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Abstract

The Key-Value (KV) cache in generative large
language models (LLMs) introduces substan-
tial memory overhead. Existing works miti-
gate this burden by offloading or compressing
the KV cache. However, loading the entire
cache incurs significant latency due to PCIe
bandwidth bottlenecks in CPU-GPU communi-
cation, while aggressive compression causes
notable performance degradation. We iden-
tify that certain layers in the LLM need to
maintain global information and are unsuitable
for selective loading. In contrast, other layers
primarily focus on a few tokens with domi-
nant activations that potentially incur substan-
tial quantization error. This observation leads
to a key insight that loading dominant tokens
and quantizing all tokens can complement each
other. Building on this insight, we propose a
hybrid compression method, TailorKV, which
seamlessly integrates quantization and offload-
ing. TailorKV develops an inference frame-
work along with a hardware-friendly implemen-
tation that leverages these complementary char-
acteristics. Extensive long-context evaluations
exhibit that TailorKV achieves nearly lossless
performance under aggressive compression set-
tings, outperforming the state-of-the-art. Par-
ticularly, the Llama-3.1-8B with 128k context
can be served within a single RTX 3090 GPU,
reaching 82 ms per token during decoding1.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance in tasks such as multi-turn
dialogues (Chiang et al., 2023) and multi-document
understanding (Bai et al., 2024). In response to the
growing complexity of tasks, recent LLMs have ex-
panded their context windows to over 128k tokens,
e.g., GPT-4 (Achiam et al., 2023) and DeepSeek

* Work done during an internship at Xiaomi Inc.
† Corresponding Author: Zheng Lin.
1Code is available at: https://github.com/ydyhello/

TailorKV.

V3 (Liu et al., 2024a). Typically, the inference
of LLMs is auto-regressive, with the Key-Value
(KV) cache stored in memory to avoid recomputa-
tion. However, the size of KV cache grows linearly
with sequence length, leading to much higher GPU
memory consumption and inference latency.

Recent studies have proposed sparse attention
mechanisms to reduce KV cache usage. These
methods fall into two categories: irreversible evic-
tion and recallable selection. Irreversible evic-
tion methods (Li et al., 2024; Zhang et al., 2023;
Xiao et al., 2024b) suffer from accuracy degra-
dation due to permanently discarding tokens that
may later become crucial, particularly in multi-turn
dialogues. Recallable selection methods adopt a
different approach by maintaining the entire KV
cache while selecting only a subset of tokens for
processing. However, methods like Quest (Tang
et al., 2024) and SparQ (Ribar et al., 2024) en-
counter memory limitations when attempting to
store all tokens on the GPU. Although CPU of-
floading mitigates GPU memory limitations, exist-
ing approaches (Xiao et al., 2024a; Zhang et al.,
2024a) still require retrieving a substantial portion
of tokens (around 20%), introducing significant de-
coding latency overheads due to slow data transfer
between CPU RAM and GPU RAM.

To optimize accuracy, memory, and latency si-
multaneously, we first analyze the compression
preferences for the KV cache based on layer char-
acteristics. Prior researches (Feng et al., 2024; Cai
et al., 2024) applied different sparsity rates to dif-
ferent layers under the same compression strategy.
However, our analyses demonstrate that perfor-
mance degradation primarily stems from the appli-
cation of unsuitable compression at the layer level
(Section 3). Therefore, we suggest that shallow
layers, which exhibit dense attention patterns and
emphasize global information (Wan et al., 2025),
are better suited for uniform compression like quan-
tization. Conversely, layers with a few dominant
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tokens and largely redundant information are well-
suited for sparsity, as performance can be main-
tained by retrieving only the dominant tokens.

Building upon these insights, we propose a novel
framework, TailorKV, which employs hybrid com-
pression techniques to reduce GPU memory us-
age. We introduce an identification metric to clas-
sify Transformer layers into two distinct types: (i)
quantization-friendly layers, which preserve global
information from a macro perspective, and (ii)
sparsity-friendly layers, which capture crucial in-
formation from a micro perspective. This design en-
ables quantization-friendly layers to employ static
quantization, achieving a high compression ratio
(1-bit per floating-point number) while maintain-
ing model quality. Meanwhile, for sparsity-friendly
layers, the system offloads the KV cache to CPU
memory during prefilling and dynamically retrieves
the Top-K tokens during decoding. By aligning
compression strategies with the characteristics of
each layer, this tailored approach significantly re-
duces overall memory consumption.

The accuracy and efficiency of TailorKV are
evaluated on various backbone LLMs using long-
context benchmarks. The results demonstrate that
TailorKV drastically reduces memory usage by
quantizing 1 to 2 layers to 1-bit precision and load-
ing only 1% to 3% of the tokens for the remain-
ing layers while maintaining nearly lossless perfor-
mance. Specifically, TailorKV achieves a decoding
latency of 82 ms for Llama-3.1-8B with a 128k-
context on a single RTX 3090 (PCIe 1.0)2, yielding
a 53.7% reduction in peak GPU memory usage.
The key contributions are summarized as follows.

• We identify layer-specific compression prefer-
ences and develop an identification metric to
determine optimal compression strategies for
different layers in the model.

• We present TailorKV, a hybrid KV cache com-
pression framework that combines quantiza-
tion and offloading techniques through an
algorithm-system co-design, preserving both
model accuracy and execution efficiency.

• Extensive experiments on long-context bench-
marks demonstrate the nearly lossless perfor-
mance of TailorKV with minimal GPU mem-
ory consumption and acceptable latency.

2We combine TailorKV with 4-bit weight-only quantiza-
tion (Lin et al., 2024) for prefill phase memory allocation.

2 Preliminaries

2.1 Attention and KV Cache
LLM inference consists of two stages: prefill and
decode. During prefilling, the entire prompt is used
to generate the first token. Consider the prompt em-
bedding X ∈ Rn×d along with the weight matrices
Wq

i ,W
k
i ,W

v
i ∈ Rd×dh for head i ∈ [1, h], where

n is the sequence length, d is the hidden dimension
and dh is the head dimension. The keys and values
for head i are computed and cached, as follows:

Ki = XWk
i , Vi = XWv

i . (1)

During decoding, the new token embedding x ∈
R1×d is computed iteratively to produce the query,
key, and value vectors. The cache is updated and
the output o of each attention head is computed as:

Ki ← Cat[Ki,xW
k
i ],Vi ← Cat[Vi,xW

v
i ],

(2)
ai = Softmax

(
qiK

⊤
i /

√
dh

)
,oi = aiVi, (3)

where qi = xWq
i , and the attention outputs from

all heads are concatenated and sent to the FFN.

2.2 Quantization of KV Cache
Quantization converts continuous or high-precision
values into lower-precision discrete representations.
Given a tensor X in high precision, the typical
uniform quantization process can be expressed as:

XQ = Quantb(X, s, z)

= clamp(⌊X− z

s
⌉, 0, 2b − 1),

(4)

where XQ represents the quantized tensor in b-bit
precision, with z = minX as the zero-point and
s = maxX−minX

2b−1
as the scaler. The clamp function

restricts values to the b-bit integer range and ⌊·⌉
denotes the rounding function.

2.3 GPU-CPU Co-execution
As the sequence length increases, the size of the
KV cache grows, significantly raising the demand
for GPU resources. For example, with a sequence
length of 512k, Llama-2-7B (Touvron et al., 2023)
requires up to 256GB of memory for the KV cache.
Current LLM serving systems (Kwon et al., 2023;
Qin et al., 2025) employ an offloading strategy that
stores the KV cache in cost-effective CPU mem-
ory and loads it onto the GPU during inference.
However, I/O transfer latency becomes the bottle-
neck in inference due to the low-bandwidth PCIe
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(c) Sparse error on different datasets.

Figure 1: Observations on attention. (a) Attention weights on Llama-2-7B-32K-Instruct. Detailed visualizations
are in Appendix I. (b) Sparse error of different models on the 2WikiMQA dataset, with only the top 5% of attention
scores retained. (c) Sparse error on different datasets, with only the top 5% of attention scores retained.

Strategy RB-P LCC GovReport TriviaQA

16-bit 56.7 63.4 34.9 91.6
1-bit (KIVI) 24.4 26.2 8.3 18.6

1-bit (L = {0}) 57.1 62.6 34.9 92.1
1-bit (L = {2}) 53.0 59.3 32.6 91.9
1-bit (L = {10}) 52.3 59.3 31.2 90.7
1-bit (L = {18}) 53.7 60.0 34.9 89.4

Table 1: Results of 1-bit quantization on different lay-
ers, using Llama-3.1-8B. L denotes the quantized layer.
KIVI (Liu et al., 2024d) is an advanced KV cache quan-
tization algorithm.

interface (Zhang et al., 2024b). For instance, trans-
ferring the KV cache of a single layer (≈ 8GB)
from the CPU memory to the RTX 3090 GPU
via PCIe 1.0 link (4GB/s) takes around 2s, while
the attention computation for a single layer on the
RTX 3090 GPU only takes around 10ms. Thus,
on-demand fetching is currently the most common
approach to reduce GPU idle time.

3 Motivations and Observations

Layers have compression preferences. In con-
trast to previous belief (Li et al., 2024; Zhang et al.,
2023), we propose that not all layers are suitable
for sparsity. To quantify the sparsity challenges
during decoding, we define the sparse error E . Let
a ∈ R1×n represents the attention weight as de-
fined in Equation 3, and letM ∈ {0, 1}n denote
a binary mask that selects the top k elements of a.
The sparse error E for each head is defined as:

â = a⊙M, E = 1−∑n
i=1âi. (5)

As shown in Figure 1a, layers with dense attention
distributions exhibit higher sparse errors compared
to those with sparse distributions. Additionally, we

0 50 100

0

25

50

75Se
qu

en
ce

 L
en

gt
h

Prefill

Decode

Layer 25 Head 24 Query

0 50 100

0

25

50

75

Prefill

Decode

Layer 25 Head 6 Key

0 50 100

0

25

50

75

Prefill

Decode

Layer 25 Head 6 Value

0 50 100
Channel

0

25

50

75

Ti
m

es
 o

f T
op

-8

0 50 100
Channel

0

25

50

75

0 50 100
Channel

0

20

40

60

2.5

5.0

7.5

5

10

0.5

1.0

1.5

Figure 2: (Top) Query and key in Llama-3.1-8B-Instruct
show outlier patterns in some channels, while the value
shows no outliers. (Bottom) The number of times reach-
ing the Top-8. Outliers may appear in any position.

observe sparse error patterns across models and
datasets. Figure 1b shows that sparse errors are
similar across models, with higher sparse errors in
shallower layers (e.g., 0, 1). Figure 1c shows that
the distribution of sparse errors remains consistent
across various datasets for the same model.

Similarly, not all layers are suitable for quantiza-
tion. As shown in Table 1, quantizing the KV cache
to 1-bit leads to significant performance degrada-
tion. This degradation is primarily caused by layers
with sparse distributions, which are more sensitive
to quantization. In contrast, quantizing the dense
layer (e.g., 0th) incurs no performance loss.

These findings highlight the need for a tailored
KV cache compression strategy. We regard layers
with dense distributions as quantization-friendly,
which focus on global information, and layers with
sparse distributions as sparsity-friendly, which pri-
oritize crucial information.

Attention scores correlate with outliers. Each
channel in the key and query contributes to the
attention scores through their dot product, as ex-
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Figure 3: System overview of TailorKV. Offline identification categorizes the layers into quantization-friendly and
sparsity-friendly. For quantization-friendly layers, we employ aggressive static quantization. For sparsity-friendly
layers, we dynamically retrieve Top-K tokens. Critical current query and critical key cache represent the outliers in
the query and key cache, respectively.

pressed by the formula qK⊤. Figure 2 (Top) illus-
trates that some channels have large magnitudes in
the query and key. It follows from the dot product
formula that attention scores correlate with these
outliers. A recent method (Yang et al., 2024b) fo-
cuses on static channel sparsity, utilizing offline cal-
ibration technique to identify high-magnitude chan-
nels. However, we find that the sparsity of query
and key channels is dynamic rather than static. As
shown in Figure 2 (Bottom), outliers in the query
and key do not consistently appear in fixed posi-
tions; instead, they may appear in any position. Fur-
thermore, dynamically selecting high-magnitude
channels improves the recall of dominant tokens
compared to using a static offline strategy. This
claim is empirically validated in Section 5.4.

4 Methodology

4.1 Offline Identification
Empirical observation in Section 3 suggests that
some layers benefit more from quantization, while
others are better suited for sparsity. To avoid dis-
rupting the standard inference, we apply an offline
strategy to identify the compression preference of
each layer. In this phase, we introduce a met-
ric—dense preference score P—to assess whether
each attention layer favors quantization or sparsity.
Given a prompt length n, we first use the most re-
cent nq query vectors Qlast_q ∈ Rnq×dh and the
key vectors K ∈ Rn×dh to compute the attention
score matrix Â for each head during prefilling:

Â = Softmax
(
Qlast_qK

⊤/
√
dh

)
. (6)

Next, we select the top k indices from Â and
sum the top k elements in order to compute the

dense preference score P:

Î =
{
(i, j) | Topk(Âi,:, k)

}nq

i=1
, (7)

P = nq −
∑

(i,j)∈ÎÂi,j . (8)

If the dense preference score Pl of layer l ex-
ceeds the threshold τ , the layer is regarded as
quantization-friendly; otherwise, it is deemed
sparsity-friendly. This can be formalized as:

C(l) =

{
Quantization-Friendly, if Pl > τ,

Sparsity-Friendly, otherwise.
(9)

The threshold τ is a predefined hyperparame-
ter, and its optimal value is determined through
experimentation on the synthetic Longbench task.
The metric P consistently assesses the same
model across various datasets (for details, see Ap-
pendix C). After layer-level identification, we ap-
ply dynamic retrieval for sparsity-friendly layers
and static quantization for quantization-friendly
layers. The overall workflow is shown in Figure 3.

4.2 Dynamic Retrieval
For sparsity-friendly layers, we propose a dynamic
retrieval algorithm with an asynchronous system
design. Figure 3 shows the management framework
of the CPU memory pool and GPU memory buffer.
To facilitate LLM inference on memory-limited de-
vices, we offload the KV cache to lower-cost CPU
memory layer by layer during prefilling. Subse-
quently, we retrieve the Top-K tokens on demand
during decoding, thus minimizing communication
overhead. The core design is illustrated in Figure 4.

As explained in Section 3, attention scores cor-
relate with outliers in the query and key. To more
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Figure 4: Two-stage dynamic retrieval process: Stage 1
estimates critical channels at layer l − 1 and prefetches
critical key cache for layer l. Stage 2 approximates
attention scores and selects Top-K tokens at layer l.

accurately assess token importance, we approxi-
mate attention scores prior to original operation
based on this insight. We first estimate the criti-
cal channels to identify outliers in the query and
key cache, referred to as the critical current query
and critical key cache. Since the critical key cache
resides in the CPU, we employ prefetching to load
it in advance. We leverage inter-layer similarity to
predict the critical channels ahead of time (for a
detailed explanation, see Appendix B). The similar-
ity between adjacent layers arises from the residual
connection, as validated in prior research (Lee et al.,
2024). At layer l − 1, we estimate the query q̂ for
layer l, using the weight matrix from layer l and the
hidden state from layer l − 1. The contribution of
the i-th channel to the attention scores is computed
via element-wise multiplication of q̂ and K:

si = |q̂i| ·max(|Ki|), i = 1, 2, ..., dh. (10)

Next, we prefetch the l-th layer’s critical key
cache based on s, using double buffering—one
buffer for writing and the other for reading—to
enable concurrent execution. Then, we retrieve
the Top-K tokens by approximating the attention
scores at l-th layer based on the critical current
query and the critical key cache, followed by fetch-
ing the Top-K tokens. Figure 5 outlines the com-
putation and communication during decoding. The
only non-overlappable operation is fetching Top-K
tokens, as it depends on the current layer’s query.
TailorKV demonstrates how a heterogeneous de-
sign overcomes resource constraints by leveraging
CPU-GPU co-execution.
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Figure 5: Timeline of dynamic retrieval. Blue signifies
computation and pink signifies communication.

4.3 Static Quantization
Unlike traditional quantization methods (Liu et al.,
2024d; Yang et al., 2024a; He et al., 2024), Tai-
lorKV focuses on ensuring that each layer "plays its
role," thus enabling more aggressive compression
scheme, such as 1-bit quantization. As illustrated in
Figure 2, outliers are present in the key cache along
the channel dimension, while the value cache con-
tains no outliers. For quantization-friendly layers,
we apply static per-token quantization to the value
cache and static per-channel quantization to the key
cache (Liu et al., 2024d). As shown in Equation 4,
we introduce a 1-bit quantization kernel and also
implement FP16×INT1 GEMV to improve hard-
ware performance under aggressive compression.

4.4 Memory Footprint Analysis
Let the number of layers be L, the number of heads
be h, the sequence length be n, and the head di-
mensions be dh. All input tokens are represented in
FP16. We present a comparison of GPU memory
usage across different methods in Table 2. Tai-
lorKV mainly manages a quantized KV cache
buffer in quantization-friendly layers and a critical
key buffer in sparsity-friendly layers. The quan-
tization zero-point and scaler are stored in FP16
format.

Method Memory Parameters

Original 2Lnhdh -
SnapKV 2αLnhdh budget: α
Quest 2Lnhdh(1 +

1
β
) page size: β

Ours (Q) 2lqnhdh(
1
16

+ 2
g
) bit size: 1, group size: g,

num layers of Q: lq
Ours (S) 2nhds num critical channel: ds

Table 2: Comparison of memory usage among different
methods. The symbols Q and S denote the quantization-
friendly layer and sparsity-friendly layer, respectively.
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Methods
LongBench InfiniteBench

Tokens SD.QA MD.QA Summ FS.L Code Synth Avg. Tokens Retr Dia Novel Math Code Avg.

Llama-3.1-8B 128k 49.6 50.9 31.2 69.4 60.0 53.5 53.8 128k 99.6 19.0 30.2 34.0 22.8 44.0
StreamLLM 192 26.3 42.7 17.9 50.0 48.2 53.5 40.6 1024 3.2 7.0 23.7 34.0 22.8 18.3
SnapKV 192 35.2 48.1 20.2 56.5 52.8 52.5 45.2 1024 96.6 9.5 27.4 34.0 22.8 41.0
Quest 192 40.1 46.9 20.7 61.6 48.0 52.4 46.2 1024 64.4 14.0 25.7 34.0 25.1 33.8
PQCache 192 48.4 49.5 27.0 67.3 56.3 53.6 51.7 1024 5.5 15.0 27.5 34.0 23.3 21.5
TailorKV-1 64(+128) 48.2 50.9 29.2 68.1 58.3 53.4 52.6 128(+896) 86.5 18.0 28.9 34.0 22.8 40.4
TailorKV-2 64(+128) 49.3 50.5 29.4 68.7 58.1 53.3 52.9 128(+896) 94.8 18.5 30.0 34.0 22.8 42.6

Yi-9B 200k 36.6 44.7 28.8 60.6 69.6 35.0 47.0 200k 100.0 2.5 25.2 23.4 26.3 39.2
StreamLLM 192 21.3 33.6 11.0 44.1 51.8 14.7 30.6 1024 1.5 2.5 24.2 23.7 21.3 16.4
SnapKV 192 25.0 38.8 11.9 49.0 59.7 18.8 35.0 1024 59.0 3.0 24.9 22.5 26.6 30.0
Quest 192 29.2 37.9 15.4 57.5 59.6 25.7 39.1 1024 98.4 4.0 21.8 18.2 18.7 36.1
PQCache 192 32.4 41.6 19.2 58.6 64.4 27.8 42.0 1024 7.8 2.0 25.3 22.2 25.6 18.5
TailorKV-1 64(+128) 38.0 44.3 27.3 60.2 66.3 24.3 44.7 128(+896) 98.7 2.5 26.6 24.0 21.3 39.2
TailorKV-2 64(+128) 35.6 43.5 27.3 60.1 66.0 23.5 44.0 128(+896) 98.5 4.5 25.3 24.0 24.9 39.4

Yi-6B 200k 32.4 15.3 1.3 49.9 69.8 9.5 29.7 200k 99.2 0.0 25.2 6.8 26.9 37.1
StreamLLM 192 20.0 11.6 1.6 34.0 44.6 4.0 20.4 1024 2.0 0.0 21.8 4.8 25.8 13.5
SnapKV 192 24.2 13.0 1.6 38.5 51.2 3.7 23.3 1024 55.7 2.5 23.2 4.5 26.9 26.4
Quest 192 26.5 12.5 0.3 46.9 51.9 8.5 26.2 1024 99.5 3.0 22.0 5.1 26.6 35.8
PQCache 192 30.4 14.5 0.6 48.0 55.8 4.0 27.3 1024 6.9 1.5 24.6 5.7 26.9 16.3
TailorKV-1 64(+128) 32.5 15.4 1.4 49.7 55.9 4.0 28.3 128(+896) 98.7 2.5 25.3 7.7 26.4 37.2
TailorKV-2 64(+128) 32.5 15.3 1.5 49.1 56.4 4.0 28.2 128(+896) 98.5 3.0 25.3 8.0 26.7 37.3

Table 3: Task performance (%) on LongBench and InfiniteBench. 13 sub-tasks of LongBench are aggregated into
6 classes, and 9 sub-tasks of InfiniteBench are aggregate into 5 classes. The aggregation of sub-tasks is discussed in
Table 10 and Table 11, while the detailed results for all sub-tasks can be found in Table 14 and Table 15.
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Figure 6: The average accuracy of different methods on RULER. The sparsity-friendly layer in TailorKV uses
128+(896) tokens, while other methods use 1024 tokens. See Table 16 for details.

5 Experiments

5.1 Experimental Setup

Baselines and Benchmarks. We evaluate three
widely used models with their respective con-
text lengths: Llama-3.1-8B-Instruct (Dubey et al.,
2024), Yi-6B-200K (01-ai, 2024a), and Yi-9B-
200K (01-ai, 2024b). To demonstrate the su-
perior performance of our method, we compare
TailorKV with competitive baselines, including
StreamingLLM (Xiao et al., 2024b), SnapKV (Li
et al., 2024), Quest (Tang et al., 2024), and PQ-
Cache (Zhang et al., 2024a). To evaluate the per-
formance in long-context scenarios, we employ
three well-designed benchmarks, including Long-
Bench (Bai et al., 2024), InfiniteBench (Zhang

et al., 2024c), and RULER (Hsieh et al., 2024).
Refer to Appendix G for further details.

Implementation. We set τ to 0.2 for all models.
TailorKV-1 and TailorKV-2 represent KV cache
stored with 1-bit and 2-bit precision in quantization-
friendly layers, respectively. The group size is
64, with the zero point and scaler stored in 16-bit.
For sparsity-friendly layers, the number of tokens
involved in attention computation is nlocal+(ntopk),
where nlocal refers to the GPU budget and ntopk
represents the additional communication overhead.
The number of critical channels is 8 for LongBench
and 12 for both InfiniteBench and RULER. The
symbol Q represents quantization-friendly layers.
Llama-3.1-8B is configured with Q = {0}, while
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Figure 7: Peak memory usage on A100 (80GB).

Methods Llama-2-7B Llama-3.1-8B

16k 32k 64k 96k 16k 32k 64k

NVIDIA RTX 3090 (24GB, PCIe 1.0 link)

Full Cache OOM OOM OOM OOM 0.033 0.042 OOM
OffloadCache 0.893 1.776 OOM OOM 0.242 0.460 OOM
PQCache OOM OOM OOM OOM 0.126 OOM OOM
TailorKV 0.067 0.087 0.135 0.176 0.062 0.067 0.074

NVIDIA A100 (80GB, PCIe 4.0 link)

Full Cache 0.045 0.077 0.140 OOM 0.024 0.033 0.050
OffloadCache 0.433 0.838 1.767 3.253 0.124 0.227 0.435
PQCache 0.108 0.111 0.114 0.115 0.104 0.105 0.108
TailorKV 0.041 0.062 0.098 0.132 0.045 0.047 0.054

Table 4: Decoding latency(s) on different devices. Ad-
ditional results are provided in Table 13.

Llama-2-7B, Yi-6B, and Yi-9B are configured with
Q = {0, 1}. Additional details are in Appendix D.

Hardware. The experiments are conducted un-
der two different settings: the first equipped with an
NVIDIA RTX 3090 GPU (24GB) and Intel Xeon
Gold 6240 CPU, interconnected via PCIe 1.0 ×16
(4GB/s); the second equipped with an NVIDIA
A100 GPU (80GB) and Intel Xeon Platinum 8369B
CPU, interconnected via PCIe 4.0 ×16 (32GB/s).

5.2 Accuracy on Long Context Tasks
LongBench. As shown in Table 3, SnapKV and
StreamingLLM degrade in performance due to the
loss of crucial information. Although Quest and
PQCache improve performance, their individual
strategies face limitations under restricted budgets.
TailorKV outperforms the best method by 2.32%,
5.42%, and 3.66% on Llama-3.1-8B, Yi-9B, and
Yi-6B, respectively, by preserving the 1-bit KV
cache for quantization-friendly layers and selecting
192 tokens for sparsity-friendly layers. Appendix F
provides a discussion on retrieval accuracy of our
sparsity-friendly layers compared to other methods.

InfiniteBench. Table 3 presents evaluations on
the challenging benchmark InfiniteBench. As the
context length increases, the clustering overhead of

0 5 10
Latency (ms)

Ours ( )

Ours ( )

PQCache

OffloadCache
Llama-2-7B (MHA)

0 1 2 3
Latency (ms)

Llama-3.1-8B (GQA)

Attention Retrieval Gather & Transfer 1-Bit Fused Kernel

Figure 8: Latency breakdown (ms) under different meth-
ods. Q and S denote the quantization-friendly layer and
sparsity-friendly layer, respectively.

PQCache on the CPU grows. We restrict K-Means
to one iteration for real-time inference, which com-
promises accuracy and exposes PQCache’s limi-
tations. Notably, our hybrid strategy outperforms
individual strategies, with an average performance
loss under 1.5% compared to the full cache, espe-
cially excelling in dialogue, novel, and math tasks.

RULER. Figure 6 summarizes the accuracy on
RULER, with the sequence length ranging from
4K to 128K. TailorKV captures crucial information
from redundant contexts, leading to superior perfor-
mance on most tasks, such as Needle-in-a-haystack,
Question Answering, and Variable Tracking (de-
tailed results provided in Table 16).

5.3 Efficiency Results

We evaluate peak memory usage and decoding la-
tency in comparison with the full cache, Offload-
Cache, and PQCache. Specifically, the full cache
is implemented by FlashAttention-2 (Dao, 2024)
and OffloadCache is a script3 from the official li-
brary that prefetches next layer’s KV cache from
the CPU memory to the GPU.

Peak Memory Usage. As shown in Figure 7, our
method achieves superior memory efficiency com-
pared to alternative methods, enabling deployment
on lower-end GPUs such as the RTX 3090. Specif-
ically, compared to full cache, TailorKV reduces
GPU memory usage by approximately 73.8% for
Llama-2-7B with a sequence length of 128k.

End-to-End Latency. As shown in Table 4, the
increasing sequence length causes out-of-memory
errors in the full cache, PQCache, and Offload-
Cache on the RTX 3090. For 64k context on the
A100, TailorKV achieves significant latency re-
ductions compared to OffloadCache and PQCache:
18.0× and 1.2× faster than the MHA model, and

3https://github.com/huggingface/transformers
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(b) Effect of Dynamic Channels.
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(c) Effect of the Number of Critical Channels.
Num = 2 (Avg. 44.0)
Num = 4 (Avg. 48.9)
Num = 8 (Avg. 52.6)
Num = 16 (Avg. 53.3)
Num = 32 (Avg. 53.7)

Figure 9: Ablation studies. (a) Performance comparison with different layers quantized to 1-bit. (b) Performance of
TailorKV with dynamic or static channels. (c) Performance comparison with different numbers of critical channels.

8.1× and 2.0× faster than the GQA model. Tai-
lorKV’s latency is comparable to that of full atten-
tion, as a result of multi-threading used to execute
asynchronous tasks, which enables the overlap of
computation and CPU-GPU communication.

Latency Breakdown. As depicted in Figure 8,
we evaluate the breakdown of latency for a sin-
gle Transformer block with a sequence length of
16k on the A100 GPU. Compared to PQCache,
TailorKV reduces retrieval latency by 27.8% for
the GQA model and 40.5% for the MHA model,
and data transfer latency by 83.5% and 82.2% for
the same models. This reduction is primarily at-
tributable to our use of DGL (Wang et al., 2019)
to directly transfer rows from a CPU tensor to the
GPU device, whereas PQCache first gathers rows
on the CPU and then transfers them to the GPU.

5.4 Ablation Study

We conduct ablation studies on the LongBench
benchmark using the Llama-3.1-8B-Instruct model.

Effect of Tailored Strategies. As depicted in Fig-
ure 9 (a), 1-bit quantization is applied to certain lay-
ers, while only 64(+128) tokens are computed for
the remaining layers, with the quantization-friendly
layer defined as Q = {0}. The results indicate that
quantizing only the 0th layer yields the best per-
formance, while quantizing sparsity-friendly layers
degrades performance, highlighting the need for
tailored compression strategies.

Effect of Dynamic Channels. Prior study (Yang
et al., 2024b) employed offline calibration to stat-
ically select high-magnitude channels. However,
we find that outliers may appear at any position, not
fixed to specific channels (Section 3). Figure 9 (b)
compares the performance of dynamic and static
channels. In general, our dynamic retrieval method
demonstrates better performance.

Effect of the Number of Critical Channels. In
Figure 9 (c), we maintain the 64(+128) configu-
ration and adjust the number of critical channels.
Reducing the number of critical channels decreases
retrieval latency. However, performance signifi-
cantly degrades when the number is set to 2 or 4.
Overall, selecting 8 critical channels achieves a fa-
vorable balance between performance and latency.

6 Related Work

Existing KV cache compression methods include
eviction, selection, and quantization, with detailed
comparisons in Appendix A. Eviction methods re-
duce KV cache size by evicting most tokens during
inference. StreamingLLM (Xiao et al., 2024b) iden-
tifies ‘Attention Sinks’ by retaining the initial and
the most recent tokens. H2O (Zhang et al., 2023),
SnapKV (Li et al., 2024), and Scissorhands (Liu
et al., 2023) estimate token importance based on
historical attention scores. However, evicting dom-
inant tokens may degrade accuracy in tasks like
‘needle-in-the-haystack’ and multi-turn dialogues.

Selection methods are more commonly used in
sparse attention scenarios. Quest (Tang et al., 2024)
retains the KV cache and utilizes paged keys for re-
trieving tokens, but it fails to reduce memory usage
and suffers from lower recall. Instead, KV cache
offloading methods like PQCache (Zhang et al.,
2024a) and InfiniGen (Lee et al., 2024) approxi-
mate attention scores for identifying and loading
critical tokens from CPU to GPU, though they face
challenges in balancing computation and commu-
nication due to large KV cache loads. Some meth-
ods (Chen et al., 2025; Liu et al., 2024c) use LSH
and KNN to retrieve critical tokens, which are pro-
cessed on the CPU and subsequently merged with
GPU outputs; however, imbalanced computation
times may result in GPU idle time.

Quantization is a common compression tech-
nique that converts high-precision floats into low-
precision integers. Existing methods employ vari-
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ous solutions to minimize quantization error. For
example, KVQuant (Hooper et al., 2024) iso-
lates outliers for mixed precision, GEAR (Kang
et al., 2024) utilizes SVD to recover residuals, and
KIVI (Liu et al., 2024d) quantizes keys per channel
and values per token. FlexGen (Sheng et al., 2023)
reduces I/O transfer latency by quantizing the KV
cache to 4-bits. However, none of these methods
reduce the KV cache to 1-bit. By contrast, we fo-
cus on exploring layer characteristics and selecting
the most suitable compression strategy.

7 Conclusion

In this paper, we propose TailorKV, an effective
framework for KV cache management in LLMs.
We begin by observing that different layers ex-
hibit distinct compression preferences and catego-
rize them into quantization-friendly and sparsity-
friendly, each employing a tailored strategy. Specif-
ically, quantization-friendly layers aggressively
quantize the KV cache to 1-bit. Sparsity-friendly
layers, on the other hand, dynamically retrieve
dominant tokens based on large magnitudes in the
query and key channels, integrating CPU-GPU co-
design. Experiments across long-context bench-
marks show that TailorKV effectively minimizes
the usage of the KV cache while maintaining model
performance, with an acceptable latency cost. Our
hybrid framework demonstrates the potential of
deploying LLMs on resource-limited GPUs, ex-
tending the application of LLMs to more devices
while maintaining efficiency.

Limitations

Although TailorKV has demonstrated superior
memory optimization and latency reduction in long-
context scenarios, it still exhibits some limitations,
which are summarized as follows: (1) TailorKV
primarily focuses on improving the efficiency of
the decode phase by asynchronously transferring
tokens from the CPU memory to the GPU. How-
ever, it is challenging to completely overlap the of-
floading latency during the prefill phase. Moreover,
the efficiency of the prefill phase in long-context
scenarios is also important. It is noteworthy that
our work is compatible with and complementary to
approaches for prefilling acceleration (Jiang et al.,
2024). (2) We have designed tailored strategies
for different layers to facilitate deployment, and
we are confident that TailorKV can be adapted on
a head-wise basis. These issues hold significant

importance, and we intend to further explore them
in our future research.
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A Comparison with Other Approaches

Figure 10 compares TailorKV with other methods:
(a) Full cache retains the entire KV cache. (b) The
eviction methods permanently evict specific tokens
from each layer, leading to irreversible information
loss since evicted tokens may be important later. (c)
The selection methods offload the entire KV cache
to the CPU, enabling tokens recall but incurring
significant communication overhead because of the
large volume of tokens involved. (d) Our method
employs layer-specific compression strategies, fa-
cilitating more aggressive compression.
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Figure 10: Comparison of TailorKV with other methods
in managing KV cache budget across layers.

B Inter-Layer Similarity

Let h(l) denote the hidden state at the l-th layer. To
quantify the similarity between the hidden states of
two adjacent layers, we employ cosine similarity,
which is formally defined as:

sim(h(l−1),h(l)) =
h(l−1) · h(l)

∥h(l−1)∥∥h(l)∥ . (11)

We define the query weight at the l-th layer as W (l)
q ,

and the query vector at the l-th layer is computed
as:

q(l) = W(l)
q (h(l)). (12)

As shown in Figure 11, h(l) and h(l−1) closely
resemble each other, allowing us to approximate
the query at the l-th layer based on the hidden state

from the l − 1-th layer:

q̂(l) = W(l)
q (h(l−1)). (13)

Existing research (Liu et al., 2024b) has eluci-
dated that the KV cache exhibits similarity across
adjacent layers. However, as illustrated in Fig-
ure 11, the similarity between q̂(l) and q(l) exceeds
that between q(l−1) and q(l), suggesting that using
hidden states from the preceding layer enhances
prediction accuracy.
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Figure 11: Cosine similarity between adjacent layers.

C Offline Identification on Different
Datasets

As shown in Figure 12, the curves represent dif-
ferent datasets. The distribution of P is consistent
across various datasets for the same model, indi-
cating that the metric P effectively captures the
characteristics of different layers, enabling appro-
priate compression strategy.

D Baselines Settings

In Table 5 and Table 6, we present the configura-
tion for the long-context methods employed in our
experiments.

E Comparison with Hybrid Method

To validate the effectiveness of our quantization-
sparsity hybrid framework, we compare it to Sim-
LayerKV (Zhang et al., 2024d), a similar hybrid
method. SimLayerKV assumes that some layers in
LLMs exhibit "lazy" behavior, retaining only the
initial and most recent tokens, while "non-lazy"
layers require full precision to retain all tokens.
Table 7 presents the experimental results on Long-
Bench. The results show that at an average com-
pression rate of 34.2×, the performance of our
method is comparable to that of SimLayerKV at
a 1.53× compression rate. Our approach achieves
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Figure 12: Dense preference score P for layers across
different offline datasets.

Methods Configurations

StreamingLLM num local: 128, num initial: 64

SnapKV window size: 64, max capacity prompt:
128, kernel size: 7, pooling: max pooling

Quest page size: 16, token budget: 196

PQCache partitions in PQ: 2, bits for PQ codes: 6,
K-Means iterations: adaptive, nlocal: 64,
ntopk: 128

TailorKV-1 τ : 0.2, bit size: 1, group size: 64, nlocal:
64, ntopk: 128, num critical channels: 8

TailorKV-2 τ : 0.2, bit size: 2, group size: 64, nlocal:
64, ntopk: 128, num critical channels: 8

Table 5: Configurations of long-context methods on
LongBench.

optimal performance with minimal memory over-
head, providing strong evidence for the practicality
of this quantization-sparsity hybrid architecture. In
contrast, SimLayerKV requires real-time identifi-
cation of layer types based on historical attention
scores, making it incompatible with FlashAttention.
This introduces additional computational and mem-
ory overhead, which increases latency and may
cause out-of-memory issues.

Methods Configurations

StreamingLLM num local: 896, num initial: 128

SnapKV window size: 128, max capacity prompt:
896, kernel size: 7, pooling: max pooling

Quest page size: 16, token budget: 1024

PQCache partitions in PQ: 2, bits for PQ codes: 6,
K-Means iterations: 1 (exceeding 64k),
nlocal: 128, ntopk: 896

TailorKV-1 τ : 0.2, bit size: 1, group size: 64, nlocal:
128, ntopk: 896, num critical channels: 12

TailorKV-2 τ : 0.2, bit size: 2, group size: 64, nlocal:
128, ntopk: 896, num critical channels: 12

Table 6: Configurations of long-context methods on
InfiniteBench and RULER.

F Effectiveness of Dynamic Retrieval

Table 8 presents a comparison of retrieval accuracy
between our sparsity-friendly layers and alternative
methods, using the Llama-3.1-8B-Instruct model
on the LongBench benchmark. Specifically, we
retain full precision for the KV cache in the 0th
layer of StreamLLM, SnapKV, and Quest, thereby
preserving the global information in the 0th layer.
TailorKV-1 and TailorKV-2 represent the quan-
tization of the 0th layer’s KV cache to 1-bit and
2-bit precision, respectively.

The experimental results demonstrate that our
retrieval method outperforms other sparse methods
when the global information is preserved in the
0th layer. Specifically, TailorKV applies quantiza-
tion to the 0th layer, whereas other methods use
full precision (16-bit), and the attention calculation
utilizes the same tokens from layer 1 to layer 31.
This notable performance advantage highlights that
our retrieval method effectively identifies the most
important tokens, thereby minimizing the loss of
crucial information.

G More Information on Models and
Benchmarks

G.1 Baselines

In all of our experiments, we use pre-trained model
weights obtained from Huggingface. These models
are based on two representative attention structures:
(1) MHA: including Llama-2-7B-32K-Instruct4.
(2) GQA: including Llama-3.1-8B-Instruct5, Yi-

4https://huggingface.co/togethercomputer/
Llama-2-7B-32K-Instruct

5https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

20352

https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct


Methos Ratio Qspr MulFi HQA WMQA GRpt MulN TREC SMSM TriQA Repo LCC PsgC PsgR Avg.

Llama-3.1-8B 1× 45.5 53.8 54.7 47.1 34.9 27.5 73.0 43.8 91.6 56.7 63.4 7.5 99.5 53.8

SimLayerKV 1.53× 45.6 52.3 54.5 44.5 32.2 26.9 71.5 43.8 91.3 54.9 62.8 7.9 95.5 52.6
TailorKV-1 34.2× 43.4 53.0 55.3 46.5 31.3 27.2 70.0 42.5 91.6 54.8 61.8 7.9 99.0 52.6
TailorKV-2 32.7× 44.8 53.9 54.8 46.2 31.9 26.8 70.5 43.2 92.3 54.2 62.1 7.7 99.0 52.9

Table 7: Performance comparison between TailorKV and SimLayerKV. TailorKV computes only 64 (+128) tokens
for sparsity-friendly layers. SimLayerKV retains the most recent 1024 tokens for the "lazy" layers, while the
"non-lazy" layers preserve full precision. Additionally, the threshold for SimLayerKV on Llama-3.1-8B is 0.9, with
more than half of the layers being "non-lazy."

Methods Tokens Qspr MulFi HQA WMQA GRpt MulN TREC SMSM TriQA Repo LCC PsgC PsgR Avg.

Llama-3.1-8B 128k 45.5 53.8 54.7 47.1 34.9 27.5 73.0 43.8 91.6 56.7 63.4 7.5 99.5 53.8

StreamLLM‡ 192 21.4 31.3 46.5 38.9 17.9 18.0 40.0 34.4 75.7 45.7 50.7 8.0 99.0 40.6
StreamLLM† 192 21.6 30.8 45.5 39.0 18.4 17.9 40.5 34.1 75.6 45.5 52.8 8.0 99.0 40.7
SnapKV‡ 192 25.7 44.7 52.6 43.7 20.0 20.5 41.0 39.6 89.0 48.7 57.0 8.0 97.0 45.2
SnapKV† 192 32.4 47.0 54.6 44.0 21.9 22.8 48.0 40.0 90.3 51.9 59.9 8.0 98.0 47.6
Quest‡ 192 35.9 44.2 52.8 41.0 17.7 23.8 63.0 36.0 86.0 43.6 52.3 8.4 96.5 46.2
Quest† 192 39.1 45.1 52.4 43.4 21.1 25.6 65.5 38.7 88.1 44.8 52.0 8.1 97.0 47.8
TailorKV-1 64(+128) 43.4 53.0 55.3 46.5 31.3 27.2 70.0 42.5 91.6 54.8 61.8 7.9 99.0 52.6
TailorKV-2 64(+128) 44.8 53.9 54.8 46.2 31.9 26.8 70.5 43.2 92.3 54.2 62.1 7.7 99.0 52.9

Table 8: Effectiveness of dynamic retrieval. Methods marked with † indicate that the 0th layer of the model retains
the full-precision (16-bit) KV cache, while methods marked with ‡ indicate that all layers use the same compression
strategy. TailorKV-1 and TailorKV-2 store the KV cache as 1-bit and 2-bit, respectively, in the 0th layer.

6B-200K6, and Yi-9B-200K7. Detailed information
about the four models can be found in Table 9.

To showcase the state-of-the-art performance of
our method, we compare TailorKV with the fol-
lowing baselines: (1) StreamingLLM (Xiao et al.,
2024b): An eviction strategy that retains only the
initial and most recent tokens. (2) SnapKV (Li
et al., 2024): An eviction strategy that chooses
clustered important KV positions. (3) Quest (Tang
et al., 2024): A selection strategy that deter-
mines page criticality through paged key. (4) PQ-
Cache (Zhang et al., 2024a): A selection strategy
that retrieves Top-K tokens through vector quanti-
zation.

G.2 Benchmarks
LongBench. A benchmark is conducted across
six categories: summarization, code completion,
synthetic tasks, few-shot learning, and single/multi-
document question answering. Table 10 presents
detailed information on the 13 datasets in Long-
Bench.

InfiniteBench. A benchmark designed to assess
the ability of language models to process, under-
stand, and reason with extremely long contexts

6https://huggingface.co/01-ai/Yi-6B-200K
7https://huggingface.co/01-ai/Yi-9B-200K

(200k+ tokens). We test the Llama3 and Yi models
with context lengths of 128K and 200K, truncat-
ing inputs beyond these limits. Table 11 provides
details of the 9 datasets in InfiniteBench.

RULER. A benchmark intended to assess the
long-context modeling capabilities of language
models, covering question answering, retrieval, ag-
gregation, and multi-hop tracing. This benchmark
consists of 13 representative tasks, with sequence
lengths ranging from 4K to 128K. For each task,
we employed 25 samples. Detailed information is
provided in Table 12.

H Detailed Results

H.1 Accuracy on Long Context Tasks

Table 14 and Table 15 present experimental results
for LongBench and InfiniteBench. Table 16 shows
accuracy results for sequence lengths of 64k and
128k on RULER.

H.2 Efficiency Results

In Table 13, we present the end-to-end latency for
Llama-3.1-8B-Instruct, Llama-2-7B-32K-Instruct,
Yi-6B-200K, and Yi-9B-200K. The results indicate
that our method achieves efficiency closest to that
of the original model.
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Name Claimed Length Query Heads KV Heads Num Layers Q

Llama-3.1-8B-Instruct 128k 32 8 32 {0}
Llama-2-7B-32K-Instruct 32k 32 32 32 {0, 1}
Yi-6B-200K 200k 32 4 32 {0, 1}
Yi-9B-200K 200k 32 4 48 {0, 1}

Table 9: Details of models. Q denotes the quantization-friendly layer.

Label Task Capability Metric Avg len #data

Qspr Qasper Single-Doc. QA (SD.QA) F1 3,619 200
MulFi MultiFieldQA-en Single-Doc. QA (SD.QA) F1 4,559 150
HQA HotpotQA Multi-Doc. QA (MD.QA) F1 9,151 200
WMQA 2WikiMultihopQA Multi-Doc. QA (MD.QA) F1 4,887 200
GRpt GovReport Summarization (Summ) Rouge-L 8,734 200
MulN MultiNews Summarization (Summ) Rouge-L 2,113 200
TREC TREC Few-shot Learning (FS.L) Accuracy (CLS) 5,177 200
SMSM SAMSum Few-shot Learning (FS.L) Rouge-L 6,258 200
TriQA TriviaQA Few-shot Learning (FS.L) F1 8,209 200
Lcc LCC Code Completion (Code) Edit Sim 1,235 500
Repo RepoBench-P Code Completion (Code) Edit Sim 4,206 500
PsgC PassageCount Synthetic (Synth) Accuracy (EM) 11,141 200
PsgR PassageRetrieval-en Synthetic (Synth) Accuracy (EM) 9,289 200

Table 10: Details of LongBench.

Label Task Context Capability Metric Avg len #Examples

R.PK Retrieve.PassKey Fake Book Retrieve (Retr) Accuracy 122.4k 590
R.Num Retrieve.Number Synthetic Retrieve (Retr) Accuracy 122.4k 590
En.Dia En.Dia Script Dialogue (Dia) Accuracy 103.6k 200
Sum En.Sum Fake Book Novel Rouge-L-Sum 171.5k 103
En.MC En.MC Fake Book Novel Accuracy 184.4k 229
En.QA En.QA Fake Book Novel QA F1 Score 192.6k 351
Zh.QA Zh.QA New Book Novel QA F1 Score 2068.6k 175
Math.F Math.Find Synthetic Math Accuracy 87.9k 350
Code.D Code.Debug Code Document Code Accuracy 114.7k 394

Table 11: Details of InfiniteBench.

Label Task Category

N-S1 Single NIAH Retrieval
N-S2 Single NIAH Retrieval
N-S3 Single NIAH Retrieval
N-MK1 Multi-keys NIAH Retrieval
N-MK2 Multi-keys NIAH Retrieval
N-MK3 Multi-keys NIAH Retrieval
N-MV Multi-values NIAH Retrieval
N-MQ Multi-queries NIAH Retrieval
VT Variable Tracking Multi-hop Tracing
CWE Common Words Aggregation
FWE Frequent Words Extraction Aggregation
QA-1 Question Answering Question Answering
QA-2 Question Answering Question Answering

Table 12: Details of RULER.
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Method 16k 32k 64k 96k 128k

Llama-3.1-8B-Instruct

Full Cache 0.024 0.033 0.050 0.062 0.082
OffloadCach 0.124 0.227 0.435 0.743 0.992
PQCache 0.104 0.105 0.108 0.108 0.110
TailorKV 0.045 0.047 0.054 0.054 0.056

Llama-2-7B-32K-Instruct

Full Cache 0.045 0.077 0.140 OOM OOM
OffloadCach 0.433 0.838 1.767 3.253 4.468
PQCache 0.108 0.111 0.112 0.115 0.120
TailorKV 0.041 0.062 0.098 0.132 0.170

Yi-6B-200K

Full Cache 0.019 0.021 0.029 0.036 0.044
OffloadCach 0.066 0.118 0.221 0.325 0.430
PQCache 0.085 0.087 0.090 0.092 0.094
TailorKV 0.041 0.042 0.046 0.049 0.056

Yi-9B-200K

Full Cache 0.029 0.032 0.043 0.055 0.070
OffloadCach 0.102 0.205 0.417 0.626 0.843
PQCache 0.130 0.138 0.139 0.144 0.150
TailorKV 0.066 0.067 0.072 0.076 0.079

Table 13: Decoding latency(s) on A100 (80G).

I Attention Visualization Across Models

As shown in Figure 13, the attention patterns of dif-
ferent models closely match the results predicted by
our usage metric P . Specifically, the quantization-
friendly layers of Llama-2-7B-32K-Instruct and Yi-
6B-200K are identified as the 0th and 1st layers. In
these layers, attention patterns are dense, while the
other layers are sparse. Similarly, the quantization-
friendly layer of Llama-3.1-8B-Instruct is the 0th
layer, where attention pattern is dense, with sparse
features in the remaining layers.

J Observations on QKV

Figure 14 illustrates the distribution patterns of
queries, keys, and values across different attention
heads in Llama-3.1-8B-Instruct. Although outliers
appear in both the keys and queries, the locations
of the outlier channels are not consistently fixed.
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Method Tokens
SD.QA MD.QA Summ FS.L Code Synth

Avg.
Qspr MulFi HQA WMQA GRpt MulN TREC SMSM TriQA Repo LCC PsgC PsgR

Llama-3.1-8B 128k 45.5 53.8 54.7 47.1 34.9 27.5 73.0 43.8 91.6 56.7 63.4 7.5 99.5 53.8
StreamLLM 192 21.4 31.3 46.5 38.9 17.9 18.0 40.0 34.4 75.7 45.7 50.7 8.0 99.0 40.6
SnapKV 192 25.7 44.7 52.6 43.7 20.0 20.5 41.0 39.6 89.0 48.7 57.0 8.0 97.0 45.2
Quest 192 35.9 44.2 52.8 41.0 17.7 23.8 63.0 36.0 86.0 43.6 52.3 8.4 96.5 46.2
PQCache 192 45.6 51.2 53.8 45.3 29.0 25.9 69.5 41.2 91.3 54.1 58.5 8.2 99.0 51.7
TailorKV-1 64(+128) 43.4 53.0 55.3 46.5 31.3 27.2 70.0 42.5 91.6 54.8 61.8 7.9 99.0 52.6
TailorKV-2 64(+128) 44.8 53.9 54.8 46.2 31.9 26.8 70.5 43.2 92.3 54.2 62.1 7.7 99.0 52.9

Yi-9B 200k 38.4 34.9 52.7 36.7 31.0 26.7 77.0 14.9 90.0 67.4 71.9 2.5 67.5 47.0
StreamLLM 192 22.3 20.4 36.7 30.6 11.8 10.3 45.5 9.2 77.7 49.6 54.1 3.5 26.0 30.6
SnapKV 192 26.7 23.3 44.2 33.4 11.5 12.3 44.5 13.4 89.1 56.6 62.8 1.6 36.0 35.0
Quest 192 32.4 26.0 44.2 31.5 14.3 16.5 73.0 13.4 86.2 55.6 63.7 3.9 47.5 39.1
PQCache 192 36.9 27.9 47.6 35.5 19.3 19.2 74.0 12.2 89.6 62.0 66.8 4.6 51.0 42.0
TailorKV-1 64(+128) 37.7 38.2 52.8 35.8 29.8 24.9 76.0 15.2 89.5 64.3 68.4 3.5 45.0 44.7
TailorKV-2 64(+128) 37.6 33.6 52.6 34.4 29.4 25.3 76.0 15.0 89.3 63.5 68.5 3.0 44.0 44.0

Yi-6B 200k 25.4 39.5 14.8 15.8 2.8 0.01 72.5 7.7 69.7 58.5 61.2 3.5 15.5 29.7
StreamLLM 192 11.0 29.0 11.1 12.1 3.1 0.1 41.5 5.1 55.5 43.1 46.2 3.0 5.0 20.4
SnapKV 192 14.9 33.5 13.1 13.0 3.3 0.01 45.0 6.6 63.8 48.8 53.7 3.0 4.5 23.3
Quest 192 19.9 33.2 11.8 13.2 0.5 0.1 67.0 9.4 64.5 50.2 53.7 3.5 13.5 26.2
PQCache 192 24.1 36.8 13.6 15.3 1.3 0.01 68.5 7.6 68.1 54.1 57.4 2.5 5.5 27.3
TailorKV-1 64(+128) 24.5 40.5 15.6 15.3 2.7 0.1 72.0 8.5 68.3 55.2 56.5 2.5 5.5 28.3
TailorKV-2 64(+128) 24.1 40.8 15.2 15.5 3.0 0.01 72.0 8.6 66.7 54.8 57.9 2.5 5.5 28.2

Table 14: Results on LongBench (Bai et al., 2024) of different methods.

Methods Tokens R.PK R.Num En.Dia Sum En.MC En.QA Zh.QA Math.F Code.D Avg.

Llama-3.1-8B 128K 100.0 99.3 19.0 26.8 65.9 14.8 13.3 34.0 22.8 44.0
StreamLLM 1024 3.3 3.0 7.0 12.7 66.3 5.9 9.7 34.0 22.8 18.3
SnapKV 1024 100.0 93.2 9.5 22.4 65.5 10.4 11.3 34.0 22.8 41.0
Quest 1024 100.0 28.9 14.0 12.2 69.8 9.2 11.4 34.0 25.1 33.8
PQCache 1024 8.6 2.5 15.0 18.9 65.9 12.6 12.6 34.0 23.3 21.5
TailorKV-1 128+(896) 99.8 73.2 18.0 22.8 66.4 13.6 13.0 34.0 22.8 40.4
TailorKV-2 128+(896) 100.0 89.4 18.5 24.1 66.8 14.4 12.9 34.0 22.8 42.6

Yi-9B 200K 100.0 100.0 2.5 8.2 65.0 10.8 16.7 23.4 26.3 39.2
StreamLLM 1024 2.5 0.5 2.5 6.4 66.8 8.8 15.0 23.7 21.3 16.4
SnapKV 1024 99.8 18.3 3.0 8.6 67.6 8.4 14.9 22.5 26.6 30.0
Quest 1024 100.0 96.9 4.0 3.4 58.5 12.5 12.7 18.2 18.7 36.1
PQCache 1024 9.6 5.9 2.0 8.7 66.3 11.2 14.9 22.2 25.6 18.5
TailorKV-1 128+(896) 100.0 98.3 2.5 7.3 64.2 15.1 19.7 24.0 21.3 39.2
TailorKV-2 128+(896) 100.0 99.7 4.5 8.2 65.1 11.2 16.6 24.0 24.9 39.4

Yi-6B 200K 100.0 98.4 1.0 3.4 53.3 18.2 26.0 6.8 26.9 37.1
StreamLLM 1024 3.3 0.6 0.0 3.9 52.8 10.2 20.2 4.8 25.8 13.5
SnapKV 1024 100.0 11.5 2.5 3.1 53.2 14.1 22.2 4.5 26.9 26.4
Quest 1024 100.0 99.1 3.0 3.6 52.4 13.4 18.8 5.1 26.6 35.8
PQCache 1024 10.1 3.7 1.5 4.4 51.5 16.4 26.2 5.7 26.9 16.3
TailorKV-1 128+(896) 100.0 97.5 2.5 4.4 53.3 17.4 26.0 7.7 26.4 37.2
TailorKV-2 128+(896) 100.0 97.0 3.0 4.0 53.3 18.0 25.8 8.0 26.7 37.3

Table 15: Results on InfiniteBench (Zhang et al., 2024c) of different methods.
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Methods N-S1 N-S2 N-S3 N-MK1 N-MK2 N-MK3 N-MV N-MQ VT CWE FWE QA-1 QA-2 Avg.

Sequence Length = 64k

Llama-3.1-8B 100.0 100.0 100.0 100.0 100.0 96.0 99.0 100.0 100.0 14.8 92.0 60.0 52.0 85.6
StreamLLM 8.0 4.0 0.0 8.0 0.0 0.0 5.0 3.0 2.4 0.8 72.0 28.0 28.0 12.2
SnapKV 96.0 84.0 0.0 88.0 32.0 0.0 40.0 69.0 74.4 0.8 41.3 56.0 48.0 48.4
Quest 88.0 100.0 60.0 92.0 72.0 0.0 93.0 90.0 80.0 8.4 70.6 52.0 52.0 66.0
PQCache 36.0 60.0 12.0 68.0 48.0 4.0 16.0 37.0 52.8 0.0 73.3 56.0 48.0 39.2
TailorKV-1 100.0 100.0 96.0 100.0 96.0 28.0 99.0 100.0 85.6 18.4 57.3 56.0 48.0 75.7
TailorKV-2 100.0 100.0 100.0 100.0 96.0 68.0 97.0 98.0 88.0 19.6 62.7 60.0 56.0 80.4

Yi-9B 100.0 100.0 100.0 100.0 92.0 48.0 61.0 88.0 12.8 15.6 88.0 32.0 48.0 68.1
StreamLLM 0.0 4.0 0.0 4.0 0.0 0.0 1.0 0.0 0.0 1.2 74.6 16.0 28.0 9.9
SnapKV 80.0 28.0 0.0 20.0 4.0 0.0 11.0 11.0 22.4 5.6 48.0 24.0 44.0 22.9
Quest 68.0 92.0 20.0 68.0 40.0 0.0 24.0 42.0 16.0 10.8 62.6 28.0 36.0 39.0
PQCache 32.0 56.0 4.0 36.0 16.0 0.0 7.0 39.0 31.2 6.0 66.6 20.0 36.0 26.9
TailorKV-1 100.0 100.0 92.0 100.0 84.0 28.0 53.0 89.0 6.4 32.0 49.3 32.0 48.0 62.6
TailorKV-2 100.0 100.0 92.0 100.0 84.0 28.0 62.0 90.0 42.4 33.6 48.0 28.0 48.0 65.8

Yi-6B 100.0 100.0 100.0 96.0 56.0 24.0 39.0 76.0 24.8 0.8 73.3 32.0 24.0 57.3
StreamLLM 0.0 0.0 0.0 8.0 0.0 0.0 3.0 0.0 0.0 0.4 62.6 20.0 16.0 8.5
SnapKV 88.0 4.0 0.0 16.0 0.0 0.0 5.0 7.0 15.2 0.0 65.3 28.0 20.0 19.1
Quest 72.0 84.0 0.0 52.0 20.0 0.0 28.0 30.0 20.0 1.6 56.0 24.0 20.0 31.3
PQCache 16.0 20.0 0.0 28.0 8.0 0.0 5.0 3.0 10.4 0.0 50.6 24.0 24.0 14.5
TailorKV-1 100.0 100.0 100.0 96.0 12.0 24.0 41.0 65.0 28.8 1.2 58.7 28.0 24.0 52.2
TailorKV-2 100.0 100.0 100.0 100.0 24.0 28.0 40.0 67.0 42.4 0.8 57.3 32.0 24.0 55.1

Sequence Length = 128k

Llama-3.1-8B 100.0 100.0 100.0 100.0 88.0 64.0 96.0 98.0 95.2 1.6 66.6 64.0 36.0 77.6
StreamLLM 0.0 4.0 0.0 0.0 4.0 0.0 5.0 4.0 0.0 0.4 9.3 24.0 20.0 5.4
SnapKV 100.0 84.0 0.0 84.0 24.0 0.0 19.0 38.0 65.6 0.0 28.0 48.0 32.0 40.2
Quest 80.0 68.0 0.0 88.0 48.0 0.0 66.0 71.0 59.2 0.4 52.0 48.0 28.0 46.8
PQCache 0.0 8.0 0.0 4.0 8.0 0.0 2.0 3.0 0.8 0.0 66.6 40.0 32.0 12.6
TailorKV-1 92.0 92.0 100.0 100.0 64.0 0.0 93.0 98.0 67.2 0.4 16.0 60.0 40.0 63.3
TailorKV-2 100.0 92.0 100.0 100.0 64.0 16.0 96.0 97.0 85.6 0.4 40.0 64.0 36.0 68.5

Yi-9B 100.0 100.0 100.0 96.0 80.0 28.0 69.0 84.0 10.4 3.6 89.3 36.0 36.0 64.0
StreamLLM 0.0 4.0 4.0 0.0 0.0 0.0 2.0 1.14 0.0 0.0 86.6 16.0 24.0 10.6
SnapKV 92.0 12.0 0.0 20.0 4.0 0.0 12.0 4.0 7.2 2.0 53.3 20.0 32.0 19.9
Quest 100.0 84.0 4.0 72.0 24.0 0.0 28.0 28.0 16.8 0.8 69.3 24.0 32.0 37.1
PQCache 8.0 16.0 0.0 24.0 4.0 0.0 2.0 5.0 4.0 0.4 77.3 16.0 28.0 14.2
TailorKV-1 100.0 100.0 96.0 96.0 72.0 20.0 44.0 79.6 19.2 23.2 44.0 40.0 32.0 58.9
TailorKV-2 100.0 100.0 96.0 96.0 76.0 20.0 55.0 80.0 48.8 24.0 41.3 36.0 32.0 61.9

Yi-6B 100.0 100.0 100.0 84.0 72.0 4.0 30.0 67.0 4.8 1.2 100.0 32.0 24.0 55.3
StreamLLM 0.0 4.0 4.0 0.0 0.0 0.0 2.0 1.0 0.0 0.8 68.0 20.0 16.0 8.9
SnapKV 76.0 0.0 0.0 16.0 0.0 0.0 1.0 4.0 8.0 0.8 69.3 20.0 16.0 16.2
Quest 96.0 72.0 0.0 72.0 20.0 0.0 17.0 23.0 6.4 0.8 49.3 16.0 8.0 29.2
PQCache 0.0 8.0 0.0 12.0 4.0 0.0 1.0 2.0 0.0 0.0 54.6 24.0 28.0 10.2
TailorKV-1 100.0 100.0 100.0 84.0 16.0 0.0 25.0 47.0 3.2 0.8 61.3 32.0 22.7 45.5
TailorKV-2 100.0 100.0 100.0 84.0 28.0 4.0 21.0 48.0 14.4 1.2 60.0 32.0 20.0 47.1

Table 16: Accuracy (%) of different methods and models on RULER (Hsieh et al., 2024) evaluated at length of 64k
and 128k. The sparsity-friendly layer in TailorKV uses 128+(896) tokens, while other methods use 1024 tokens.
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(a) Visualization of attention weights on Llama-2-7B-32K-Instruct.

(b) Visualization of attention weights on Llama-3.1-8B-Instruct.

(c) Visualization of attention weights on Yi-6B-200K.

Figure 13: Visualization of attention weights across the 2WikiMQA dataset.
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Figure 14: Magnitude of query, key and value for Llama-3.1-8B-Instruct.
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