribution of 2000 examples under cer-
tain k-shot ICL on AG News and SST2 datasets for
Mistral-7B-v0.2.
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Figure 7: EU of Llama-3.1-8B on AG News and log-
ical_deduction_five_objects datasets for distant exam-
ples vs. repeating 4/10 examples N times.

of Mistral, which leverages a sparse Mixture of
Experts (MoEs) (Shazeer et al., 2017) and sliding
window attention. Thus, the influence of additional
in-context examples on uncertainty fundamentally
depends on the intrinsic long-context understand-
ing capabilities.

Micro View An increasing number of examples
effectively mitigates uncertainty for most questions.
Tables 2, 11, and 12 detail the percentage of ques-
tions exhibiting decreased or increased uncertainty
under k-shot ICL. Despite 8.65% of cases experi-
encing heightened uncertainty with longer inputs
in 128-shot learning, this effect minimally impacts
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overall model performance, as reflected by the
small absolute values of ∆Acc. Crucially, the tran-
sition from few-shot (e.g., 4-shot) to many-shot ICL
demonstrates a marked reduction in uncertainty for
a larger proportion of questions, driving consis-
tent performance improvements. These findings
suggest that enhanced performance stems from in-
creased confidence in the majority of questions.

Choices of k For practical applications, we rec-
ommend opting for a relatively larger k in in-
context learning, as it simultaneously enhances
performance and bolsters reliability.

Ablations with Model Size To further strengthen
our analysis, we conducted additional experiments
on the instruction-tuned versions of the more ca-
pable Qwen-2.5-14B and Qwen-2.5-32B models.
The complete results are presented in Appendix C.

Across all uncertainty measures (TU, EU, and
AU), larger models consistently exhibit substan-
tially lower uncertainty values. For easy-mode,
large LLMs follow similar uncertainty trends as
smaller models; On more challenging tasks (hard
mode), LLMs display distinct uncertainty patterns.
Specifically, for Qwen-2.5-14B, EU steadily de-
creases as more demonstrations are provided, in-
dicating more rapid task adaptation and improved
performance, whereas AU remains relatively sta-
ble. Notably, a detailed analysis reveals that AU
for Qwen-2.5-14B decreases slightly when initial
examples are added but begins to rise beyond 80-
shot, likely due to long-context effects introducing
noise. In contrast, Qwen-2.5-32B does not exhibit
this trend; instead, its AU continues to decrease as
the number of examples increases.

Takeaways Large-scale LLMs exhibit greater
confidence (i.e., lower uncertainty) and superior
performance under many-shot settings, compared
to smaller counterparts. The benefits of many-shot
ICL remain evident, as additional demonstrations
continue to enhance task-specific adaptation while
maintaining low EU. Thus, the advantages of long-
context IC, both in terms of performance and confi-
dence, persist even at a larger scale.

4.3 RQ2: where do performance gains stem
from?

In Sec. 4.2, we establish that reduced uncertainty
improves performance. We hypothesize that ad-
ditional examples in ICL foster a more refined
task-specific conceptual framework, denoted as β,

which empowers LLMs to approach novel prob-
lems xT+1 within the domain with increased confi-
dence and efficacy. To validate this, we decompose
total uncertainty into EU and AU, checking how
these context helps LLMs to improve confidence by
utilizing the definition and property of two special
forms of uncertainty (Fig. 8).

Lower EU as the Primary Driver of TU Reduc-
tion. The decrease in TU is predominantly at-
tributed to a decline in EU. Initially, EU accounts
for the majority of TU, indicating that uncertainty
primarily arises from the LLMs’ insufficient in-
domain knowledge, while their robust natural lan-
guage understanding keeps AU relatively low. In
simpler task settings, LLMs swiftly acquire task-
specific knowledge, leading to a rapid decline in
EU and sustaining consistently low AU. In contrast,
for challenging tasks involving intricate logical
structures, additional demonstrations may elevate
AU (e.g., Llama-3.1-8B on the LD7 dataset), par-
tially counteracting the reduction in EU and imped-
ing significant decreases in total entropy. This un-
derscores the persistent difficulty for current large
models in effectively comprehending long texts
with complex structures.

Additional Information Reduces EU. To val-
idate that additional examples enhance the infor-
mational content and yield a clearer β for models
(as shown in Fig. 7), we observe that only diverse
examples effectively reduce EU under k-shot learn-
ing, whereas repetitive examples fail to achieve the
same effect. This highlights that the true driver of
uncertainty reduction lies in the increased informa-
tional richness of the examples provided.

5 Interpretability View for Uncertainty in
K-shot ICL

To investigate the mechanisms by which increased
in-context demonstrations reduce uncertainty in
LLMs, we aim to delve into the models’ internal
states, unraveling the underlying processes govern-
ing answer selection and generation in in-context
learning, thereby offering a comprehensive and in-
terpretable analysis of this phenomenon.

5.1 Residual Stream Projection

Residual Streams Residual streams function as
iterative refinements of feature representations in
deep neural networks (He et al.; Li and Papyan,
2023), encapsulating the process of hierarchical in-
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Dataset 8-shot 16-shot 32-shot 64-shot 128-shot
∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc

Easy Mode

AG News 66.8 +7.3 83.6 +11.5 88.6 +13.9 91.2 +15.2 90.8 +15.8
30.45 -1.0 15.00 -0.7 10.75 -0.2 8.4 -0.35 8.65 -0.4

SST-2 71.7 +5.7 82.9 +6.1 86.6 +6.6 88.5 +7.1 92.1 +7.9
20.3 -0.5 12.5 -0.4 9.4 -0.4 8.2 -0.3 5.6 -0.3

Commonsense QA 62.2 +1.8 69.8 +4.2 69.0 +4.8 78.6 +6.6 81.2 +5.2
26.2 -0.4 18.8 -0.2 17.8 -0.2 16.8 -1.0 16.6 -0.8

Hard Mode
20-shot 40-shot 80-shot 120-shot 240-shot

∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc

Logical Deduction3 45.6 +6.0 38.1 + 4.0 40.4 +2.0 53.2 +7.60 62.3 +15.91
44.8 -5.6 51.2 -8.0 46.8 -10.8 40.4 -6.8 34.5 -5.9

Logical Deduction5 58.4 +2.8 64.4 +2.8 73.6 +4.8 79.6 +8.0 83.8 +10.8
33.2 -0.4 30.0 -1.2 24.4 -0.8 18.0 -1.6 13.1 -1.5

Logical Deduction7 48.4 +2.0 54.4 +3.6 59.2 +4.4 75.0 +12.0 83.3 +12.3
48.8 -1.2 42.0 -0.8 38.0 -0.8 24.5 -0.0 15.3 -0.7

Table 2: ∆U refers to the proportion of datasets displaying either a decrease or increase in uncertainty relative to the
4-shot baseline, with |∆U | > τ indicating significant uncertainty changes. For each dataset, the first row presents
the proportion of questions exhibiting reduced uncertainty, while the second row reflects those with increased
uncertainty. ∆Acc quantifies the performance shift associated with the corresponding subset. Model: Llama-3.1-8B.
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Figure 8: Uncertainty decomposition results for both easy mode (left) and hard mode (right).

formation aggregation. By leveraging residual con-
nections, models reveal their mechanisms for con-
structing and iteratively refining outputs, thereby
improving interpretability. Formally, in decoder-
only LLMs, the hidden state of the i-th token at the
l-th layer, denoted as h(l)

i , is computed as:

h
(l)
i = h

(l−1)
i + a

(l)
i +m

(l)
i ,

a
(l)
i = MSHA

(
h
(l−1)
i

)
,

m
(l)
i = MLP

(
h
(l−1)
i + a

(l)
i

)
,

where MSHA(·) represents the multi-head
self-attention mechanism (Vaswani, 2017), and
MLP(·) denotes the feed-forward neural network.
For simplicity, detailed computations within the

MHSA sublayer, such as the projection matrices
WQ,K,V,O, and the splitting-merging operations
across attention heads, are omitted here. Each de-
coder block, therefore, maintains two distinct resid-
ual pathways: one emerging from the MHSA, h(l)

i ,
and the other from MLP sublayer, h(l)

i + a
(l)
i .

Projection into Vocabulary To uncover the la-
tent information encoded within residual streams,
projecting intermediate states onto a probability
distribution over the vocabulary space V provides
critical insights into the temporal and spatial dy-
namics of how these networks construct and re-
fine their outputs (Geva et al., 2021; Belrose et al.,
2023; Dar et al., 2023). Analogous to token gen-
eration, each residual stream ri ∈ Rd at the fi-
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Figure 9: Average probabilities of Mistral-7B-v0.2 on the Commonsense QA dataset for MCQA items where the
correct answer is "D". A 32-layer LM gets 64 residual streams, excluding the output hidden states.
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Figure 10: Average logits of Mistral-7B-v0.2 on the Commonsense QA dataset for MCQA items with the correct
answer "D". Increasing in-context examples amplifies the logit of the correct option, thereby magnifying the
difference between the logits of correct and incorrect options. ⋆ represent the highest logit and ♦ the second highest
logit. Refer to Appendix F.2 for additional results.

nal position—where i indexes the i-th residual in
the model—undergoes transformation via an un-
embedding matrix WU ∈ Rd×|V | post layer nor-
malization. This process yields calibrated logits
li = WULayerNormalization(ri) and the cor-
responding probabilities pi = Softmax(li).

Correlation with Uncertainty in ICL For k-
shot in-context learning, consider projecting the
residual representations at the answer position into
the probability simplex ∆|V | over the vocabulary
V . Denote the resulting logits and probabilities of
candidate symbols (e.g., "A", "B", "C") as ℓi and
pi, respectively. These logits ℓi or probabilities pi
serve as proxies for confidence levels associated
with each candidate. Analyzing the evolution of
ℓi across model layers reveals the hierarchical de-
velopment of inner confidence throughout k-shot
learning, offering a profound understanding of the
underlying uncertainty dynamics.

5.2 RQ3: What mechanisms underlie
uncertainty reduction?

Qualitative Analysis To begin with, we present a
case study in Fig. 12, offering an intuitive and qual-
itative demonstration of how the number of shots
influences uncertainty. In this case, the Mistral-7B
model struggles to distinguish the correct answer,

option "E", under a 4-shot ICL setting, as the other
options continuously mislead the model throughout
the process. This is evidenced by the fluctuating
confidence levels, which rise and fall erratically.
In contrast, as the number of shots increases (32-,
64-, and 128-shot settings), many-shot ICL con-
sistently boosts the probability of selecting "E" as
the correct answer from about 22nd layer onward,
maintaining this highest probability thereafter. Si-
multaneously, it demonstrates robustness by main-
taining near-zero probabilities for incorrect options,
effectively eliminating the influence of distractors
on the model’s final prediction.

CMQA 4-shot 32-shot 64-shot 128-shot
Llama-3.1 2.86 / 24.98 2.75 / 27.03 2.55 / 27.66 2.53 / 28.01

Mistral-v0.2 2.78 / 17.14 2.24 / 19.60 2.57 / 20.38 2.75 / 20.84
Qwen1.5 3.51 / 29.11 3.62 / 30.49 3.73 / 30.97 3.76 / 30.94

LD3 4-shot 40-shot 120-shot 240-shot
Llama-3.1 0.51 / 15.93 0.77 / 17.15 0.65 / 16.6 0.77 / 16.87

Mistral-7B-v0.2 0.26 / 11.07 0.48 / 11.92 0.46 / 12.05 0.59 / 11.87
Qwen1.5-7B 0.45 / 15.98 0.46 / 16.49 0.43 / 16.54 0.49 / 16.72

Table 3: Average logit difference / the largest logit.

Extended Examples Amplify Logit Disparity.
We compute the average logits ℓi and probabili-
ties pi (Figs. 10 and 9) across varying shot counts
for groups sharing the same answer. The analysis
reveals that extended ICL enhances the precision
of LLMs, concentrating greater logit mass on the
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correct symbol while effectively suppressing al-
ternatives. This dynamic, driven by the interplay
between an amplified logit disparity and increased
absolute logit values (Table 3), leverages the ex-
ponential sensitivity of the Softmax function to
propel the probability of the correct symbol toward
1. Consequently, the uncertainty in LLM predic-
tions is significantly reduced.

6 Further Discussion

Clarifications While our work builds upon the
framework in (Ling et al., 2024), our research
specifically investigates the evolution of uncer-
tainty in long-context ICL, a topic that has not been
examined to date. In contrast, Ling et al. primarily
focus on introducing a framework for decomposing
uncertainty in few-shot ICL. By shifting the focus
to long-context scenarios, our study explores how
uncertainty evolves as the number of in-context ex-
amples increases, thereby addressing an important
yet understudied dimension of ICL.

7 Conclusion
This study investigates the impact of extra demon-
strations on the confidence of LLMs in their re-
sponses. Experimental results demonstrate that
additional examples significantly reduce TU across
both simple and complex tasks by integrating task-
specific knowledge. This reduction is primarily at-
tributed to decreased model uncertainty, which en-
hances overall performance. However, in complex
tasks, many-shot ICL faces challenges in reducing
TU due to a concurrent increase in AU. Analysis of
the internal representations of LLMs reveals that
many-shot ICL not only reallocates greater logit
mass toward correct responses but also enlarges the
logit margin between correct answers and distrac-
tors, reflecting an increase in model confidence.

Limitation

Our study is the first systematic investigation into
uncertainty evolution in long-context ICL, address-
ing a critical research gap. These foundational
experiments hope to provide a basis for future UQ
studies on open-ended tasks. However, several lim-
itations must be acknowledged.

Exclusion of Open-Ended Tasks The scope of
this work does not encompass the uncertainty anal-
ysis of open-ended tasks, such as abstractive sum-
marization (Hasan et al., 2021) and machine trans-
lation (Costa-jussà et al., 2022), owing to the lack

of robust UQ techniques for free-form generative
scenarios. Nevertheless, applying ICL to rationale-
intensive reasoning and generative contexts re-
mains a promising direction. Future investigations
should assess the reliability and trustworthiness of
ICL in these domains, as advancements in this area
could not only enhance task-solving performance
but also broaden the applicability of UQ method-
ologies to more diverse and complex settings.

Limited Exploration of ICL Configurations
This study also excludes several influential ICL
paradigms, such as unsupervised ICL (Yu et al.,
2024), reinforced ICL (Jiang et al., 2024), and
CoT prompting (Wei et al., 2022b), the latter of
which is widely adopted in reasoning tasks to elicit
step-by-step rationales. Existing UQ methods fall
short of capturing the logical complexity intrin-
sic to reasoning-intensive contexts. Furthermore,
practical challenges, including the computational
overhead and context-length constraints of current
open-source LLMs, prevented us from investigat-
ing extreme-shot ICL scenarios involving thou-
sands of demonstrations. These limitations un-
derscore promising directions for future research,
particularly in applying UQ methodologies to bet-
ter accommodate the unique challenges posed by
reasoning tasks. More discussion in Appendix A.

Broader Impact

Despite these limitations, this study marks a piv-
otal advancement in understanding the reliability
of ICL by harnessing recent breakthroughs in un-
certainty quantification and decomposition, an es-
sential yet underexplored aspect of LLM research.
The research on uncertainty in ICL enriches the
field of uncertainty quantification, providing novel
perspectives on the trustworthiness of many-shot
ICL. These contributions lay a solid foundation for
broadening ICL’s applicability in high-stakes do-
mains. Ultimately, these findings could catalyze the
development of more dependable and interpretable
AI systems, offering profound societal impact.
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A Related Work

Overview. Estimating uncertainty in generation tasks presents greater challenges (Kuhn et al., 2023)
compared to tasks with a predefined candidate set like classification tasks (Zhang et al., 2024b) and
multiple-choice question answering (MCQA) (Robinson and Wingate, 2023). This is primarily due to
the vast, high-dimensional semantic space inherent in natural language, which results in an effectively
infinite generation space (Lin et al., 2024; Ling et al., 2024; Liu et al., 2024). In contrast, classification
tasks provide LLMs with a finite set of discrete candidates, where the model’s task is limited to selecting
the most probable answer from a predefined set (Wiegreffe et al., 2024).

B Further Discussion

B.1 Limitations of UQ in Open-ended Tasks
UQ in open-ended tasks primarily focuses on knowledge-intensive QA tasks, which differs fundamentally
from the typical ICL paradigm. ICL primarily relies on: pattern matching (Min et al., 2022); distribution
alignment (Chan et al., 2022) ;implicit fine-tuning (Akyürek et al.). In contrast, knowledge-intensive QA
depends on retrieving from external knowledge and parametric knowledge, rather than adapting through
in-context distribution learning. As a result, many-shot ICL is not well-suited for knowledge-intensive
QA scenarios, making existing UQ methods for this domain inapplicable. Moreover, prior research on the
performance of many-shot ICL has primarily focused on reasoning tasks and extreme-label classification
(Li et al., 2024), rather than knowledge-intensive tasks.

Challenges in Extending UQ to Open-ended Tasks Open-ended tasks encompass summarization,
intermediate reasoning, code generation, program synthesis, and planning. However, existing UQ methods
struggle to generalize effectively to these tasks, particularly in long-context ICL settings. For instance,
semantic entropy (Kuhn et al., 2023), a widely used UQ approach, measures uncertainty based on semantic
dispersion. However, in summarization tasks, summary quality is judged primarily by its fidelity to the
source content, rather than semantic variability alone. This presents key limitations: A summary may
deviate semantically yet still provide a valid abstraction of the original text. Summarization evaluation
involves coverage, conciseness, and coherence, which semantic entropy alone cannot quantify. Given
these limitations, we focus on classification and multiple-choice tasks, which offer a robust evaluation
framework for analyzing uncertainty evolution in long-context ICL.

B.2 Limitations of UQ for CoT
In CoT tasks, uncertainty accumulates throughout the reasoning process, influencing the final answer.
This uncertainty propagation occurs in intermediate reasoning steps, and the final answer generation.
Current UQ techniques primarily focus on single-step inference or static tasks, whereas CoT relies on
multi-step reasoning. This multi-stage nature makes it difficult for existing methods to effectively capture
uncertainty propagation across reasoning steps. While research on CoT uncertainty is still in its early
stages, some prior works have explored possible approaches. For instance, some work proposed a stepwise
scoring mechanism which assigns a confidence score to each intermediate explanation. However, this
approach has notable limitations:(1) Overconfidence: LLMs tend to be overconfident in their predictions,
making single-step confidence scores unreliable; (2). Lack of global coherence: stepwise scoring ignores
dependencies across reasoning steps, failing to capture uncertainty propagation across the entire reasoning
chain; (3). Step mismatch: the reasoning steps generated may not align with the logical steps required for
complex reasoning tasks, limiting the effectiveness in capturing uncertainty flow.

Potential Strategies: A Topological Perspective To better model uncertainty propagation in CoT
reasoning, we propose leveraging topological structures. CoT reasoning typically involves problem
decomposition, backtracking and correction, evaluation and verification, and final integration. While
current models generate reasoning in an autoregressive (linear) manner, actual human reasoning follows
a more complex topological structure. Inspired by Tree-based CoT (Yao et al., 2023) and Graph-based
CoT (Besta et al., 2024), we propose modeling CoT uncertainty using graph or tree structures. In
this framework: each reasoning step is represented as a node; uncertainty from prior steps propagates
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through the topological structure to influence subsequent steps; the final answer (root node) aggregates the
propagated uncertainties from all previous steps. By explicitly modeling uncertainty flow in a structured
manner, this approach could overcome the limitations of stepwise scoring and offer a systematic framework
for analyzing uncertainty evolution in multi-step reasoning. We believe this direction holds promise for
improving uncertainty estimation in CoT-based tasks.

C Generalization Results on Larger LLMs

C.1 Qwen2.5-14B-Instruct

AG_News 2 4 8 16 32 64 128 256

TU 0.148 0.127 0.113 0.125 0.115 0.105 0.086 0.065
EU 0.057 0.029 0.030 0.033 0.038 0.040 0.028 0.026
AU 0.091 0.098 0.083 0.092 0.077 0.065 0.058 0.039
ACC 87.6 87.2 88.9 88.19 88.7 88.5 89.9 90.5

Table 4: Performance of Qwen2.5-14B-Instruct on AG_News with varying numbers of in-context examples

LD5 1 10 20 40 80 120 240

TU 0.345 0.307 0.302 0.257 0.279 0.272 0.245
EU 0.229 0.194 0.190 0.148 0.157 0.139 0.124
AU 0.116 0.112 0.112 0.109 0.122 0.133 0.121
ACC 62.4 63.6 64.4 68.4 67.2 72.1 72.8

Table 5: Performance of Qwen2.5-14B-Instruct on LD5 with varying numbers of in-context examples

C.2 Qwen2.5-32B-Instruct

AG_News 2 4 8 16 32 64 128

TU 0.220 0.171 0.151 0.099 0.076 0.060 0.049
EU 0.151 0.093 0.059 0.030 0.017 0.020 0.018
AU 0.069 0.078 0.091 0.068 0.059 0.040 0.030
ACC 88.9 86.8 87.1 89.5 89.5 92.4 92.8

Table 6: Performance of Qwen2.5-32B-Instruct on AG_News with varying numbers of in-context examples

LD5 1 10 20 40 80 120

TU 0.353 0.313 0.284 0.247 0.225 0.202
EU 0.121 0.102 0.102 0.099 0.091 0.082
AU 0.232 0.210 0.182 0.147 0.134 0.120
ACC 74.8 79.6 82.0 82.4 83.6 84.1

Table 7: Performance of Qwen2.5-32B-Instruct on LD5 with varying numbers of in-context examples
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D Quality of UQ for other LLMs

Dataset
Llama-3.1-8B

1-shot 2-shot 4-shot 8-shot 16-shot 32-shot 64-shot 128-shot
Easy Mode

AGNews 0.686 0.704 0.725 0.735 0.780 0.804 0.822 0.837
SST-2 0.714 0.751 0.751 0.748 0.740 0.741 0.742 0.750

Commonsense QA 0.563 0.599 0.636 0.673 0.726 0.774 0.784 0.798
Hard Mode

1-shot 4-shot 10-shot 20-shot 40-shot 80-shot 120-shot 240-shot
Logical Deduction 3 0.973 0.965 0.939 0.948 0.951 0.939 0.966 0.947
Logical Deduction 5 0.996 0.995 0.963 0.983 0.971 0.983 0.959 0.974
Logical Deduction 7 0.987 0.997 0.976 0.987 0.982 0.986 0.986 0.964

Table 8: AUROC of Llama-3.1-8B model. High AUROC indicates the good quality of UQ measures.

Dataset
Mistral-7B-v0.2

1-shot 2-shot 4-shot 8-shot 16-shot 32-shot 64-shot 128-shot
Easy Mode

AGNews 0.633 0.696 0.734 0.753 0.769 0.778 0.790 0.780
SST-2 0.714 0.723 0.685 0.772 0.813 0.849 0.846 0.871

Commonsense QA 0.739 0.728 0.731 0.733 0.743 0.711 0.710 0.728
Hard Mode

1-shot 4-shot 10-shot 20-shot 40-shot 80-shot 120-shot 240-shot
Logical Deduction 3 0.956 0.987 0.951 0.976 0.951 0.986 0.966 0.947
Logical Deduction 5 0.938 0.929 0.918 0.922 0.934 0.913 0.918 0.912
Logical Deduction 7 0.923 0.939 0.928 0.919 0.925 0.925 0.936 0.946

Table 9: AUROC of Mistral-7B-v0.2 model. High AUROC indicates the good quality of UQ measures.

Dataset
Qwen1.5-7B

1-shot 2-shot 4-shot 8-shot 16-shot 32-shot 64-shot 128-shot
Easy Mode

AGNews 0.634 0.716 0.743 0.744 0.688 0.739 0.731 0.741
SST-2 0.742 0.766 0.842 0.854 0.872 0.870 0.870 0.879

Commonsense QA 0.768 0.818 0.801 0.801 0.799 0.776 0.772 0.770
Hard Mode

1-shot 4-shot 10-shot 20-shot 40-shot 80-shot 120-shot 240-shot
Logical Deduction 3 0.875 0.846 0.918 0.900 0.928 0.871 0.966 0.788
Logical Deduction 5 0.935 0.918 0.903 0.849 0.962 0.934 0.921 0.912
Logical Deduction 7 0.923 0.879 0.893 0.911 0.934 0.925 0.946 0.956

Table 10: AUROC of Qwen1.5-7B model. High AUROC indicates the good quality of UQ measures.
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E Question-level Analysis

Dataset
Mistral-7B-v0.2

8-shot 16-shot 32-shot 64-shot 128-shot
∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc

Easy Mode

AG News 61.4 +8.1 70.9 +9.5 77.9 +10.7 76.6 +11.4 78.8 +12.5
34.8 -4.9 25.1 -4.2 18.75 -3.6 19.15 -3.4 16.45 -2.8

SST-2 67.3 +9.1 79.2 +12.8 86.8 +13.7 87.9 +13.8 90.0 +14.6
27.3 -0.7 16.3 -0.0 10.8 -0.5 9.7 -0.3 8.6 -0.3

Commonsense QA 49.8 +1.8 40.0 +1.4 37.2 +3.4 38 +1.6 36.0 +2.0
21.8 +0.4 20.2 +0.4 18.4 -1.4 19.2 +0.4 23.6 -0.8

Hard Mode
20-shot 40-shot 80-shot 120-shot 240-shot

∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc

Logical Deduction3 80.4 +13.6 78.4 +20.4 79.3 +20.5 76.8 +18.4 81.6 +20.4
9.6 -0.4 9.2 -0.8 44.4 -6.0 12.4 -0.4 9.6 -1.6

Logical Deduction5 31.6 +0.4 39.6 +0.8 48.12 +0.0 57.9 +0.0 79.2 +1.5
41.2 -0.4 36.8 -0.8 33.0 -0.9 24.0 -0.8 15.4 -0.5

Logical Deduction7 46.8 +0.0 60 +0.0 62.8 +0.0 47.2 +0.0 96.5 +0.0
38.8 -0.0 25.2 -0.0 28.4 -0.0 34.8 -0.0 1.17 -0.0

Table 11: ∆ U denotes the proportion of datasets whose uncertainty decreases/increases compared to 4-shot settings,
with the first line for each dataset giving the ratio of decreased uncertainty questions and the second line for each
dataset giving the ratio of increased uncertainty questions. ∆Acc represents the performance changes caused by the
corresponding part of examples.

Dataset
Qwen1.5-7B

8-shot 16-shot 32-shot 64-shot 128-shot
∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc

Easy Mode

AG News 62.2 +3.7 40.4 -0.8 79.5 +9.3 83.9 +9.8 83.8 +10.0
34.4 -0.8 52.0 -10.0 17.25 -0.6 13.0 -0.5 12.6 -1.4

SST-2 78.0 +0.2 86.6 +0.0 82.9 +0.1 77.3 -0.5 71.8 -0.3
13.0 -0.5 4.3 -0.1 2.9 -0.5 1.8 -0.1 2.4 -0.3

Commonsense QA 33.6 +0.0 12.2 +0.4 11.0 +0.2 8.9 +0.81 15.0 +0.4
48.1 -3.6 68.6 -10.4 76.4 -14.4 79.7 -1.6 72.6 -2.4

Hard Mode
20-shot 40-shot 80-shot 120-shot 240-shot

∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc ∆U ∆Acc

Logical Deduction3 13.6 +2.0 13.2 +1.6 9.2 +0.4 20.8 +1.6 36.0 +6.0
84 -13.6 82.4 -16.0 88.4 -22.8 77.2 -16.8 60.8 -10.4

Logical Deduction5 73.6 +7.19 74.8 +3.6 50.8 +0.0 49.2 +0.0 69.2 +6.4
24.0 -2.8 24.4 -3.6 47.2 -12.0 47.6 -11.2 15.4 -5.6

Logical Deduction7 81.2 +4.8 54.4 +2.0 44.0 -0.4 41.1 -1.6 52.5 +10.3
17.6 -0.8 100 -20.8 54.8 -11.6 58.9 -16.1 45.3 -9.2

Table 12: ∆ U denotes the proportion of datasets whose uncertainty decreases/increases compared to 4-shot settings,
with the first line for each dataset giving the ratio of decreased uncertainty questions and the second line for each
dataset giving the ratio of increased uncertainty questions. ∆Acc represents the performance changes caused by the
corresponding part of examples.
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F Interprebility for k-shot ICL

F.1 Case Study

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

projection layers

0.0

0.2

0.4

0.6

0.8

1.0 Q63
A
B
C
D
E

(a) 4-shot
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

projection layers

0.0

0.2

0.4

0.6

0.8

1.0
Q63

A
B
C
D
E

(b) 32-shot

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

projection layers

0.0

0.2

0.4

0.6

0.8

1.0
Q63

A
B
C
D
E

(a) 64-shot

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

projection layers

0.0

0.2

0.4

0.6

0.8

1.0
Q63

A
B
C
D
E

(b) 128-shot

Figure 12: The inner confidence changes (0-1 probability) of five options ["A", "B", "C", "D", "E"] for a specific
question in Commonsense QA for Mistral-7B-v0.2 under 4-shot (a), 32-shot (b), 64-shot (c), and 128-shot(d) ICL.
The correct option is "E" and LLMs only made a mistake under 4-shot ICL and got correct with more examples.

F.2 Additional results: Average logits and probabilities
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Figure 14: Average logits and probabilities of Mistral-7B-v0.2 on the Commonsense QA dataset for MCQA items
where the correct answer is "A".
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G AI Assistant Usage

We used chatgpt to assist with correcting spelling errors in writing .

H Experimental Details

H.1 Prompt templates

Classify the topic of the following sentence into four labels: [0: world, 1: sports, 2: business, 3: Sci/Tech]
Provide answer in a structured format WITHOUT additional comments, I just want the numerical label 
for each sentence.

Sentence: Fears for T N pension after talks Unions representing workers at Turner   Newall say they are 
'disappointed' after talks with stricken parent firm Federal Mogul.
Label: 2

Sentence: The Race is On: Second Private Team Sets Launch Date for Human Spaceflight (SPACE.com) 
SPACE.com - TORONTO, Canada -- A second\team of rocketeers competing for the  #36;10 million 
Ansari X Prize, a contest for\privately funded suborbital space flight, has officially announced the 
first\launch date for its manned rocket.
Label: 3

Sentence: They've caught his eye In  quote; helping themselves, quote; Ricky Bryant, Chas Gessner, 
Michael Jennings, and David Patten did nothing Friday night to make Bill Belichick's decision on what 
to do with his receivers any easier.
Label: 1
…
Sentence: Sister of man who died in Vancouver police custody slams chief (Canadian Press) Canadian 
Press - VANCOUVER (CP) - The sister of a man who died after a violent confrontation with police has 
demanded the city's chief constable resign for defending the officer involved.
Label:
Classify the topic of the following sentence into four labels: [0: world, 1: sports, 2: business, 3: Sci/Tech]
Provide answer in a structured format WITHOUT additional comments, I just want the numerical label 
for each sentence.

Figure 15: Prompt template with a test input for AG News dataset.

Classify the following sentence into two categories: [0: negative, 1: positive]
Provide answer in a structured format WITHOUT additional comments, I just want the numerical label 
for each sentence.
Sentence: that loves its characters and communicates something rather beautiful about human nature
Label:  1

Sentence: remains utterly satisfied to remain the same throughout
Label: 0

Sentence: on the worst revenge-of-the-nerds clichés the filmmakers could dredge up.
Label: 0

…
Sentence: that 's far too tragic to merit such superficial treatment
Label: 0

Sentence: very well-written and very well-acted .
Label: 1

Sentence: clumsy dialogue , heavy-handed phoney-feeling sentiment ,
Label: 0

Classify the following sentence into two categories: [0: negative, 1: positive]
Provide answer in a structured format WITHOUT additional comments, I just want the numerical label 
for each sentence.

Figure 16: Prompt template with a test input for SST-2 dataset.
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Select the correct answer for the following commonsense question from five choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.
Question: The sanctions against the school were a punishing blow, and they seemed to what the efforts 
the school had made to change?
Choices
A. ignore
B. enforce
C.    authoritarian
D.    yell at 
E.    avoid
Answer:  A

…
Question: To locate a choker not located in a jewelry box or boutique where would you go?
Choices
A. jewelry store
B. neck
C. jewelry box
D. jewelry box
E.    boutique
Answer:  

Select the correct answer for the following commonsense question from five choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.

Figure 17: Prompt template with a test input for Commonsense QA dataset.

Select the correct answer for the following logical deduction problem from three choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.
The following paragraphs each describe a set of three objects arranged in a fixed order. The statements 
are logically consistent within each paragraph. On a branch, there are three birds: a blue jay, a quail, and 
a falcon. The falcon is to the right of the blue jay. The blue jay is to the right of the quail. 
Options: 
(A) The blue jay is the second from the left 
(B) The quail is the second from the left 
(C) The falcon is the second from the left
Answer: (A)

…
The following paragraphs each describe a set of three objects arranged in a fixed order. The statements 
are logically consistent within each paragraph. On a shelf, there are three books: a blue book, an orange 
book, and a red book. The blue book is the rightmost. The orange book is the leftmost.
Options: 
(A) The blue book is the second from the left 
(B) The orange book is the second from the left 
(C) The red book is the second from the left
Answer:
Select the correct answer for the following logical deduction problem from three choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.

Figure 18: Prompt template with a test input for logical deduction three objects dataset.

20677



Select the correct answer for the following logical deduction problem from five choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.
Problem: The following paragraphs each describe a set of five objects arranged in a fixed order. The 
statements are logically consistent within each paragraph. On a branch, there are five birds: a quail, an 
owl, a raven, a falcon, and a robin. The owl is the leftmost. The robin is to the left of the raven. The 
quail is the rightmost. The raven is the third from the left. 
Options: 
(A) The quail is the rightmost 
(B) The owl is the rightmost 
(C) The raven is the rightmost 
(D) The falcon is the rightmost 
(E) The robin is the rightmost
Answer: (A) …
Problem: The following paragraphs each describe a set of five objects arranged in a fixed order. The 
statements are logically consistent within each paragraph. In an antique car show, there are five vehicles: 
a hatchback, a bus, a convertible, a tractor, and a minivan. The tractor is older than the bus. The minivan 
is newer than the bus. The hatchback is the second-newest. The minivan is older than the convertible. 
Options: 
(A) The hatchback is the second-oldest 
(B) The bus is the second-oldest 
(C) The convertible is the second-oldest 
(D) The tractor is the second-oldest 
(E) The minivan is the second-oldest
Answer:

Select the correct answer for the following logical deduction problem from three choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.

Figure 19: Prompt template with a test input for logical deduction five objects dataset.

Select the correct answer for the following logical deduction problem from seven choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.
Problem: The following paragraphs each describe a set of seven objects arranged in a fixed order. The 
statements are logically consistent within each paragraph. In a golf tournament, there were seven golfers: 
Ana, Eve, Ada, Dan, Rob, Amy, and Joe. Dan finished third. Ana finished above Ada. Amy finished last. 
Dan finished below Rob. Eve finished below Ada. Rob finished below Joe. 
Options: 
(A) Ana finished third 
(B) Eve finished third 
(C) Ada finished third 
(D) Dan finished third 
(E) Rob finished third 
(F) Amy finished third 
(G) Joe finished third
Answer: (D) …
Problem: The following paragraphs each describe a set of seven objects arranged in a fixed order. The 
statements are logically consistent within each paragraph. In an antique car show, there are seven 
vehicles: a bus, a motorcyle, a hatchback, a station wagon, a minivan, a truck, and a limousine. The 
station wagon is the fourth-newest. The motorcyle is newer than the truck. The station wagon is older 
than the hatchback. The minivan is newer than the hatchback. The bus is newer than the minivan. The 
truck is newer than the limousine. 
Options: 
(A) The bus is the third-oldest 
(B) The motorcyle is the third-oldest 
(C) …
Answer:
Select the correct answer for the following logical deduction problem from seven choices.
Provide answer in a structured format WITHOUT additional comments, I just want the option letter for 
each answer.

Figure 20: Prompt template with a test input for logical deduction seven objects dataset.
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