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Abstract

As Large Language Models (LLMs) continue
to advance, their computational overhead has
increased significantly. In this study, we iden-
tify notable redundancy across the layers of
LLMs, where some layers contribute minimally
to the overall network functionality. To quan-
tify this, we introduce a metric called Block
Influence (BI), which measures the importance
of each layer based on the similarity between its
input and output. Based on the observation of
layer redundancy, we propose straightforward
pruning methods for different tasks: ShortGPT
for multiple-choice tasks and ShortGPT-gen for
generative tasks. They prune redundant layers
based on their BI scores. Our methods demon-
strate superior performance over previous prun-
ing methods. The ability to achieve better re-
sults through simple layer pruning, as opposed
to more complex pruning techniques, suggests
a high degree of redundancy across layers. We
hope this work will contribute to future re-
search for improving LLM efficiency. The code
is publicly available at https://github.com/icip-
cas/ShortGPT.

1 Introduction

The field of large language models (LLMs) has
witnessed rapid development recently, with LLMs
achieving impressive performance across various
domains. Guided by the scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022), modern LLMs re-
quire significant computational resources, creating
substantial barriers to their practical use.

To mitigate the computational demands of large
models, techniques for improving model efficiency
have become a critical area. These techniques are
generally divided into quantization (Liu et al., 2021;
Gholami et al., 2022; Dettmers et al., 2022, 2024)
and pruning(LeCun et al., 1989; Han et al., 2015;
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Frantar and Alistarh, 2023). Quantization reduces
the precision of model parameters, but its effec-
tiveness often requires specific hardware support.
In contrast, pruning reduces the participating net-
works to decrease the model’s computation, offer-
ing a more flexible approach. Despite its advan-
tages, many existing pruning methods are complex.
For example, some require gradient information
(Ma et al., 2024), which limits their practicality.

In this paper, we focus on layer redundancy in
LLMs and propose methods to improve LLM effi-
ciency. We introduce Block Influence (BI), a met-
ric that quantifies how much hidden states change
after passing through each layer, providing a direct
measure of layers’ importance. Leveraging BI, we
propose simple yet effective pruning methods for
multiple-choice and generative tasks. For multiple-
choice tasks, we propose ShortGPT, which iden-
tifies and removes redundant layers with lower BI
scores, significantly reducing model size without
sacrificing much performance. For generative tasks,
we propose a dynamic pruning method, ShortGPT-
gen, where the input tokens skip the same redun-
dant layers as in ShortGPT while the generated
token pass through all layers to resolve the accu-
mulated errors of ShortGPT during generation.

To evaluate our methods, we conduct evaluation
across comprehensive benchmarks. Our experi-
ments reveal that our methods exhibit a smaller per-
formance decrement than previous methods. For
instance, ShortGPT removes 10 layers (25% of
the total 40 layers) from the LLaMA2-13B model,
resulting in only a slight drop in performance on
the MMLU benchmark (Hendrycks et al., 2020),
from 55.0 to 52.2. ShortGPT-gen skips 10 lay-
ers of LLaMA2-13B, leading to only a minimal
decrease in performance on the GSM8K (Cobbe
et al., 2021) benchmark without requiring any train-
ing, from 28.89 to 26.91. Our findings highlight
substantial redundancy in current LLMs and sug-
gest potential avenues for improving the efficiency
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of models by reducing inherent redundancy in the
future. Moreover, our methods are orthogonal to
quantization methods, meaning it can be combined
with quantization techniques to further reduce the
computational overhead of LLMs.

Our main contributions are as follows:

• We analyze the redundancy in large language
models (LLMs) and reveal their significant
redundancy at the layer level. This finding in-
spires us to improve LLM efficiency by prun-
ing redundant layers.

• We propose a metric called Block Influence
(BI) as an indicator of layer importance.
Based on BI, we propose layer pruning meth-
ods: ShortGPT for multiple-choice tasks and
ShortGPT-gen for generative tasks.

• Our ShortGPT maintains approximately 90%
performance for multiple-choice tasks while
reducing about 25% of parameters, outper-
forming previous methods. ShortGPT-gen
maintains more than 90% performance for
generative tasks in a training-free manner
when skipping about 25% of the layers.

2 Motivation

2.1 Background

LLMs are primarily based on the Transformer ar-
chitecture (Vaswani et al., 2017), with the pre-norm
configuration being commonly adopted, as in mod-
els like LLaMA (Touvron et al., 2023). The pre-
norm configuration, where layer normalization is
applied before the self-attention and feed-forward
networks, offers several advantages such as faster
convergence, improved training stability, and better
scalability for deeper networks (Xiong et al., 2020;
Liu et al., 2020; Wang et al., 2024). Due to these
benefits, the pre-norm approach has been adopted
even in non-transformer models, such as Mamba
(Gu and Dao, 2023) and RWKV (Peng et al., 2023).
For the sake of simplicity in descriptions, our anal-
ysis primarily focuses on Transformers, though we
extend our experiments to non-Transformer struc-
tures in Section 4.4.

However, we observe that when pre-norm is
adopted, the similarity between the input and out-
put of transformer layers tends to be higher, as
illustrated in Figure 1. This high similarity indi-
cates that certain layers induce minimal changes to
the hidden states, suggesting they contribute little
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Figure 1: Cosine similarity between a layer’s input and
output during training. The horizontal axis (X-axis)
represents the number of training tokens, and the vertical
axis (Y-axis) depicts the similarity. Notably, the model
employing post-norm (green) exhibits divergence after
approximately ∼26B tokens of training. The training
settings are provided in Appendix E.

to the model’s overall function. It suggests that
the deep layers of the model with pre-norm might
not play a critical role in the overall function, and
that the layers in large language models could be
more redundant than expected.

2.2 Layer redundancy

As discussed in the previous subsection, we specu-
late that LLMs exhibit layer redundancy. To verify
this, we assess the performance degradation caused
by removing individual layers of two popular mod-
els, Llama2-7B (Touvron et al., 2023), an English-
based LLMs, and Baichuan2-7B (Yang et al., 2023)
which mainly focuses on Chinese. Figure 2 con-
firms our speculation, where some layers do not
play a crucial role in LLMs, causing little degrada-
tion when omitting them individually. Moreover,
this redundancy is primarily manifested in the mid-
dle to later layers, with the initial layers and the last
layer often being more critical. Notably, we found
the last layer to be particularly important, align-
ing with previous works (Ma et al., 2024; Namburi
et al., 2023; Mitchell et al., 2022). We posit that
this discrepancy arises because the final FFN func-
tions as part of the token classifier and should be
considered in conjunction with the language model
head. To verify this, we conduct further investi-
gation, detailed in Table 1. The results show that
within the last layer, the FFN is crucial, while the
attention module is less significant, supporting our
interpretation of the final layer’s importance.
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Figure 2: Performance of removing certain layer from LLMs. We can see that certain layers are redundant, and
their removal results in minimal performance degradation. For perplexity calculation, we randomly select 10 text
segments of 1k length from each piece of data in PG19 (Rae et al., 2019).
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(a) Llama2 7B
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(b) Baichuan2 7B

Figure 3: The BI score of a layer and the PPL after removing the layer.

Delete Perplexity

None 7.60
The whole last layer 13.37
Attention of the last layer 7.65
FFN of the last layer 12.35

Table 1: Ablation of removing FFN and Attention of
Llama2-7B-Base. We sample 100 instances from PG19
(Rae et al., 2019) to calculate perplexity.

3 Methodology

In this section, we begin by introducing Block In-
fluence (BI), a novel metric designed to assess the
hidden states transformation of each layer. Lever-
aging BI, we then detail our methods for different
tasks, i.e. ShortGPT for multiple-choice tasks and
ShortGPT-gen for generative tasks.

3.1 Layer importance

As outlined above, the layers of LLMs exhibit re-
dundancy. To capture the degree of layer redun-
dancy, we introduce a new metric, Block Influence
(BI), to measure the degree of transformation per-
formed by each layer. The BI score of ith layer can

be calculated as follows:

BIi = 1− EX,t

XT
i,tXi+1,t

||Xi,t||2||Xi+1,t||2
, (1)

where Xi,t means the tth row of hidden states of
the ith layer. Lower BI score implies that Xi and
Xi+1 exhibit higher cosine similarity, suggesting
that the layer makes minimal transformations to
the hidden states and is therefore less important.
We plot the BI scores of a single layer and the PPL
after removing it separately, as shown in Figure
3. The results demonstrate a positive correlation
between the BI score and the importance of a layer.

Why use cosine similarity instead of other simi-
larities? As mentioned above, most LLMs apply
layer normalization within their modules. Conse-
quently, the magnitude of hidden states become
less important for the output than their direction.
Besides cosine similarity, there are some other met-
rics to measure the similarity between two vectors,
e.g. Euclidean distance. However, they are sensi-
tive to the magnitude of vectors and can introduce
bias. In contrast, cosine similarity is agnostic to the
magnitude, focusing on the direction of vectors.
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Figure 4: Overview of ShortGPT for multiple-choice tasks and ShortGPT-gen for generative tasks. {X1, ..., Xn}
represent the input tokens, {Y1, ..., Yn+1} represent the output tokens, and {H1, ...,Hn+1} represent the hidden
states of tokens.

3.2 Multiple-Choice Task

In typical multi-choice tasks, each choice is con-
catented with the question to form sentences, and
the perplexity of each sentence is computed to se-
lect the answer. Since LLMs function as series
of transformations applied to hidden states across
their layers and we can determine the importance
of each layer, we propose a straightforward pruning
method: ShortGPT, as illustrated in Figure 4a. We
remove certain layers in LLMs based on BI. First
of all, we construct a calibration set, which is a set
of text samples such as PG19 (Rae et al., 2019).
Then we collect the hidden states of each layer dur-
ing inference on these samples. Next, we calculate
the BI scores based on the collected hidden states.
Finally, we sort layers in ascending order accord-
ing to BI, and remove the layers with the lower BI
scores. The number of layers to be removed can
vary to trade off efficiency and performance.

3.3 Generative Task

Although ShortGPT demonstrates strong capabili-
ties in multiple-choice tasks (see Table 2), it leads
to a significant performance drop in generative
tasks such as GSM8K (Cobbe et al., 2021), like
other pruning methods such as LLMPruner (Ma
et al., 2024) and SliceGPT (Ashkboos et al., 2024).
We attribute this performance drop to the accu-
mulated errors during generation, compared to
multiple-choice tasks. To address this issue, we
propose a training-free dynamic pruning method
for generative tasks, ShortGPT-gen, as illustrated
in Figure 4b. In ShortGPT-gen, the input tokens

skip the same redundant layers as in ShortGPT, and
the generated tokens pass through all layers. Since
the hidden states of input tokens remain unchanged
in the pruned layers, we use their output hidden
states of the preceding unpruned layers to obtain
keys and values during decoding.

4 Experiments

4.1 Experimental Setup
Models. To validate the effectiveness of our
methods, we conduct experiments on existing
popular open-source language models, including
Llama2-7B (Touvron et al., 2023), Llama2-13B,
Baichuan2-7B, and Baichuan2-13B. They are all
large language models based on the decoder-only
Transformer architecture. LLaMA2 was trained
on more than 2 trillion tokens. Baichuan2 was
mainly trained in Chinese and its 13-Billion model
replaced the RoPE (Su et al., 2024) positional em-
bedding with ALiBi (Press et al., 2021).

Benchmarks. In order to evaluate the changes in
the ability of large language models before and af-
ter pruning, we conduct comprehensive evaluation
from five aspect of multiple-choice tasks: Reason-
ing: CMNLI (Li et al., 2024), HellaSwag (HeSw)
(Zellers et al., 2019), PIQA (Bisk et al., 2020).
Language: CHID (Zheng et al., 2019). Knowl-
edge: CommonSenseQA (CoQA) (Reddy et al.,
2019), BoolQ (Clark et al., 2019). Examination:
MMLU (Hendrycks et al., 2020), CMMLU (Li
et al., 2024). Understanding: Race-High/Middle
(H/M) (Lai et al., 2017), C3 (Sun et al., 2020)
and PG19 (Rae et al., 2019). For generative tasks,
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LLM Method Ratio
Benchmarks

Avg. Per.
CMNLI HeSw PIQA CHID CoQA BoolQ Race-H Race-M C3 MMLU CMMLU

Llama2
7B

Dense 0.0% 32.99 71.26 77.91 41.66 64.62 71.62 35.71 34.19 43.56 45.39 32.92 50.17 100.00
LLMPruner 27.0% 34.33 56.46 71.22 25.25 42.51 55.20 22.56 22.35 25.64 23.33 25.25 36.74 73.23
SliceGPT 26.4% 31.70 50.27 66.21 20.79 41.36 38.32 21.07 21.66 39.78 28.92 25.37 35.04 69.84

LaCo 27.1% 34.43 55.69 69.80 36.14 45.70 64.07 22.61 23.61 39.67 26.45 25.24 40.31 80.35
ShortGPT 27.1% 32.95 53.02 66.43 24.68 47.99 74.71 32.25 35.17 39.62 43.96 32.25 43.91 87.52

Llama2
13B

Dense 0.0% 32.99 74.78 79.71 47.35 66.91 82.39 57.95 60.38 47.51 55.00 38.40 58.49 100.00
LLMPruner 24.4% 33.03 67.76 76.66 35.64 50.86 56.42 22.47 22.08 32.33 25.21 24.71 40.65 69.50
SliceGPT 23.6% 29.82 55.71 69.04 19.31 47.26 37.86 23.41 24.03 41.92 37.14 25.79 37.39 63.93

LaCo 24.6% 32.86 64.39 63.20 40.10 52.66 63.98 54.49 56.55 44.93 45.93 32.62 50.16 85.76
ShortGPT 24.6% 33.00 66.64 73.45 36.61 58.64 62.48 58.35 60.17 46.90 54.69 38.38 53.57 91.59

Baichuan2
7B

Dense 0.0% 33.37 67.56 76.17 85.56 63.14 74.10 52.63 51.04 64.55 53.87 56.95 61.72 100.00
LLMPruner 24.2% 32.28 53.66 71.82 69.80 47.83 61.19 21.96 22.28 41.64 24.93 25.69 43.01 69.69
SliceGPT 22.2% 32.07 25.29 50.33 14.85 19.57 39.30 23.53 22.49 26.58 25.18 25.25 27.68 44.85

LaCo 24.2% 33.00 52.28 68.50 76.24 47.26 56.15 28.99 27.72 50.85 31.53 31.24 45.80 74.21
ShortGPT 24.2% 33.30 56.96 67.68 65.63 46.70 67.83 53.26 46.76 56.33 45.77 47.87 53.46 86.62

Baichuan2
13B

Dense 0.0% 33.21 71.10 78.07 86.51 65.60 77.89 67.27 68.94 65.64 59.50 61.30 66.82 100.00
LLMPruner 24.3% 33.80 53.57 71.82 72.77 38.82 56.54 21.17 21.61 39.89 23.19 25.18 41.67 62.36
SliceGPT 22.8% 32.07 25.85 51.03 10.40 18.02 37.83 21.56 21.52 24.99 22.95 25.26 26.50 39.66

LaCo 24.7% 33.03 60.71 68.88 76.73 55.45 62.35 56.92 57.80 61.10 51.35 53.65 58.00 86.80
ShortGPT 24.7% 32.81 60.55 71.60 80.17 54.30 62.54 55.77 56.41 60.16 52.11 58.86 58.66 87.79

Table 2: Comparison of pruning methods on multiple-choice natural language benchmarks. The last column reports
the relative performance retention.

we use three benchmarks, including Xsum (Hasan
et al., 2021), GSM8K (Cobbe et al., 2021) and
StrategyQA (Geva et al., 2021).

Baselines. To evaluate the effectiveness of our
methods, we compared several structured pruning
methods for large language models, including:

1) LLMPruner (Ma et al., 2024), which adopts
structured pruning that selectively removes non-
critical coupled structures based on gradient in-
formation, maximally preserving the majority of
the LLM’s functionality. LLMPruner applies post
training to the pruned model, but for fair compari-
son, we do not apply post training to it.

2) SliceGPT (Ashkboos et al., 2024), which is a
post-training scheme that replaces each weight ma-
trix with a smaller matrix, reducing the embedding
dimension of the network. Specifically, it applies
PCA to the hidden representation from shallow to
deep layers, and incorporates the dimension reduc-
tion matrix into the existing network.

3) LaCo (Yang et al., 2024), which is a pruning
method for large language models based on reduc-
ing layers. LaCo gradually merges similar layers
from deep to shallow and sets a threshold to avoid
continuously merging too many layers.

4.2 Main Results
We conduct comparative experiments against base-
lines commonly employed in large language mod-
els. Considering the current structured pruning
methods generally use reduce ratios no more than
30% (Ma et al., 2024; Ashkboos et al., 2024;

LLM Method Benchmarks Avg. Per.
Xsum GSM8K StrategyQA

Llama2
7B

Dense 18.54 15.69 51.53 28.59 100.00
LLMPruner 11.51 0.61 44.20 18.77 65.65
SliceGPT 4.89 3.34 45.70 17.98 62.89

LaCo* 13.01 1.44 39.08 17.84 62.40
ShortGPT 11.13 1.60 30.26 14.33 50.12

ShortGPT-gen 14.88 14.71 48.95 26.18 91.57

Llama2
13B

Dense 22.19 28.89 63.58 38.22 100.00
LLMPruner 19.17 1.90 43.70 21.59 56.49
SliceGPT 5.27 1.90 38.30 15.16 39.67

LaCo* 15.18 2.58 43.88 20.55 53.77
ShortGPT 17.59 2.35 46.00 21.98 57.51

ShortGPT-gen 21.76 26.91 62.70 37.12 97.12

Table 3: Evaluation on generative benchmarks. “*” in-
dicates our reproduced results.

Yang et al., 2024; Namburi et al., 2023; Michel
et al., 2019; Gordon et al., 2020), we perform ex-
periments with approximately 25% of the layers
pruned. We use PG19 as the calibration dataset for
layer importance and perplexity calculation. We
list the removed layers and investigate the effects
of calibration datasets in Appendix A.

The experimental results of the multiple-choice
tasks are presented in Table 2. The evaluation on
the generative benchmarks are shown in Table 3.
Additional experiments exploring different param-
eter reduction proportions will be discussed in the
subsequent sections.

The results demonstrate that our pruning meth-
ods surpass the baseline methods, maintaining
most of the models’ capabilities. Furthermore, we
note that the approach of reducing layers (Short-
GPT/LaCo) outperforms the method of reducing
the embedding dimensions (LLMPruner/SliceGPT)
in multiple-choice tasks. Further experimental anal-
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Figure 5: Comparison of different importance metrics on ShortGPT. Perplexity is calculated by removing each
single layer, other metrics are calculated by hidden states of each layer.

ysis will be presented in the ensuing sections.
In order to make a more fair comparison with

LLMPruner and SliceGPT, we compared them with
the same settings as their original papers in Ap-
pendix C. These experiments further demonstrate
that ShortGPT achieves superior performance com-
pared to the other pruning methods.

The results show that coarse-grained pruning
methods, such as removing layers, often outper-
form fine-grained methods like SliceGPT or LLM-
Pruner. We speculate that the reason is that the
LLM is actually very robust, as shown in Figure 2,
removing any deep layer individually actually has
very little impact on the final output, which means
it is difficult to define the importance of a finer-
grained module and perform pruning.

4.3 Varying metric and pruning ratio

The core principle of our methods is to rank layers
by their importance and remove the less significant
ones. The choice of importance metric significantly
influences the outcome. In this section, we define
and compare several different importance metrics:

• Sequential: The importance is directly pro-
portional to the sequence order, with shal-
lower layers being less important. This can be

implemented by assigning the negative value
of each layer’s index as its importance metric.

• Norm/Reverse-order: This metric posits that
importance is inversely proportional to the
sequence order. It assigns higher importance
scores to the shallower layers. This method
gives the same order as measuring importance
by hidden states norm as Figure 5 shows.

• Relative Magnitude: Proposed in (Samragh
et al., 2023), this metric assumes layers with
larger || f(x)

x+f(x) || are of higher importance,
where f is the layer transformation function.

• BI: we calculate the BI score mentioned in
Section 3.1 as importance metric.

Figure 5 shows the different metrics. We observe
that shallower layers in the LLM are more crucial
than deeper ones. Figure 6 shows the results of
removing layers by different metrics, demonstrat-
ing that our proposed BI outperforms other met-
rics. The method of Relative Magnitude is highly
competitive, indicating that relative values can also
reflect the importance to some extent. It is worth
noting that the hidden states norm seems to be a
good metric when only considering the MMLU
benchmark, but the perplexity is relatively poor.
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Figure 6: Performance of ShortGPT on MMLU and perplexity when we prune by different metrics, with increasing
pruning ratio. We can see that as the pruning ratio increases, the performance of the model declines.

Model Ratio CMNLI HeSw PIQA CHID CoQA BoolQ Race-H Race-M C3 MMLU CMMLU Avg. Per.

Mamba
2.8B

0.0% 35.97 61.84 75.52 35.56 56.35 60.67 24.90 25.30 42.08 26.29 25.32 42.71 100.00
10.9% 32.95 59.71 73.01 32.52 52.66 51.41 24.27 25.21 41.10 26.01 25.00 40.35 94.47
20.3% 31.29 55.69 69.64 29.12 48.32 62.20 23.61 23.61 41.59 25.69 25.37 39.65 92.84
25.0% 29.96 52.38 68.77 26.02 44.96 62.20 23.67 23.26 40.71 24.32 24.89 38.29 90.37
31.3% 28.25 47.02 64.91 21.38 44.96 62.17 21.87 22.77 40.44 24.48 24.77 36.64 85.79

RWKV
7B

0.0% 32.07 65.98 77.09 85.36 62.65 62.72 38.56 45.47 57.97 31.85 28.54 53.48 100.00
9.4% 32.60 56.41 73.94 78.12 49.55 62.35 25.90 25.77 54.68 27.29 25.03 46.51 86.97

18.8% 32.11 49.47 71.55 65.63 40.54 61.19 22.04 23.75 49.15 26.35 25.00 42.43 79.34
25.0% 32.41 39.73 65.13 52.60 29.65 60.92 22.56 21.59 41.86 25.52 25.08 37.91 70.89
28.1% 33.11 32.22 60.01 32.47 28.34 60.85 22.27 21.31 37.81 25.64 25.15 34.47 64.45

Table 4: ShortGPT on Mamba and RWKV.

We further validated the effects of different prun-
ing ratios on ShortGPT. Experiments are conducted
on the Llama2 and Baichuan2 models, observing
the perplexity and MMLU. The results for Llama2,
as shown in Figure 6, demonstrate that the mod-
els’ performance generally declines as the pruning
ratio increases. However, we observe a notable
phenomenon: the MMLU score exhibits a sharp
drop at a specific layer. This sudden decrease sug-
gests the presence of certain critical layers within
the network that play a particularly important role
in maintaining performance. Similar patterns are
observed in the Baichuan2 models, as illustrated in
Appendix B.

4.4 Redundancy on non-transformer LLMs

To determine whether the observed layer redun-
dancy is specific to Transformers, we extend our in-
vestigation to include two popular non-Transformer
models, RWKV-7B (Peng et al., 2023) and Mamba-
2.8B (Gu and Dao, 2023). Our experiments reveal
that these models also exhibit resilience to layer
removal, maintaining performance despite the elim-
ination of certain layers. Table 4 shows that Short-
GPT is applicable and effective for Mamba and
RWKV models, suggesting that the redundancy is
universal across current LLMs.

4.5 Post training to restore performance

To mitigate the performance loss resulting from
layer removal in ShortGPT, we explore post-
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Method Ratio CMNLI HeSw PIQA CHID CoQA BoolQ Race-H Race-M C3 MMLU CMMLU Avg.

Dense 0.0% 32.99 71.26 77.91 41.66 64.62 71.62 35.71 34.19 43.56 45.39 32.92 50.17
ShortGPT 27.1% 32.95 53.02 66.43 24.68 47.99 74.41 32.25 35.17 39.62 43.96 32.25 43.88
ShortGPT+post-train 24.0% 32.99 54.83 68.12 31.82 58.32 72.36 34.18 34.68 40.37 44.47 32.73 45.90

Table 5: Post training Llama2-7B to restore performance.

Method Ratio/Layer Perplexity MMLU Throughput (speed up)
Baseline 0.0%/32 8.03 43.17 4331.23 Token/s (1.00x)

3.1%/31 8.37 42.88 4399.31 Token/s (1.02x)
9.4%/29 9.44 42.31 4602.26 Token/s (1.06x)

ShortGPT 12.5%/28 10.24 41.62 4680.68 Token/s (1.08x)
15.6%/27 11.42 43.17 4756.94 Token/s (1.10x)
25.0%/24 22.29 41.68 5045.59 Token/s (1.16x)
27.1%/23 40.78 43.35 5146.99 Token/s (1.19x)

Table 6: ShortGPT on Llama2-7B-Base-GPTQ.

Method MMLU CMMLU
Llama2-7B-Baseline 45.4 32.9
4-bit quantization 44.9 32.5
ShortGPT (27.1%) 44.0 32.3
4-bit quantization then ShortGPT 42.4 31.0
ShortGPT then 4-bit quantization 41.2 30.5

Table 7: Performance comparison of different methods

training strategies inspired by (Chen et al., 2024).
Our approach consists of two key steps: 1) Re-
placement: We substitute the removed layers with
lightweight Multi-Layer Perceptrons (MLPs). 2)
Retraining: We subsequently retrain the modified
model. The results in Table 5 demonstrate the po-
tential of post training to recover performance loss.
Appendix D shows the post training settings.

4.6 Orthogonal to Quantization

In this section, we show that ShortGPT is orthogo-
nal to quantization. We apply ShortGPT to Llama2-
7B quantized by GPTQ algorithm. Table 6 shows
that ShortGPT is compatible with quantization, and
applying it to the quantized model can further im-
prove its efficiency. In addition, we compare the
performance of the model applied ShortGPT before
and after quantization. The results shown in Table
7 further indicates that quantization and ShortGPT
are orthogonal operations.

5 Related works

Pruning: pruning (LeCun et al., 1989; Han et al.,
2015) aims to reduce model redundancy, including
static pruning and dynamic pruning. Static prun-
ing (Dong et al., 2017; Fang et al., 2023) removes
model components based on various metrics. LLM-
Pruner (Ma et al., 2024) removes structures accord-

ing to gradient information. LaCo (Yang et al.,
2024) uses layer merging. Dynamic pruning (Tang
et al., 2021; Hua et al., 2019; Gao et al., 2019) pre-
serves the entire model and accelerates models by
skipping unimportant components. Dynamic prun-
ing methods typically do not perform fine-tuning
or retraining (Cheng et al., 2024). Ada-Infer (Fan
et al., 2024) introduces early-exit to stop forward
propagation at intermediate layers, but its perfor-
mance on generative benchmarks such as GSM8K
decreases to nearly zero. In our methods, ShortGPT
is a static pruning method, while ShortGPT-gen is a
dynamic pruning method. Notably, ShortGPT-gen
preserves most of the performance of dense models
on generative tasks in a training-free manner.

Quantization: quantization (Liu et al., 2021;
Gholami et al., 2022; Dettmers et al., 2022, 2024)
can save computational costs of deep learning mod-
els. It converts models’ floating-point weights
into integers or other discrete forms. LUT-GEMM
(Park et al., 2022) quantifies weights and optimizes
matrix multiplication in LLMs using BCQ format.
SPQR (Dettmers et al., 2023) identifies and isolates
abnormal weights, stores them with higher accu-
racy and converts others into 3-4 bits. Our pruning
methods and quantization method are orthogonal.

Model redundancy: researchers have long no-
ticed significant redundancy in nonlinear models
(Catchpole and Morgan, 1997). Recently, Trans-
former models have been widely applied. Re-
searchers have also studied their redundancy. In
(Bian et al., 2021), researchers analyzed redun-
dancy in attention mechanisms, where similar re-
dundancy patterns are observed among attention
heads. In (Dalvi et al., 2020), researchers dissect
BERT (Devlin et al., 2018) and XLNet (Yang et al.,
2019), studying how much redundancy they exhibit
at representation level and the fine-grained neuron
level. However, the redundancy of decoder-only
LLMs still needs to be explored.

6 Conclusion

In this work, we uncovered the significant layer-
wise redundancy of LLMs, Our research demon-
strates that certain layers contribute minimally to
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overall network functionality and can be removed
without substantially compromising model perfor-
mance. Based on our observation, we introduce
Block influence to quantify the importance of each
layer and propose simple and straightforward prun-
ing methods for multiple-choice tasks and gener-
ative tasks. Our experiments demonstrates that it
is possible to maintain approximately 90% of a
LLM’s performance while reducing the computa-
tional requirements in approximately 25% of the
LLM’s layers. Our work suggests potential avenues
for improving the efficiency of models by reducing
their inherent redundancy.

7 Limitations

Although our methods demonstrates strong com-
petitiveness compared to current methods, there are
some limitations that must be acknowledged. The
negative effect of ShortGPT is significant on certain
generative tasks, which creates barriers to its practi-
cal use. When we remove 25% layers from Llama2-
7B or Baichuan2-7B, the performance on GSM8K
deceases to nearly zero. In contrast, ShortGPT-gen
preserves most of models’ performance on gen-
erative tasks, but it does not reduce the sizes of
models.
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A Detailed Strategies for Layer Removal

We list different layer removal strategies in Table
8. The removed layers in Table 2 and Table 3
are listed in Table 9. To investigate the effects
of calibration datasets, we also list the removed
layers of Llama2 models when using MMLU as
calibration dataset in Table 10. We can observe that
the calibrations datasets hardly affect the removed
layers, demonstrating the robust of our BI metric.

B ShortGPT on Baichuan2 models

The effects of different pruning ratios on Baichuan2
models’ performance are shown in Figure 7.

C A Fair comparison with SliceGPT and
LLMPruner

For a fair comparison with LLMPruner and
SliceGPT, we do the same experiments as in the
original papers of LLMPruner and SliceGPT. The
results are provided in Table 11 and Table 12. We
take the same settings as the corresponding paper.
The results demonstrate that our method is highly
competitive.

D Setup for post training

Table 13 shows the post training settings.
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Figure 7: Pruning by different pruning ratios on Baichuan2 models.

Strategy Description

Sequential Layers are removed sequentially
from the beginning of the model.
The process starts with layer 0 and
progressively includes more layers
for removal (e.g., {0}, {0, 1}, . . . ).

Reverse-order This strategy involves starting from
the model’s final layer and progres-
sively removing layers in reverse or-
der (e.g., {-1}, {-1, -2}, . . . ).

Relative Magnitude Layers are removed in ascending
order based on their Relative Mag-
nitude values. The process accu-
mulates layers from those with the
smallest to the largest values, mir-
roring the sequential strategy’s accu-
mulation method.

BI (Block Influence) A similar accumulation approach as
the Sequential strategy, but layers
are ordered and removed according
to their BI scores, starting from the
lowest and moving to the highest.

Table 8: Strategies for Layer Removal in Models.

E Setup for training post-norm model
and pre-norm model

Table 14 lists the specific training settings for pre
norm and post norm in Section 2.1.

Model Removed Layers

Llama2-7B 21, 22, 23, 24, 25, 26, 27, 28, 29
Llama2-13B 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
Baichuan2-7B 22, 23, 24, 25, 26, 27, 28, 29, 30
Baichuan2-13B 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

Table 9: Removed Layers for Benchmark Models, using
PG19 as calibration dataset.

Model Removed Layers

Llama2-7B 21, 22, 23, 24, 25, 26, 27, 28, 29
Llama2-13B 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

Table 10: Removed Layers for Llama2 models, using
MMLU as calibration dataset.
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Model Pruning ratio Method BoolQ PIQA Hellaswag Winogrande Arc-e Arc-c OBQA Avg.

Llama
7B

Ratio=0% Baseline 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25
Ratio=20% LLMPruner 59.39 75.57 65.34 61.33 59.18 37.12 39.80 56.82

Ratio=21.9 % ShortGPT 68.26 72.28 61.70 63.77 60.22 39.00 41.60 58.12

Llama
13B

Ratio=0% Baseline 68.47 78.89 76.24 70.09 74.58 44.54 42.00 64.97
Ratio=20% LLMPruner 67.68 77.15 73.41 65.11 68.35 38.40 42.40 61.79
Ratio=20% ShortGPT 68.41 76.36 72.90 67.40 68.62 39.20 41.00 61.98

Table 11: Comparison between ShortGPT and LLMPruner. The Table is corresponding to the Table 1 of LLM-
Pruner (Zhang et al., 2023).

Model Pruning ratio Method PIQA Hellaswag Winogrande Arc-e Arc-c Avg.

Llama2
7B

0% Baseline 79.11 75.99 69.06 74.58 46.25 69.00
20% SliceGPT 71.87 58.10 63.04 69.87 43.09 61.19
25% SliceGPT 68.55 58.10 62.04 57.46 35.07 56.24
30% SliceGPT 66.10 52.69 56.82 35.07 56.82 53.50

21.9% ShortGPT 72.76 66.39 66.27 59.39 39.85 60.93
25% ShortGPT 70.53 62.68 64.70 58.39 39.51 59.16

31.6% ShortGPT 67.87 62.19 64.38 56.57 40.86 58.37

Llama2
13B

0% Baseline 80.47 79.39 72.22 77.48 49.23 71.76
20% SliceGPT 71.87 69.38 63.04 69.87 43.09 63.45
25% SliceGPT 68.55 67.48 58.10 62.50 37.88 58.90
30% SliceGPT 66.10 65.11 52.69 56.82 35.07 55.16
20% ShortGPT 76.95 74.67 71.14 69.56 45.63 67.59
25% ShortGPT 74.39 71.65 70.98 67.09 43.93 65.61
30% ShortGPT 72.11 71.93 67.19 61.09 40.88 62.64

Llama2
70B

0% Baseline 82.70 83.84 77.98 80.98 57.34 76.57
20% SliceGPT 76.61 72.98 74.92 80.51 55.20 72.04
25% SliceGPT 74.92 68.74 74.92 77.90 51.71 69.64
30% SliceGPT 72.31 63.69 73.40 51.71 47.61 61.74
20% ShortGPT 76.02 78.87 71.69 76.02 52.95 71.11
25% ShortGPT 73.20 76.72 71.85 73.20 49.90 68.97
30% ShortGPT 74.44 75.31 72.33 74.44 49.22 69.15

Table 12: Comparison between ShortGPT and SliceGPT. The Table is corresponding to the Table 7 of
SliceGPT (Ashkboos et al., 2024).

Parameter Value

Global Batch Size 2048
Sequence length 4096
Precision bf16
Learning Rate Scheduler cosine
Max Learning Rate 2e-5
Min Learning Rate 1e-5
Warm-up steps 3000
Training Tokens 50B
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.98
Gradient Clip 1.0

Table 13: Post training parameters.

Parameter Value

Global Batch Size 2048
Sequence length 4096
Precision bf16
Learning Rate Scheduler cosine
Max Learning Rate 4e-4
Min Learning Rate 5e-5
Warm-up steps 3000
Training Tokens 200B
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.98
Gradient Clip 1.0
Tokenizer Llama2
Layers 32
Hidden state 2048
Attention heads 32
Head dim 64
FFN size 5504
Activation function Silu

Table 14: Training parameters.
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