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Abstract

In team communication, dialogue acts play a
crucial role in helping team members under-
stand each other’s intentions and revealing the
roles and communication patterns within inter-
actions. Although existing studies have focused
on using Dialogue Act classification to capture
the speaker’s intentions, few have explored the
underlying power dynamics reflected by these
dialogue acts. To this end, we present an on-
line Dialogue Act Classification and Dynamic
Power Analysis framework—Act2P, which is
based on large language model. The framework
combines the zero-shot learning capability of
LLMs and introduces an online feedback classi-
fication method that allows for online classifica-
tion with iterative feedback to previous stages,
achieving efficient and accurate classification
without the labeled data. Additionally, we also
propose the PowerRank algorithm, which quan-
tifies power dynamics through a graph-based
structure. Through comparative experiments
with existing methods, we demonstrate the sig-
nificant superiority of Act2P in online scenarios
and successfully visualize dialogue power in
online, clearly presenting the distribution and
dynamic transfer of power. This framework
provides new scientific insights and practical
tools for optimizing team collaboration.

1 Introduction

Effective communication is crucial in team-based
tasks, influencing collaboration efficiency and task
outcomes. Analyzing interaction patterns can re-
veal underlying relationships, optimizing team-
work. Dialogue Act Classification (Searle, 1969)
plays a key role in Natural Language Processing
by identifying user intent. However, existing re-
searchs primarily focus on explicit utterance func-
tions (Witzig et al., 2024; Colombo et al., 2020;
Fu et al., 2025), overlooking the implicit power dy-
namics embedded in dialogue. Different dialogue
acts often involve power exertion, acceptance, or re-
sistance, significantly affecting team collaboration

and decision-making.Power has been extensively
studied in sociology, management, and linguistics,
with traditional research emphasizing stable hierar-
chical structures. However, power in team interac-
tions is inherently dynamic, continuously evolving
throughout a conversation. Members’ speech pat-
terns, responses, and engagement influence power
distribution. Traditional DAC methods rely heavily
on manually labeled data, limiting their adaptabil-
ity across domains. Inconsistencies in annotation
schemes further reduce transferability and gener-
alizability, leading to performance degradation in
new contexts. These challenges hinder the inte-
gration of dialogue act classification with power
quantification, restricting the ability to analyze on-
line power shifts in team interactions.

Large Language Models(OpenAl, 2023; Dubey
et al., 2024; Liu et al., 2024; Guo et al., 2025) of-
fer a breakthrough in addressing these challenges.
Their zero-shot learning capabilities enable dia-
logue act classification without requiring exten-
sive annotations, allowing for greater adaptabil-
ity across different datasets. Prompt engineering
(Wei et al., 2022; Reynolds and McDonell, 2021)
enhances LLLMs’ ability to classify dialogue acts
efficiently, providing online analytical support. Ad-
ditionally, LLM facilitate power shift detection, ad-
vancing the study of dynamic power quantification
in conversation.

To address the aforementioned limitations, this
paper proposes the Act2P framework, an online di-
alogue act classification and dynamic power analy-
sis method based on Large Language Model(LLM).
Act2P leverages the powerful language understand-
ing capabilities of LLM to achieve zero-shot clas-
sification of dialogue acts. One of its key inno-
vations is the introduction of an online feedback
classification method, which iteratively optimizes
the model based on online feedback, enabling rapid
adaptation to datasets with limited or no human an-
notation and effectively improving classification
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accuracy and dynamic adaptability. Additionally,
the Act2P framework introduces a power dynamic
quantification algorithm based on dialogue acts,
which can capture and reflect the flow and changes
of power among team members online, providing
new methods and perspectives for power analysis
in team communication.

Therefore, the main contributions of this paper
are as follows:

* Propose a online feedback classification
method. This study designs an online dia-
logue act classification and dynamic power
analysis framework based on Large Language
Models (LLMs) called Act2P. Its core inno-
vation is the online feedback classification
method, which significantly improves the ac-
curacy and adaptability of dialogue act classi-
fication through online feedback corrections.

* Designing the PowerRank algorithm for
power dynamic quantification.This algo-
rithm uses dialogue acts to construct a graph
structure, precisely depicting the power dy-
namics and transfer mechanisms within a
team. It also explores the role of different
granularities of dialogue act labels in power
quantification, providing effective methods
and directions for optimizing power analysis
in team communication.

In summary, Act2P not only overcomes the lim-
itations of traditional dialogue act classification
methods in terms of annotation dependency and
online applicability but also explores the power dy-
namics reflected within dialogue acts.. This frame-
work provides a novel theoretical and practical
tool for investigating dynamic interactions within
teams.

2 Related work

Dialogue Act Classification: Dialogue Act Clas-
sification (DAC) is an important task in natural
language processing. Many studies utilize neural
network architectures and attention mechanisms
to capture contextual information. Early research
(Kumar et al., 2018; Chen et al., 2018) primarily
used RNN and CRF to capture the relationships
between utterances. Wang et al. (2020) proposed
the HUH graph convolutional network, which im-
proved dialogue act classification through a denois-
ing mechanism. Raheja and Tetreault (2019) com-

bined context-aware self-attention with hierarchical
RNNs to model dialogue act semantics.

Research has gradually focused on the impact
of dialogue space modeling on classification. He
et al. (2021) proposed a speaker-turn-aware method
that combines speaker information with utterance
representations. Ghosal et al. (2019) used graph
structures to integrate contextual information at the
speaker level. Song et al. (2023) and Sun et al.
(2021) used graph structures to learn the represen-
tations of utterance nodes, improving utterance rep-
resentation.

Some studies have used multimodal information
for recognition, such as the online multimodal di-
alogue act classification framework proposed by
Miah et al. (2023), which combines transcribed text
and multimodal features for training.

This study proposes using Large Language Mod-
els (LLMs) for zero-shot dialogue act classification.
Compared to existing methods, LLMs enable effi-
cient classification in the absence of labeled data.

Power Analysis: Power dynamics have long been
an important research topic in fields such as or-
ganizational behavior, psychology, and computa-
tional linguistics. Hofstede’s Power Distance In-
dex (PDI)(Hofstede, 1984) provides a theoretical
foundation for understanding power distribution in
organizations and cultures, measuring the degree
of power inequality and its acceptance.

In language interactions, researchers focus on
how speakers use language to manifest and main-
tain power. Danescu-Niculescu-Mizil et al. (2012)
introduced the Linguistic Coordination Model,
which shows that low-power individuals tend to
imitate the language style of high-power individu-
als. Boghrati and Dehghani (2018) proposed the
Syntactic Alignment Model, which demonstrates
that low-power individuals imitate not only vocabu-
lary but also syntactic structures. Choi et al. (2020)
analyzed the language patterns of leaders and fol-
lowers, revealing how role settings dynamically
influence power.

In the email domain, Lam et al. (2018) intro-
duced the Power Networks framework, which com-
bines neural network prediction models with con-
textual modeling to accurately predict power rela-
tions in email communications. Raut et al. (2020)
used supervised learning to classify power based
on semantic and structural features, while Wen et al.
(2025) analyzed power propagation paths by con-
structing email communication networks.
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This study focuses on power dynamics reflected
in dialogue acts and employs LLMs for their quan-
tification and visualization.

3 Framework

Act2P is an framework based on Large Language
Models, designed for online dialogue act classifica-
tion and dynamic power analysis.The framework
classifies dialogue acts while integrating power
quantification algorithms and dynamic visualiza-
tion techniques to capture and analyze power dis-
tribution and shifts in team communication online,
offering an efficient tool for collaboration optimiza-
tion, as illustrated in Figure 1.

3.1 Dialogue Act Classification Module

3.1.1 Task Description:
The goal of the Dialogue Act (DA) classification
module is to predict the functional or intentional
category of each utterance within a conversation,
such as statements, questions, commands, or af-
firmations.This is essential for understanding the
semantic structure of a dialogue and the speaker’s
communicative intent.

Formally, given a conversation C' consisting of
n utterances, it can be represented as:

, Un} ()

C= {ul,’U,Q,...

where u; denotes the i-th utterance. Each utter-
ance consists of a text component x} and contextual
metadata 2%, (e.g., speaker identity).

The goal of the classification task is to map each
utterance u; to a predefined DA label y;. Math-
ematically, the classification task can be defined
as:

fru— v, ViE{l,Q,...,n} 2)

where y; represents the DA label assigned to
utterance u;, drawn from a set of fixed labels.

3.1.2 Method Description:

We adopt a large language model (LLM) with zero-
shot learning capabilities for dialogue act classifi-
cation, enabling it to perform classification without
the need for task-specific fine-tuning. Building
upon this foundation, we systematically explore
prompt engineering techniques by designing mul-
tiple prompt strategies to guide the model in bet-
ter understanding dialogue context and category
semantics. Furthermore, we propose an online
feedback classification method that incorporates

current prediction results to dynamically adjust
previous classifications. This mechanism enables
the model to continuously refine its understand-
ing of the dialogue flow, improving coherence, ro-
bustness, and classification accuracy, especially in
multi-turn conversations where contextual depen-
dencies and ambiguous class boundaries are com-
mon. Detailed prompt templates are available at
https://github.com/wangyhby/Act2P.

Prompt Engineering: In the task of dialogue act
classification, the design of prompts is crucial for
the performance of large language models (LLMs).
By using different prompt design methods, such
as direct classification, category description, and
context augmentation, the model can better under-
stand the context of the dialogue, improving classi-
fication accuracy and robustness. These methods
effectively help the model distinguish between se-
mantically similar categories and enhance its ability
to recognize dialogue acts that depend on context,
thereby improving the model’s adaptability and
generalization ability.

Hierarchical Classification Enhancement:
The core idea of the hierarchical classification en-
hancement method is to optimize the computa-
tional efficiency and classification accuracy by di-
viding complex classification tasks into two stages:
coarse-grained and fine-grained classification. In
the coarse-grained classification stage, the model
first performs an initial classification of the dia-
logue text, identifying broader categories. In the
fine-grained classification stage, the model further
refines the results based on the coarse classification
to achieve more specific classification outcomes.
This staged processing approach not only effec-
tively reduces the computational load but also sig-
nificantly improves classification accuracy, particu-
larly in multi-class and highly ambiguous dialogue
act classification tasks, demonstrating stronger ro-
bustness and adaptability.

Online Feedback Classification: The online
feedback classification method improves online
classification by using current results to correct
previous classifications. Unlike traditional static
classification, which relies solely on the current
input, this method incorporates past predictions,
improving accuracy and robustness.

The process can be described as follows: The
online feedback classification method improves on-
line classification by using current results to correct
previous classifications. Unlike traditional static
classification, which relies solely on the current
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Figure 1: Architecture of the Act2P Framework

input, this method incorporates past predictions,
improving accuracy and robustness.

Cy = fpred(Xta thl) (3)

Where C} is the current classification, fp,cq is
the classification function, X; is the current input,
and C;_1 is the previous classification. This allows
the model to adjust based on prior predictions.

If new context affects the previous classification,
it is updated as:

C?ew = fupdate(0t7 thla Xt) (4)

Where C}*“ is the updated classification. This
method enables the model to adapt dynamically
and improve classification performance online.

3.2 Power Quantification Module:
3.2.1 Task Description:

Given a conversation C' = {uj,ug,...,u,} con-
sisting of n utterances, where each utterance u; has
been labeled with a corresponding dialogue act la-
bel y; by the dialogue act classification module, and
each utterance is associated with a set of speakers
S = {s1,82,...,8m}, where each s; represents
a speaker. The task of the Power Quantification
Module is as follows:

* Assign a corresponding power weight w; to
each dialogue act based on its pragmatic func-
tion.

* Calculate the power value changes for each
speaker by considering the sequence of the
dialogue and the interaction patterns between
participants.

* Generate power dynamics curves and visual-
izations to intuitively reflect the flow of power
throughout the dialogue.

3.2.2 Powerrank

The PowerRank algorithm is based on the tradi-
tional PageRank (Berkhin, 2005) algorithm, which
evaluates the importance of power by calculating
node relationships and interactive behaviors. To
better reflect the real-time nature of the algorithm
and its insensitivity to certain categories, we use the
LLM to dynamically adjust the power distribution
between participants in the conversation, further
enhancing real-time responsiveness. This ensures
that power distribution is adjusted promptly dur-
ing the conversation, accurately reflecting dynamic
changes. The individual power value P; of partici-
pant s; is updated iteratively as follows:
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Pt +1) = (1-a) - P(sis)

Pji(t) - wg; (5)
+a- E g
jeN(i) dout (J)

Here, P;(t + 1) represents the power value of node
7 at time ¢ + 1. The parameter « is a damping fac-
tor, typically set to 0.85, which balances the weight
between personalized preferences and the network
structure. w;; denotes the weight between nodes
¢ and j, quantifying the influence or strength of
the connection between them. The set of neighbor-
ing nodes N (i) includes all nodes that are directly
connected to node 4, while do, () represents the
out-degree of node 7, which is the number of edges
emanating from node j.

P(s;, s;) represents the personalized preference
value enhanced by LLM. More specifically, for
the power flow preference vector P(s;, s;), if the
conversation involves only two participants, the
LLM triggers the power enhancement mechanism.
The LLM assesses that the power values of the two
speakers are stronger, scoring the current power
of each speaker to obtain Ppym(s;) and Prim(s;),
resulting in:

PLLM(Si) lfS = S;
P(Si, Sj) = PLLM(Sj) ifS = Sj (6)
0 otherwise

The Powerrank algorithm is as follows:

4 Experimental Setup
4.1 Datasets

We conduct experiments and report results based on
the Meeting Recorder Dialog Act (MRDA) dataset
(Shriberg et al., 2004). MRDA is a publicly avail-
able benchmark dataset for multi-party conversa-
tion audio, widely used in research on online dialog
act (DA) classification.We provide the statistics of
the datasets in Table 1.

The MRDA dataset contains 75 multi-party meet-
ings, each considered as an independent conversa-
tion. The average length of each conversation is
1442.5 utterances. The dataset provides both manu-
ally annotated transcription text and corresponding
audio signals, offering robust support for online DA
classification tasks. We partition the dataset into 51
training sets, 12 validation sets, and 12 test sets.The
MRDA dataset adopts a labeling system consist-
ing of 52 dialog act labels , which can be divided

Algorithm 1 PowerRank Algorithm
Input: Graph G(V, E), initial power values b,,
damping factor a, convergence threshold €, maxi-
mum iterations max_iter, and power flow prefer-
ence vector p(s;, s;)
Output: Return the final PowerRank scores r,
where r[i] is the power score for node v;.
1: 1+ 0
2: Calculate the normalized matrix W of W to
make Z?:l ’LZ)Z‘J‘ = 1,V?Jj eV
3: while ||r(t + 1) — r(t)[1 > eand t <
max_iter do
Initialize r°[i] < b,[i] for all v; € V/
5: For all v; € V, update

»

(t+1)

rp = (1= a)-p(si,s5)
ta- Y Wi
j€In(i)

6: t—t+1
7: return r; where r[i] is the power score for
node v;

into multiple hierarchical levels based on different
granularities. Specifically, these dialog act labels
are clustered into 12 general labels and 5 basic la-
bels. We discuss whether the different granular
label divisions can reveal behavioral patterns and
power dynamics in finer-grained dialogues, provid-
ing a more comprehensive perspective for power
quantification research.

4.2 Evaluation Metric

In the dialogue act classification task, we choose ac-
curacy as the primary evaluation metric, following
previous studies for comparison. In power quantifi-
cation analysis, due to the lack of relevant research
for comparison, we have defined our own evalu-
ation criteria. These criteria assess the model’s
effectiveness and prediction accuracy through two
dimensions.

4.2.1 Power Distribution Validity Verification:

This dimension evaluates whether power curves at
different granularities (5, 12, and 52 categories) re-
flect participants’ actual power distribution, focus-
ing on identifying dominant participants, especially
the professor. By analyzing power rankings, we
ensure the label system aligns with actual power
distribution and the model accurately reflects each
participant’s power position.
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Dataset ICI ILI Dialogs Utterances
Train Test Train Test
MRDA  5/12/52 14425 51 12 75K 164K

Table 1: different granularities of DA labels ICI, utterances per dialog |LI, and number of dialogs and utterances in

each split

4.2.2 Power Ranking Prediction Accuracy
Evaluation:

The second dimension evaluates the gap between
the power rankings predicted by the LLLM and the
actual DA labels. We quantify the deviation by
comparing the power rankings predicted by the
LLM with those calculated from the real DA la-
bels, using the following three evaluation metrics
to assess the prediction results.

Rank Accuracy (RA): In calculating Rank Ac-
curacy (RA), we use the following formula to quan-
tify the match between the predicted rankings and
the true rankings for each turn in the dialogue. The
formula computes the accuracy by counting the
items where the predicted rankings match the true
rankings, as expressed below:

1 turns n . .
BA= firms 2 ]lewoim — ROl

Where: turns denotes the total number of dia-
logue turns. n denotes the total number of partici-
pants. LQO; is the order of speakers predicted by the
LLM for each turn. RO; is the order of speakers
based on the true labels for each turn.

Dominant Speaker Accuracy(DSA)Dominant
Speaker Accuracy (DSA) measures whether the
model correctly identifies the dominant speaker in
each turn. In a conversation, the dominant speaker
typically leads the discussion, decision-making,
and topic guidance. Accurately predicting the dom-
inant speaker is crucial for capturing the power dy-
namics, as their speech and actions often influence
the direction of the entire dialogue. The formula is
as follows:

turns
1
DSA = 1 D; = D;
S pp— ;:1 (pre realD;) (8)

Where: DS A denotes the accuracy of predict-
ing the dominant speaker (the one with the high-
est power). turns represents the total number of
dialogue turns. preD is the dominant speaker pre-
dicted by the model in the ¢-th turn. realD is the

actual dominant speaker according to the true la-
bels in the i-th turn.

Spearman Rank Correlation: Spearman Rank
Correlation (Zar, 2005) measures the "relative or-
der" between predicted and actual power rankings.
It focuses on rank relationships rather than exact
matches, allowing for a finer assessment of differ-
ences, especially when there are subtle changes in
the power ranking. This metric provides a compre-
hensive evaluation of power ranking differences.
The formula is as follows:

63, df

n(n? —1) ©)

rs =1—

Where: d; is the rank difference between the

two variables in each observation group. n is the
number of observations.

4.3 Implementation Details

We chose to conduct experiments using the APIs of
large language models, which eliminates the need
for GPU resources.

5 Results and Analysis

We evaluated the performance of the proposed
LLM-based zero-shot classification framework in
online domain adaptation classification tasks (on-
line DA classification) and compared it with current
related research.In our experiments, we selected the
average of 10 trial results for evaluation.

5.1 Dialogue Act Classification results

We implemented DAC using Deepseek-v3 and ex-
plored the accuracy of different methods, including
Prompt Optimization, Hierarchical Classification,
and Online Feedback, on the MRDA dataset.From
Table 2, we can observe that,optimizing the
prompts significantly improved performance. Ini-
tially, we used simple prompts, but later added
category descriptions, and hierarchical recogni-
tion to enhance clarity. Notably, our designed On-
line Feedback Classification strategy improved the
model’s accuracy from 70.30% to 84.53% with
Basic_label, with similar improvements observed
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for General_label and Full_label. The reason for
choosing Deepseek for this experiment is detailed
in Appendix A, where comparisons with other large
models are provided.

In the online feedback classification, only F and
D are easily confused within the main categories
and require contextual responses for accurate judg-
ment. Therefore, we incorporated online feedback
correction for Disruption(D) and FloorGrabber(F).
After the correction, as shown in the figure 2, the F1
scores of both categories have slightly improved,
which validates the effectiveness of our method’s
online feedback correction capability.

1 | |
0.83
2 o8] [ 078
B (6050 |
[
o 04r -
3
s 02p s
0
D F
DA Tag

[ 0Before Feedback 0 After Feedback

Figure 2: Comparison of F1 Scores for D and F Cate-
gories

Currently, most research on DA classification ex-
periments is based on the Basic_label of the MRDA
dataset and primarily uses supervised learning mod-
els, relying on large amounts of manually labeled
data to train and fine-tune models to improve clas-
sification performance. In contrast, this paper ex-
plores a zero-shot DA classification method based
on LLM, which does not rely on manual label-
ing but instead achieves accurate DA classification
through prompt engineering combined with an on-
line feedback classification. In Table 3,although
our model has not fully surpassed supervised learn-
ing models, compared to these methods, Our zero-
shot approach significantly contributes to manually
labelled data reduction(MLDR).

5.2 Power Quantification Results

This section presents the experimental results of
power quantification using the Deepseek-v3 model
under different label granularities. We compared
the impact of different label granularities on power
dynamics and explored the model’s performance in
capturing and quantifying power flow in conversa-
tions. In the experiment, we used the PowerRank

algorithm to quantify the power distribution of each
speaker in the dialogue and visualized the changes
in power.

5.2.1 Power Distribution Validity Verification:

The MRDA dataset comes from academic discus-
sion meetings, where professors typically hold
more power than other students. This provided
a reference for power judgment in the model. We
validated the effectiveness of different label granu-
larities in capturing power by predicting whether
the dominant speaker was a professor. In the test
data, 10 meetings included a professor role, and
we used the LLM to predict power dynamics un-
der different label granularities, quantifying the
final dominant role using the Pagerank algorithm.
We found that the power validity corresponding to
the General_label is 90%, while the validity for
other labels is around 80%. And the details of
the weights and graphical design can be found in
Appendix B.

5.2.2 Power Ranking Prediction Accuracy
Evaluation:

In addition to assessing power flow effectiveness,
we evaluate the discrepancy between predicted and
true power rankings. Finer label systems, like
Full_label, capture subtle power shifts but increase
complexity, lowering classification accuracy. Sim-
pler labels, like Basic_label, improve accuracy but
may miss detailed power dynamics. The choice of
label granularity must balance detail with accuracy
to avoid errors in power quantification. By evalu-
ating three metrics, we assess the differences be-
tween predicted and true power, helping us choose
the best label granularity for improved model per-
formance. The experimental results are shown in
figure 3.

Based on the evaluation results, this framework
recommends General label as the standard label
granularity for power quantification. The rationale
behind this choice is that General label strikes a
good balance between capturing power flow effec-
tiveness and ranking accuracy. Although it slightly
lags behind Full_label in Rank Accuracy (RA),
it excels in Dominant Speaker Accuracy (DSA)
and is more stable across different contexts. Fur-
thermore, compared to Full_label, General_label
simplifies the classification task, improving accu-
racy and reducing errors due to excessive label
granularity. Overall, General_label effectively cap-
tures power dynamics while maintaining model
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Model Basic_label General_label Full_label
Deepseek-v3 70.30 60.65 29.12
Deepseek-v3 (Prompt Optimization) 80.34 70.23 36.43
Deepseek-v3 (Hierarchical Classification) 82.83 73.56 44.00
Deepseek-v3 (Online Feedback) 84.53 75.97 45.53

Table 2: Model Performance on Different Label Granularities

Model Accuracy MLDR
He et al. (2021) 922 0%
Chapuis et al. (2020) 92.4 0%
Miah et al. (2023) 91.8 0%
Our model 84.53 99.9%

Table 3: Comparison of model accuracy and manually
labelled data reduction

‘ (0Basic_label [0 General_label 1 0Full_label ‘
100 —— ‘ ‘

90 - 1 :

80 |- N

Scores

70
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50 T T
RA DSA
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T
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Figure 3: Comparison of Evaluation Metrics for Differ-
ent DA Labels

efficiency, making it the most suitable label granu-
larity for real-time and accurate power analysis in
practical applications

5.2.3 Visualization:

In this section, based on the results from Sections
5.2.1 and 5.2.2, we only present the results for
General_label. We use charts to display the power
trend and the power share of each participant under
General_label, providing an intuitive presentation
of power quantification results. These visualiza-
tions allow us to clearly observe the impact of label
granularity on the ability to capture power distribu-
tion,which can be found in figure 4.

In the Figue 4, we can observe that as the con-
versation progresses, the power values change in
real-time, with participants’ power fluctuating sig-
nificantly over time. While the professor’s power
may not always be the highest during certain dis-
cussion phases, overall, the professor’s power re-
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Figure 4: Power Awareness in Turns for Different Speak-
ers

mains at a relatively high level, especially during
key moments such as decision-making and topic
guidance. This suggests that, although the profes-
sor may not dominate in some discussions, overall,
they remain the dominant power figure, with their
authority exhibiting strong stability and influence
throughout the conversation. In contrast, the power
values of other participants fluctuate more, reflect-
ing their supporting roles in the discussion. There-
fore, while power distribution in the conversation
fluctuates, the professor’s power remains dominant
in the overall discussion, reflecting their leadership
and guiding role in academic discussions.

6 Conclusion

We propose an online dialogue act classification
and dynamic power analysis framework, Act2P,
based on large language models (LLM), aimed at
effectively capturing and quantifying power dynam-
ics in real-time team communication. We demon-
strate that the framework, through the design of
efficient prompts and online feedback classifica-
tion, can quickly adapt to different conversational
scenarios and perform accurate classification in a
zero-shot learning setting. By incorporating power
quantification mechanisms, we can monitor and an-
alyze power shifts in real-time, providing in-depth
insights into team communication patterns. Future
work could explore ways to improve dialogue act
classification accuracy under different granularities
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of labels, further enhance the precision of power
quantification, and attempt to integrate other col-
laborative features such as speech information to
strengthen the framework’s real-time capability and
adaptability.

7 Limitations

Lack of Support for Speech Features: The cur-
rent framework is based solely on text-based large
language models for dialogue act classification and
power quantification analysis, without incorporat-
ing speech features such as emotion, tone, and
speech rate. However, these non-verbal features in
speech play a crucial role in conveying intent and
power dynamics. Therefore, the lack of support for
speech features may limit the model’s performance
in complex conversational scenarios, especially in
situations where tone, emotional shifts, and speaker
intentions need to be analyzed.

Lack of Existing Research on Power Quantifi-
cation Based on Dialogue Acts: This study com-
bines dialogue act classification with power quan-
tification, but there is currently a lack of in-depth
research on how to closely integrate dialogue acts
(DA) with power analysis. Due to the absence of
sufficient reference frameworks, power analysis
cannot be compared against baselines. Future re-
search needs to further explore methods for power
quantification based on dialogue acts to enhance the
depth and comparability of research in this field.

8 Ethical Considerations

This work involves the use of Large Language Mod-
els (LLMs) for dialogue act classification, which
raises potential ethical concerns. While LLMs offer
significant advantages in automating classification
tasks, they can be misused for malicious purposes,
such as generating fraudulent content or spreading
misinformation. Additionally, LLMs may produce
hallucinations, leading to incorrect or biased classi-
fications. These challenges highlight the need for
careful consideration in deploying LLM-based sys-
tems, ensuring they are used responsibly and that
safeguards are in place to mitigate potential risks.
It is essential to validate and monitor the perfor-
mance of LLMs to prevent misuse and ensure they
contribute positively to real-world applications.
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A Model Selection Based on Benchmark
Dataset Performance

To select the most accurate model for recogniz-
ing dialogue acts (DA), we conducted tests on sev-
eral large models that performed exceptionally well
across multiple metrics. The models were evalu-
ated based on their performance in DA classifica-
tion tasks, considering both accuracy and robust-
ness in handling various dialogue scenarios. As
shown in the table 4, after analyzing the results, we
selected the Deepseek-v3 model, which achieved
the highest accuracy, proving to be the most effec-
tive model for our specific needs.

LLM Basic General Full
Llama3.1-405b 56.04 4379  24.32
Gpt-4o 62.95 53.15  25.66
Qwen2.5-Max 6444 5148  23.87
Deepseek-v3 82.83 7356 44.00

Table 4: Model Performance on DA Recognition with
Different Granularities
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B Weight and Relationship Graph Design

Our framework assigns different weights to dia-
logue act types and guides graph construction, pro-
viding a flexible and adaptive approach to power
quantification analysis. To automate the weight
assignment process and minimize human interven-
tion, we replaced manual weight assignment with
a large language model (LLM). The table 5 be-
low shows the detailed weight information for the
general_label, illustrating how the model adjusts its
weight distribution to more accurately represent the
power relationships and dynamics present in the
conversation. This method allows for more robust
analysis and can be easily adapted to different types
of dialogues, demonstrating the effectiveness of
LLM in handling complex, dynamic interactions.

Label Weight Power Flow

b 0.5 Current — Previous
th 0.2 Self power increase
fg 0.5 Previous — Current
qy 0.3 Previous — Current
qw 0.3 Previous — Current
qr 0.3 Previous — Current
qrr 0.3 Previous — Current
qo 0.3 Previous — Current
qg 0.3 Previous — Current
h 0.2 Self power increase
% 0.5 Current — Next

Table 5: Weight and Power Flow for Different Dialog
Act Labels
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