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Abstract

Direct Preference Optimization (DPO) have
proposed offline alternatives to Reinforcement
Learning from Human Feedback (RLHF). In
DPO, each preference pair, which serves as
the foundation for learning, is typically con-
structed by first generating multiple responses
to the same instruction and then annotating
them to indicate the preferred choice. How-
ever, when the responses are highly similar,
the weak preference signal can introduce an-
notation noise, which may hinder model opti-
mization. Additionally, DPO suffers from the
drawback of over-optimizing for verbose gen-
eration. A potential reason is the presence of
length bias in preference datasets, which can
lead to length exploitation. To address these
issues, we propose a DPO-based multi-weight
preference strength and length optimization
(MWPO) method. Specifically, we propose to
reweight preference pairs based on implicit re-
ward margins and response length margins, uni-
fying them through a geometric mixture to gen-
erate synthetic weights for optimization. This
method allows preference pairs with stronger
preference signals or more favorable length
feature to have a more pronounced impact on
model parameters. Moreover, our method does
not require additional annotators. We validate
our method on models of four different scales
across multiple benchmarks. Our method sur-
passes state-of-the-art (SOTA) baselines, out-
performing DPO by up to 8.7% on AlpacaEval
2 while reducing generation length by 9.4% in
the Mistral setting1.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) is a key approach for effectively aligning
large language models (LLMs) with human values

* Corresponding author.
1Our code is available at https://github.com/AIR-hl/

MWPO.

and preferences (Ouyang et al., 2022; Ziegler et al.,
2019; Bai et al., 2022). RLHF further improves
the instruction-following capability and safety of
supervised fine-tuned (SFT) models. In traditional
RLHF pipelines, the reinforcement methods such
as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), have demonstrated their effec-
tiveness in popular LLM applications like Chat-
GPT (Achiam et al., 2023) and Claude (Anthropic,
2024). However, due to its multi-stage online pro-
cess, which involves training reward models and
optimizing policy models, RLHF presents signifi-
cant challenges in training.

Recently, offline preference optimization algo-
rithms, represented by methods like Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024c),
have emerged as highly promising approaches.
DPO reparameterizes the reward function used in
RLHF, eliminating the need for a reward model and
directly learning the policy model from offline pref-
erence data. Due to its simplicity and efficiency,
DPO has been widely adopted in practice.

In offline preference optimization methods, data
quality directly determines alignment performance.
Therefore, making efficient use of existing offline
data is crucial. DPO and its variants, such as
SimPO (Meng et al., 2024), treat each preference
pair equally, making them vulnerable to certain
noise in datasets. Specifically, each preference pair
in an offline dataset is typically constructed by an-
notating preferences for multiple responses sam-
pled from the same prompt. Yang et al. (2024)
and Wang et al. (2024a) also argue that using the
same prompt to construct preference pairs often
results in responses of similar quality, making it
challenging to distinguish between them. In this
scenario, the data with narrow preference margins
can lead to training signals being overshadowed by
noisy preference labels, ultimately impairing the
performance of the trained model. This inspired us
to consider that distinct preference pairs might be
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Figure 1: Overview of our Multi-Weight Preference strength and length Optimization (MWPO) and results on
AlpacaEval 2. Vanilla DPO treats each preference data equally, while MWPO optimizes the preference strength and
length by weighting the data from different aspects. SimPO (Meng et al., 2024) and WPO (Zhou et al., 2024) are
recent SOTA baselines.

more beneficial for model optimization. Therefore,
it may be valuable to explore how to effectively
distinguish and leverage each preference pair in
offline data for model optimization.

Additionally, another significant challenge faced
by preference optimization methods is "verbosity",
where the optimized models tend to generate much
longer responses without necessarily improving
the generation quality. Analysis shows that policy
models trained with DPO generate responses that
are significantly longer than the base model (Park
et al., 2024). This problem is related to bias in
the length distribution of the training data, where
annotators typically prefer more detailed responses,
causing the chosen responses to be longer than
the rejected responses. Models may exploit this
bias, leading to a statistically significant increase
in response length.

To address these issues, in this paper, we propose
a DPO-based multi-weight preference strength and
length optimization (MWPO) method. As shown in
Fig. 1, unlike DPO which treats each data equally,
our method measures the preference data from two
aspects. First, to effectively distinguish and lever-
age each preference pair, we argue that during
training, the policy model can act as a preference
discriminator leveraging previously learned prefer-
ence information to assess preference differences
in new data. Strongly preferred data are given more
attention during training. To achieve this, we pro-
pose a reward-margin weight. Second, to address
the potential length bias issue, we construct an
effective length-controlled weight based on the
scaled length margin between the chosen and re-

jected responses. Finally, we can integrate both or
one of the weights with the loss of DPO to obtain
the final training objective. Our contributions are
summarized as follows:

• We propose a preference-weighting method
that leverages implicit rewards from the pol-
icy model itself during training, without ad-
ditional reward models. The preference pairs
with higher preference strength will have a
greater impact on model parameters.

• We propose a length-controlled method by
weighting the preference data based on the
scaled length margin between the chosen and
rejected responses. Our length-controlled
weight can effectively mitigate length ex-
ploitation and flexibly adjust the constraint
strength through coefficients.

• We use four LLM models of different archi-
tectures and parameter scales to validate the
effectiveness of our method, achieving bet-
ter performance than DPO and recent SOTA
baselines on multiple benchmarks, and signifi-
cantly reducing the average generation length.

2 Related Work

RLHF has become an essential method to align or
enhance the performance of LLMs (Ouyang et al.,
2022; Touvron et al., 2023; Dubey et al., 2024;
Young et al., 2024; Jiang et al., 2024; Li et al.,
2023b). RCLD (Yang et al., 2024) employs con-
trasting instructions to create differentiated pref-
erence data. West-of-N (Pace et al., 2024) sam-
ples multiple responses and selects the best and
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the worst response through an additional reward
model to construct a preference pair. However,
reinforcement learning methods still suffer from
data and training inefficiency due to the need for re-
peated sampling and policy updates during training
(Rafailov et al., 2024c; Tang et al., 2023).

More offline methods, exemplified by DPO
(Rafailov et al., 2024c), typically optimize policy
models using offline preference dataset without ad-
ditional reward model. GPO (Tang et al., 2023) uni-
fies several offline methods, including DPO, IPO
(Azar et al., 2024), and SliC (Zhao et al., 2023).
KTO (Ethayarajh et al., 2024) learns from a binary
signal of whether an output is (un)desirable. WPO
(Zhou et al., 2024) simulates the on-policy learning
process by adding weights to the optimization ob-
jective of DPO. None of these methods account for
the potential noise introduced by similar responses.

Another significant challenge in reinforcement
learning is over-optimization, where reward scores
from the reward model increase, but the quality
of model generation deteriorates, often becom-
ing excessively verbose (Zheng et al., 2023; Pitis,
2023; Rafailov et al., 2024a; Lu et al., 2024). IPO
(Azar et al., 2024) mitigates the risk of DPO over-
optimization through theoretical analysis. Meng
et al. (2024) propose SimPO, which avoids reliance
on a reference model by using length-normalized
rewards to prevent verbose responses. R-DPO pro-
posed by Park et al. (2024), effectively controls the
response length by simply adding a length regular-
ization term to the implicit reward.

In this work, we extend the DPO method by
jointly optimizing the preference strength and
length from different aspects. Unlike existing of-
fline methods, we reweight each preference pair
according to its preference strength. Additionally,
we introduce a length-controlled weight to replace
the additive length regularization, which effectively
mitigates length exploitation and allows for flexible
adjustment of the constraint strength through coef-
ficients. We benchmark our method against a series
of offline preference optimization methods, includ-
ing DPO, SimPO, WPO, and et al. Results demon-
strate that our method achieves a good performance
and controls the generation length effectively.

3 Method

In this section, we first present the theoretical back-
ground of RLHF and DPO (§3.1). Then, we pro-
pose two distinct weights: one for measuring pref-

erence strength (§3.2) and the other for addressing
length bias (§3.3). Finally, we construct a mixed
weight approach (§3.4) and provide a theoretical
analysis of our method (§3.5).

3.1 Preliminary
DPO (Rafailov et al., 2024c) unifies reward mod-
eling and reinforcement learning fine-tuning of
RLHF into a single-stage optimization through the-
oretical derivation. Specifically, DPO reparame-
terizes the reward model (RM) rϕ as the implicit
reward function follows:

r(x, y) = β log
πθ(y|x)
πref (y|x)

+ Z(x)

where πθ and πref are policy model and reference
model respectively. πθ and πref are usually ini-
tialized from same SFT model; Z(x) is the parti-
tion function that can be eliminated in contrastive
loss; β is a hyperparameter that adjust the con-
straint strength. By maximizing the reward mar-
gin between the chosen response yw and the re-
jected response yl based on the Bradley-Terry (B-
T) (Bradley and Terry, 1952) model, the DPO loss
is obtained as follows:

LDPO(πθ;πref ) = −E(x,yw,yl)∼D[log σ(rw − rl)]

where rw and rl denote the implicit reward of yw
and yl, respectively; σ stands for sigmoid function.

R-DPO (Park et al., 2024) introduces a length
regularization term α|y| into the implicit reward
function:

r(x, y) = β log
πθ(y|x)
πref (y|x)

+ Z(x)− α|y|

where |y| is the token-length of the response y, then
gets the regularized-DPO objective:

LR−DPO (πθ;πref ) = −E(x,yw,yl)∼D[log σ(rw − rl

−α(|yw| − |yl|))]

3.2 Reward-margin Weight
The training of DPO essentially constitutes a re-
ward modeling process utilizing the B-T model,
thereby we assume that the model itself can provide
reference information on the preference differences
in the training data. This judgment is initially based
on the model’s prior knowledge and is continuously
reinforced throughout training. Specifically, during
the training process, the implicit rewards calcu-
lated by the model for the chosen and rejected re-
sponses are used to construct a weighted judgment
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on the preference difference between a pair of data.
To this end, we propose a reward-margin weight
method to measure preference strength, which can
effectively distinguish and utilize each preference
pair in offline data for model optimization.

wrw(yw, yl, x) = σ(rw − rl) (1)

Furthermore, the implicit reward equation, ex-
cluding the partition function Z(x), can be re-
formulated at the token-level from its original
sequence-level representation, as Eq.2 (the detailed
derivation is provided in Appendix A).

r(x, y) = β

|y|∑

t=1

log
πθ(y

(t)|x; y≺t)

πref (y(t)|x; y≺t)
(2)

where |y| denotes the length of sequence y, y(t) de-
notes the t-th token and y≺t denotes all the tokens
before the t-th token in sequence y. According to
the Theorem 1 in Rafailov et al. (2024b), DPO can
learn the optimal strategy for any per-token reward
function; therefore, the sequence-level implicit re-
ward in the contrastive loss can be viewed as the
cumulative sum of token-level implicit rewards. It
is intuitive that the calculation of implicit rewards
introduces a strength bias. Even if two responses
have similar single-token reward, the cumulative
calculation leads to a higher total reward for longer
responses, regardless of whether their ground-truth
reward is actually higher. To mitigate the afore-
mentioned bias, we introduce a second weight to
control for length, with specific details to be ex-
plained in §3.3.

3.3 Length-controlled Weight

As mentioned in §3.1, R-DPO (Park et al., 2024) in-
troduces a length regularization term in the implicit
rewards of DPO to impose constraints. However,
in practice, we find that due to possible significant
variations in reward values across different datasets,
policy models and hyperparameters settings, incor-
porating the length control term additively may
result in optimization challenges. Therefore, we
propose to address the potential length bias issue
by constructing a simple length-controlled weight
based on the scaled length margin between the cho-
sen and rejected responses. We introduce a length-
controlled term λlc · (|yl| − |yw|), which is used as
a weight to the data through the sigmoid function:

wlc = σ (λlc · (|yl| − |yw|) (3)

where λlc is a scaling factor. As the length of
the chosen response exceeds that of the rejected
response, the length-controlled weight decreases,
diminishing the impact of these preference pairs.

3.4 Mixed Weight
For multiple weights, we can apply a geometric
mixture approach to unify Eq.1 and Eq.3 into a sin-
gle mixed weight, as shown in Eq.4. Intuitively, we
prefer the data with a certain degree of preference
strength and minimal length bias.

wmixed = wα
rw · w(1−α)

lc (4)

By adjusting the mixing coefficient α, the influ-
ence of different weights on the mixed weight can
be altered. Theoretically, the sum of the control
coefficients for wrw and wlc need not equal 1, but
for simplicity in subsequent experiments, we only
consider the case where their sum equals 1. Com-
bining this mixed weight with the DPO loss yields
the final training objective, as follows:

LMWPO = wmixed · LDPO (5)

3.5 Theoretical Analysis of MWPO
To further understand the impact of the constructed
weights on training, a common approach is to an-
alyze the gradients of the loss function to uncover
the underlying mechanisms. The gradient of the
DPO loss function with respect to the parameters θ
is given by:

∇θLDPO = −βE(x,yw,yl)∼D
[
σ(rl − rw)·

(
1

π(yw)
∇θπ(yw)−

1

π(yl)
∇θπ(yl)

)] (6)

Since the weights we constructed do not need
backpropagation in training, the gradient for
MWPO differs from DPO only by the weight term,
wDPO = σ(rl − rw). First, we focus on the com-
bined weight term consist of wα

rw · wDPO as Eq.7:

wα
rw · wDPO = σ(rw − rl)

α · σ(rl − rw) (7)

In the raw gradient formula of DPO, the greater
the difference between rl − rw, the higher the
weight assigned, meaning a punishment will be
given when the reward estimate is wrong. However,
our wrw behaves oppositely, assigning a higher
weight when the reward estimate is correct. Does
this cause the model to focus solely on simple
data? The answer is "No". The combined weight
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Figure 2: Function plots for weights under different constraint strengths. (a) Combination of reward-margin weight
and the weight in the gradient of DPO. (b) Length-controlled weight with different control strengths.

term for different values of α is shown in Fig. 2a.
It is a unimodal function with a negative extremum.
Within a certain range of values, it does not change
the fundamental properties of the DPO gradient
weight, but rather reduces the weight when the es-
timated bias is too large. We suggest that, if the
rejected response has higher model confidence or
the chosen response has lower confidence based
on previously learned preferences, reducing the
weight to update parameters cautiously helps pre-
vent potential noise from interfering with the cur-
rent preference distribution. We will conduct more
in-depth analysis in subsequent experiments.

4 Experimental Setup

In this section, we begin with the models and train-
ing settings (§4.1); followed by the evluation bench-
marks (§4.2) and baselines (§4.3).

4.1 Models and Training Settings
Due to the potentially significant differences in
behavior across models, we select four models
with varying parameter scales to ensure the robust-
ness of the results. These models include Mistral-
7B-Base (Jiang et al., 2023a), Llama3-8B-Instruct
(AI@Meta, 2024a), Llama3.2-3B-Base (AI@Meta,
2024b) and Qwen2.5-1.5B-Base (Team, 2024).

For all base models without instruction fine-
tuning, we follow zephyr (Tunstall et al., 2023)
and fine-tune them on Ultrachat_200k (Ding et al.,
2023; Tunstall et al., 2023) to obtain the SFT
models. We perform preference optimization on
ultrafeedback-binarized2 (Tunstall et al., 2023),

2https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized

which contains 64k preference pairs derived from
the original Ultrafeedback dataset (Cui et al., 2024).
For simplicity, we refer to it as Ultrafeedback
throughout the paper.

For the instruction-tuned models, we follow
Meng et al. (2024), using off-the-shelf instruction-
tuned models as the SFT models and utilizing the
sampled preference data3 annotated by PairRM
(Jiang et al., 2023b) to perform training.

We perform full-parameter fine-tuning for all
models. To minimize the impact of hyperparame-
ters, we use the Mistral weights for the baselines,
which are trained with full parameters and open-
sourced by the princeton-nlp group following an ex-
tensive hyperparameter search. For the other mod-
els, we conduct a thorough hyperparameter search
to ensure a fair comparison. Detailed training and
evaluation settings are provided in Appendix B.

4.2 Evaluation Benchmarks

For the Mistral setup, we use AlpacaEval 2 (Li
et al., 2023a) which is a popular opened general
automated metric that measures LLMs’ alignment
with human preferences using 805 representative
instructions. For each instruction, we follow the
default evaluation setting that using GPT-4-1106-
preview as the annotator. We report the length-
controlled (LC) win-rates (Dubois et al., 2024)
against GPT-4 and the average output length. LC
win-rates are a debiased version of the win-rates
that control for the length of the outputs.

Additionally, we also make a more evaluation
of each method on benchmarks for multiple down-

3https://huggingface.co/datasets/
princeton-nlp/llama3-ultrafeedback
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stream tasks, including: GSM8K (Cobbe et al.,
2021), MMLU (Hendrycks et al., 2021), ARC
(Clark et al., 2018), TruthfulQA (Lin et al., 2021),
GPQA (Rein et al., 2023). We report the strictly
match accuracy of conditional benchmarks.

For the other models, since the high cost of using
GPT-4 for evaluation, we choose DeepSeek-v3 as
the proxy annotator and report the LC win-rate on
AlpacaEval 2. We evaluate nine different models
using DeepSeek and find that the results exhibit a
high correlation with the official GPT-4 evaluation,
demonstrating the effectiveness of the proxy model.
Detailed results are provided in Appendix C.

4.3 Baselines

We compare our method against recent state-of-the-
art offline preference optimization methods. DPO
(Rafailov et al., 2024c) is the most representative
pairwise preference optimization method which
is without reinforcement learning; RRHF (Yuan
et al., 2024) uses probalities rank loss and includes
an SFT objective; IPO (Azar et al., 2024) is a
very theoretically method that analyzes the pos-
sible risk of over-optimization in DPO and avoids
DPO’s assumptions by using a squared loss; KTO
(Ethayarajh et al., 2024) uses economic theory and
can learn from unpaired preference data; CPO (Xu
et al., 2024) constructs a contrastive sequence likeli-
hood loss without reference model through formula
derivation; R-DPO (Park et al., 2024) introduces
an additional regularization term to prevent length
exploitation; WPO (Zhou et al., 2024) adapts off-
policy data to resemble on-policy data more closely
by reweighting preference pairs according to their
current probability. SimPO (Meng et al., 2024)
uses average probability to eliminate length re-
liance and eliminate the reference model.

5 Experimental Results

In this section, we first report the group comparison
experiments (§5.1) against strong baselines on a
series benchmarks, our methods make a superior
performance and length control. Then, we study
the two weights in Section 5.2 and 5.3 respectively.

5.1 Main Results

The main results in Table 1 show that our method
exhibits superior overall performance in the Mis-
tral setting. On AlpacaEval 2, our MWPO achieves
LC win-rate of 23.8%, significantly outperforming
most baselines. Notably, compared to DPO, our
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Figure 3: The rewards distributions of the methods as
evaluated by Armo on Ultrafeedback and AlapcaEval.

model demonstrates 8.7% improvement in LC win-
rate, while also outperforming DPO in generation
length. Additionally, MWPO outperforms recent
SOTA methods SimPO and WPO in LC win-rate
and achieves a 9.4% reduction in average genera-
tion length. We also report the win-rate results of
different mixture methods in Appendix D.1.

On the five downstream task benchmarks, we
also achieve notable improvements over DPO, with
average strict match accuracy of 1.2%, particularly
in ARC (4%), and TruthfulQA (4.4%). Compared
with all baselines, our model achieves the high-
est average accuracy. The overall experimental
results demonstrate that our model exhibits supe-
rior comprehensive performance across multiple
metrics, while achieving a good balance between
performance and response length.

Table 2 presents the LC win-rates of the prefer-
ence optimized models compared to GPT-4 and
the SFT model on AlpacaEval 2, as evaluated
by DeepSeek-v3, along with the average gener-
ation length. We achieve the highest LC win-rate
against GPT-4 across all setups and the highest
win-rate against SFT, except for the Llama-3-8B-
instruct setup. The results for GPT-4 indicate that
our method generates more high-reward responses,
while the results for SFT show that our method pro-
duces a number of high-reward responses overall.
In terms of length control, our method also exhibits
stability, consistently outperforming DPO.

In addition, we further report the inference per-
formance of the model under the Mistral setup
across different datasets in Fig. 3. We use the proxy
reward model ArmoRM-Llama3-8B-v0.1 (Wang
et al., 2024b) to obtain the rewards distributions of
generations on Ultrafeedback-binarized test data
(Fig. 3a) and AlpacaEval dataset (Fig. 3b), respec-
tively. It is evident that our method results in re-
sponses with a higher rewards across both datasets
than DPO.
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Mistral-7B-Base

Method AlpacaEval 2.0 GSM8K ARC-C TruthfulQA MMLU GPQA Average
LC Avg. Len

SFT 8.4 914 42.61 55.97 28.27 57.17 29.69 42.74
DPO 15.1 1719 33.13 59.64 46.14 57.46 28.12 44.90
RRHF 11.6 1463 38.29 50.17 32.31 51.55 28.55 40.17
IPO 13.1 1380 36.01 55.89 38.19 58.55 27.23 43.17
KTO 14.4 1144 41.39 60.17 41.01 59.04 25.67 45.55
CPO 8.9 1827 34.57 51.19 36.59 56.45 32.14 42.18
R-DPO 17.4 1335 30.10 56.06 40.64 58.48 27.23 42.50
SimPO 20.8 2070 33.59 60.15 43.45 58.25 27.47 44.58
WPO 23.5 1720 31.31 61.26 40.51 58.53 25.44 43.34

Ours 23.8 1557 30.01 63.66 50.53 57.37 29.24 46.16

Table 1: Main results of the Mistal settings on benchmark datasets and AlpacaEval 2. All models, have undergone
extensive hyperparameter searching. The Avg. Len refers to the average number of output tokens for AlpacaEval.

Qwen2.5-1.5B-Base Llama3.2-3B-Base Llama3-8B-Instruct

Method vs GPT-4 vs SFT Avg. Len vs GPT-4 vs SFT Avg. Len vs GPT-4 vs SFT Avg. Len

SFT 4.81 - 1106 6.21 - 1075 29.76 - 1920
DPO 11.17 76.28 1871 11.60 75.91 1960 43.12 73.07 1883
R-DPO 9.90 77.15 1335 10.41 75.18 1815 47.44 75.03 1893
SimPO 10.95 75.75 2154 7.64 49.80 1038 46.30 80.19 1870
WPO 12.42 73.87 2005 11.42 75.08 1896 33.04 58.59 1840
Ours 12.87 81.85 1656 14.89 76.81 1816 49.48 74.97 1703

Table 2: LC win-rate evaluated by DeepSeek-v3 on AlpacaEval 2, across models with varying architectures and
parameter scales.

5.2 Study on Reward-margin Weight

Reward-margin weight improves the perfor-
mance but leads to longer generation. We train
Mistral with only reward-margin weight and in-
ference on AlpacaEval dataset, then compute the
LC win-rates against GPT-4 generation judged by
DeepSeek-v3, the result is showed in Fig. 4a. Due
to the resource constraints, we only conducted ex-
periments with LoRA. The LC win-rates are con-
sistently higher than those of DPO, but at the same
time, as the control strength (α) increases, the av-
erage response length also increases significantly,
and exceeds that of the DPO generation consis-
tently. This indicates that, despite the increase in
response length, the diversity and detail of the DPO
responses also improve.
Reason analysis for longer generation with only
reward-margin weight. Our experiments and anal-
ysis reveal that the positive correlation between the
reward margin and the length margin results in
longer generations. As discussed in Section 3.2
regarding Eq.2, the cumulative calculation of im-

plicit reward might make longer responses more
likely to attain higher reward values under same
conditions. And, training on a dataset with positive
length bias, where chosen responses are generally
longer than rejected responses, is also more likely
to cause the model to assign higher token rewards
to a longer response.

The results in Fig. 5d also shows that the implicit
reward margin and length margin are positively
correlated under current settings. Consequently,
preference pairs with larger length margins tend to
carry higher reward-margin weights, thereby exert-
ing a greater impact on model parameters.

5.3 Study on Length-controlled Weight

Length-controlled weight can control the gener-
ation length effectively. We train Mistral with only
the length-controlled weight and other settings are
the same as in Section 5.2, the result is shown in
Fig. 4b. As expected, the average response length
decreases with increasing control strength, consis-
tently remaining more than 20% shorter than that
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Figure 4: Ablation results for different weights with different control coefficient on AlpacaEval dataset. (a)
Performance of DPO with only reward-margin weight. (b) Performance of DPO with only length-controlled weight.
(c) Performance with complete mixed weight (MWPO).
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Figure 5: The distrubtion statistics of preference data when training DPO. We use a trained DPO checkpoint and
perform statistics both on the out-of-sampled data and out-of-distribution data. It should be noted that (a) and (b)
illustrate the relationship between negative log probability and length. rw margin denotes implicit reward margin.

of DPO. LC win rates are higher than DPO when
the control strength is moderate, but if the control
strength is too high, it may lead to overly brief re-
sponses that omit key information. We report the
results on the influence of another hyperparameter,
λlc, in Appendix D.2.

By eliminating the common components be-
tween the chosen response and rejected response
in Eq.6, we can deduce Eq.8, it becomes evident
that the direction of optimization with respect to
πθ(yw | x) and πθ(yl | x), the longer response is
likely to get bigger gradient. Fig. 5a and 5b show
that under currunt settings the response length and
logp are negative correlated, Fig. 5c shows that the
data with larger length margin is more likely have
a lower logp margin, this implies that the larger the
length margin, the more the chosen response will
play a role in gradient updates.

1

π(yw)
∇θπ(yw)−

1

π(yl)
∇θπ(yl)

=
∇θπ(yw)∏|yw|

t π(y
(t)
w |y≺t

w )
− ∇θπ(yl)∏|yl|

t π(y
(t)
l |y≺t

l )

(8)

Liu et al. (2024) and Feng et al. (2024) suggest that
a potential reason for verbosity in DPO is the im-

balanced gradient updates, which cause the model
tend to generate longer chosen responses. Theoret-
ically, even when a negative length bias exists in
the dataset, where the chosen response is generally
shorter than the rejected response, the model still
tends to generate relatively longer responses. How-
ever, our results do not align with this expectation.
We conduct additional exploration and report the
findings in Appendix D.3.

Fig. 4c shows the result with complete mixed
weight in different mixture coefficient settings. It
is obvious that MWPO with mixed weight performs
better compared to DPO, while also maintaining
relatively shorter response length. The results show
that using our mixed weight can achieve a better
balance between performance and response length.
We also leave some case examples in Appendix E.

6 Conclusion

In this work, we propose MWPO, an effective
method that reweights preference pairs using multi-
ple weights based on preference strength and length
bias, respectively. Extensive experiments demon-
strate that it can effectively control verbosity and
improve overall performance. Furthermore, we
analyze each weight to illustrate its necessity and
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effectiveness. We also identify an inherent flaw in
DPO that may lead to length exploitation, repre-
senting a potential avenue for future breakthroughs.

Limitations

While our method builds upon DPO and demon-
strates promising overall performance with shorter
generation length, it still has certain limitations:

• By leveraging the distribution feature of the
dataset, we are able to control the generation
length; however, this does not fundamentally
address the length bias issue introduced by
the accumulation calculation in DPO. Future
work will be on how to eliminate length ex-
ploitation from the perspective of formulas.

• Due to resource constraints, our experiments
are limited to four models. Further experi-
ments are required to validate the scalabil-
ity and generalization of the method across a
broader range of models and datasets.

• Our method involves several hyperparameters
that were manually set based on empirical ex-
perience. Among them, the control coefficient
used to adjust constraint strength has a sig-
nificant impact on the results. In the future,
we plan to explore methods for reducing or
automatically tuning these hyperparameters.
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A Mathematical Derivations and Analysis

A.1 Formula Derivations
Due to the auto-regressive nature of LLM, given a
prompt x, the probability of a response y under a
policy π is:

π(y|x) =
|y|∏

t=1

π(y(t) | x; y≺t)

and the log probability is:

log π(y|x) =
|y|∑

t=1

log π(y(t) | x; y≺t)

where |y| denotes the length of sequence y and y≺t

denotes all the tokens before the t-th token in y.
Finally, we get the token-level implicit reward

formula without partition function as follows:

r(x, y) = β log
πθ(y | x)
πref (y | x)

= β

|y|∑

t=1

log
πθ(y

(t) | x; y ≺ t)

πref (y(t) | x; y ≺ t)

The theorem in Rafailov et al. (2024b) proves
that given a reference policy πref and a parame-
ter β > 0 all reward classes consistent with the
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Bradley-Terry models can be represented with the
a re-parameterization of the form as follow:

r(x, y) = β log π(y | x)− β log πref (y | x)

A.2 Theory Analysis
In the following, we will provide an analysis of
the underlying principles of our approach from one
plausible theoretical perspective.

We begin by adopting the definition of equiva-
lent reward functions from the DPO paper: Two
reward functions r(x, y) and r′(x, y) are equivalent
iff r(x, y)− r′(x, y) = f(x) for some function f .

Reward Equivalence. Given our linear parame-
terization r(x, y) = ⟨ϕ(x, y), θ∗⟩, we can demon-
strate that the DPO reward:

rdpo(x, y) = β
[
⟨ϕ(x, y), (θ − θref)⟩
− (logZθ(x)− logZref(x))

]

belongs to the same equivalence class as r(x, y).
The difference

r(x, y)− rdpo(x, y) = β log
Zθ(x)

Zref(x)

depends solely on x, satisfying the equivalence
criterion (Rafailov et al., 2024b).

Noise-Aware Preference Modeling. Assuming
the true reward difference r(x, y1) − r(x, y2) is
corrupted by additive noise ϵ during annotation,
preferences are generated by (⟨∆ϕ(x), θ∗⟩+ ϵ) ,
where ∆ϕ(x) = ϕ(x, y1)− ϕ(x, y2).

This leads to our Bradley-Terry negative log-
likelihood objective:

LRM(θ) = −Ex,ϵ

[
log σ(⟨∆ϕ(x), θ⟩)
· I(⟨∆ϕ(x), θ∗⟩+ ϵ > 0)

+ log σ(−⟨∆ϕ(x), θ⟩)
· I(⟨∆ϕ(x), θ∗⟩+ ϵ ≤ 0)

]

Optimality Analysis. Taking the gradient with
respect to θ, the optimal solution satisfies:

Ex [σ(⟨∆ϕ(x), θ⟩)] = Ex,ϵ [σ(⟨∆ϕ(x), θ∗⟩+ ϵ)]

Applying Jensen’s inequality to the concave σ(·)
function:

Ex,ϵ [σ(⟨∆ϕ(x), θ∗⟩+ ϵ)] ≤ Ex [σ(⟨∆ϕ(x), θ∗⟩)]

This inequality implies θ must be scaled down
relative to θ∗ to maintain equality. Larger margin

examples where ⟨∆ϕ(x), θ∗⟩ is large mitigate the
noise impact by reducing Eϵ[σ(·+ ϵ)] sensitivity to
ϵ. Data exhibiting a large reward margin during the
training process typically indicates stronger prefer-
ence strength, thus making it more likely to satisfy
the conditions mentioned above.

B Training and Evaluation Details

For the Qwen2.5-1.5B-Base, we train the SFT mod-
els using the Ultrachat-200k dataset with the fol-
lowing hyperparameters: a learning rate of 1e-5, a
maximum sequence length of 1024, a global batch
size of 64, and a cosine learning rate scheduler with
a 10% warmup ratio for one epoch. For the Llama-
3.2-3B-Base model, we utilize an open-source SFT
checkpoint trained on Ultrachat-200k4.

The main training hyperparameters and the hy-
perparameter search range for preference optimiza-
tion are reported in Tables 3 and 4. All training
experiments in this paper are conducted using the
trl5 library and performed on 8× 910b-64GB As-
cend NPUs.

For all datasets, we generate responses utilizing
vllm (Kwon et al., 2023), an efficient framework for
batched inference with LLMs. We sampling tokens
with different temperature: 0.7 for AlpacaEval and
0.5 for Ultrafeedback testset.

For AlpacaEval 2, we use the official tool to
evaluate on AlpacaEval 26. The annotator is con-
figured to use "weighted_alpaca_eval_gpt4_turbo",
and "gpt4_turbo" for baseline generation.

For downstream benchmarks, we select differ-
ent downstream tasks commonly used to conduct
a more comprehensive assessment. We use lm-
evaluation-harness (Gao et al., 2024) as the evalu-
ation tool and evaluate in bfloat16 precision. The
few-shot and batch settings as shown in Table 5.

C Correlation between GPT-4 and
DeepSeek on LC Win-Rate of
AlpacaEval 2

To ensure the effectiveness of the proxy annota-
tor, we selected 9 different model architectures
and sizes with open-source weights, along with
AlpacaEval 2 evaluation results. The results are
shown in Fig. 7, where the Spearman correlation
between the DeepSeek-v3 results and GPT-4 re-

4https://huggingface.co/tanliboy/llama-3.
2-3b-sft

5https://github.com/huggingface/trl
6https://github.com/tatsu-lab/alpaca_eval
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Mistral-7B-Base Llama-3-8B-Instruct Llama-3.2-3B-Base Qwen2.5-1.5B-Base

Batch 2 2 8 16
Accumulations 8 8 2 1
Max Seq Len 1,024 1,024 1,024 1,024

Max Prompt Len 512 512 512 512
Lr 5e-7 8e-7 8e-7 1e-6

Warmup Ratio 0.1 0.1 0.05 0.05

Table 3: The main hyperparameters of MWPO.

Method Hyperparameters Searching

DPO β ∈ {0.1, 0.05, 0.01}

R-DPO β ∈ {0.1, 0.05, 0.01}
α ∈ {0.01, 0.05, 0.1}

SimPO β ∈ {1, 2, 2.5, 5}
γ ∈ {0.1, 0.5, 1, 1.5}

MWPO α ∈ {0.4, 0.6, 0.8}
λ ∈ {0.01}

Table 4: The hyperparameter search range for Methods.

Type Benchmark Few-shot

MATH GSM8K 8 CoT

World knowledge TruthfulQA 0

Language Understanding MMLU 5

Common sense reasoning ARC-C 25

Disciplinary knowledge GPQA 0

Table 5: The main settings of Downstream tasks.

sults is 1.00, demonstrating that the proxy annota-
tor maintains excellent consistency.

D Exploration and Supplementary
Experiments

D.1 Methods of Weight Mixture
The motivation for using geometric mean rather
than arithmetic or harmonic mean is that geometric
mixture is a common way of weight fusion between
arithmetic and harmonic. The theoretical and ex-
perimental explanations as follows:

Balanced Contribution of Multiple Signals:
The geometric mean provides a balanced multi-
plicative fusion of the two signals. It elevates the
combined weight only if both components are suffi-
ciently large, reflecting a kind of joint contribution.
Meanwhile, it is less extreme than the harmonic

mean in penalizing a single small weight, preserv-
ing a moderate influence from each signal.

Log-Space Smoothness: The geometric mean
can be expressed as:

wα
1 · w1−α

2 =⇒ α log
(
w1

)
+
(
1− α

)
log

(
w2

)

This log-space interpolation often yields smoother
gradients during training compared to arithmetic
and harmonic. It effectively avoids the tendency of
arithmetic to be dominated by large values or har-
monic to be overly penalized by very small values.

Experimental Results. We conduct experi-
ments on Qwen2.5-1.5B-Base using different mix-
ture methods and evaluate the outputs with Al-
pacaEval 2, judged by DeepSeek-V3. As shown
in Table 6, the geometric mean outperforms both
the arithmetic and harmonic means in improving
the performance while effectively controlling the
average generation length. This suggests that a mul-
tiplicative approach to combining the two weight
signals is particularly effective in balancing reward
disparities and generation-length variations under
our experimental setting.

D.2 Experiments of Different λlc

Regarding the hyperparameter λlc, we did not per-
form searching for it, across all model settings, we
fixed λlc = 0.01 simply, as it primarily serves to
scale the length margin into a suitable range. We
mainly consider that the length margins for the cur-
rent dataset predominantly fall within the range of
−500 ∼ 500, as shown in Fig. 6a. The scaling
coefficient λlc = 0.01 effectively normalizes these
margins, ensuring that the differences between data
are well-distinguished under the sigmoid function.
This choice strikes a balance between sensitivity to
length variations and numerical stability during op-
timization. Theoretically, excessive scaling weak-
ens the effect of positive-margin data by pushing
most values toward the sigmoid’s negative region,
while moderate scaling yields a gentler transforma-
tion.
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Figure 6: Function plots for weights under different constraint strengths. (a) Distribution of length margins for
different preference datasets. (b) Generation length of DPO on dataset and its reverse. (c) The relation between the
length margin and implicit reward margin.

Geometric Arithmetic Harmonic

LC win-rate 12.87 10.24 10.17

Average Length 1656 1,705 1504

Table 6: AlpacaEval 2 results for different Weight mix-
ture methods on Qwen2.5-1.5B-Base.

λlc 0.005 0.01 0.025 0.05

LC win-rate 11.21 12.87 9.75 1.72

Average Length 1839 1,656 1,326 227

Table 7: The results of different scale parameters.

Further, we add experimental results for the hy-
perparameter λlc. The results are shown in Table
7.

D.3 Experiments of Verbosity in DPO

As shown in Fig.6a, the preference datasets ex-
hibit varying degrees of length bias, where uf in-
dicates HuggingFaceH4/ultrafeedback_binarized
(Cui et al., 2024), uf-llama indicates princeton-
nlp/llama3-ultrafeedback-armorm (Meng et al.,
2024), hh-rlhf indiacates Anthropic/hh-rlhf (Bai
et al., 2022). orca-pairs indicates argilla/distilabel-
intel-orca-dpo-pairs (Lian et al., 2023).

To further verify the conclusion proposed by Liu
et al. (2024) and Feng et al. (2024) as mentioned
in Section 5.3, we train Qwen2.5-1.5B-Base us-
ing vanilla DPO on the orca-pairs dataset, where
the chosen responses are generally shorter than the
rejected responses. We then reverse the chosen
and rejected columns in the dataset and train DPO
again. We report the average generation length on
AlpacaEval 2 in Fig.6b for both DPO and DPO-
reverse. Surprisingly, DPO and DPO-reverse ex-

hibit almost identical length deviations. This sug-
gests that if verbosity in DPO were due to a prefer-
ence for longer chosen responses during gradient
updates, the two datasets should not produce such
similar length deviations. The length deviation of
the dataset itself remains a significant factor, in-
dicating that balancing this aspect during the con-
struction of preference data in the future should be
a priority.

Additionally, as shown in Fig.6c, since the length
margin is negatively correlated with the reward mar-
gin under the current data distribution, the prefer-
ence data with a small length margin is more likely
to obtain a large reward-margin weight, making it
easier for the model to learn the length preference.

E Case Studies

We present two examples from AlpacaEval 2 in
Tables 8 and 9, where MWPO generates superior
responses with fewer tokens compared to vanilla
DPO.

In the first example, DPO’s response mentions
irrelevant content such as "...are typically server-
side languages like Python, Ruby, Java, or PHP
that process server requests and handle data storage
and retrieval." which are unrelated to the question.
In the second example, DPO’s response contains
excessive details about the Southern Ocean, which
are not pertinent to the issue.

In both cases, MWPO’s responses accurately ad-
dressed the questions without unnecessary content,
with language logic closely aligned with GPT-4.
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Input Give a brief summary of the intention of the dialogue that just happened.
Customer: Hi there, I’m looking for a new phone.
AI: Hi! What type of phone are you looking for?
Customer: I’m not sure. Maybe something with a good camera?
AI: We have a few phones with great cameras. Would you like to see some options?
Customer: Yeah, that would be great.

DPO
(480 tokens)

The intention of the dialogue is for the customer, who is seeking a new phone, to receive
recommendations from an AI for phones with good cameras based on their preferences. The
AI aims to provide options for the customer to help them make an informed decision.

MWPO
(473 tokens)

The dialogue between the customer and AI aims to guide the customer in finding a new phone
with a focus on the camera feature. The AI provides suggestions and recommendations by
presenting phone options with excellent camera capabilities.

GPT-4 The customer approached with the intention of finding a new phone, particularly one with
a good camera. The AI, serving as a sales assistant or customer service representative,
acknowledged the customer’s need and offered to present several phone options that feature
high-quality cameras. The customer expressed interest in seeing these options. The dialogue’s
purpose is to assist the customer in finding a suitable phone with a good camera.

Table 8: Case examples of AlpacaEval 2, generated by GPT-4 and Mistral trained on DPO, MWPO.
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Input Give some examples of what people usually say in the given social situation.
when someone arrives safely

DPO
(819 tokens)

1. "Welcome back! I’m so glad you made it safely."
2. "How was your journey? Everything went smoothly, I hope?"
3. "It’s great to see you here unscathed!"
4. "Safe travels! I’m thrilled to hear you arrived in one piece."
5. "Your timely arrival is a testament to your safe and sound travel."
6. "Your safe arrival is a relief! How was your trip overall?
7. "I’m delighted to see you safely here. Any interesting experiences during your travels?
8. "Arrival without any mishaps! That’s fantastic news!
9. "Relief and cheer! We’re overjoyed to have you here safely."
10. "It’s a pleasure to see you in good health and spirits after a successful journey."
11. "Arrival without any hiccups! Congratulations!"
12. "Safe and sound is the best way to describe your arrival!"
13. "The journey was kind to you, and you’ve arrived safely. Bravo!"
14. "We’re thrilled to see you in one piece after your travels."
15. "Congrats on arriving safely! Any stories to share?"
16. "Your safe arrival is a happy ending to your journey!"
17. "Wonderful to see you smiling, relaxed, and unscathed after your travels."
18. "The journey did not disappoint you, and you’re safe. Amazing!"
19. "We’re delighted to have you here safely. Your trip sounds fantastic."
20. "Arrival without a scratch, and we’re overjoyed!"

MWPO
(699 tokens)

1. "Welcome back home! I’m so happy to hear you made it safely!"
2. "Great news! Congratulations on arriving safely. We’ve been holding our breaths until we
heard."
3. "Ah, you must be relieved! Safe travels to you!"
4. "How wonderful! I’m so glad to hear you’ve arrived safely after your journey."
5. "Breathe a sigh of relief! You’re here, and everything looks good."
6. "I’m so happy to see you, and you made it in one piece. That’s fantastic!"
7. "You must have had some amazing experiences along the way, but first, let’s celebrate your
safe arrival!"
8. "Thank goodness! Your safety means everything to us."
9. "Your safe arrival brings us so much joy; please, share your travel tales!"
10. "You’ve made us proud with your safe arrival. Welcome back!"
Note: These examples cater to various styles and levels of formality.

GPT-4 When someone arrives safely at a destination, especially after a journey that might have
involved some risk or concern, people often express relief and welcome. Here are some
examples of what they might say:
1. "I’m so glad you made it here safely!"
2. "Welcome! It’s a relief to see you in one piece."
3. "Thank goodness you’re here! We were starting to worry."
4. "Happy to see you’ve arrived without any trouble."
5. "It’s great to see you! How was your trip?"
6. "I hope the journey wasn’t too stressful for you."
7. "You had us worried for a bit, but we’re so glad you’re safe and sound."
8. "I’ve been checking the time, waiting for you to get here. Glad you’re okay!"
9. "Seeing you walk through that door is the best part of my day!"
10. "I trust the travel was smooth? It’s wonderful to have you here."

Table 9: Case examples of AlpacaEval 2, generated by GPT-4 and Mistral trained on DPO, MWPO.
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