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Abstract

This paper presents elaborate testing of vari-
ous LLMs on their generalization capacities.
We finetune six encoder models that have been
pretrained with very different data (varying in
size, language, and period) on a challenging
event detection task in Early Modern Dutch
archival texts. Each model is finetuned with
5 seeds on 15 different data splits, resulting
in 450 finetuned models. We also pre-train a
domain-specific Language Model on the tar-
get domain and fine-tune and evaluate it in the
same way to provide an upper bound. Our ex-
perimental setup allows us to look at underre-
searched aspects of generalizability, namely 1)
shifts at multiple places in a modeling pipeline,
ii) temporal and crosslingual shifts and iii) gen-
eralization over different initializations. The
results show that none of the models reaches
domain-specific model performance, demon-
strating their incapacity to generalize. mBERT
reaches highest F1 performance, and is rela-
tively stable over different seeds and datasplits,
contrary to XLM-R. We find that contemporary
Dutch models do not generalize well to Early
Modern Dutch as they underperform compared
to crosslingual as well as historical models. We
conclude that encoder LLMs lack temporal gen-
eralization capacities and that bigger models
are not better, since even a model pre-trained
with five hundred GPUs on 2.5 terabytes of
training data (Conneau, 2019) underperforms
considerably compared to our domain-specific
model, pre-trained on one GPU and 6 GB
of data. All our code, data, and the domain-
specific model are openly available.'

1 Introduction

Generalizability is a vital aspect of machine learn-
ing. A model learns patterns from its training data
that it should be able to apply to data it has not seen

!'See our repo for code and data and our huggingface page
for the model.
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Figure 1: Experimental set-up: each encoder goes
through a process where it is initialized 5 times with
different seeds and fine-tuned and tested on a different
datasplit. This enables us to i) evaluate different aspects
of generalizability and ii) control for randomness in the
finetuning process when comparing base models’ down-
stream performance by taking the average performance
over all seeds and datasplits.

before and might differ in some aspects. Since the
rise of deep learning, black box models and ‘big
data’ in Natural Language Processing, knowing
what generalizibility exactly is and how to study it
has become problematic (Hupkes et al., 2023).
One aspect of generalizability is generalization
over domains and genres; a model trained to detect
events in newspaper articles should also be able to
do so in tweets. A more specific type of domain
shift is temporal shift: where the training and test
data come from different periods. Temporal shifts
are complex as they involve different styles and
even different entities and events. These days, vast
amounts of contemporary data are available, but
systems trained on these data do not always work
well on historical data (Manjavacas and Fonteyn,
2022a), not only because of orthographical and
syntactic differences, but also because of semantic
shift (Kutuzov et al., 2018; Hamilton et al., 2016).
Event detection is a well-studied task and ex-
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tremely useful for many different areas of society,
such as news digestion (Vossen, 2018), clinical de-
cision making (Zhang et al., 2020) and historical
research (Sprugnoli and Tonelli, 2019). It is a com-
plex task and performance on this task has been
shown to be prone to suffer from situations where
the train and test data come from different domains
(Hong et al., 2018).

Hupkes et al. (2023) draw out a taxonomy of var-
ious aspects of generalizability in their GenBench
initiative and highlight understudied regions. They
point out that the vast majority of studies focus on
shifts between training (finetuning) and testing, not
considering shifts between pre-training and train-
ing. Furthermore, a comparatively small percent-
age of studies investigate shifts in multiple stages
of the modeling pipeline. Hupkes et al. (2022) also
point out that only a limited number of tasks in-
vestigate temporal generalizability, none including
event detection.

The GLOBALISE project? is building software
that allows historians to search through the archives
of the Dutch East India Company (Verenigde Oost-
indische Compagnie; VOC): a corpus of over 5
million handwritten pages from the 17th and 18th
centuries containing valuable information on the
history of early colonialism. The corpus has been
transcribed and partially annotated for event ex-
traction. The data provide an excellent use-case to
study temporal generalizibilty.

In this study, we finetune several encoder Large
Language Models (LLMs) on this newly de-
fined event detection task in Early Modern Dutch
archival texts. We finetune models trained on con-
temporary Dutch (BERTje (De Vries et al., 2019)
and RobBERT (Delobelle et al., 2020)), a model
trained on Dutch from 1500 to 1950 (GysBERT
(Manjavacas and Fonteyn, 2022b)), a different ver-
sion of that model for which the VOC corpus was
added to its pre-training data (GysBERT-v2), and
multilingual models (Devlin et al., 2019; Conneau,
2019). In doing so, our study provides a unique
opportunity to investigate shifts in pretrain-train
scenarios as well as finetune-test scenarios, inves-
tigating temporal generalizability as well as cross-
lingual generalizability. To the best of our knowl-
edge, we are the first to study temporal generaliza-
tion with respect to event detection.

Additionally, we address the issue of generaliza-
tion of models over different initializations, some-

2https://globalise.huygens.knaw.nl

thing GenBench does not explicitly take into ac-
count. Stochasticity is a known problem in NLP
(Bender et al., 2021; Khurana et al., 2021). If a
pre-trained model finetuned ten times produces one
good model but nine mediocre ones, what does
that say about the level of generalizability the pre-
trained model carries? Our study considers this by
comparing consistency between models finetuned
with different seeds.

2 Related work

Earlier literature in NLP shows great effort at creat-
ing datasets for event detection in English (Walker
et al., 2006; Sauri et al., 2006; Pustejovsky et al.,
2010; UzZaman et al., 2013; Cybulska and Vossen,
2014; Styler IV et al., 2014; Bethard et al., 2016).
Since then many systems were built to tackle this
task, from feature engineering techniques (Ji and
Grishman, 2008) to deep learning (Li et al., 2022).

To improve scores by just a few decimals (68.0
F1 for a finetuned RoBERTa vs. 68.5 for a more
complex approach (Wang et al., 2021)), recent
event detection systems involve heavy engineering,
for example including graph structures (Nguyen
and Grishman, 2018) or ensembling various types
of modules into a pipeline (Zhang et al., 2024).
Most of these methods have been tweaked to
work well on the most popular benchmarks - ACE
(Walker et al., 2006) and MAVEN (Wang et al.,
2020) - but they remain unable to generalize to
other datasets (Wang et al., 2021).

Machine learning systems have been shown to
heavily underperform when tested out of domain in
many fields (Gulrajani and Lopez-Paz, 2020). In re-
cent years, the field of NLP has also started to raise
concerns about perfecting systems on benchmarks,
showing how models that reach excellent perfor-
mance on certain train/test splits fail on simple chal-
lenge examples and commit errors in real-world
scenarios (Kiela et al., 2021; Plank, 2016), indicat-
ing they may rely on stereotypes and memorization
(Hupkes et al., 2023). This suggests that gener-
alization by NLP models is often overestimated
(Ribeiro et al., 2020). Now, scholars experiment
with prompting generative LLMs in a zero-shot
fashion for event detection, but the results vary
wildly and are unreliable (Kristensen-McLachlan
et al., 2023; Gao et al., 2023). To better understand
what generalization means and to make progress,
we should investigate what models can or cannot
learn when it comes to event detection.
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Domain-specific pre-training of encoder LLMs
has shown to improve downstream performance
in various domains (Lamproudis et al., 2022;
Chalkidis et al., 2020; Miiller et al., 2023; Verk-
ijk and Vossen, 2021). It has also been shown that
the crosslingual capacities of multilingual LLMs
can work well for Early Modern Dutch (Arnoult
et al., 2021). However, no work has been done
yet that thoroughly compares the performance of
contemporary, historical and multilingual models
on historical text to test their generalizability.

3 Methodology

3.1 Data

GLOBALISE is a multidisciplinary effort to de-
velop a (re)search interface for the archives of the
VOC. This is a corpus of over 5 million (scans
of) handwritten pages from the 17th and 18th cen-
turies describing practices of trade, colonization
and politics. These scans go through a specialized
Handwritten Text Recognition pipeline® before any
further processing. The imperfect HTR performed
on a version of Dutch from before there were strict
writing conventions results in much more noisy
data than LLLMs are usually pre-trained on. Also,
the differences in language between Early Modern
Dutch and contemporary Dutch are considerable
(Verkijk et al., 2024).

3.2 Task

We finetune LLMs on an event detection task
specifically defined for GLOBALISE. Through in-
terdisciplinary collaboration , guidelines were de-
veloped for the extraction of events deemed rel-
evant for conducting historical research on this
source (Verkijk and Vossen, 2023). This resulted
in an annotation scheme encompassing around 80
event types.* Note that the goal is thus to teach
systems not to label every predicate they encounter,
but only those that are relevant according to the
scheme, which are sometimes quite common, like
Transport, and sometimes more typical of the do-
main and time, like Mutiny. Additionally, events get
annotated both when there is a direct reference to
an event class (‘the ship left’ referring to Leaving)
as well as an indirect reference (‘the king’s widow’
referring to BeingDead). For the sake of our current
goal of comprehensively evaluating temporal gen-
eralizibility, we only evaluate on event detection

3Loghi: https://github.com/knaw-huc/loghi
4See the annotation guidelines and the event wiki

Data  Param tok/byt

GysBERT H 110M 7.1B/

GysBERT-v2 HV  110M 83B/
BERTje C 109M 2.4B/12GB
RobBERT C 117M  6.6B/39GB

mBERT (base) M 179M /
XLM-R (base) M 279M /2.5TB
GloBERTise v 117M / 6GB

Table 1: Models with types of language present in and
volume of pre-training data (H = historical; V = VOC;
C = contemporary; M = Multilingual). All info missing
in this table could not be found in the relevant papers.

and not on classification, i.e. a binary token classifi-
cation task indicating whether a token does or does
not refer to an event. We expect the event concepts
as such to be relatively stable over time, but to be
associated with different world entities. Models
pretrained on contemporary data thus should still
be able to generalise and apply these concepts to
the ’old world’.

The data we finetune on, introduced in Verkijk
et al. (2024), was annotated by 3 teams of 2 anno-
tators; all specialized historians trained at the task.
The data contain (parts of) 15 different documents,
comprising a total of 107 handwritten pages/scans.
The longest annotated text is 18 pages and the short-
est 1. For four of the documents the inter-annotator
agreement for event detection is 71% and for the
rest 84% (IAA calculated per annotation round).

3.3 Models

We finetune and test six models that include some
form of Dutch in their pre-training data. They differ
in architecture (RoBERTA vs. BERT), size, and
in the data they were pre-trained on, being more
and less similar to the data we finetune and test on.
We differentiate between contemporary Dutch, his-
torical Dutch (Dutch from anytime before the 20th
century) and VOC Dutch: transcribed Early Mod-
ern Dutch (1600-1800) as written in the archives of
the VOC. The latter is the domain that we finetune
and test on. See Table 1 for an overview.

We pre-train a new Transformer encoder on
around 5 million scans of pages from the Archives
of the VOC (6GB of text data).> The model, which
we name GloBERT:ise, is trained from scratch on
only domain-specific data. It is a RoBERTa-based
model, trained for two epochs on one GPU®. This
model functions as our upper bound model: if any
of the other models reaches similar performance,

5The complete dataset is available on this Dataverse page
8See our repo for code and documentation for pre-training
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its ability to generalize and thus perform well in
the target domain is demonstrated.

3.4 Experimental set-up

Our experimental setup is built along three axes:
1) variation in the pre-trained models we use, ii)
variation in the data we finetune and test on and
iii) variations in the seeds we use when finetuning.
See Figure 1 for an overview. We split the data on
document level and part it in 15 folds: for each fold,
one document in the dataset was set apart for test-
ing (following a so-called leave-one-domain-out
cross-validation scheme (Gulrajani and Lopez-Paz,
2020)). This way, we can see whether models per-
form worse on documents from earlier times. We
use five seeds. Models are finetuned on a binary
token classification task, indicating for each token
whether it refers to an event or not, i.e. the None
class is overrepresented. On average, 8.3% of to-
kens refers to an event.

All models were finetuned for 5 epochs with a
learning rate of 5e-5. See Table 8 (Appendix) for
further parameter settings. We compare models’
performances to two baselines: a lexical approach
and a Conditional Random Forest (CRF) algorithm.
The lexicon was created through an iterative pro-
cess of annotation analysis, expert input and a
domain-specific word2vec model (trained solely
on the VOC corpus). The CRF was trained with
word embeddings of the same word2vec model.”

4 Results & Discussion

4.1 Generalization over shifts between
pre-training and finetuning

Table 2 shows scores per model averaged over data
folds and seeds. Highest scores are indicated in
boldface, runner-up scores are underlined. Mention
accuracy was calculated as follows: if one or more
of the tokens within a gold event mention span
(i.e. "ordonnantie" in "d’ordonnantie ende last") is
recognized as an event token in the predictions, we
see it as overlap.

None of the models reaches the performance of
our domain-specific model. mBERT performs best
overall, with GysBERT closely following. Models
trained only on contemporary Dutch score lowest.
The difference between GysBERT and GysBERT-
v2 is small. The latter scores highest in precision
after the lexical approach. The difference in recall
scores between models is smaller.

"For more info on the lexicon see our repo and our blogpost

The difference in performance between the two
multilingual models tested is noteworthy for the
following reason: mBERT performs better even
though XLM-R is the bigger model, with more pa-
rameters and trained on more training data: XLM-
R used all of mBERT’s training data (WikiPedia)
and added CommonCrawl to it.

Our results show that multilingual models have
potential in scenarios involving temporal shift. This
however might depend on the language, domain
and time of origin of the data involved. Early Mod-
ern Dutch has similarities to English, both being
West-Germanic, making it perhaps prone to bene-
fit from crosslingual transfer with English. To get
more insight into this, we finetune and test three
English models as a control-case: BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b) and
MacBERTh (Manjavacas and Fonteyn, 2021), a
model pre-trained on data from 1450-1950. Tables
5 to 7 show that all English models perform signifi-
cantly worse. For two out of five seeds, BERT does
not predict any event. The fact that mBERT per-
forms much better than English models strengthens
the conclusion that the crosslingual capacities of
a multilingual model help it to generalize to data
from a different period and domain.

Our results indicate that the VOC domain is so
specific that the GysBERT models are not represen-
tative. A domain is a mixture of domain, genre and
time, and the types of documents in the GysBERT
models’ pre-training data mostly represent a very
different genre, namely that of newspapers, books,
journals and literature, and span almost 5 centuries.

4.2 Generalization over initializations

Table 3 shows the standard deviation of the separate
models between the seeds they were initiated with.
We first calculated the standard deviation for each
specific data split and then averaged those, as op-
posed to taking the average performance of a model
on all data splits per seed and calculating stan-
dard deviation between those averages. XLM-R,
the model with most parameters and training data,
shows highest standard deviation and thus stochas-
ticity by far, followed by RobBERT (117M param),
both scoring higher standard deviation scores than
mBERT (179M param).

Our domain-specific model, also a RoBERTa
architecture, performs best but is not less stochastic
than mBERT. This seems to indicate that it is not
necessarily size (amount of parameters) that makes
models more stochastic, but architecture.
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GysBERT GysBERT-v2 XLM-R BERTje RobBERT mBERT GloBERTise CRF lexicon
P-event 0.69 0.71 0.62 0.64 0.63 0.63 0.69 057 0.83
R-event 0.40 0.39 0.39 0.36 0.37 043 0.50 030 0.22
Fl-event 0.49 0.48 0.46 0.45 0.45 0.50 0.56 039 0.34
mention acc.  0.55 0.53 0.52 0.47 0.50 0.57 0.64 040 0.34

Table 2: Scores on detecting events averaged over data folds and seeds

GysBERT _ GysBERT-v2

XLM-R  BERTje

RobBERT mBERT GloBERTise

P-event  0.037 0.035 0.046
R-event  0.029 0.026 0.043
fl-event  0.027 0.022 0.037

0.036 0.036 0.034 0.030
0.026 0.033 0.027 0.029
0.021 0.030 0.021 0.021

Table 3: Standard deviation scores between seeds for each model

4.3 Generalization over shifts between

finetuning and testing

Looking at the variation in performance between
datasplits and hence period in time, there is no clear
pattern. Table 4 (Appendix) shows performance
per datasplit of our domain-specific, the worst and
the best performing model. The variation in per-
formance is not negligable: BERTje’s scores vary
between an F1 of .29 and .62. mBERT has slightly
less variation between datasplits, scoring between
.35 and .64. GloBERTise also shows high variance,
scoring between .40 and .72. All three models
score worst on the document from 1713 and best
on that from 1707. Interestingly, both these docu-
ments were annotated in the same annotation round
and both feature a high event density. The cause
of these performance differences per split thus re-
mains unclear (see Section 5).

5 Avenues for Future Work

Many of the findings in this paper need further in-
vestigation to be explained. As mentioned, we find
that the GysBERT models are not representative of
the VOC domain. However, the performance may
also be lower because they were based on the un-
cased version of BERT or because they performed
quality filtering of the pretraining data, discarding
very noisy data. We consciously did not perform
any data filtering for GloBERTise in order to rep-
resent the noise of the domain. Since there is very
little documentation available for the GysBERT
models, it is hard to study these hypotheses further.

It remains unclear why mBERT outperforms
XLM-R. It might be the case that the next sentence
prediction (NSP) objective during pre-training,
which teaches the model a form of topic mod-
elling (Lan et al., 2019), proves helpful in a topic-
dependent event detection task like ours. Similarly,
it might be worthwhile to investigate what makes

BERT models less stochastic than RoBERTa mod-
els. Again, it might be the inclusion of NSP, but
it could also be due to the different input format-
ting (that refrains from using two sentences) or
RoBERTz2’s larger batch size.

Further research could also look into the differ-
ences in performance depending on the datasplit
in finetuning/testing. Since none of the metadata
show correlation with the scores per split, the sub-
ject matter of the tested document might be the
deciding factor in the performance of the model.
This deserves more attention.

6 Conclusion

We have shown that encoder LLMs lack the ability
to generalize to different domains and different
periods in history. None of these models, including
models that have Dutch in their pre-training data,
comes close to a domain-specific model pre-trained
on only 6GB of data on an event detection task in
Early Modern Dutch.

We do not find a clear correlation between sta-
bility over seeds and datasplits and overall perfor-
mance, but we find that ROBERTa models tend to
be more stochastic than BERT models. Multilin-
gual models are more capable of temporal gener-
alization than single-language models. Of the two
multilingual models evaluated, the smaller mBERT
outperformed the larger XLM-R. Contemporary
single-language models are shown to be least capa-
ble of generalization compared to single-language
models that included data from before the 19th cen-
tury. However, even historical models that were
not adapted to the specific domain of the archives
of the VOC company underperformed.

Our research re-iterates that building language
technology that takes the specifics of a domain into
account will outperform general models, even if
they are much larger.
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7 Limitations

In our set-up, we do not experiment with differ-
ent learning rates and epochs in order to keep re-
sults comparable. Hence, using different parame-
ters during finetuning might have an impact on the
results. The findings might also differ for a differ-
ent use case, i.e. focusing on a different task or a
different language variety or domain. For example,
mBERT’s performance might worsen compared
to XLM-R when finetuning and testing on a lan-
guage in a different script, because of its Unicode
character based tokenizer compared to ROBERTa’s
byte-level BPE tokenizer (Tufa et al., 2024).
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GloBERTise GloBERTise BERTje BERTje mBERT mBERT

inv_nr year #tokens #g_ev g _ev_dens #pred_ev f1 #pred_ev  fl #pred_ev  fl

1066 1618 648 58 9% 34.0 0.61 334 0.58 37 0.52
1090 1626 3658 206 6% 178.0 0.46 172.8 0.39 187 0.41
1160 1647 2602 186 7% 127.8 0.53 95 0.36 104 0.40
1348 1679 281 32 12% 20.0 0.53 13 0.43 14 0.42
1430 1686 2088 184 9% 1104 0.56 108 0.47 112 0.47
1439 1686 389 49 13% 26.0 0.58 17.2 0.44 32 0.60
1595 1697 2750 182 7% 145.0 0.57 90.4 0.45 135 0.52
8596 1707 1523 160 11% 135.2 0.72 114.4 0.62 121 0.64
4071 1713 489 62 12% 19.0 0.40 16.2 0.29 15 0.35
7673 1716 611 45 T% 59.4 0.62 44.6 0.47 56 0.53
9001 1720 3423 166 5% 190.8 0.58 128.2 0.38 171 0.49
11012 1736 3881 301 8% 164.0 0.46 237.8 0.42 237 0.48
2665 1746 242 21 9% 11.0 0.62 94 0.58 11 0.56
2693 1747 439 26 6% 17.2 0.55 12.4 0.41 17 0.53
3476 1777 2194 138 6% 142.2 0.59 96.4 0.39 150 0.52

Table 4: Amount of predicted events and F1 scores per fold of various models averaged over 5 runs. Information on
the document used as test data in each fold is provided. #g_ev = number of gold event tokens; g_ev_dens = gold
event density, i.e. percentage of tokens in the test set that refers to an event; #pred_ev: total number of (correctly
and incorrectly) predicted events by the model.

Parameters  Data (tokens / bytes)
BERT (base) 110M 3.3B/16GB
RoBERTa (base) 125M / 160GB
MacBERTh 110M 3.9B

Table 5: Information on English models tested

BERT RoBERTa MacBERTh lex_baseline
P-event 0.24 0.55 0.38 0.83
R-event 0.06 0.25 0.06 0.22
Fl-event 0.08 0.32 0.10 0.34
mention acc.  0.09 0.35 0.08 0.34

Table 6: Scores on detecting the event class averaged
over data folds and seeds

BERT RoBERTa MacBERTh
P-event  0.285 0.070 0.204
R-event 0.076  0.086 0.034
fl-event 0.107  0.082 0.054

Table 7: Standard deviation scores between seeds for
each model

learning_rate
per_device_train_batch_size 32
per_device_test_batch_size 32
num_train_epochs
weight_decay

seeds

5e-05

5
0.01

[23052024, 21102024, 553311, 6834, 888]

Table 8: Parameter settings for finetuning
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