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Abstract

Large Language Models (LLMs) face com-
putational inefficiencies and redundant pro-
cessing when handling long context inputs,
prompting a focus on compression techniques.
While existing semantic vector-based compres-
sion methods achieve promising performance,
these methods fail to account for the intrinsic
information density variations between con-
text chunks, instead allocating soft tokens uni-
formly across context chunks. This uniform
distribution inevitably diminishes allocation to
information-critical regions. To address this,
we propose Dynamic Allocation of Soft To-
kens (DAST), a simple yet effective method
that leverages the LLM’s intrinsic understand-
ing of contextual relevance to guide compres-
sion. DAST combines perplexity-based lo-
cal information with attention-driven global in-
formation to dynamically allocate soft tokens
to the informative-rich chunks, enabling ef-
fective, context-aware compression. Exper-
imental results across multiple benchmarks
demonstrate that DAST surpasses state-of-the-
art methods. !

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Xu et al., 2025; Zhang et al., 2025b; Li et al.,
2024c,b; Liu et al., 2024; Yu et al., 2024; Huang
et al., 2024; Li et al., 2023, 2025a; Kuang et al.,
2024; Li et al., 2025¢) have demonstrated remark-
able performance on long context tasks (Li et al.,
2022c, 2024d,a; Ma et al., 2022; Li et al., 2022b;
Du et al., 2024), excelling capturing complex de-
pendencies and generating coherent responses over
extended contexts (Li et al., 2025b; Ye et al.,
2023b,a; Huang et al., 2023). Nevertheless, pro-
cessing long contexts incurs high computational
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cost, making the development of efficient context
compression methods that preserve semantic in-
tegrity while reducing input length crucial.

Early approaches to context compression pri-
marily relied on context pruning or summariza-
tion (Dong et al., 2023; Jiang et al., 2023; Pan
et al., 2024; Tang et al., 2025a), which reduced
input length through content removal or rephras-
ing. However, these methods often compromise
semantic integrity through direct modification of
the input sequence. Recent semantic vector-based
methods (Li et al., 2022a; Liu et al., 2022; Cheng
et al., 2024; Zhang et al., 2025a; Tang et al., 2025b)
address this limitation by replacing the original
context of length n with m compressed soft tokens
(m < n), preserving essential information in a
more compact representation. Although effective,
these methods typically append soft tokens at the
context terminus or distribute them uniformly, over-
looking uneven information density across context
chunks. This uniform distribution prevents optimal
allocation of compression capacity to information-
rich regions.

Notably, text-pruning-based approaches like
LongL.LMLingua (Jiang et al., 2024) attempt dy-
namic pruning using external models to estimate to-
kens importance. However, this external guidance
fails to capture the LLM’s intrinsic understanding
of information relevance, creating incompatibility
with vector-based methods.

This raises a key research question: How can we
dynamically allocate compression tokens based
on the LLM’s inherent understanding of con-
textual information density?

To address this, we propose Dynamic Allocation
of Soft Tokens (DAST), a simple yet effective ap-
proach to soft tokens compression that fully lever-
ages the LLM’s internal capabilities without requir-
ing external models. DAST utilizes perplexity to
assess local importance and attention mechanisms
to capture global relevance, dynamically allocating
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soft tokens based on intrinsic information density.
This enables more efficient and context-aware com-
pression, improving both compression quality and
model performance compared to prior methods.

2 Method

2.1 Compression Background

Traditional methods for compressing long con-
text sequences typically employ chunk-based de-
composition. Given an input sequence X =
{xue xdocl " where X9¢ denotes a query or
instruction and X9°° represents a lengthy docu-
ment, the sequence is segmented into N contiguous
chunks of fixed length | X;| = L. During compres-
sion, each chunk of length L is condensed into a
fixed number m of soft tokens, where m < L.

Existing compression strategies, as illustrated in
Figure 1(a) and (b), can be broadly categorized into
two paradigms. The first, termed Single-chunk
Compression, processes the entire sequence as a
single chunk and appends all fixed m soft tokens
after the full sequence. To enhance granularity,
methods such as AutoCompress (Chevalier et al.,
2023) and Beacon (Zhang et al., 2025a) introduced
Multi-chunks Compression, which assigns a com-
pression constraint (divisible by the chunk length
L) stochastically during training and evenly dis-
tributes a fixed m soft tokens across all chunks
during inference.

However, a major limitation of these methods
is their fixed tokens allocation scheme, which
implicitly assumes uniform information density
across the entire context. This assumption intro-
duces the risk that regions with high information
density receive fewer soft tokens, while regions
with low information density are allocated more
soft tokens. To address this issue, we propose a
Dynamic Allocation of Soft Tokens method, which
adaptively assigns a dynamic number of soft to-
kens d; to each chunk X;, where d; is determined
by localized and global information density, as
shown in Figure 1(c).

2.2 Overall Framework

Our method dynamically determines the number
of soft tokens assigned to each chunk, as described
in the next section. Given the ¢-th chunk, the com-
pressed representation is constructed as:

Cz' = {(Ct)l,...,<ct>i,1, Xi, (Ct)i}, (1)

where (ct); € RY% represents the compressed soft
tokens of the j-th chunk (1 < j < 4). The com-
pressed tokens {ct); € R% capture essential in-
formation from the current chunk through contex-
tual interactions, which are facilitated by the cross-
attention mechanism:

CrossAttn.(C;; Mask). 2)

2.3 Dynamic Allocation

In this section, To effectively allocate soft tokens,
we consider both local importance (i.e., within
each chunk) and global importance (i.e., across
the entire sequence). Specifically, we employ Per-
plexity (PPL) to estimate local importance and At-
tention (Attn) to capture global importance. These
two metrics are then combined to determine the
number of soft tokens assigned to each chunk.

PPL: Perplexity is a widely used metric for eval-
uating contextual informativeness. A lower per-
plexity signifies greater relevance of the current
context information (Jiang et al., 2023). Since each
chunk is visible within its own local context during
compression, we compute the perplexity for each
chunk separately. The resulting perplexity scores
thus embody the local importance information of
each respective chunk. The PPL of i-th chunk as
follows:

Pi==> q(z)logp(zlea),  (3)
=1

where ¢(x;) represents the probability distribution
of the ground truth.

Attn: Once the sequence has been compressed,
the importance of each chunk’s compressed repre-
sentation can be inferred from attention weights.
Intuitively, chunks with more crucial information
have higher attention weights, reflecting their con-
tribution to global understanding. Hence, we uti-
lized global attention to measure the global infor-
mation, which has been demonstrated to be an ef-
fective method (Liu et al., 2021). Through attention
weights, we can ascertain the global proportion of
each token. The formula is :

(i+1)m

> (gk");. 4)

j=i

A=

where g represents the last token vector and & rep-
resents all the compressed tokens vectors. Thus,
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Question: The last name of the current US president is

@ Chunk

) — (LOuput |

Donald John Trump is an American politician, businessman

<CT> <CT> <CT> <CT> <CT> <CT>

®© [ o) — (Gt

--- Donald John Trump <CT> <CT> is an American

<CT> <CT> politician, businessman <CT> <CT>

© [ o )0 @ € (o )6 €0 (o ) &0 — (o)

-++ Donald John Trump <CT> <CT> <CT>

is an American

<CT> <CT> politician, businessman <CT>

Figure 1: (a) and (b): the previous fixed allocation methods include Single-chunk and Multi-chunks compres-
sion; (c): our dynamic allocation method. Notably, our dynamic method allocated more soft tokens to the key
information in the answer (highlighted in bold) while reducing soft tokens for less information. <CT> is compress

soft token.

we can obtain the scores of i-th chunk that focus
on both global and local information:

B
Yoas (Pr)

where « is a parameter that balances the impor-
tance of global A; and local P; information. Then
Softmax is used for normalization. Noted that since
A; and P; are derived from different distributions,
P; is scaled by the number of all chunk N. Given
the total number of soft tokens of context is M, we
can calculate the actual number of soft tokens in
the i-th chunk d; = M x S;.

Reallocation: In order to make the tokens after
dynamic allocation consistent with the training, we
design a reallocation algorithm to make them divis-
ible by L. The details of this algorithm are shown
in Appendix A. It is worth mentioning that the re-
allocation is optional, depending on the method
mechanism used.

SZ‘ZAZ'-OC

(I—=a), (3

3 Experiments

The experiment’s detail are presented in Ap-
pendix B. Next, we want to answer two questions:
(1) How effective is DAST? (2) How does the per-
formance of DAST improve?

3.1 Main Results

To evaluate the dynamic distribution capability of
DAST in a long context with inconsistent ground
truth granularity distribution, we employ three
benchmarks from LongBench (Bai et al., 2024):
Single-Document, Multi-Document, and Exam-
ple tasks (Few-Shot). As demonstrated in Ta-
ble 1, our approach demonstrates consistent su-

periority over baseline methods across all evalu-
ated tasks. This improvement can be attributed
to the model’s adaptive capacity to discern tex-
tual saliency within redundant, extended textual
inputs. Our method strategically allocates a higher
proportion of soft tokens to semantically critical
chunks, thereby enhancing computational atten-
tion to pivotal content. This differential allocation
mechanism ultimately optimizes task-specific per-
formance through context-aware resource distribu-
tion.

Having established the effectiveness of our dy-
namic compression method, we further examine
its performance-enhancing mechanisms through
systematic experiments on the NaturalQuestions
dataset (Kwiatkowski et al., 2019). This bench-
mark is particularly well-suited for analysis due to
the presence of correct answers at varying contex-
tual positions. As shown in Figure 2, our method
consistently surpasses the uniform compression
approach of Beacon across all positional config-
urations. Notably, in context chunks containing
answer-relevant, our method adaptively allocates
more tokens to these semantically critical regions,
thereby improving performance.

3.2 Comparison of Different Constraints

We compare our method to baselines on the Long-
Term Memory MSC dataset (Packer et al., 2023) to
study compression intensity vs. memory retention.
As presented in Table 2, our approach consistently
outperforms conventional methods across all com-
pression levels, especially in resisting degradation
at higher compression constraints.

20546



Document and Example Compression

Single Multi Few Single Multi Few
Methods Doc Doc  Shot AVG Doc Doc  Shot AVG
LLama-2-7B Qwen-2-7B
Original Prompt 24.9 225 60.0 358 | 22.0 293 623 379
Zero-Shot 8.1 322 155 7.1 6.6 268 135
AutoComp.T (Chevalier et al., 2023) 12.9 16.4 238 17.7 -
ICAE' (Ge et al., 2024) 19.5 19.2 248 212 -
LongLLM." (Jiang et al., 2024) 21.5 18.8 495 299 | 247 20.3 559 336
SnapK VT (Li et al., 2024¢) 24.2 22,6 60.1 35.6 | 387 37.6 67.1 478
Beacon' (Zhang et al., 2025a) 349 275 614 413 | 405 40.3 684 49.7
DAST (Ours) 38.1 374 636 464 | 40.6 45.6 68.6 51.6

Table 1: Evaluation of various Document and Example Compression tasks (top performances marked in bold). 1:

the results cited from Zhang et al. (2025a).

Beacon (Tokens) ~ —@— Beacon (Accuracy)
DAST (Tokens) DAST (Accuracy)

300 4 55

260

242

3

Number of Soft Tokens
Ey %

Accuracy (%)

150 4
20

15

100 4 10

Ist sth 10th  15th  20th  25th
Position of Document with the Answer

Figure 2: Performance and Number of soft tokens v.s.
Key Information Position.

3.3 Ablation Study

In this section, we analyze our method’s perfor-
mance and the impact of each module (see Table 3).
Random and uniform tokens allocations performed
poorly, showing insufficient focus on critical con-
text segments. Removing either the global attention
(Attn) or local perplexity (PPL) module individu-
ally caused performance drops, highlighting their
importance in prioritizing important chunks.

3.4 Parameter Sensitivity Analysis

It is important to analyze the sensitivity of the pa-
rameters «. As shown in Figure 3. The results
indicate that the performance remains stable across
different values of . Consequently, we selected
a default value of & = 0.5 in main experiments,

Compression Constraint

Method

~4x ~8 x ~16 x ~24 x
AutoCom. 28.8 27.3&3}2% 25.0¢13.2% 24'0l«17'1%
LongLLM 22.4 19'5\L13<0% 17‘8\”0-5% 15'9i29'0%
ICAE 181 166&53% 153\L155% 145\L199%
Beacon 39.0 36~5¢6.4% 336¢139% 32.3¢17‘2%
DAST 559 555070 526,50 519749

Table 2: Evaluation of Long-Term Memory on MSC.
J: percentages showing relative performance drop com-
pared to the ~4x compression baseline.

Method Single-Doc
Random Allocation 34.52
Uniform Allocation 34.90
Dynamic Allocation (ours) 38.14
w/o PPL 37.60
w/o Attn 37.24

Table 3: Ablation study of DAST.

which simplifies the application of our method to
other models, as it eliminates the need for special-
ized parameter tuning.

4 Conclusion

In this paper, we propose DAST, a simple yet ef-
fective method that dynamically allocates soft to-
kens by leveraging the LLM’s intrinsic perception
of information density. By integrating perplexity-
based local information and attention-driven global
relevance, DAST adaptively focuses compression
capacity on high-information regions without re-
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Figure 3: Parameter Sensitivity Analysis of a.

lying on external models. Our experiments show
that DAST outperforms prior methods in both com-
pression quality and downstream task performance,
underscoring the value of model-guided dynamic
allocation.

Limitations

Current model compression research remains pri-
marily limited to the approximately 7B parameter
scale due to computational resource constraints.
While our study has demonstrated that our method
outperforms other compression approaches, we
have not been able to systematically investigate
whether existing compression techniques, includ-
ing our approach, can maintain their effectiveness
when applied to larger architectures. Given that
the practical value of compression techniques be-
comes more pronounced with increasing model
sizes, this represents a critical direction for future
research. Furthermore, it is also imperative to ex-
amine whether the compression process induces
more severe : (1) hallucination phenomena and
(2) catastrophic forgetting in compressed models,
which constitutes another essential aspect requiring
thorough investigation.
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A Reallocation Algorithm

For the current soft tokens set 1" of all chunks
given, the total soft tokens .S can be assigned, and
the optional compression rate set R, our goal is
to reassign 7T to get T, the algorithm is as follows
Algorithm 1.

Algorithm 1 Reallocation
Require: T, S,R,
Ensure: Reallocated T,
1: T < (Z)
2: T are allocated to each chunk based on the
closest compression constraint R to get the T
3. repeat
Get the disposable M from S - sum(T)
5: In the remaining tokens, double the tokens
of the chunk that meets the conditions with the
highest score.

6: Update T’
7: Remove the highest score temporarily,
8: until M =0
9: return T’
B Settings

B.1 Implementation

To ensure strict methodological consistency in
model comparisons, we employ the Llama-2-7B
(chat) (Touvron et al., 2023) and Qwen-2-7B (Bai
et al., 2023) architectures. For training data selec-
tion, we adopt the same approach as Beacon(Zhang
et al., 2025a), utilizing 1B tokens sampled from
Repajama (Weber et al., 2024) during pre-training,
supplemented by LongAlpaca (Chen et al., 2024),
BookSum (Kryscinski et al., 2022), and synthetic
data generated by GPT-3.5 for fine-tuning (see Bea-
con (Zhang et al., 2025a) for detailed data curation
protocols). Our implementation uses a standard «
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value of 0.5, with sensitivity analyses for alterna-
tive parameter configurations provided in §3.4. We
use the HuggingFace framework (Wolf et al., 2019)
and all experiments were conducted on a compu-
tational cluster equipped with 8 x A800 GPUs
(80GB).

B.2 Baselines

We compare our method to a baseline (represented
by the Original Prompt) with the same constraints
and an uncompressed baseline with no long context
data (represented by Zero-Shot). In addition, We
also compared with the current mainstream includ-
ing text pruning or summarization long context
compression method and semantic vector-based
long context compression methods. These in-
clude AutoCompressors(Chevalier et al., 2023),
ICAE(Ge et al., 2024), LongLLMLingua(Jiang
et al., 2024), SnapKV(Li et al., 2024e), and Bea-
con(Zhang et al., 2025a).

C Latency Analysis

LLama-2-7b ‘ Qwen-2-7b
Model ‘ Latency ‘ Model ‘ Latency
AutoComp. ‘ 1.8 ‘ AutoComp. ‘ -
ICAE | 12 |ICAE -
LongLLM. | 24 | LongLLM. | 45
SnapKV ‘ 0.9 ‘ SnapKV ‘ 2.8
Beacon ‘ 1.2 ‘ Beacon ‘ 33
DAST | 1.6 | DAST | 338

Table 4: Latency Analysis.

As shown in Table 4, we analyzed the latency of
DAST and each baseline method. The lantency of
DAST is higher than some baseline, such as ICAE
and Beacon, because they compress directly. The
latency is lower than LongL.LMlingua because our
approach relies on the model itself for dynamic
tokens allocation, whereas these baselines rely on
external models.
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