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Abstract

Knowledge Editing (KE) has gained increasing
attention, yet current KE tasks remain relatively
simple. Under current evaluation frameworks,
many editing methods achieve exceptionally
high scores, sometimes nearing perfection.
However, few studies integrate KE into real-
world application scenarios (e.g., recent inter-
est in LLM-as-agent). To support our analysis,
we introduce a novel script-based benchmark
– SCEDIT (Script-based Knowledge Editing
Benchmark) – which encompasses both coun-
terfactual and temporal edits. We integrate
token-level and text-level evaluation methods,
comprehensively analyzing existing KE tech-
niques. The benchmark extends traditional
fact-based (“What”-type question) evaluation
to action-based (“How”-type question) evalua-
tion. We observe that all KE methods exhibit a
drop in performance on established metrics and
face challenges on text-level metrics, indicating
a challenging task. Our benchmark is available
at https://github.com/asdfo123/ScEdit.

1 Introduction

Large Language Models (LLMs) have demon-
strated outstanding performance in natural lan-
guage understanding and generation tasks (Zhao
et al., 2023). However, these models may produce
outdated and erroneous information, leading to non-
factual responses (Zhang et al., 2023; Wang et al.,
2024e; Hernandez et al., 2024). Given the high
costs associated with retraining LLMs from scratch
(Sinitsin et al., 2020), Knowledge Editing (KE) has
emerged as an increasingly important paradigm
for efficiently updating knowledge (Meng et al.,
2022; Yao et al., 2023; Wang et al., 2024c). KE
methodologies have been developed to incremen-
tally infuse new information or correct existing
knowledge without requiring full-scale retraining
(Mitchell et al., 2022a; Meng et al., 2022, 2023;
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Step 1: Apply for a Singapore travel visa.
Step 2: Wait for the visa approval notification.
Step 3: Book a flight from Beijing to Singapore.
Step 4: Arrange accommodation in Singapore in advance.
Step 5: Travel to Beijing Capital Airport.
Step 6: Check in and clear security 
Step 7: Board the flight to Singapore.
Step 8: Land in Singapore, clear immigration checks.
Step 9: Explore Singapore’s attractions and culture.

  
 

 
 

Step 1: Confirm visa-free policy for 
Chinese  Tourists.
Step 2: Book a flight to Singapore online.
Step 3: Arrange accommodation in Singapore in advance.
Step 4: Pack your passport and travel essentials.
Step 5: Head to Beijing airport for check-in.
Step 6: Clear security and immigration procedures.
Step 7: Board your flight to Singapore.
Step 8: Arrive at Singapore, pass customs checks.
Step 9: Explore Singapore’s attractions and culture!

Knowledge Editing

How does a Chinese citizen travel to 
Singapore from Beijing?

Singapore announces 
visa-free entry for 
Chinese tourists starting 
February 9, 2024.New Fact:

❌

✅

Figure 1: An example of the script-based assessment of
Knowledge Editing (KE). Top: Outdated information
generated by the LLM, instructing the user to apply
for a visa, thereby misleading them. Bottom: Updated
LLM successfully integrates new information, correctly
informing the user about the visa-free policy.

Hartvigsen et al., 2022; Zhong et al., 2023). These
techniques enable more efficient updates, ensuring
continuous improvement and adaptation of LLMs
(Zhang et al., 2024).

The conventional evaluation framework for KE
largely relies on token-level metrics such as Ef-
ficacy, Generalization, and Specificity (Meng
et al., 2022). Although these metrics provide a
great starting point, they exhibit notable limita-
tions. For instance, Generalization attempts to
transcend mere key-value pair memorization by
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evaluating a model’s capacity to answer rephrased
or synonymously expressed questions. However,
such evaluations tend to remain in the realm of
“What?”-type question transformations, overlook-
ing the broader generalization capabilities of edit-
ing methods. Moreover, these three metrics typi-
cally gauge KE based on the next few tokens that
follow prompts. This approach overlooks the poten-
tial for more complex, long-form natural language
generation, leaving it largely unaddressed (Rosati
et al., 2024).

In real-world scenarios, LLMs are increasingly
deployed as agents or as core components of multi-
agent frameworks that assist users in navigating
daily life, making decisions, and performing com-
plex tasks (Li et al., 2024; Sumers et al., 2024;
Wang et al., 2024a; Lal et al., 2024; Du et al.,
2025). In these roles, users often pose “How”-
type questions, which require the models to gener-
ate goal-oriented Scripts not only recalling factual
information, but applying, generalizing, and rea-
soning based on that information (Lyu et al., 2021).
A Script is a framework describing the sequence
of events in a context. Specifically, in the con-
text of KE, the rapidly changing landscape of fac-
tual knowledge means that generated Script may
become erroneous, potentially misleading users.
For example, as illustrated in Figure 1, a user
asks “How does a Chinese citizen travel to Sin-
gapore from Beijing?” A pretrained LLM without
updated knowledge might suggest applying for a
visa, despite Singapore’s new visa exemption pol-
icy for Chinese tourists. Such questions necessitate
prompt and accurate updates to ensure reliable re-
sponses.

Existing evaluation approaches, with their focus
on token-level factual recall, do not sufficiently ad-
dress these real-world complexities. To overcome
these limitations, this paper introduces a script-
based evaluation framework, named SCEDIT, as-
sessing KE performance in procedural planning
scenarios. SCEDIT emphasizes the model’s ability
to handle “How?”-type questions and produce co-
herent, reliable guidance following targeted knowl-
edge updates. A key focus is on how models
propagate edited knowledge through script-based
procedural planning tasks after editing. We inte-
grate token-level and text-level evaluation, com-
prehensively analyzing existing KE techniques in
both counterfactual and temporal editing tasks.
Three LLMs (GPT2-XL (Radford et al., 2019),
GPT-J (Wang and Komatsuzaki, 2021) and Llama

3 (AI@Meta, 2024)) are tested in SCEDIT.
Experimental results on SCEDIT reveal that all

comparable methods experience an average drop
of 27% in the token-level metric S-ES compared
to the similar PS metric introduced by Meng et al.
(2022). Moreover, some methods struggle to bal-
ance effective editing with maintaining locality in
both token-level and text-level evaluations. Even
methods that excel in token-level metrics show sig-
nificant room for improvement in text-level editing
performance. These findings highlight the need
for further research into KE methods tailored for
script-like scenarios.

We summarize our contributions of the paper as
follows:

• Develop a script-based assessment frame-
work that leverages scripts–structured proce-
dural knowledge–to capture a model’s ability
to integrate updated facts into complex reason-
ing and generation tasks. To the best of our
knowledge, this is the first attempt to integrate
KE into script-based scenarios, presenting a
more challenging task compared to existing
KE and constrained script generation tasks.

• Introduce SCEDIT, a novel and challenging
script-focused benchmark, accompanied by
comprehensive experiments to evaluate mod-
els’ ability at both token and text level.

2 Related Work

2.1 Scripts
A script is a structure that describes an appropriate
sequence of events in a particular context (Schank
and Abelson, 1975). Scripts are typically classified
into narrative scripts, which describe a sequence
of events in a story-like manner (Fang et al., 2022;
Tandon et al., 2020), and goal-oriented scripts,
which outline the steps needed to achieve a spe-
cific goal (Sancheti and Rudinger, 2021; Lyu et al.,
2021). Our work aligns with the latter paradigm.

Generating high-quality scripts, a longstanding
challenge, traditionally involves learning action
sequences from narratives by analyzing causal
relationships (Mooney and DeJong, 1985). Re-
cently, script generation using large language
models (LLMs) has become more feasible, with
methods such as the over-generate-then-filter ap-
proach (Yuan et al., 2023). The script paradigm
helps LLMs better understand the temporal or-
der and logical relationships of everyday events.
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Step 1: Visit the website of your 
local dealership or service 
provider.
......
Step 5: Select a nearby service 
center authorized by 
______

Truncated Script

Script Question

Token-level 
Evaluation

Automatic 
evaluation

Check&
Analyze

Text-level Evaluation
Human

Evaluation

Biden

       Trump

How to book a maintenance 
service for Panamera?

How to write a letter to the 
current US President?

(Panamera, manufactured 
by, Porsche -> Ford)

Counterfactual Temporal
(The US, president, 
Biden -> Trump)

Step 1: Address the letter to 
"The President of the United 
States."
......
Step 4: Introduce yourself and 
state your purpose to Current 
President  ______

        Porsche

 Ford

    Biden

Trump

 Porsche      

          Ford

Knowledge EditingKnowledge Editing

Script Question

Truncated Script

Step 1: Visit the 
website ......
......
Step 9: Wait for 
confirmation ......

Coh.

Cons. ...

Comp. Exec.

You are a 
professional 
AI evaluation 
expert ...

ScEdit Framework

Edited
Model

GPT4 
Judges

Figure 2: Overview of SCEDIT. For token-level evaluation, we concatenate the Script Question and Truncated
Script to form a cloze-format prompt. For text-level evaluation, we involve automatic and human evaluation.

With fine-tuning and post-processing, models
demonstrate enhanced generalization abilities in
script generation (Sancheti and Rudinger, 2021).
Smaller models, when trained on high-quality
script datasets like CoScript, have shown superior
constrained language planning quality compared to
LLMs (Yuan et al., 2023).

2.2 Knowledge Editing
Knowledge Editing (KE) has emerged as a promis-
ing approach to efficiently update LLMs without re-
quiring full retraining (Sinitsin et al., 2020). Many
applications and specific tasks also require ongoing
adjustments to address defects or errors inherent
in these models (Zhai et al., 2023). Current KE
methods are generally classified into intrinsic and
extrinsic approaches.

Intrinsic Methods. Intrinsic methods modify a
model’s architecture or parameters to edit internal
knowledge, including fine-tuning, meta-learning,
and locate-then-edit approaches. Fine-tuning up-
dates model parameters using new knowledge but
demands high computational resources and risks
catastrophic forgetting and overfitting (Chen et al.,
2020; Zhu et al., 2020). Meta-learning methods
like MEND (Mitchell et al., 2022a) and MAL-
MEN (Tan et al., 2024) train a hyper-network to
adjust weights indirectly, while locate-then-edit
approaches like ROME (Meng et al., 2022) and
MEMIT (Meng et al., 2023) use causal analysis
of the hidden states to target specific areas storing
knowledge.

Extrinsic Methods. Extrinsic methods use ex-
ternal knowledge to update the model’s input
or output space, enhancing new representations
while preserving original performance. A typical
In-Context Learning method, IKE (Zheng et al.,
2023), injects new knowledge by copying the up-
dated facts into the context in a few-shot learn-
ing way. SERAC (Mitchell et al., 2022b) and
MeLLo (Zhong et al., 2023) are memory-based
editing methods. SERAC updates parameters of an
external counterfactual model and employs a classi-
fier to decide when to update facts, whereas MeLLo
uses iterative prompting to guarantee fact updates,
making it better suited for multi-hop reasoning.

Most prior work frames KE as a triplet-level task,
updating entity-relation triples (subject, predicate,
object) within LLMs (e.g., (The US, President,
Biden 7→ Trump)). Some studies explore more
extensive downstream applications (Wang et al.,
2024d; Mao et al., 2023; Cheng et al., 2024; Wang
et al., 2024f) or introduce more unstructured edit-
ing scenarios (Peng et al., 2024; Liu et al., 2024;
Huang et al., 2024; Wu et al., 2024). Additionally,
more relevant work (Yao et al., 2023; Zhong et al.,
2023; Cohen et al., 2023; Hua et al., 2024) investi-
gates KE from the perspective of multi-hop reason-
ing and ripple effects, evaluating whether models
can utilize and propagate the newly edited facts.
However, these studies primarily emphasize fact
recall while neglecting the complex and procedural
reasoning capabilities (e.g., multi-step reasoning)
that are essential for addressing real-world tasks.
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3 SCEDIT: Script-based Assessment of
Knowledge Editing

We illustrate the proposed task in Figure 2. We
will introduce the task definition (§3.1), dataset
construction details (§3.2), and the editing methods
(§3.3) we used in the experiments.

3.1 Task Definition
KE was originally devised to update false or out-
dated information in a model, frequently by mutat-
ing fact-based triplets. Inspired by such approaches,
we extend KE into script-based scenarios. In these
scenarios, rather than merely performing a single-
fact edit, the model must integrate newly updated
knowledge into multi-step or procedural tasks. This
shift offers an opportunity to assess whether models
can propagate changes throughout an entire script,
thereby providing a more comprehensive view of
“editing success”.

Formally, we define three core elements:

• Facts are individual pieces of knowledge, of-
ten instantiated as (s, r, o) triples, where s is
the subject, r the relation, and o the object.
When performing a KE operation e, we apply

(s, r, oc) 7→ (s, r, o),

where oc is the original object and o is the
edited target object. Each fact has a fact
prompt (s, r) directly related to s and r.

• Script Questions are prompts—typically
starting with the word “How”—that require
multi-step or procedural reasoning based on
the updated fact. Because each fact can spawn
multiple such questions, we denote them as

Qi,k

(
(si, ri), o

c
i , oi

)
,

emphasizing that for fact i, there could be sev-
eral questions indexed by k. These questions
are designed so that the edit ei : (si, ri, oci ) 7→
(si, ri, oi) significantly affects the logic or
flow of the script.

• Scripts are the model’s responses to each
script question. For a Script Question Qi,k ,
a LLM fθ parameterized by θ and the Script
Si,k, we have

Si,k = fθ (Qi,k).

Si,k may or may not reflect the new object
oi, depending on whether the model has effec-
tively understand the edit. The detailed format
of Scripts can be found in Appendix A.

Based on the above elements, we evaluate KE per-
formance using cloze-format prompts for token-
level metrics (ES, S-ES, S-NS, S-BO) and automat-
ed/human evaluations for text-level metrics. Let fθ
be our large language model (LLM) parameterized
by θ. Pc and P are the language model probability
function before and after the update, respectively.
Below we detail how we measure the edit ei for
each fact i. Ei,k[·] denotes the average over all facts
i and Script Questions k.

Efficacy. Following Meng et al. (2022), consider
a fact prompt (si, ri) whose original object is oci
and edited target object is oi. Efficacy Success
(ES) measures how often the model prefers oi over
oci under this basic fact prompt:

Ei

[
Pfθ

(
oi | (si, ri)

)
> Pfθ

(
oci | (si, ri)

)]
. (1)

Script-based Efficacy. We generalize Efficacy
to the script-based setting. Given Script Ques-
tions Qi,k, an external model (e.g., GPT-4) pro-
duces Scripts Si,k that intentionally includes the
old object oci with original knowledge. To align
with token-level evaluation, we truncate each orig-
inal script Si,k at the point where oci first appears,
then concatenate this truncated script with Qi,k to
form a cloze-format script-based prompt Q̃i,k . We
compute Script-based Efficacy Success (S-ES) by
checking whether fθ prefers oi to oci under Q̃i,k:

Ei,k

[
Pfθ

(
oi | Q̃i,k

)
> Pfθ

(
oci | Q̃i,k

)]
. (2)

Script-based Specificity. A robust editing pro-
cess should not inadvertently corrupt unrelated or
neighbor facts. Specifically, if (si, ri, o

c
i ) is re-

placed with (si, ri, oi), then k collected neighbor
facts (sj , rj , oj) that share (ri, o

c
i ) or are seman-

tically close to (si, ri, o
c
i ) should remain intact.

Concretely, we construct a cloze-format, script-
based neighborhood prompt Q̃i,k

′
—analogous to

Q̃i,k but designed around these unmodified neigh-
bor facts—and verify that the model retains the
correct object oj . Formally, for the first type of
neighbor facts, which oj = oci , we define Script-
based Neighbor Success (S-NS):

Ei,k

[
Pfθ

(
oci | Q̃i,k

′)
> Pfθ

(
oi | Q̃i,k

′)]
. (3)

For the second type without oci , inspired by Am-
mar Khodja et al. (2024), we assess the accuracy
drop of oj via Script-based Bleedover (S-BO):

Ei,k

[
max

(
Pc
fθ

(
oj | Q̃i,k

′)−Pfθ

(
oj | Q̃i,k

′)
, 0
)]
.

(4)
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Text-level Metrics. Beyond token probabilities,
we assess the entire generated script’s quality by
having the LLM answer Script Question Qi,k and
conducting 7-point Likert-scale ratings across four
dimensions via automatic and human evaluations.

1. Executability (Exec.): Are the script exe-
cutable in a logical sense? 1

2. Coherence (Coh.): Are the script aligned
with the newly updated fact?

3. Consistency (Cons.): Does the script remain
free of internal contradictions?

4. Completeness (Comp.): Does the script ade-
quately address all parts of the question, with
sufficient procedural detail to be followed?

Detailed evaluation criteria and relative prompts
are provided in Appendix C.1, with a further case
study elaborating the metrics more in Appendix F.

3.2 Datasets

Task Case S-Eff. S-Spec.
SCEDIT-CF 1830 7342 13672
SCEDIT-T 1762 7038 6597

Table 1: Statistics of our SCEDIT-CF and SCEDIT-T
subtasks. “S-Eff.” denotes the sample size for Script-
based Efficacy evaluation, while “S-Spec.” indicates the
subset for measuring Script-based Specificity, ensuring
that unrelated scripts remain correct after editing.

We introduce two subtasks, SCEDIT-CF and
SCEDIT-T (Table 1), targeting different KE tasks.
SCEDIT-CF centers on counterfactual knowledge,
a common focus in KE, evaluating a method’s
ability to perform edits in script-based scenarios.
By contrast, SCEDIT-T utilizes temporal updates
drawn from Wikipedia to assess a model’s adapt-
ability to chronological updates, reflecting practical
scenarios in which facts evolve over time.

An overview of the construction procedure is il-
lustrated in Figure 3. Further details about the con-
struction procedure can be found in Appendix B.

3.2.1 SCEDIT-CF Dataset Construction
We build on the CounterFact dataset (Meng et al.,
2022), adapting it to script-based scenarios. In
CounterFact, each fact (s, r, oc) is replaced with
(s, r, o). To extend these edits into multi-step pro-
cedures, we design carefully formulated prompts
and few-shot exemplars for a LLM (e.g., GPT-4)

1For Executability, We do not consider the knowledge
updates but focus solely on its inherent linguistic performance.

“How can a Chinese travel to 
the Eiffel Tower?”

Script Question:

“Please write a question about 
prompt starting with ‘how’. 
Require the answer to this 
question to verify whether the fact 
has been updated to the latest 
version … 
The prompt: {The Eiffel Tower is in}
The Edit: {Paris -> London}”

Create Script Question:

“The Eiffel Tower is in ( ) ”
Fact Prompt: “Step1: Open Trip.com.......

Step 4: Buy a flight ticket 
to | Paris Airport.
......
Step 9: Taking a photo with 
the Eiffel Tower.”

Generate Script:

Retrieve neighbor facts & 
Create script-based prompts.
ScEdit-CF: facts share (r,o)
ScEdit-T: facts share r and 
similar s

Select Neighbors:

Truncate where target true 
first appears & 
Create script-based prompts

Truncation:

Dataset Construction

target true: Paris
target new: London

Edit:

(s,
r,
o) :
(Eiffel Tower, location, Paris)

Fact:

Figure 3: Overview of dataset construction process via
a counterfactual edit as an example: Paris (ground truth)
and London (target object). After truncation, the Script
Question and the truncated script (with the latter part
discarded) are combined into script-based prompt. Items
marked with indicate GPT-4-generated content.

to generate several Script Questions most likely
to be influenced by the updated fact. For example,
given (Panamera, manufactured_by, Porsche
7→ Ford), a natural question might be “How to
book a maintenance service for Panamera?”,
which implicitly requires the updated manufacturer.

Following an initial generation step, we apply
human filtering to ensure that the curated Script
Questions Qi,k meaningfully hinge on the edited
fact. We then prompt GPT-4 to generate scripts
including the old object oci with its original knowl-
edge. To maintain consistency with prior work,
we truncate first mentions of oc and construct new
script-based prompts Q̃i,k by appending Qi,k to
the truncated script. Simultaneously, we filter out
neighbor facts that share (r, oc) to build script-
based neighborhood prompts Q̃i,k

′
in a similar

way. The resulting question–answer pairs facili-
tate our core evaluations: S-ES (Script-based Effi-
cacy Success), conducted using Q̃i,k; S-NS (Script-
based Neighborhood Success), performed with
Q̃i,k

′
; and Text-level Metrics, evaluated using Qi,k.

We present a constructed example in Appendix B.

3.2.2 SCEDIT-T Dataset Construction

Constructed in a manner similar to SCEDIT-CF,
SCEDIT-T leverages the WDFreal, a subset of Wik-
iFactDiff (Ammar Khodja et al., 2024), testing
whether the model can integrate temporal updates
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Method Model SCEDIT-CF SCEDIT-T

ES ↑ S-ES ↑ S-NS ↑ ES ↑ S-ES ↑ S-BO ↓
Base Model 20.55±1.85 21.18±1.51 81.52±1.20 44.27±2.32 41.72±2.03 0.00±0.00

FT

G
PT

2-
X

L

100.00±0.00 71.27±1.66 65.08±1.51 87.17±1.56 52.80±2.03 1.15±0.14

FT+L 99.13±0.42 40.39±1.84 78.50±1.26 70.60±2.13 44.39±2.03 0.39±0.08

MEND 92.84±1.18 32.89±1.71 74.33±1.34 98.64±0.54 74.24±1.77 0.47±0.12

ROME 99.95±0.11 74.76±1.56 80.24±1.24 99.15±0.43 68.00±1.86 0.13±0.06

MEMIT 93.72±1.11 58.11±1.86 81.16±1.21 81.44±1.82 52.13±2.04 0.03±0.01

PROMPT 96.28±0.87 69.63±1.66 42.88±1.44 99.49±0.33 84.39±1.44 0.54±0.08

Base Model 13.99±1.59 16.06±1.31 85.77±1.05 40.64±2.29 39.62±1.99 0.00±0.00

FT

G
PT

-J

100.00±0.00 83.94±1.30 25.81±1.26 99.60±0.29 97.9±0.56 5.47±0.38

FT+L 99.95±0.11 39.07±1.81 84.38±1.09 71.51±2.11 42.78±1.99 0.14±0.02

MEND 97.32±0.74 23.40±1.52 82.93±1.13 98.92±0.48 72.18±1.80 0.62±0.13

ROME 99.95±0.11 86.50±1.14 83.35±1.13 99.60±0.29 74.29±1.73 0.28±0.08

MEMIT 99.95±0.11 74.59±1.57 85.07±1.07 99.09±0.44 64.66±1.89 0.08±0.01

PROMPT 90.55±1.34 70.95±1.61 44.01±1.47 98.24±0.61 85.07±1.39 1.03±0.11

Base Model 7.32±1.19 9.19±0.97 92.53±0.70 - - -

FT

L
L

A
M

A
3 100.00±0.00 98.82±0.31 8.37±0.86 - - -

ROME 99.95±0.11 90.24±1.00 75.71±1.28 - - -
MEMIT 98.63±1.19 58.86±1.83 92.13±0.71 - - -
PROMPT 92.30±1.22 77.02±1.46 56.48±1.30 - - -

Table 2: Token-level results on the SCEDIT-CF and SCEDIT-T with their respective 95% confidence interval.
Column-wise best results are highlighted in bold green, while the second-best results are underlined green. Values
in red indicate a clear failure of a method on a particular metric. S-ES refers to Script-based Efficacy Success, S-NS
is Script-based Neighborhood Success, and S-BO denotes Script-based Bleedover. SCEDIT-T was not evaluated on
LLAMA3 because the cutoff date for its training data occurred after the time when the edited fact was introduced.

into scripts while preserving unrelated information.
WDFreal gathers Wikipedia changes made between
4 January 2021 and 27 February 2023. Due to the
data characteristics, a key difference from Counter-
Fact is that Script-based Specificity set is retrieved
from k-nearest neighbour fact (s′, r, o′) instead of
(s, r, oc), where s′ is a subject similar to s. Follow-
ing a process similar to SCEDIT-CF, we construct
Q̃i,k

′
and measure accuracy degradation through

S-BO (Script-based Bleedover).

3.3 Editing Methods

SCEDIT primarily follows the single-edit
paradigm. We include methods that excel within
this paradigm, yet methods designed for massive
or sequential editing (Tan et al., 2024; Hartvigsen
et al., 2023; Fang et al., 2024; Wang et al., 2024b)
remain unexplored and are considered as future
work. Specifically, the editing methods employed
in SCEDIT-CF and SCEDIT-T include:

• Fine-tune (FT). A straightforward method that
updates model weights via Adam optimization.
Constrained Fine-Tuning (FT+L) (Zhu et al.,
2020) further applies a L∞ norm constraint,
thereby limiting large parameter shifts.

• ROME. A parameter-editing technique that pin-
points the specific model weights driving factual
predictions and directly modifies them to embed
new or revised facts (Meng et al., 2022).

• MEMIT. A scalable multi-layer update algo-
rithm built on ROME. It targets the relevant trans-
former module weights to handle multiple edits
in parallel, enabling broader yet controlled up-
dates (Meng et al., 2023).

• MEND. A meta-learning approach that learns
auxiliary networks for fast, localized parameter
adjustments, integrating new facts while preserv-
ing unrelated knowledge (Mitchell et al., 2022a).

• PROMPT. In addition to the methods in
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Text-Level Metrics on SCEDIT-CF

Method Exec. ↑ Coh.↑ Cons.↑ Comp.↑

LLAMA3-8B

Base Model 6.74±0.02 2.48±0.03 6.86±0.02 5.40±0.05

FT 2.94±0.05 2.97±0.05 6.17±0.05 2.17±0.05

ROME 6.41±0.03 4.32±0.05 6.57±0.04 4.67±0.05

MEMIT 6.54±0.02 3.67±0.05 6.70±0.03 4.98±0.05

PROMPT 6.36±0.03 4.35±0.05 6.05±0.05 5.49±0.04

Table 3: Automatic evaluation results of four text-level metrics
on SCEDIT-CF across different methods tested in LLAMA3-8B
along with their respective 95% confidence interval. Column-
wise best results are highlighted in bold green, while the second-
best results are underlined green. In contrast, red values denote
a clear failure in specific metric.
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Figure 4: Results of text-level metrics. For clar-
ity, the vertical axes for “Exec.” and “Cons.”
begin at 6, while those for others start at 2.

(§2.2), we evaluate PROMPT, which updates the
model’s knowledge at inference by prefixing each
prompt with (s, r) + o - appending the target ob-
ject to the fact prompt.

4 Experiments

4.1 Results on Token-level Metrics

Following the previous KE evaluation paradigm,
we use cloze-format prompts to assess token-level
metrics, highlighting the challenges of SCEDIT.
S-ES, a metric akin to the PS (Paraphrase Success)
introduced by Meng et al. (2022) in both purpose
and design, drops by an average of 27% compared
to the original PS across all reported methods.

Certain methods reaffirm existing findings,
whereas others unveil task-specific nuances in these
script-based edits. Based on Table 2, we can draw:

FT and FT+L highlight the challenge of balanc-
ing effective edits with preserving locality. While
FT excels in S-ES, its strong bias toward generating
the targeted object hampers S-NS and S-BO. This
trade-off worsens with larger models. By contrast,
FT+L attempts to impose a constraint but falls short
on S-ES, rendering it nearly unusable.

MEND displays divergent behavior by task. For
SCEDIT-CF, S-ES drops by roughly 53% com-
pared to simpler PS tasks. It should be noted that
WikiText-based training may contribute to the per-
formance gap, yet the drastic drop remains note-
worthy, especially since PS and S-ES share the

same CounterFact edits. This suggests potential
difficulties in adapting to different tasks. In con-
trast, MEND remains comparatively more viable
for SCEDIT-T.

ROME achieves the best overall results across
all models and all metrics, suggesting that a locate-
then-edit strategy still offers strong performance in
script-based scenarios.

MEMIT, designed for large-scale editing, ex-
hibits moderate S-ES but attains the highest S-NS
and S-BO scores, indicating particularly strong
preservation of unrelated facts.

Lastly, although PROMPT excels in S-ES for
SCEDIT-T, its less favorable locality metrics reveal
limitations when handling script-based contexts.

4.2 Results on Text-Level Metrics
4.2.1 Automatic Evaluation
We use GPT-4 to evaluate four text-level metrics
on SCEDIT-CF for LLAMA3-8B-generated scripts
after editing. While token-level metrics primarily
capture edit performance, text-level metrics offer
a more holistic assessment of how well a model
integrates, generates, and reasons based on edited
knowledge. Table 3 and Figure 4 show the results.
Additionally, we include text-level metrics for sev-
eral large-scale closed-source commercial models
in Appendix G.

Coherence. Coh. evaluates text-level edit effective-
ness. PROMPT and ROME perform relatively well,
aligning with their high S-ES scores. However,
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with 7 as the maximum score, these results remain
unsatisfactory, highlighting that even token-level
strong methods still have room for improvement at
the text level. In contrast, FT nearly wipes out the
model’s capabilities, fixating on the target object
o or even part of its tokens, which can hardly be
considered an effective text-level edit.

Executability and Completeness. Exec. and
Comp. do not directly assess the newly edited
facts but rather probe whether the model’s inherent
script-related capabilities remain intact following
the edits. MEMIT achieves the strongest perfor-
mance here, possibly at the cost of Coh. ROME
and PROMPT also perform well, with PROMPT
even outperforming the Base Model in terms of
Comp., suggesting that it remains largely unaf-
fected in terms of interpreting the Script Question
and providing a well-rounded response. By con-
trast, FT registers poor results again, reflecting the
irreparable damage it causes to the model’s broader
script-related capabilities.

Consistency. Cons. checks whether the knowl-
edge is stable, without mixing old and new
facts. MEMIT and ROME both preserve con-
sistency effectively, whereas PROMPT underper-
forms slightly here. This observation underscores
that methods relying on in-context learning of the
model can still face challenges in maintaining sta-
ble, conflict-free edits at the textual level.

4.2.2 Human Evaluation
Given the complexity of automated text-level eval-
uations, we further conduct a human evaluation
on 400 sampled generated scripts. Three indepen-
dent annotators, experienced in KE but uninvolved
in the automated evaluation, scored the same four
text-level metrics using the same criteria as GPT-4.
Krippendorff’s α of 0.43 and Spearman’s β of 0.72
(between human and automated measures) indicate
moderate to substantial agreement. Detailed statis-
tics and analysis are provided in Appendix C.2.

4.3 Analysis of the Correlation of All Metrics
Inspired by Rosati et al. (2024), we analyze re-
lationships between all metrics. GE2 is included
here. This represents a first attempt to integrate
generative ability into KE evaluation. However, cal-
culating entropy using short n-grams cannot fully
capture the information present at the text level.

2Weighted average of bi- and tri-gram entropies (Zhang
et al., 2018) employed by Meng et al. (2022) in the original
ROME papers.

Figure 5: Clustered spearman correlation heatmap of
token-level and text-level metrics

Figure 5 presents a clustered Spearman correla-
tion heatmap comparing token-level with text-level
metrics. All statistically significant correlations
(with p < 0.05 and |ρ| > 0.1) are detailed and
further analyzed in Appendix E.

In summary, our analysis yields three findings:

1. Fact-based efficacy (ES) alone fails to capture
editing effectiveness in script scenarios.

2. Combining Exec. and Comp. — which incor-
porate the script’s inherent feature — provides
a valuable complement to generative ability
and specificity.

3. Text-level edit effectiveness (Coh.) shows
weak correlation with S-ES, while Cons. ex-
hibits almost no relationship with token-level
metrics, indicating that each captures distinct
dimensions. We further illustrate this in a
case study (Appendix F), showcasing samples
where token-level metrics are high but text-
level edits face significant issues. Therefore,
integrating metrics across levels may lead to a
more comprehensive evaluation.

5 Discussion

Both text-level and token-level metrics reveal an
inherent trade-off in SCEDIT between achieving
highly effective edits and limiting their broader
impact on the model’s performance.

The deterministic nature of scripts enables a
more definitive evaluation. Issues become more
apparent at text level, highlighting the challenges
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of holistic editing in script-like scenarios, which re-
quire further research and advanced KE strategies.

6 Conclusion

In this paper, we present SCEDIT, a novel script-
based benchmark for evaluating KE methods in
real-world scenarios. Through rigorous experi-
ments, we highlight several limitations of current
KE methods in handling script-based evaluations.
Some methods like FT struggle to maintain Effi-
cacy and Specificity. While methods like ROME
achieve strong token-level performance, text-level
scores reveal room for improvement in script-like
scenarios. Further analysis between token-level
and text-level metrics underscores the need for
more comprehensive evaluation frameworks. We
hope that SCEDIT will inspire the development of
more advanced KE techniques capable of address-
ing real-world complexities.

7 Limitations

Models. We only edit a few basic LLMs, leaving
many others unexplored. Additionally, due to re-
source limitations, the LLMs we edit have fewer
than 10B parameters, excluding larger models.
Moreover, several task-oriented planning LLMs
remain untested.

Editing Methods. In this paper, we primarily fo-
cus on comparing the effects of existing editing
methods across different types of edits and eval-
uation granularities. However, the results leave
room for improvement. Moving forward, our goal
is to explore efficient and accurate editing across all
granularities, especially at the text level. This may
include investigating techniques like step-verifiers,
which are commonly employed to improve lan-
guage planning tasks (Brahman et al., 2024), as
well as other post-hoc methods. While we intro-
duced Script scenarios, the editing methods them-
selves remain rooted in triple-level paradigms. De-
veloping methods to support unstructured edits is
a promising direction for future research. Further-
more, exploring scalability (massive and sequential
editing capabilities) in Script scenarios represents
another important avenue for advancement.

Automatic Evaluation. Overestimation or un-
derestimation may occur when doing automatic
evaluation for generated texts (Yuan et al., 2023).
To mitigate this, we incorporate moderate human
evaluation and several correlation analyses.

Further Challenges SCEDIT is generated by
GPT-4, potentially biasing it toward causal lan-
guage models — a common issue with machine-
generated data. Some incorrect or atypical samples
emerge, though manual checks partially address
this. What’s more, expanding KE datasets to lan-
guage planning domains may lead to some incom-
patibility or repetitive Script Questions, and the
counterfactual edits may not incorporate well with
real-world scenarios. Lastly, we focus on human-
level script execution, leaving robot execution (Lu
et al., 2023; Huang et al., 2022) unstudied, which
highlights the challenges of translating complex
human language into robot-executable forms and
the gap toward embodied AI.
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A Scripts Format Details

In SCEDIT, we define the Script in a specific for-
mat as follows:

• A step-by-step guide for answering the Script
Question.

• Consists of brief events starting from Step 1,
with a maximum of 9 steps.

• Each step should be a single concise action
statement in one line less than 8 words.

• Excludes any explanations, details, notes, or
additional instructions.

• The script should contain only the steps, and
nothing else.

We prompt the model with following prompt
when executing text-level evaluation:

Provide a step -by-step guide in Script
↪→ form for answering the question:
↪→ {Script Question }.

The Script should consist of brief
↪→ events starting from Step 1, with
↪→ a maximum of 9 steps.

Each step should be a single concise
↪→ action statement in one line less
↪→ than 8 words.

Do not include any explanations , details
↪→ , notes , or further instructions.

The script should consist only of the
↪→ steps , and nothing else.

B Dataset Construction Details

B.1 Data Construction

We leverage gpt-4o-2024-11-20 to construct
SCEDIT-CF as well as SCEDIT-T.

Two main processes are utilized in our dataset
construction. First, as illustrated in Figure 6, we
prompt GPT-4 with few-shot examples to gener-
ate Script Questions that are significantly influ-
enced by the edits. Second, shown in Figure 7, we
prompt GPT-4 with specific requirements to gen-
erate Scripts to response these Script Questions
based on old knowledge. These Scripts are then
truncated and concatenated with the corresponding
Script Questions to form a cloze-format, script-
based prompts aligning with token-level evaluation
paradigms. Neighboring facts are also collected
and processed similarly.

B.2 Data Filtering and Quality Evaluation

During the dataset creation process, we conducted
comprehensive filtering and verification to ensure
data quality. The primary focus of our filtering
process was to remove data points that were either
difficult to edit or evaluate or where data leakage
was identified.

B.2.1 Types of Data Filtered Out
We addressed several key issues:

• Hallucination in GPT-4-generated Data: In
some instances, GPT-4-generated data exhib-
ited hallucinations where the original object
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[SYSTEM]
• You are a helpful assistant.
[USER]
• Script Definition: A step-by-step guide for answering the question. The Script should consist 

of brief events starting from Step 1, with a maximum of 9 steps.

• Now, I will give you a factual knowledge edit which includes prompt, ground truth and new 
target.

• Based on the edit, generate 4 most relevant Script questions that may be influenced. Script 
answers will have drastically different results due to changed factual knowledge.

• The question should not leak the factual change, i.e. the question should never include 
ground truth or new target. Let's think step by step.

• The Script questions should be start from 'How to', 'How does a’, etc. , asking a question for 
a step-by-step guide (not asking the influence like 'How does ... impact ...') and output in a 
JSON format.

• Fact change:
• Prompt: {prompt} 
• Ground Truth: {ground_truth}
• Target new: {target_new}

Figure 6: Prompts for generating Script Questions that are significantly influenced by the knowledge updates.

[SYSTEM]
• You are a helpful assistant.

[USER]
• Script Definition: A step-by-step guide for answering the question. The Script should consist 

of brief events starting from Step 1, with a maximum of 9 steps. Each step should be a single 
concise action statement in one line less than 8 words. Do not include any explanations, 
details, notes, or further instructions. The script should consist only of steps, and nothing else.

• Now I'll give you a question, an object, and you need to generate a nine-step answer 
according to the script rules.

• Ensure that the Object I provided is included in the script.
• Each step must output 'step x', where x is the current step.
• You need to return the question and the answer you generated to me.
• Please format your response as a JSON object with only one key: 'question'. The value of 

'question' should be question and the entire answer, not separate keys for question and 
answer.

• Answer question:
• Question: {question} 
• Object: {object}

Figure 7: Prompts for generating Scripts based on given Script Questions.
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was missing from the script, rendering trunca-
tion impossible. These cases were identified
and removed before further evaluation.

• Leakage of Original Object-related Knowl-
edge in Truncated Scripts: This issue was
particularly critical in SCEDIT-CF, where
original knowledge is transformed into coun-
terfactual knowledge. Even when truncated
before the original object, scripts occasion-
ally retained related knowledge, which could
confuse the model. For example, in the edit
(Panamera, manufactured by, Porsche
→ Ford), if the truncated script still in-
cluded knowledge such as “headquartered in
Stuttgart, Germany,” it could create ambiguity.
To address this, we utilized GPT-4 as a verifier
to identify ambiguous cases, which were then
manually filtered out.

• Truncated Prompts Where the Target Ob-
ject Appears Too Early: In some cases, the
target object appeared too early in the trun-
cated prompt, making it challenging to gener-
ate the desired target object. Statistical analy-
sis revealed that 6.75% of the data was trun-
cated at Step 1. These cases underwent man-
ual filtering.

B.2.2 Filtering and Verification Process
Our filtering process involved multiple stages, com-
bining automated checks, GPT-4-assisted checks,
and manual verification. Overall, 8.23% of the
GPT-4-generated data was filtered out during this
process.

To further ensure data quality, we randomly sam-
pled 10% of the final dataset for manual evaluation
by three experts. The experts evaluated the data
based on the following criteria:

• Whether the generated Script Questions were
meaningful.

• Whether the model’s responses to the Script
Questions showed significant changes before
and after editing.

• Whether the truncation positions effectively
guided the generation of the target object.

The evaluation achieved an average agreement rate
of 94.5%, which supports the quality of the dataset.

Fact (Eiffel Tower, location, Paris)
Edit Paris → Rome
Fact Prompt The Eiffel Tower is in ()
Script Ques-
tion Qi,k

How can a Chinese travel to the Eiffel
Tower?

Generated
Script

Step 1: Open Trip.com.
Step 2: Search for international flights.
Step 3: Select your preferred flight option.
Step 4: Buy a flight ticket to

∣∣ Paris Airport.
Step 5: Apply for a Schengen visa.
Step 6: Book a hotel in Paris.
Step 7: Fly to France and reach your hotel.
Step 8: Visit the Eiffel Tower.
Step 9: Take a photo with the Eiffel Tower.

Script-based
Prompt Q̃i,k

How can a Chinese travel to the Eiffel
Tower?
Step 1: Open Trip.com.
Step 2: Search for international flights.
Step 3: Select your preferred flight option.
Step 4: Buy a flight ticket to ()

Neighbor Fact (Louvre Museum, location, Paris)
Script-based
Neighborhood
Prompt Q̃i,k

′

How does a tourist in Korea visit the Lou-
vre Museum?
Step 1: Apply for a Schengen visa (if re-
quired).
Step 2: Book tickets for the Louvre Mu-
seum.
Step 3: Select your preferred date and time.
Step 4: Book a flight ticket to ()

Table 4: An example of the constructed data (showcas-
ing only one question and one neighbor fact here).

B.3 Data Example
We present an example of the constructed data in
Table 4, which includes a specific script question
Qi,k, a cloze-format script-based prompt Q̃i,k, and

a cloze-format script-based neighbor prompt Q̃i,k
′
.

C Text-level Evaluation Details

C.1 Evaluation Criterion and Prompts
We employ gpt-4o-2024-11-20 with a few-shot ap-
proach to automatically evaluate text-level metrics
in SCEDIT-CF.

Figures 8 to 11 present the evaluation criteria
and carefully crafted prompts used in the evaluation
process. For the sake of clarity, several few-shot
examples were omitted.
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[SYSTEM]

• You are a professional AI evaluation expert.

[USER]

• We have posed questions for each modified knowledge and asked the large language model to  

answer each question separately. Your task is to evaluate the model's response using the following 

dimension on a 7-point Likert scale (1=worst, 7=best).

• Dimension: Executability

1. Executability: Are the steps in the script executable in a logical sense?

2. Assess if steps are feasible in logical contexts.

3. It is solely from a semantic perspective, without considering real-life facts and knowledge,    

that judgment is made.

4. Low-score example: Contain non executable operations (such as repeatedly outputting

“English”).

• For each of the scripts, return a number indicating your rating for each script.

• Your reply should be in JSON format.

• Your response should not contain spaces or line breaks. Start with 'executability:' followed by rating.   
Then, provide a brief explanation ("reason") for your rating in one sentence.

• Script:  {script}

Figure 8: Prompts for evaluating Executability.

Metric Krippendorff’s α

Executability 0.59
Coherence 0.35
Consistency -0.09
Completeness 0.25

Table 5: Metric-wise results of inter-rater agreement
between annotators.

C.2 Human Evaluation

We conducted a human evaluation with the help
of three researchers experienced in KE, who were
not involved in the automated evaluation process.
The inter-rater Krippendorff’s Alpha coefficient in-
dicates moderate agreement (α = 0.45). Detailed
metric-wise results are presented in Table 5, where
some metrics, such as Exec. and Coh., show higher
agreement, while Cons. exhibits poor agreement,
reflecting its subjective nature.

The human evaluation results align closely with
the findings and conclusions of (§4.2.1). We ac-
knowledge Rosati et al. (2024) and believe one
metric with poor agreement does not undermine
our overall findings, especially considering the use
of a seven-point Likert scale. However, it still high-
lights the need for further exploration of editing
stability in future research.

For comparisons between human and automatic
measures, Krippendorff’s α of 0.43 and Spear-
man’s β of 0.72 indicate moderate to substantial
agreement, suggesting that automated scores align
reasonably well with human raters. Increasing the
number of examples under few-shots settings could
be a direction for future improvements.

D Experiment Setup

Our experiments build upon ROME (Meng et al.,
2022) and MEMIT (Meng et al., 2023). We ad-
ditionally incorporate the LLAMA3 covariance
matrix provided by Fang et al. (2024), and adapt
implementation details of the PROMPT method
from Ammar Khodja et al. (2024).

All experiments are conducted on a single A40
(48GB) GPU. The LLMs are loaded using Hug-
gingFace Transformers (Wolf et al., 2020).

In SCEDIT, each edit is performed individually,
focusing on the specified (s, r, o) triple in a single
operation rather than in a sequential chain. After
each evaluation, the edited model is reverted to its
original state, ensuring that edits remain isolated
and do not affect subsequent operations. This de-
sign allows for a controlled script-based assessment
of each individual KE.
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• Start with “coherence:” followed by rating. Then, provide a brief explanation ("reason")  for 
your rating in one sentence. 

  

 

  

 

• Your reply should be in JSON format.

• Question:  {question}

• Prompt:  {prompt}

• Target true:  {target_true}

• Target new:  {target_new}

• Script:  {script}

[SYSTEM]

• You are a professional AI evaluation expert.

[USER]

• We have conducted knowledge editing on a large language model, changing the answer to 

the prompt from target true to target new.

• We have posed questions for each modified knowledge, and asked the large language model 

to answer each question separately. The response of the large model is called a script. Your 

task is to evaluate the scripts using the following dimension on a 7-point Likert scale (1=worst, 

7=best).

• Dimension: Coherence

1. Coherence: Are the script aligned with the newly updated fact?

2. Verify complete alignment with new updated knowledge.

3. Low-score example: Generate a script based on the premise of using target true as the          

prompt answer or mixing old/new facts (e.g., saying 'France's capital is Marseille' then  

mentioning 'Eiffel Tower in Paris’). If the script has target true and target new, two points   

will be given, and only target true will receive one point.

4. If there is no target true or target new in the script, give 3 points.

• For each of the scripts, return a number indicating your rating for each script.

Figure 9: Prompts for evaluating Coherence.
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[SYSTEM]

• You are a professional AI evaluation expert.

[USER]

• We have conducted knowledge editing on a large language model, changing the answer to      

the prompt from target true to target new.

• We have posed questions for each modified knowledge, and asked the large language model     

to answer each question separately. The response of the large model is called a script. Your 

task is to evaluate the scripts using the following dimension on a 7-point Likert scale (1=

worst, 7=best).

• Dimension: Consistency

1. Consistency: Does the script remain free of internal contradictions?

2. Please disregard any knowledge you have about the prompt.

3. Please ignore factual and logical errors.

4. If and only if there are both target true and target new in the script and it cannot be 
determined which of them the script was generated based on as a fact, give 1 points.  

5. If the script only has target new, or target true, or neither, give it 7 points.

6. Note that we only compare whether specific words appear, such as whether Donald  

Trump appears. If the President of America appears, we do not consider it to be the      

word '"'''""""'"Donald Trump'. 

• For each of the scripts, return a number indicating your rating for each script.

• Your reply should be in JSON format.

• Start with “consistency:” followed by rating. Then, provide a brief explanation ("reason")  for 

your rating in one sentence. 

• Question:  {question}

• Prompt:  {prompt}

• Target true:  {target_true}

• Target new:  {target_new}

• Script:  {script}

Figure 10: Prompts for evaluating Consistency.
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[SYSTEM]

• You are a professional AI evaluation expert.

[USER]

• We have conducted knowledge editing on a large language model, changing the answer to       

the prompt from target true to target new.

• We have posed questions for each modified knowledge and asked the large language model    

to answer each question separately. The response of the large model is called a script. Your     

task is to evaluate the scripts using the following dimension on a 7-point Likert scale (1=

worst, 7=best).

• Dimension: Completeness

1. Completeness : Does the script adequately address all parts of the question, with       

sufficient procedural detail to be followed?

2. In this dimension, our main criterion for evaluation is the completeness of the script's       

response to the question.

3. Please pay attention to the current factual knowledge:

1)  If the tag is "pre," use target true as the basis for determining whether the script   

meets the target true criteria for scoring.

2)  If the tag is "post," use target new as the basis for determining whether the script   

meets the target new criteria for scoring.

4. Note that if neither of target true and target new is mentioned, no points will be  

deducted. Only score the completeness of the answer to the question based on the       

script.

• For each of the scripts, return a number indicating your rating for each script.

• Your reply should be in JSON format.

• Start with “completeness:” followed by rating. Then, provide a brief explanation ("reason")   
for your rating in one sentence.

• Question:  {question}

• Prompt:  {prompt}

• Target true:  {target_true}

• Target new:  {target_new}

• Tag:  {tag}

• Script:  {script}

Figure 11: Prompts for evaluating Completeness.
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E Detailed Analysis of the Correlation of
All Metrics

Metric Pair ρ

Text-level Metrics
Coh. vs. Comp. 0.58
Exec. vs. Comp. 0.48
Exec. vs. Coh. 0.27
Exec. vs. Cons. 0.18
Coh. vs. Cons. 0.18

Token-level Metrics
S-NS vs. GE 0.47
S-NS vs. S-ES -0.36
S-ES vs. GE -0.19

Token-level vs. Text-level Metrics
S-NS vs. Exec. 0.44
GE vs. Exec. 0.42
GE vs. Comp. 0.33
S-NS vs. Comp. 0.26
S-ES vs. Exec. -0.20
S-ES vs. Coh. 0.17
GE vs. Coh. 0.16

Table 6: Statistically significant (p < 0.05) combined
Spearman’s rank correlations for metric pairs with |ρ| >
0.1.

In this section, we present a thorough analysis of
the correlations among various performance met-
rics computed at both the text and token levels.
Table 6 summarizes all the statistically significant
correlations (with p < 0.05 and |ρ| > 0.1) ob-
served in our analysis.

E.1 Text-Level Metrics

Among the text-level metrics, the Comp. exhibits
moderate to strong correlations with both Exec.
and Coh., with Spearman’s rank correlation coef-
ficients of ρ = 0.48 and ρ = 0.58, respectively.
Exec. and Coh. shows a weak positive correlation
(ρ = 0.27), suggesting a weak association between
the editing effectiveness and the inherent script-
based generation ability. This relationship, which
may appear counterintuitive, could be attributed to
the fine-tuning (FT) effects discussed in (§4.2.1).
Furthermore, Cons. shows weak or negligible cor-
relations with all other text-level metrics, implying
that it likely captures a unique aspect of perfor-
mance that is not reflected in the other measures.

E.2 Token-Level Metrics

At the token level, ES does not show a significant
correlation with either the S-ES or S-NS. However,
a moderate negative correlation exists between S-
NS and S-ES (ρ = −0.36). This negative rela-
tionship indicates that relying solely on Fact Edit
Efficacy may be insufficient in script scenarios. Ad-
ditionally, GE exhibits a moderate positive correla-
tion with S-NS (ρ = 0.47), suggesting an intuitive
link between generative ability and the specificity

E.3 Cross-Level Correlations

Beyond the intra-level correlations, cross-level
analysis reveals several interesting patterns. No-
tably, Exec. correlates moderately with both GE
(ρ = 0.42) and S-NS (ρ = 0.44). Moreover, GE
shows a moderate correlation with Comp. (ρ =
0.33). In contrast, S-ES is only weakly correlated
with the Coh. (ρ = 0.17), and S-NS shows a weak
correlation with Comp. (ρ = 0.26). This time,
S-ES exhibits a weak but intuitive negative correla-
tion with Exec. (ρ = −0.20).

F Case Study

We present a case study of the generated Script as
shown in Table 7. In the table, red indicates the
original facts, green denotes the edited facts, and
blue represents all other facts.

In the Base Script, the term “Nederlandse Taal”
is mentioned—this is originally in Dutch and trans-
lates into English as “Dutch Language.” Conse-
quently, we rated its Coh. as 1 (Strongly Disagree),
while awarding full marks for other metrics.

FT Script, however, simply repeats “English”
in a loop. Although this complies with the edit-
ing directive, we do not consider it text-level co-
herent with the edited knowledge, so its Coh. re-
ceived a score of 3 (Slightly Disagree). Moreover,
it achieved the poorest performance in both Exec.
and Comp.

ROME, which has shown great performance in
our experiments, exhibits an unusual failure case
here: rather than reflecting either the original or the
updated knowledge, it introduces “Arabic.” This
suggests that the editing direction may have gone
awry. Notably, when we reviewed the token-level
metrics, all metrics performed well. This case
clearly underscores the importance of integrating
text-level evaluation metrics. In light of this, we
assigned a score of 2 (Disagree) for both Coh. and
Comp.
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Fact (Thomas Joannes Stieltjes, mother tongue, Dutch)
Fact Prompt The mother tongue of Thomas Joannes Stieltjes is
Target True Dutch
Target New English
Script Question How to discover the works of Thomas Joannes Stieltjes in his mother tongue?
Base Script Evaluation
Step 1: Open Google search engine. (Exec: 7, Coh: 1, Cons: 7, Comp: 7)
Step 2: Type "Stieltjes werken" in search bar.

    Exec.

Coh.

Cons.    

Comp.

Step 3: Press Enter key.
Step 4: Browse search results for "Stieltjes werken".
Step 5: Click on "Nederlandse Taal" link.
Step 6: Scroll down to "Werken" section.
Step 7: Click on "PDF" link for "Recherches sur
les fractions continues".
Step 8: Download PDF file.
Step 9: Open PDF file in Adobe Acrobat.
FT Script Evaluation
Step 1: Search Google for "English English English". (Exec: 1, Coh: 3, Cons: 7, Comp: 1)
Step 2: Click on the search results link.

    Exec.

Coh.

Cons.    

Comp.

Step 3: Open the website "English English English".
Step 4: Click on the "English English English" tab.
Step 5: Click on the "English English English" link.
Step 6: Click on the "English English English" link.
Step 7: Click on the "English English English" link.
Step 8: Click on the "English English English" link.
Step 9: (repeated entries for English...)
ROME Script Evaluation
Step 1: Open Google search engine. (Exec: 6, Coh: 2, Cons: 7, Comp: 2)
Step 2: Type "Thomas Joannes Stieltjes in Arabic".

    Exec.

Coh.

Cons.    

Comp.

Step 3: Press Enter key.
Step 4: Review search results.
Step 5: Look for official website.
Step 6: Check for Arabic language option.
Step 7: Select Arabic language option.
Step 8: Read his works in Arabic.
Step 9: Bookmark his website.
MEMIT Script Evaluation
Step 1: Search online for Stieltjes’ biography. (Exec: 7, Coh: 7, Cons: 7, Comp: 7)
Step 2: Check the biography for native language.

    Exec.

Coh.

Cons.    

Comp.

Step 3: Identify the native language as English.
Step 4: Search online for Stieltjes’ works in English.
Step 5: Visit online archives of scientific journals.
Step 6: Search journals for Stieltjes’ publications.
Step 7: Filter results by date of publication.
Step 8: Download relevant articles in PDF format.
Step 9: Read and analyze the articles.
PROMPT Script Evaluation
Step 1: Find Thomas Joannes Stieltjes’ birthplace. (Exec: 7, Coh: 2, Cons: 1, Comp: 4)
Step 2: Research Dutch archives in that location.

    Exec.

Coh.

Cons.    

Comp.

Step 3: Search for Stieltjes’ writings in Dutch.
Step 4: Visit libraries and museums in the Netherlands.
Step 5: Consult experts in Dutch literature and history.
Step 6: Check online archives and databases.
Step 7: Translate relevant documents into English.
Step 8: Read and analyze Stieltjes’ works in English.
Step 9: Share findings with the academic community.

Table 7: Case Study of our proposed text-level metrics. In the table, red indicates the original facts, green denotes
the edited facts, and blue represents all other unrelated facts.

MEMIT performed well in this instance—not
only did it successfully incorporate the new knowl-
edge into the generated Script, but it also main-
tained the performance of other Script-related as-
pects, earning full marks.

Finally, PROMPT demonstrated an instance
of unstable editing. Instead of recognizing that
Thomas Joannes Stieltjes’ mother tongue has been

updated to English, the model interpreted this as
a directive to translate into English. As a result, it
received 1 (Strongly Disagree) point for Cons. and
2 (Disagree) points for Coh., with Comp. scoring
4 (Neutral/Uncertain).
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G Additional Results of Commercial
Closed-source Models

Due to the limited availability of computational
resources and restricted access to the weights of
proprietary large-scale language models, most ex-
isting studies have predominantly focused on open-
source foundational models. In alignment with
prior work, our primary evaluations have covered
the majority of open-source LLMs commonly em-
ployed in the literature. Nevertheless, we acknowl-
edge the importance of broadening the evaluation
scope to encompass a more diverse set of models,
including closed-source, large-scale, and commer-
cially mainstream systems.

To this end, we further extend our benchmark
by evaluating knowledge editing (KE) methods on
several representative closed-source models, in-
cluding GPT-4O, DEEPSEEK-V3, and CLAUDE

3.5. Specifically, we employ three methods: (1)
PROMPT, following the same configuration as
described in our main experiments; (2) IKE (In-
context Knowledge Editing) (Zheng et al., 2023);
and (3) Script-based IKE, which incorporates
Script scenarios into the context to facilitate edit-
ing.

These methods were tested on a subset of the
ScEdit-CF benchmark (100 cases), and perfor-
mance was assessed using standard text-level eval-
uation metrics. The experimental results are sum-
marized as follows (Table 8):

Model Exec.↑ Coh.↑ Cons.↑ Comp.↑
GPT-4o

Base Model 7.00 2.82 7.00 6.34
PROMPT 6.96 4.55 6.95 5.82
IKE 6.88 5.06 6.96 6.18
Script-based IKE 6.86 5.44 6.92 6.36

DeepSeek-V3
Base Model 7.00 2.96 7.00 6.33
PROMPT 6.88 4.84 6.90 5.88
IKE 6.76 5.13 6.85 6.18
Script-based IKE 6.82 5.69 6.88 6.36

Claude-3.5
Base Model 7.00 2.22 6.99 6.16
PROMPT 6.58 3.65 6.56 4.63
IKE 5.56 3.32 6.57 3.27
Script-based IKE 6.16 6.06 6.94 5.49

Table 8: Performance of KE Methods on Closed-Source
Commercial LLMs.

We summarize our key observations as follows:

• Effectiveness of ICL-based editing. In-
context learning (ICL) based editing meth-

ods remain effective on certain closed-source
LLMs. On GPT-4O and DEEPSEEK-V3,
all three editing strategies—PROMPT, IKE,
and SCRIPT-BASED IKE—consistently led to
significant performance improvements across
multiple metrics.

• Contextual richness matters. The form and
richness of the contextual input play a crucial
role in the effectiveness of editing. Moving
from PROMPT to IKE and then to SCRIPT-
BASED IKE, the contextual information be-
comes progressively more structured and in-
formative. This often leads to more effective
script-based edits, demonstrating the ability
of large models to learn and apply knowledge
modifications through well-designed context.

• Resistance in certain models. Some LLMs,
such as CLAUDE-3.5, exhibit noticeable re-
sistance to counterfactual knowledge editing.
This may be attributed to stronger safety align-
ment mechanisms that actively reject edits
perceived as misinformation. In particular,
the editing performance of both PROMPT and
IKE on CLAUDE-3.5 was markedly lower
than on other models. Nevertheless, after
incorporating SCRIPT-BASED IKE, perfor-
mance improved significantly, making it the
best-performing method (SOTA) under our
evaluation settings. This indicates both the
model’s learning capacity and its unique align-
ment characteristics.

Note. The numerical results in Table 8 should not
be directly compared with those in Table 3, as com-
mercial models such as GPT-4O, DEEPSEEK-V3,
and CLAUDE possess much larger model scales
and significantly stronger inherent reasoning capa-
bilities. Comparing them directly with 7B-scale
open-source models is not meaningful due to fun-
damental differences in architecture and capacity.

2052


