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Abstract
In natural language processing (NLP) and com-
puter vision (CV), the successful application
of foundation models across diverse tasks has
demonstrated their remarkable potential. How-
ever, despite the rich structural and textual
information embedded in knowledge graphs
(KGs), existing research of foundation model
for KG has primarily focused on their struc-
tural aspects, with most efforts restricted to in-
KG tasks (e.g., knowledge graph completion,
KGC). This limitation has hindered progress in
addressing more challenging out-of-KG tasks.
In this paper, we introduce MERRY, a founda-
tion model for general knowledge graph reason-
ing, and investigate its performance across two
task categories: in-KG reasoning tasks (e.g.,
KGC) and out-of-KG tasks (e.g., KG question
answering, KGQA). We not only utilize the
structural information, but also the textual in-
formation in KGs. Specifically, we propose a
multi-perspective Conditional Message Passing
(CMP) encoding architecture to bridge the gap
between textual and structural modalities, en-
abling their seamless integration. Additionally,
we introduce a dynamic residual fusion module
to selectively retain relevant textual informa-
tion and a flexible edge scoring mechanism to
adapt to diverse downstream tasks. Compre-
hensive evaluations on 28 datasets demonstrate
that MERRY outperforms existing baselines in
most scenarios, showcasing strong reasoning
capabilities within KGs and excellent general-
ization to out-of-KG tasks such as KGQA.

1 Introduction

Knowledge graphs (KGs) are structured knowledge
bases that represent entities and their relationships,
providing a foundation for reasoning and informa-
tion retrieval in various real-world domains. With
their rich entity representations and rigorous logi-
cal connections, KGs have become integral to ap-
plications such as classification (Liu et al., 2023),
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recommendation (Guo et al., 2020), knowledge re-
trieval (Xu et al., 2024), and QA systems (Ji et al.,
2022), as well as knowledge-grounded LLM align-
ment (Liu et al., 2025).

Recently, foundation models in NLP and
CV Raffel et al. (2023); ChatGPT and Barnes
(2023); Li et al. (2024); Ravi et al. (2024) have
demonstrated significant advancements in transfer
learning, enabling improved performance across
datasets and tasks. Inspired by these successes,
researchers have developed foundational models
for KGs that aim to generalize across datasets and
adapt to diverse reasoning tasks. KGs naturally
encompass both structural and textual information,
yet existing research has predominantly focused on
leveraging their structural aspects, with relatively
limited attention to the textual modality (Galkin
et al., 2024; Zhu et al., 2021; Teru et al., 2020;
Geng et al., 2022; Chen et al., 2022; Liu et al.,
2024). However, fully utilizing both modalities is
crucial, as textual information provides contextual
knowledge that complements structural represen-
tations. This integration is particularly important
for downstream applications such as commonsense
reasoning and KGQA, where the combination of
relational and contextual knowledge significantly
enhances task performance (Yasunaga et al., 2021;
Zhang et al., 2021; Markowitz et al., 2022). In
addition, prior work has largely been restricted to
in-KG reasoning tasks, such as KG Completion
(KGC), and has not adequately addressed the chal-
lenges posed by out-of-KG reasoning tasks, such
as KGQA. out-of-KG tasks require models to gen-
eralize beyond the explicit structure of KGs, incor-
porating both modalities to handle more complex
reasoning scenarios.

Overcoming these limitations involves address-
ing three key challenges in model design: (1) miti-
gating the semantic disparity between textual and
structural information to facilitate effective integra-
tion; (2) balancing the contributions of textual and
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structural modalities to suit diverse task require-
ments, particularly for reasoning beyond KGs; and
(3) maintaining an unbiased training procedure to
enable robust generalization across datasets with-
out favoring specific entities or relations (Wang
et al., 2022; Markowitz et al., 2022).

To address these challenges, we propose the
Multi-pErspective Reasoning sYstem, MERRY, a
universal knowledge graph reasoning framework.
MERRY integrates textual and structural informa-
tion through a global structural semantic encoding
module (GCMP), designed to reconcile their se-
mantic differences. To enhance adaptability, we
introduce a dynamic text-adaptive fusion module
(DTAF) that selectively preserves essential tex-
tual information, facilitating effective application
across a range of tasks. Furthermore, we develop a
flexible edge scoring mechanism that adjusts adap-
tively to meet the specific requirements of down-
stream tasks, thereby enhancing the model’s trans-
ferability across diverse reasoning scenarios.

Both in-KG (zero-shot KGC) and out-of-KG
(KGQA) tasks are evaluated in our MERRY. Re-
sults across 28 datasets demonstrate that MERRY
consistently outperforms multiple benchmark mod-
els in both tasks, highlighting its robust generaliza-
tion and adaptability. Our codes are released to the
GitHub1. The main contributions of this paper are
as follows:

• We propose a novel framework for addressing
in-KG and out-of-KG reasoning tasks, inte-
grating textual and structural modalities.

• We propose MERRY as a foundation model
for general KG reasoning. By harmonizing
structural and textual information, the frame-
work achieves effective integration and en-
sures smooth transferability across reasoning
tasks with varying modality demands.

• We validate MERRY’s performance on 28
datasets, demonstrating its effectiveness in
zero-shot KGC and KGQA, with consistent
improvements over multiple benchmarks.

2 Related Work

Inductive Knowledge Graph Completion KG
Completion (KGC) is a fundamental task for rea-
soning over knowledge graphs. Its evolution can be
categorized into three stages. Early work focused

1https://github.com/zjukg/MERRY

on the transductive setting, where KGs are static,
and entity and relation representations are precom-
puted and stored (Bordes et al., 2013; Sun et al.,
2019; Vashishth et al., 2020).

Real-world KGs, however, are dynamic (Cui
et al., 2022), requiring inductive methods to han-
dle unseen entities and relations (Teru et al., 2020;
Geng et al., 2022). These approaches rely on su-
pervised training, limiting their generalization to
unseen datasets and diverse KGC tasks.

Recent efforts leverage pre-training paradigms
from NLP and CV. For example, ULTRA (Galkin
et al., 2024) identifies meta-topology types in
KG structures, enabling zero-shot transfer through
dataset-agnostic representations of entities and re-
lations. Nevertheless, it remains limited to struc-
tural information and does not incorporate textual
modalities, which are critical for contextual rea-
soning. Moreover, it focuses exclusively on in-KG
reasoning tasks, neglecting out-of-KG tasks.

Text-aware Knowledge Graph Completion
While earlier studies emphasized KG structures,
recent work explores textual information for im-
proved reasoning. BLP and StAR enhance repre-
sentation learning by initializing embedding tables
with language models (LMs) (Daza et al., 2021;
Wang et al., 2021). StATik (Markowitz et al., 2022)
combines LMs and graph neural networks (GNNs)
by encoding node text with LMs and capturing
structural information via message passing.

Although these methods integrate textual and
structural modalities effectively, their reliance on
fine-tuning limits generalization to unseen datasets
or tasks (Galkin et al., 2024). Additionally, they
remain limited to in-KG reasoning tasks and lack
the flexibility to address out-of-KG tasks, such as
Knowledge Graph Question Answering (KGQA),
which demands broader integration of textual and
structural information.

Knowledge Graph Question Answering
KGQA represents a key out-of-KG reasoning task.
It links topic entities in queries to detailed KG,
improving answer accuracy through relational and
contextual reasoning (Wang et al., 2019).

Early methods used dual-tower architectures
combining graph- and textual features with min-
imal interaction between modalities (Yang et al.,
2019). Later approaches trained LMs on KG data
to extract implicit knowledge and generate effec-
tive subgraphs for QA (Mihaylov and Frank, 2018;
Lin et al., 2019; Feng et al., 2020; Lv et al., 2020).
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Recent advancements include QA-GNN, which
jointly updates LM and GNN layers through
message passing (Yasunaga et al., 2021), and
GreaseLM, which enhances LM-GNN integration
by aligning GNN and Transformer layers for com-
prehensive information fusion (Zhang et al., 2021).

However, KGQA methods focus solely on out-
of-KG reasoning tasks, while most KGC methods
are confined to in-KG reasoning. This task-specific
specialization highlights a key limitation: the lack
of a unified framework capable of addressing both
in-KG and out-of-KG reasoning effectively.

3 Task Definition

A KG with textual information is defined as G =
{E ,R, T ,D}, where E and R are the set of entities
and relations, D is the set of textual descriptions
for entities and relations. The set of factual triples
in the KG is denoted as T = {(eh, r, et)| eh, et ∈
E , r ∈ R}, where eh, et ∈ E and r ∈ R.

Inductive KGC. KG Completion (KGC) task
aims to predict the correct entity e from the given
KG G for query (h, r, ?) or (?, r, t). In particular,
inductive KGC tasks aim to train a score function
based on the train KG Gtr = {Etr,Rtr, Ttr,Dtr}.
Considering the different inductive settings of the
test KG Gte = {Ete,Rte, Tte,Dte}, we can cat-
egorize the evaluation into: (1) KG containing
only unseen entities, which satisfies Etr ̸= Ete
and Rtr = Rte; (2) KG containing both un-
seen entities and unseen relations, which satisfies
Etr ̸= Ete and Rtr ̸= Rte.

KGQA. Given a query question and several
answer options C, the KGQA task aims to
retrieve subgraph from the KG G and predict the
correct answer a ∈ C. To maintain consistency
with the KGC task format, we define query as
q = (question,REL_the_answer_is, ?), where
REL_the_answer_is is an auxiliary relation
specifically introduced to establish a connec-
tion between the query and its corresponding
correct answer node. Additionally, a subgraph
retrieved from the whole KG is represented as
Gsub = {Esub,Rsub, Tsub,Dsub} with entities
Esub = {Etopic, Eoption, Eother}, where Etopic
represents the entity mentioned in the question
q, Eoption represents the entity mentioned in
the options, and Eother encompasses entities
within the subgraph that do not carry particular
contextual significance. The goal is to identify
the correct answer option such that the triple

(question,REL_the_answer_is, answer) is
logically valid.

4 Methodology

A detailed breakdown of MERRY’s components is
presented in this section, as illustrated in Figure 1.
MERRY adopts an encoder-decoder architecture,
and its processing can be formalized as follows:

scores = MERRY(q,G, C) (1)

where q is the query, G is the graph containing
relevant textual descriptions, and C are the candi-
dates to be predicted. For KGC, C corresponds
to candidate entities, while for KGQA, it includes
all possible answer options. MERRY produces a
probability distribution over the candidates, where
higher scores reflect a higher likelihood of correct-
ness.

In the encoding phase, MERRY encodes the
graph structure to derive its structural represen-
tation (Section 4.2) and explores strategies to effec-
tively integrate textual and structural information
(Section 4.3). A multi-perspective fusion module
further enhances this process, enabling robust fea-
ture integration while preserving key textual se-
mantics (Section 4.4). Additionally, we employ a
flexible edge scoring mechanism to adapt to differ-
ent tasks (Section 4.5).

In the decoding phase, a flexible cross-attention
decoder facilitates adaptation to diverse down-
stream tasks, including zero-shot KGC and KGQA.

4.1 Conditional Message Passing
MERRY adopts Conditional Message Pass-
ing (CMP) as the basic GNN unit. Com-
pared to traditional message-passing neural net-
works (MPNNs) like GCN(Kipf and Welling,
2017), GAT(Veličković et al., 2018), and Graph-
SAGE(Hamilton et al., 2017), CMP explicitly con-
ditions the representation of a target node v on both
a source node u and a query relation rq. For de-
tailed architectural specifications of this condition-
ing mechanism, see Huang et al. (2023). This pro-
cess generates pairwise contextualized representa-
tions that dynamically adapt to the structural and se-
mantic constraints imposed by (u, rq), enabling di-
rect modeling of triple-level interactions(Zhu et al.,
2021; Zhang and Yao, 2022; Galkin et al., 2024).
Formally, the CMP process can be defined as:

Hnode = INIT(q) (2)

Hnode = CMP(Hnode,Hedge,G) (3)
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Figure 1: Overview of the MERRY Framework. (A) All tasks, including KGC and KGQA, are unified under a
standardized query representation. (B) The data processing pipeline comprises two main components: (1) relation
graph construction to model meta-relations, and (2) edge scoring to assign task-specific weights to edges. (C)
The MERRY architecture processes these graphs through QCMP, GCMP, and a multi-perspective dynamic fusion
module. In the decoder, the query node is represented as the Query embedding, while candidate nodes serve as
Key embeddings, outputting a probability distribution over all candidates.

where INIT is a conditional initialization function
that initializes node representations conditioned on
query q. It can be flexibly adapted for specific
scenarios, as demonstrated in subsequent sections.
Hnode represents the node representations, Hedge

is a learnable matrix for edge representations, and
G denotes the graph structure. Detailed descrip-
tions of the CMP calculations are provided in Ap-
pendix A. In the following sections, we develop
two core modules for structural and textual encod-
ing based on CMP unit.

4.2 Query Conditional Structural Encoding

To handle the scenario of unseen relationships in
arbitrary KGs, we follow previous works (Galkin
et al., 2024; Chen et al., 2021), using the raw entity
graph G and four fixed meta-relations Rmeta =
{h2h, h2t, t2h, t2t} to construct the correspond-
ing relation graph. The relation graph is denoted
as Gr = {R,Rmeta, Tr}, where the nodes are re-
lations derived from the entity graph G, and the
edges correspond to four types of meta-relations
Rmeta. Details on the construction of triple sets Tr
can be found in the Appendix B.

The introduction of the relation graph enables
us to encode arbitrary structures. To achieve this,
we propose the QCMP module, which applies
CMP updates sequentially on the relation graph
and the entity graph. This process yields query

conditioned representations for both relations and
entities. Given a query q = (eq, rq, ?) and a KG
G = {E ,R, T ,D}, we first extract its relation
graph Gr and then encode it as follows:

rr =

{
1d, if r = rq

0d, otherwise
, for r ∈ R (4)

Rq = CMP
(
|||R|
r=1 rr,Rmeta,Gr

)
(5)

where || is the concatenation operation, Rmeta ∈
R4×d is a learnable matrix corresponding to the
four types of meta-relations, and Gr is the relation
graph constructed from G. The conditional initial-
ization function assigns an all-ones embedding 1d

to the query relation rq, while all other relations are
initialized with an all-zeros embedding 0d, where
d is the dimension of embeddings. The final out-
put Rq represents the query conditioned relation
embeddings. Subsequently, we update the entity
graph with CMP module:

he =

{
Rq[rq], if e = eq

0d, otherwise
, for e ∈ E (6)

Hq = CMP
(
|||E|e=1 he,Rq,G

)
(7)

where the embedding of rq is used as the initializa-
tion for eq, while all other entities are initialized
to all-zero embeddings. The final output Hq repre-
sents the query conditioned entity embeddings.
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4.3 Global Structural Semantic Encoding
Textual information, as intrinsic node information,
can be considered global information for the nodes.
However, directly merging it with the structural
modality information output by QCMP can lead to
ineffective fusion due to the significant difference
in their semantic spaces. Therefore, we propose the
GCMP module to eliminate the semantic gap and
achieve a more comprehensive modality fusion.

Specifically, we employ a Large Language
Model (LLM) to encode textual information. How-
ever, since CMP requires features for all nodes in
the graph as input, the substantial size of LLM
weights can lead to an out-of-memory (OOM) risk.
Therefore, we adopt a parameter-free strategy that
extracts the representation of the last token from
the LLM output to derive textual features for all
nodes. The process of GCMP can be formalized as
follows:

Rg = CMP(1|R|×d, R̂meta,Gr) (8)

Hg = CMP(X e,Rg,G) (9)

where R̂meta ∈ R4×d represents a learnable ma-
trix for meta-relations from textual perspective, X e

represents the textual embeddings of all entities ob-
tained via the parameter-free strategy. Specifically,
each relation is initialized as an all-ones embed-
ding, while the entity graph uses the textual embed-
dings X e as the initial representations. By applying
this sequential CMP update process, we generate
the global semantic embeddings for relations Rg

and entities Hg.

4.4 Multi-Perspective Dynamic Fusion
Multi-Channel CMP Fusion As discussed ear-
lier, MERRY encodes entities and relations from
both query-specific and global perspectives through
QCMP and GCMP, respectively. To integrate the
outputs of these two CMP channels, we employ a
multi-layer perceptron (MLP) for fusion:

RCMP = MLP
(
[Rq||Rg]

)
(10)

HCMP = MLP
(
[Hq||Hg]

)
(11)

Dynamic Text-Adaptive Fusion Although
multi-channel CMP fusion bridges structural
and textual information, empirical observations
indicate that tasks such as KGC and KGQA place
differing levels of emphasis on textual features. To
accommodate this variability and dynamically pre-
serve task-specific textual information, we further

propose a Dynamic Text-Adaptive Fusion (DTAF)
module. Specifically, we adopt a parameterized
cross-attention mechanism to encode input textual
descriptions d ∈ D into fixed-length embeddings:

X = Attn
(
Qtoken,LM(d),LM(d)

)
(12)

where Qtoken ∈ Rk×d represents trainable query
parameters, k is a tunable hyperparameter, and
LM(d) serves as both the Key and Value in the
cross-attention mechanism. DTAF aggregates
token-level information into meaningful represen-
tations X while avoiding information loss.

Building on the textual embeddings, DTAF adap-
tively fuses textual and structural features using
learnable weights α and β, balancing their contri-
butions based on task requirements:

X r = Attn
(
Qtoken,LM(Dr),LM(Dr)

)
(13)

X e = Attn
(
Qtoken,LM(De),LM(De)

)
(14)

Rf = α ∗X r + (1− α) ∗RCMP , (15)

Hf = β ∗X e + (1− β) ∗HCMP , (16)

where Dr and De are the textual descriptions of
relations and entities, respectively. The outputs X r

and X e represent the textual features of relations
and entities, respectively. The fused embeddings
Rf and Hf are unified representations that inte-
grate three different perspectives.

4.5 Query Conditional Edge Scoring
Edge scores in MPNNs are crucial for model perfor-
mance and vary significantly across tasks. To adapt
to these differences, we design a flexible module
tailored to task-specific requirements.

In KGC tasks, most methods focus on message
passing and aggregation, often setting all edge
scores to 1 (Veličković et al., 2018). But in KGQA
tasks, noisy paths in the retrieved subgraph necessi-
tate more refined edge scoring. Compared to node
relevance scores, edge scores capture richer inter-
actions among the head entity, relation, and tail
entity, offering a more accurate relevance measure
for the query (Yasunaga et al., 2021). For each
edge (h, r, t) in the subgraph, its query relevance
is calculated using a bilinear layer:

η = Norm
(
[xh||xr||xt]

⊤Wxq

)
, (17)

where W ∈ R3d×d is the bilinear coefficient, xh,
xr, xt, xq ∈ X represent the textual features
of (h, r, t) and the query q, obtained using the
parameter-free method introduced in Section 4.3.
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The output η ∈ R2×1 includes relevance and irrele-
vance scores, normalized with a Softmax function.
The relevance score is then used in the update func-
tion of CMP.

4.6 Training Mechanism

Self-Supervised Pre-Training The encoding
process of MERRY is both entity-agnostic and
relation-agnostic, making it suitable for inductive
scenarios and allowing pre-training on arbitrary
or hybrid KGs. The pre-training task employs
self-supervised link prediction, with binary cross-
entropy loss for positive and negative samples (Sun
et al., 2019; Zhu et al., 2021):

L = − log p(q, ans)−
n∑

i=1

1

n
log(1−p(q, neg_ans)),

(18)
where q is the query prefix of the triple (h, r, ?),
and ans is the tail entity t that makes (h, r, t) valid
in the knowledge graphNegative samples are gener-
ated by randomly selecting tail entities. MERRY is
pre-trained on multiple hybrid KG datasets, which
equips it with generalizable transferability across
diverse knowledge graphs.

Task Adaptation For the KGC task, the model is
evaluated in a zero-shot setting without fine-tuning,
using the same process as pre-training.

For the KGQA task, input questions are sum-
marized as a combination of the query and
the retrieved subgraph. The query is formal-
ized as q = (question,REL_the_answer_is),
where the candidates are the possible options.
The goal is to select the correct answer such
that (question,REL_the_answer_is, answer)
forms a valid triple, with REL_the_answer_is
is a newly introduced relation.

We adapt the data in three steps. First, a question-
node is introduced to represent the input question,
connected to all topic entities via a new relation. Its
text description is the question itself. Additionally,
each candidate option is represented by an answer-
node, connected to the entities in the option via a
special relation. Its text description is the original
text of the option. Finally, we introduce a new
relation, REL_the_answer_is, which connects
the question-node to the correct answer-node.

Since REL_the_answer_is lacks neighboring
nodes in the relation graph, we adopt a few-shot
approach. Using Sentence-BERT(Reimers and
Gurevych, 2019) we compute sentence embeddings

for each question and retrieve the top-K most sim-
ilar questions based on cosine similarity. These
few-shot examples are used to enrich the instances
of REL_the_answer_is.

With these modifications, MERRY can seam-
lessly transfer to perform the KGQA task.

5 Experiments

We evaluate MERRY on 28 datasets across two
tasks: Inductive Knowledge Graph Completion
(KGC) and Knowledge Graph Question Answer-
ing (KGQA). Our evaluation focuses on the fol-
lowing research questions: RQ1: How effective
is MERRY in reasoning for in-KG tasks under a
zero-shot setting? RQ2: Can MERRY effectively
transfer and generalize to out-of-KG tasks? RQ3:
What is the impact of key components on the per-
formance of MERRY? RQ4: How do key hyperpa-
rameters affect the performance of MERRY?

5.1 Datasets and Metrics

Inductive KGC We perform zero-shot inductive
KGC experiments on 27 datasets, categorized by
entity and relation visibility: (1) Inductive Entity
(e) Datasets (IndE): These datasets feature unseen
entities in the test set, with fixed relations. This cat-
egory includes 12 datasets from (Teru et al., 2020):
WN18RR (WN), FB15k-237 (FB), and NELL-995
(NL), each with four different versions. (2) In-
ductive Entity and Relation (e, r) Datasets (In-
dER): These datasets include unseen entities and
relations in the test set. This category comprises
13 graphs from (Lee et al., 2023): FB15k-237 (FB)
and Wikidata68K (WK), each with four versions,
and NELL-995 (NL), which has five versions. We
report Mean Reciprocal Rank (MRR) and Hits@10
results.

KGQA We use CommonsenseQA (CSQA)
dataset (Talmor et al., 2019), which focuses on com-
monsense reasoning. It consists of 12,102 multiple-
choice questions. We follow the in-house split
method from (Lin et al., 2019) for experiments and
compare our results with several baseline models.
We report Accuracy (Acc) on the CSQA dataset.

For detailed information on datasets and metric
computation formulas, refer to Appendix C and
Appendix D, respectively.

5.2 Baselines

Inductive KGC We compare MERRY against
state-of-the-art supervised methods and recent KG
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Methods IndE(WN) IndE(FB) IndE(NL) IndER(FB) IndER(WK) IndER(NL) Total AVG SOTA Num
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

Supervised SOTA 0.640 0.734 0.477 0.636 0.464 0.654 0.166 0.296 0.152 0.244 0.296 0.481 0.366 0.507 -

ULTRA(3g) 0.517 0.678 0.486 0.667 0.561 0.742 0.386 0.599 0.254 0.403 0.393 0.561 0.433 0.608 4 / 24
ProLINK 0.553 0.690 0.494 0.684 0.546 0.759 0.372 0.591 0.234 0.393 0.400 0.590 0.433 0.618 8 / 24

MERRY 0.563 0.709 0.486 0.662 0.567 0.767 0.378 0.592 0.282 0.443 0.397 0.586 0.445 0.626 12 / 24
MERRYPNA 0.559 0.694 0.484 0.660 0.560 0.754 0.359 0.584 0.261 0.426 0.384 0.569 0.435 0.615 -

Table 1: Zero-shot and supervised SOTA performance on 24 KG inductive reasoning datasets. The best results
across baselines, supervised methods, and MERRY are bolded. The second-best results are underlined. The SOTA
Num column indicates the number of datasets where each method achieves SOTA performance.

foundation models, including ULTRA and Pro-
LINK (Galkin et al., 2024; Wang et al., 2024), for
zero-shot learning. Here, ULTRA(3g) refers to
pre-training on three graphs.

KGQA For KGQA, we use a fine-tuned stan-
dard LM as the baseline for models without exter-
nal knowledge. Additionally, we evaluate several
LM+KG-based methods, including RN (Santoro
et al., 2017), RGCN (Schlichtkrull et al., 2017),
GconAttn (Wang et al., 2018), KagNet (Lin et al.,
2019), MHGRN (Feng et al., 2020), QA-GNN (Ya-
sunaga et al., 2021), and GreaseLM (Zhang et al.,
2021). Among these, the best-performing models
synchronize updates between the LM and GNN,
enabling mutual interaction between textual and
structural modalities.

5.3 Implementation & Training details

We pre-train MERRY on three hybrid knowledge
graph datasets: WN18RR, CoDEx-Medium, and
FB15k237, to capture diverse relational struc-
tures and sparsity patterns (Dettmers et al., 2018;
Toutanova and Chen, 2015; Safavi and Koutra,
2020). Based on ULTRA, we set QCMP to a 6-
layer CMP and GCMP to a 3-layer CMP, with each
hidden layer having a dimension 64. To enhance
convergence, we employ a two-stage training strat-
egy: (1) QCMP weights from ULTRA are frozen,
and other modules, particularly GCMP, are trained.
(2) All components are unfrozen, allowing QCMP
and other modules to converge jointly. During train-
ing, the LM backbone remains frozen.

For Inductive KGC, we evaluate the zero-shot ca-
pability of the pre-trained model directly on down-
stream datasets, using the Llama3 8B LM backbone
(Grattafiori et al., 2024).

For KGQA, due to the substantial gap between
pre-training and the downstream task, we fine-tune
the model with three few-shot examples before test-
ing. Considering commonsense reasoning requires
alignment with human cognitive preferences, we
use the Llama3 8B Instruct backbone.

Methods IHdev-Acc.(%) IHtest-Acc.(%)

RoBERTa-Large 73.1 68.7
LLaMA-3-8b-instruct 72.9 71.9
RGCN 72.7 68.4
GconAttn 72.6 68.6
KagNet 73.5 69.0
RN 74.6 69.1
MHGRN 74.5 71.1
QA-GNN 76.5 73.4
GreaseLM 78.5 74.2

MERRY 78.6 74.9

Table 2: Performance comparison on CommonsenseQA
in-house split (controlled experiments).

5.4 Main Results (RQ1)

We compare MERRY with baselines on 27 induc-
tive link prediction KG datasets, categorized into 7
benchmarks based on data sources. For a fair com-
parison, datasets IndE (ILPC-small), IndE (ILPC-
large), and IndER (NL-0) are excluded. Table 1
presents the average results across 6 benchmarks,
24 datasets. A full comparison of results across 27
datasets is provided in Appendix E.

Four benchmarks, IndE(X) from (Teru et al.,
2020), contain unseen entities in the test graph. In
contrast, the IndER (X) benchmark from (Lee et al.,
2023) includes unseen entities and relations, mak-
ing it significantly more challenging. Among all
dataset benchmarks, IndER (WK), IndE (NL), and
IndER (NL) contain entities and relations unseen
during pre-training, providing a strong evaluation
of the model’s zero-shot generalization capability.
Table 1 shows that MERRY outperforms baselines.

Additionally, we compare MERRY with a
parameter-free PNA method (Corso et al., 2020),
used for encoding textual descriptions of entities
and relations (4.3). From the average results, while
the MERRYPNA variant shows a slight decline in
performance, it demonstrates that our design re-
tains a certain level of robustness.

Overall, MERRY surpasses state-of-the-art su-
pervised models and existing zero-shot transfer
methods in total average metrics. While ULTRA
and ProLINK excel on specific datasets, their per-
formance is largely limited to datasets they were
trained on.
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5.5 Generalization to KGQA (RQ2)
Table 2 compares MERRY with previous state-of-
the-art methods on the CSQA dataset. MERRY
achieves superior performance, surpassing all base-
lines and delivering the best overall results. No-
tably, compared to GreaseLM, which integrates
GNN and LM layers through bidirectional interac-
tions, MERRY performs comparably on the val-
idation set but exceeds it on the test set. This
demonstrates the effectiveness of our approach in
integrating textual and structural modalities.

These results highlight the robustness of our mul-
timodal fusion strategy and strong generalization
capabilities. Additionally, in zero-shot inference
using Llama3 8b Instruct, MERRY shows signifi-
cant improvement, further validating its ability to
incorporate structural information without compro-
mising textual understanding.

5.6 Ablation Studies (RQ3)
We conducted ablation experiments on multiple
datasets, including IndE(X) and IndER(X), to eval-
uate the impact of two key components in our
method for KGC. As shown in Figure 2, "w/o
GCMP" indicates the removal of the GCMP mod-
ule, where node text and structural features are in-
stead concatenated and fused via an MLP. "w/o
DTAF" refers to the model where DTAF is ig-
nored, relying solely on CMP-based fusion for
downstream predictions.

Figure 2: Ablation study results.

The results demonstrate a significant perfor-
mance drop in the "w/o GCMP" variant, highlight-
ing its critical role in bridging the gap between tex-
tual and structural modalities for better integration.
In contrast, the "w/o DTAF" variant shows a slight
performance decline, indicating that while original
text features aid KGC, DTAF primarily enhances
the understanding of structural information.

Similarly, we conducted ablation experiments on
the CSQA dataset, as shown in Table 3. An addi-
tional variant, "w/o Edge Scoring", sets all edge

Edge Scoring DTAF IHdev-Acc.(%) IHtest-Acc.(%)

✓ ✓ 78.6 74.9
✓ 77.7 75.0

71.4 70.7

Table 3: Ablation results of the edge scoring mechanism
and DTAF module on the CSQA dataset.

scores to 1, similar to the KGC tasks. The results
indicate that DTAF significantly impacts KGQA
performance, highlighting the importance of text
feature understanding in these tasks and its role
in preserving the LM’s text processing capability.
Moreover, ignoring edge scores results in a per-
formance decline, underscoring the importance of
edge weights in KGQA.

5.7 Hyperparameter Sensitivity (RQ4)

Figure 3: Performance of different GCMP layers in
KGC and different numbers of shots in KGQA.

We investigated the impact of GCMP layers on
zero-shot KGC tasks and assessed the role of few-
shot learning in KGQA. As illustrated in Figure
3, using too few GCMP layers results in poor con-
vergence, while excessive layers lead to feature
smoothing. Aggregating information from up to
three hops strikes an optimal balance, enabling ef-
fective performance.

For KGQA, the introduction of few-shot learn-
ing proves essential. As expected, zero-shot per-
formance is initially poor. However, as the number
of shots increases, performance stabilizes, demon-
strating the model’s capacity to rapidly adapt and
learn new relationships with minimal data.

5.8 Computational Complexity and
Scalability Analysis

To ensure practical applicability, we theoretically
analyze MERRY’s computational efficiency under
two decoupled phases:

• Phase 1: LLM Text Encoding Complexity
scales as O(|V | · TLLM ), where |V | is the
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node count and TLLM is the per-node encod-
ing time. Our parameter-free feature extrac-
tion (Section 4.3) enables one-time offline pre-
processing, converting TLLM into a fixed cost
during model deployment.

• Phase 2: CMP Graph Updates Each iter-
ation requires O(|E|d + |V |d2) operations,
where |E| denotes the number of edges and
d is the feature dimension. This complex-
ity aligns with state-of-the-art GNNs like UL-
TRA (Galkin et al., 2024) and NBFNet (Zhu
et al., 2021), while demonstrating significant
advantages over classic inductive KGC ap-
proaches. Specifically, compared to GraIL’s
O(|E|d2 + |V |d2) complexity for closed sub-
graph encoding (Teru et al., 2020), MERRY
achieves a d-fold reduction in edge-related
computation, making it particularly advanta-
geous for graphs with large edge sets or high-
dimensional features.

Scalability Advantages: Based on the above
time-complexity analysis, MERRY demonstrates
strong scalability on large-scale graphs. By de-
coupling the LLM encoding phase, all node tex-
tual features can be precomputed offline at a cost
of O

(
|V | · TLLM

)
and then stored and retrieved

via a distributed system. Furthermore, the CMP
graph-update complexity shows that, for a fixed
hidden-layer dimension d, MERRY’s online com-
putation O

(
|E| d + |V | d2

)
is substantially lower

than the O
(
|E| d2 + |V | d2

)
required by classical

approaches. Together, these results demonstrate
that our framework achieves a favorable trade-off
between performance and efficiency.

6 Conclusion

In this paper, we introduced MERRY, a general
knowledge graph reasoning framework that bridges
textual and structural modalities through multi-
channel CMP encoding and multi-perspective dy-
namic fusion mechanisms. Additionally, we pro-
posed a flexible edge scoring mechanism to adapt
to diverse downstream tasks. Experiments across
28 datasets demonstrate MERRY’s strong gener-
alization capabilities in in-KG tasks, such as zero-
shot KGC, and its adaptability to out-of-KG tasks,
such as KGQA, highlighting its potential as a uni-
fied framework for reasoning across in-KG and
out-of-KG tasks.
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Limitations

Here, we discuss three limitations of this work.
First, through hyperparameter tuning experiments,
it is evident that the CMP module’s depth has limi-
tations. A higher number of layers leads to feature
smoothing, which is a challenge commonly faced
by models incorporating GNN architectures. Sec-
ond, we assumed that each entity and relation in the
KG dataset has a corresponding textual description.
However, our investigation discovered that some
datasets need better maintenance, resulting in miss-
ing textual fields for certain entities. This issue of
data completeness poses challenges for approaches
that rely on language models. Finally, while LLM
have demonstrated significant potential across vari-
ous tasks, they face unique challenges in the in-KG
task. Due to the size of the graph, encoding all
nodes becomes particularly difficult, not only in-
troducing substantial time and memory overhead
during training but also consuming considerable
storage space for offline feature storage. Efficiently
leveraging LLMs in the in-KG tasks thus remains
a crucial area for future exploration.
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A Details of CMP Updates

Given a graph G = (E ,R, T ), where the feature of
any entity u hu and the feature of any relation is
denoted as r, the update process for the (t+ 1)-th
layer of CMP (Conditional Message Passing) is
formalized as follows:

mt+1
u = MSG(ht

w, r), w ∈ Nr(u), (19)

ht+1
u = UPDATE

(
ht
u,AGG(mt+1

u )
)

(20)

where, we follow the settings of NBFNet, where the
message function uses the parameter-free DistMult,
the aggregation function employs summation, and
UPDATE is implemented as a linear layer with
LayerNorm.

When edge scores are introduced, the message
function is adjusted to incorporate relevance scores.
If the relevance score for any edge is denoted as s,
the modified update equations become:

mt+1
u = s · MSG(ht

w, r), w ∈ Nr(u), (21)

ht+1
u = UPDATE

(
ht
u,AGG(mt+1

u )
)

(22)
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where the edge score s weights the message contri-
bution from each neighbor, enhancing the model’s
ability to capture relevance-specific information in
graph updates.

B Relation Graph Construction

Given a graph G = (E ,R, T ), we apply the lifting
function Gr = LIFT(G) to build a graph of relations
Gr = (Er,Rmeta, Tr) where each node is a distinct
relation type in G. Triples Tr ∈ (R×Rmeta ×R)
in the relation graph Gr denote interactions between
relations in the original graph G, and we distinguish
four such meta-relation interactions Rmeta: tail-to-
head (t2h) edges, head-to-head (h2h) edges, head-
to-tail (h2t) edges, and tail-to-tail (t2t) edges. Each
of the four adjacency matrices can be efficiently
obtained with one sparse matrix multiplication; for
details, refer to Galkin et al. (2024).

C Datasets

Pre-Training Considering MERRY’s effective
generalization across datasets, we perform pre-
training using a mix of the WN18RR, FB15k237,
and CodexMedium datasets. Table 4 presents the
statistics of these three datasets, highlighting their
data diversity.

Inductive KGC Our zero-shot Inductive KG
Completion (KGC) experiments are conducted
on 27 datasets. Among these, 12 datasets are
derived from the GraIL framework (Teru et al.,
2020), which utilizes widely recognized KG bench-
marks such as WN18RR (Dettmers et al., 2018),
FB15k237 (Toutanova and Chen, 2015), and
NELL-995 (Xiong et al., 2018), and 2 datasets are
derived from the ILPC (Galkin et al., 2022a). These
datasets are designed such that the training and test-
ing graphs maintain consistent relation types.

Additionally, we incorporate 13 datasets from
the InGram framework (Lee et al., 2023) to further
assess inductive reasoning performance. These
datasets are generated from three real-world knowl-
edge graph benchmarks: FB15k237 (Toutanova
and Chen, 2015), Wikidata68K (Gesese et al.,
2023), and NELL-995 (Xiong et al., 2018). Each
dataset is partitioned into subsets with varying
proportions of novel relational triples, specifically
100%, 75%, 50%, and 25%, enabling evaluation
under diverse inductive settings. Additionally, the
NELL-995 also has a variant dataset with 0

While other KG datasets with textual descrip-
tions exist, their limited accessibility precludes

their inclusion in this study. Future research may
focus on evaluating these datasets. Comprehensive
structural statistics for the datasets employed in this
work are presented in Table 5.

KGQA In our KG question answering (KGQA)
experiments, the CommonsenseQA dataset is used
as a representative for this type of task (Talmor
et al., 2019). CSQA is a multiple-choice question-
answering benchmark with five answer options per
question, aimed at assessing reasoning based on
commonsense knowledge. It includes a total of
12,102 questions. As the test set for CSQA is
not openly accessible, evaluation can only be con-
ducted biweekly through submissions to the official
leaderboard.

For our primary experiments, we rely on the in-
house (IH) data splits introduced by (Lin et al.,
2019) for training and validation purposes. The
performance of our final system is also evaluated on
the official test set to provide a direct comparison
with existing methods.

Dataset |Etr| |Rtr| #Train #Validation #Test
WN18RR 40.9k 11 86.8k 3.0k 3.1k
FB15k-237 14.5k 237 272.1k 17.5k 20.4k
CodexMedium 17.0k 51 185.5k 10.3k 10.3k

Table 4: Statistics of pre-training KG datasets.

D Metrics

Mean Reciprocal Rank (MRR) The Mean Re-
ciprocal Rank (MRR) evaluates the quality of the
ranking in Knowledge Graph Completion (KGC)
tasks. For a given query q, let the rank of the correct
candidate be rq. The reciprocal rank is defined as
1
rq

. Averaging over all queries, MRR is calculated
as:

MRR =
1

|Q|
∑

q∈Q

1

rq
(23)

where Q represents the set of all queries. A higher
MRR indicates better model performance in rank-
ing the correct candidate higher in the prediction
list.

Hits@10 The Hits@10 metric measures the pro-
portion of queries for which the correct candidate
is ranked within the top 10 predictions. For a given
query q, let the rank of the correct candidate be rq.
Hits@10 is defined as:

Hits@10 =
1

|Q|
∑

q∈Q
1[rq ≤ 10], (24)
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where 1[·] is an indicator function that equals 1
if the condition inside is true and 0 otherwise. A
higher Hits@10 value reflects the model’s ability
to include the correct candidate within the top 10
ranked predictions.

Accuracy (Acc) The Accuracy (Acc) metric is
used to evaluate performance on Knowledge Graph
Question Answering (KGQA) tasks. For a dataset
of queries, let 1[q] indicate whether the predicted
answer for question q matches the ground truth.
Accuracy is computed as:

Acc =
1

|Q|
∑

q∈Q
1[q], (25)

where Q represents the set of all questions. A
higher Accuracy score indicates the model’s effec-
tiveness in selecting the correct answer from the
set of options.

E Full Results

The full, per-dataset results of MRR and Hits@10
of the zero-shot inference of the pre-trained
MERRY model, the pre-trained ULTRA model,
and best reported supervised SOTA baselines are
presented in Table 6.

The detailed results from Table 1 are presented
in Table 6, which also includes the outcomes for
two ILPC datasets ans IndER(NL-0) that are not
covered in (Wang et al., 2024).
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Group Dataset Training Graph Validation Graph Test Graph SOTA

Entities Rels Triples Entities Rels Triples Entities Rels Triples

IndE(WN) WN:v1 2746 9 5410 2746 9 5410 922 9 1618 Zhu et al. (2021)
WN:v2 6954 10 15262 6954 10 15262 2757 10 4011 Zhu et al. (2021)
WN:v3 12078 11 25901 12078 11 25901 5084 11 6327 Zhu et al. (2021)
WN:v4 3861 9 7940 3861 9 7940 12334 9 7084 Zhu et al. (2023)

IndE(FB) FB:v1 1594 180 4245 1594 180 4245 1093 180 1993 Zhu et al. (2023)
FB:v2 2608 200 9739 2608 200 9739 1660 200 4145 Zhu et al. (2021)
FB:v3 3668 215 17986 3668 215 17986 2501 215 7406 Zhu et al. (2021)
FB:v4 4707 219 27203 4707 219 27203 3352 219 11714 Zhu et al. (2023)

IndE(NL) NL:v1 3103 14 4687 3103 14 4687 833 14 833 Zhang and Yao (2022)
NL:v2 2564 88 8219 2564 88 8219 2086 88 4586 Zhang and Yao (2022)
NL:v3 4647 142 16393 4647 142 16393 3566 142 8048 Zhang and Yao (2022)
NL:v4 2092 76 7546 2092 76 7546 2795 76 7073 Zhang and Yao (2022)

IndE(ILPC) ILPC:small 10230 48 78616 6653 48 2908 6653 48 2902 Galkin et al. (2022b)
ILPC:large 46626 65 202446 29246 65 10179 29246 65 10184 Galkin et al. (2022b)

IndER(FB) FB-25 5190 163 91571 4097 216 17147 5716 4097 17147 Lee et al. (2023)
FB-50 5190 153 85375 4445 205 11636 3879 4445 11636 Lee et al. (2023)
FB-75 4659 134 62809 2792 186 9316 3106 2792 9316 Lee et al. (2023)

FB-100 4659 134 62809 2624 77 6987 2329 2624 6987 Lee et al. (2023)

IndER(WK) WK-25 12659 47 41873 3228 74 3391 1310 3228 3391 Lee et al. (2023)
WK-50 12022 72 82481 9328 93 9672 3224 9328 9672 Lee et al. (2023)
WK-75 6853 52 28741 2722 65 3430 1143 2722 3430 Lee et al. (2023)
WK-100 9784 67 49875 12136 97 13487 4496 12136 13487 Lee et al. (2023)

IndER(NL) NL-0 1814 134 7796 2026 112 2287 2026 112 2287 Lee et al. (2023)
NL-25 4396 106 17578 2230 146 2230 743 2230 2230 Lee et al. (2023)
NL-50 4396 106 17578 2335 119 2576 859 2335 2576 Lee et al. (2023)
NL-75 2607 96 11058 1578 116 1818 607 1606 1818 Lee et al. (2023)

NL-100 1258 55 7832 1709 53 2378 793 1709 2378 Lee et al. (2023)

Table 5: Inductive KG datasets used in the experiments. "Triples" refers to the number of edges in the graph used
for training, validation, or testing. "Valid" and "Test" refer to the triples that need to be predicted in the validation
and test sets, respectively, within the corresponding graphs.
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Group Dataset Supervised SOTA ULTRA(3g) MERRY

MRR Hits@10 MRR Hits@10 MRR Hits@10

IndE(WN) WN:v1 0.741 0.826 0.593 0.779 0.635 0.795
WN:v2 0.704 0.798 0.620 0.752 0.654 0.783
WN:v3 0.452 0.568 0.371 0.494 0.397 0.526
WN:v4 0.661 0.743 0.484 0.687 0.562 0.710

IndE(FB) FB:v1 0.457 0.589 0.486 0.657 0.478 0.628
FB:v2 0.51 0.672 0.501 0.694 0.503 0.694
FB:v3 0.476 0.637 0.482 0.644 0.478 0.636
FB:v4 0.466 0.645 0.477 0.671 0.484 0.688

IndE(NL) NL:v1 0.637 0.866 0.716 0.861 0.643 0.892
NL:v2 0.419 0.601 0.525 0.719 0.558 0.753
NL:v3 0.436 0.594 0.511 0.687 0.564 0.730
NL:v4 0.363 0.556 0.490 0.701 0.498 0.691

IndE(ILPC) ILPC:small 0.130 0.251 0.302 0.443 0.335 0.472
ILPC:large 0.070 0.146 0.290 0.424 0.302 0.437

IndER(FB) FB-25 0.133 0.271 0.383 0.633 0.363 0.616
FB-50 0.117 0.218 0.330 0.536 0.330 0.540
FB-75 0.189 0.325 0.391 0.594 0.377 0.574

FB-100 0.223 0.371 0.438 0.631 0.443 0.638

IndER(WK) WK-25 0.186 0.309 0.307 0.507 0.293 0.487
WK-50 0.068 0.135 0.158 0.296 0.216 0.402
WK-75 0.247 0.362 0.373 0.519 0.401 0.531
WK-100 0.107 0.169 0.178 0.289 0.220 0.360

IndER(NL) NL-0 0.269 0.431 0.342 0.523 0.351 0.536
NL-25 0.334 0.501 0.387 0.538 0.406 0.601
NL-50 0.281 0.453 0.398 0.549 0.376 0.530
NL-75 0.261 0.464 0.348 0.527 0.344 0.550

NL-100 0.309 0.506 0.442 0.631 0.462 0.666

Table 6: The full results (MRR and Hits@10) of MERRY, ULTRA, and the best-reported Supervised SOTA
are presented across 27 datasets, highlighting their performance under both zero-shot inference and fine-tuning
scenarios.
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