
Findings of the Association for Computational Linguistics: ACL 2025, pages 20192–20204
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

ShortGPT: Layers in Large Language Models are More Redundant Than
You Expect

Xin Men1,*, Mingyu Xu1,∗, Qingyu Zhang2,3,∗, Qianhao Yuan2,3,∗,
Bingning Wang1,†, Hongyu Lin2,†, Yaojie Lu2, Xianpei Han2, Weipeng Chen1

1Baichuan Inc.
2Chinese Information Processing Laboratory, Institute of Software, Chinese Academy of Sciences

3University of Chinese Academy of Sciences

Abstract

As Large Language Models (LLMs) continue
to advance, their computational overhead has
increased significantly. In this study, we iden-
tify notable redundancy across the layers of
LLMs, where some layers contribute minimally
to the overall network functionality. To quan-
tify this, we introduce a metric called Block
Influence (BI), which measures the importance
of each layer based on the similarity between its
input and output. Based on the observation of
layer redundancy, we propose straightforward
pruning methods for different tasks: ShortGPT
for multiple-choice tasks and ShortGPT-gen for
generative tasks. They prune redundant layers
based on their BI scores. Our methods demon-
strate superior performance over previous prun-
ing methods. The ability to achieve better re-
sults through simple layer pruning, as opposed
to more complex pruning techniques, suggests
a high degree of redundancy across layers. We
hope this work will contribute to future re-
search for improving LLM efficiency. The code
is publicly available at https://github.com/icip-
cas/ShortGPT.

1 Introduction

The field of large language models (LLMs) has
witnessed rapid development recently, with LLMs
achieving impressive performance across various
domains. Guided by the scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022), modern LLMs re-
quire significant computational resources, creating
substantial barriers to their practical use.

To mitigate the computational demands of large
models, techniques for improving model efficiency
have become a critical area. These techniques are
generally divided into quantization (Liu et al., 2021;
Gholami et al., 2022; Dettmers et al., 2022, 2024)
and pruning(LeCun et al., 1989; Han et al., 2015;

* Equal contribution.
† Corresponding authors. daniel@baichuan-inc.com,

hongyu@iscas.ac.cn

Frantar and Alistarh, 2023). Quantization reduces
the precision of model parameters, but its effec-
tiveness often requires specific hardware support.
In contrast, pruning reduces the participating net-
works to decrease the model’s computation, offer-
ing a more flexible approach. Despite its advan-
tages, many existing pruning methods are complex.
For example, some require gradient information
(Ma et al., 2024), which limits their practicality.

In this paper, we focus on layer redundancy in
LLMs and propose methods to improve LLM effi-
ciency. We introduce Block Influence (BI), a met-
ric that quantifies how much hidden states change
after passing through each layer, providing a direct
measure of layers’ importance. Leveraging BI, we
propose simple yet effective pruning methods for
multiple-choice and generative tasks. For multiple-
choice tasks, we propose ShortGPT, which iden-
tifies and removes redundant layers with lower BI
scores, significantly reducing model size without
sacrificing much performance. For generative tasks,
we propose a dynamic pruning method, ShortGPT-
gen, where the input tokens skip the same redun-
dant layers as in ShortGPT while the generated
token pass through all layers to resolve the accu-
mulated errors of ShortGPT during generation.

To evaluate our methods, we conduct evaluation
across comprehensive benchmarks. Our experi-
ments reveal that our methods exhibit a smaller per-
formance decrement than previous methods. For
instance, ShortGPT removes 10 layers (25% of
the total 40 layers) from the LLaMA2-13B model,
resulting in only a slight drop in performance on
the MMLU benchmark (Hendrycks et al., 2020),
from 55.0 to 52.2. ShortGPT-gen skips 10 lay-
ers of LLaMA2-13B, leading to only a minimal
decrease in performance on the GSM8K (Cobbe
et al., 2021) benchmark without requiring any train-
ing, from 28.89 to 26.91. Our findings highlight
substantial redundancy in current LLMs and sug-
gest potential avenues for improving the efficiency

20192

https://github.com/icip-cas/ShortGPT
https://github.com/icip-cas/ShortGPT

of models by reducing inherent redundancy in the
future. Moreover, our methods are orthogonal to
quantization methods, meaning it can be combined
with quantization techniques to further reduce the
computational overhead of LLMs.

Our main contributions are as follows:

• We analyze the redundancy in large language
models (LLMs) and reveal their significant
redundancy at the layer level. This finding in-
spires us to improve LLM efficiency by prun-
ing redundant layers.

• We propose a metric called Block Influence
(BI) as an indicator of layer importance.
Based on BI, we propose layer pruning meth-
ods: ShortGPT for multiple-choice tasks and
ShortGPT-gen for generative tasks.

• Our ShortGPT maintains approximately 90%
performance for multiple-choice tasks while
reducing about 25% of parameters, outper-
forming previous methods. ShortGPT-gen
maintains more than 90% performance for
generative tasks in a training-free manner
when skipping about 25% of the layers.

2 Motivation

2.1 Background

LLMs are primarily based on the Transformer ar-
chitecture (Vaswani et al., 2017), with the pre-norm
configuration being commonly adopted, as in mod-
els like LLaMA (Touvron et al., 2023). The pre-
norm configuration, where layer normalization is
applied before the self-attention and feed-forward
networks, offers several advantages such as faster
convergence, improved training stability, and better
scalability for deeper networks (Xiong et al., 2020;
Liu et al., 2020; Wang et al., 2024). Due to these
benefits, the pre-norm approach has been adopted
even in non-transformer models, such as Mamba
(Gu and Dao, 2023) and RWKV (Peng et al., 2023).
For the sake of simplicity in descriptions, our anal-
ysis primarily focuses on Transformers, though we
extend our experiments to non-Transformer struc-
tures in Section 4.4.

However, we observe that when pre-norm is
adopted, the similarity between the input and out-
put of transformer layers tends to be higher, as
illustrated in Figure 1. This high similarity indi-
cates that certain layers induce minimal changes to
the hidden states, suggesting they contribute little

0 5 10 15 20 25 30 35 40 45 50

Tokens(B)

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
a
ri

ty

pre norm 0-th layer

pre norm 1-th layer

pre norm 3-th layer

pre norm 7-th layer

pre norm 15-th layer

pre norm 31-th layer

post norm 0-th layer

post norm 1-th layer

post norm 3-th layer

post norm 7-th layer

post norm 15-th layer

post norm 31-th layer

Figure 1: Cosine similarity between a layer’s input and
output during training. The horizontal axis (X-axis)
represents the number of training tokens, and the vertical
axis (Y-axis) depicts the similarity. Notably, the model
employing post-norm (green) exhibits divergence after
approximately ∼26B tokens of training. The training
settings are provided in Appendix E.

to the model’s overall function. It suggests that
the deep layers of the model with pre-norm might
not play a critical role in the overall function, and
that the layers in large language models could be
more redundant than expected.

2.2 Layer redundancy

As discussed in the previous subsection, we specu-
late that LLMs exhibit layer redundancy. To verify
this, we assess the performance degradation caused
by removing individual layers of two popular mod-
els, Llama2-7B (Touvron et al., 2023), an English-
based LLMs, and Baichuan2-7B (Yang et al., 2023)
which mainly focuses on Chinese. Figure 2 con-
firms our speculation, where some layers do not
play a crucial role in LLMs, causing little degrada-
tion when omitting them individually. Moreover,
this redundancy is primarily manifested in the mid-
dle to later layers, with the initial layers and the last
layer often being more critical. Notably, we found
the last layer to be particularly important, align-
ing with previous works (Ma et al., 2024; Namburi
et al., 2023; Mitchell et al., 2022). We posit that
this discrepancy arises because the final FFN func-
tions as part of the token classifier and should be
considered in conjunction with the language model
head. To verify this, we conduct further investi-
gation, detailed in Table 1. The results show that
within the last layer, the FFN is crucial, while the
attention module is less significant, supporting our
interpretation of the final layer’s importance.

20193

0 5 10 15 20 25 30
Layer id

101

102

103

104
Pe

rp
le

xi
ty

Baichuan2-7B-Base
Llama2-7B-Base
Llama2-7B-Base-Baseline
Baichuan2-7B-Base-Baseline

(a) Perpelxity

0 5 10 15 20 25 30
Layer id

25

30

35

40

45

50

55

Pe
rp

le
xi

ty

Baichuan2-7B-Base
Llama2-7B-Base
Llama2-7B-Base-Baseline
Baichuan2-7B-Base-Baseline

(b) MMLU

Figure 2: Performance of removing certain layer from LLMs. We can see that certain layers are redundant, and
their removal results in minimal performance degradation. For perplexity calculation, we randomly select 10 text
segments of 1k length from each piece of data in PG19 (Rae et al., 2019).

0 5 10 15 20 25 30

Layer id

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

B
I s

co
re

0

5

10

15

20

Pe
rp

le
xi

ty

BI score Perplexity

(a) Llama2 7B

0 5 10 15 20 25 30

Layer id

0.1

0.2

0.3

0.4

0.5

B
I s

co
re

0

5

10

15

20

25

Pe
rp

le
xi

ty

BI score Perplexity

(b) Baichuan2 7B

Figure 3: The BI score of a layer and the PPL after removing the layer.

Delete Perplexity

None 7.60
The whole last layer 13.37
Attention of the last layer 7.65
FFN of the last layer 12.35

Table 1: Ablation of removing FFN and Attention of
Llama2-7B-Base. We sample 100 instances from PG19
(Rae et al., 2019) to calculate perplexity.

3 Methodology

In this section, we begin by introducing Block In-
fluence (BI), a novel metric designed to assess the
hidden states transformation of each layer. Lever-
aging BI, we then detail our methods for different
tasks, i.e. ShortGPT for multiple-choice tasks and
ShortGPT-gen for generative tasks.

3.1 Layer importance

As outlined above, the layers of LLMs exhibit re-
dundancy. To capture the degree of layer redun-
dancy, we introduce a new metric, Block Influence
(BI), to measure the degree of transformation per-
formed by each layer. The BI score of ith layer can

be calculated as follows:

BIi = 1− EX,t

XT
i,tXi+1,t

||Xi,t||2||Xi+1,t||2
, (1)

where Xi,t means the tth row of hidden states of
the ith layer. Lower BI score implies that Xi and
Xi+1 exhibit higher cosine similarity, suggesting
that the layer makes minimal transformations to
the hidden states and is therefore less important.
We plot the BI scores of a single layer and the PPL
after removing it separately, as shown in Figure
3. The results demonstrate a positive correlation
between the BI score and the importance of a layer.

Why use cosine similarity instead of other simi-
larities? As mentioned above, most LLMs apply
layer normalization within their modules. Conse-
quently, the magnitude of hidden states become
less important for the output than their direction.
Besides cosine similarity, there are some other met-
rics to measure the similarity between two vectors,
e.g. Euclidean distance. However, they are sensi-
tive to the magnitude of vectors and can introduce
bias. In contrast, cosine similarity is agnostic to the
magnitude, focusing on the direction of vectors.

20194

···
Transformer Layer

Transformer Layer

�� �� �� ��···

�� �� �� ��

�� �� �� ��···

�� �� �� ��···
Transformer Layer

(a) ShortGPT

···
Transformer Layer

Transformer Layer

�� �� �� ��···

�� �� �� ��

�� �� �� ��···

�� �� �� ��···

��

��+�

��+�

��+�

Transformer Layer

(b) ShortGPT-gen

Figure 4: Overview of ShortGPT for multiple-choice tasks and ShortGPT-gen for generative tasks. {X1, ..., Xn}
represent the input tokens, {Y1, ..., Yn+1} represent the output tokens, and {H1, ...,Hn+1} represent the hidden
states of tokens.

3.2 Multiple-Choice Task

In typical multi-choice tasks, each choice is con-
catented with the question to form sentences, and
the perplexity of each sentence is computed to se-
lect the answer. Since LLMs function as series
of transformations applied to hidden states across
their layers and we can determine the importance
of each layer, we propose a straightforward pruning
method: ShortGPT, as illustrated in Figure 4a. We
remove certain layers in LLMs based on BI. First
of all, we construct a calibration set, which is a set
of text samples such as PG19 (Rae et al., 2019).
Then we collect the hidden states of each layer dur-
ing inference on these samples. Next, we calculate
the BI scores based on the collected hidden states.
Finally, we sort layers in ascending order accord-
ing to BI, and remove the layers with the lower BI
scores. The number of layers to be removed can
vary to trade off efficiency and performance.

3.3 Generative Task

Although ShortGPT demonstrates strong capabili-
ties in multiple-choice tasks (see Table 2), it leads
to a significant performance drop in generative
tasks such as GSM8K (Cobbe et al., 2021), like
other pruning methods such as LLMPruner (Ma
et al., 2024) and SliceGPT (Ashkboos et al., 2024).
We attribute this performance drop to the accu-
mulated errors during generation, compared to
multiple-choice tasks. To address this issue, we
propose a training-free dynamic pruning method
for generative tasks, ShortGPT-gen, as illustrated
in Figure 4b. In ShortGPT-gen, the input tokens

skip the same redundant layers as in ShortGPT, and
the generated tokens pass through all layers. Since
the hidden states of input tokens remain unchanged
in the pruned layers, we use their output hidden
states of the preceding unpruned layers to obtain
keys and values during decoding.

4 Experiments

4.1 Experimental Setup
Models. To validate the effectiveness of our
methods, we conduct experiments on existing
popular open-source language models, including
Llama2-7B (Touvron et al., 2023), Llama2-13B,
Baichuan2-7B, and Baichuan2-13B. They are all
large language models based on the decoder-only
Transformer architecture. LLaMA2 was trained
on more than 2 trillion tokens. Baichuan2 was
mainly trained in Chinese and its 13-Billion model
replaced the RoPE (Su et al., 2024) positional em-
bedding with ALiBi (Press et al., 2021).

Benchmarks. In order to evaluate the changes in
the ability of large language models before and af-
ter pruning, we conduct comprehensive evaluation
from five aspect of multiple-choice tasks: Reason-
ing: CMNLI (Li et al., 2024), HellaSwag (HeSw)
(Zellers et al., 2019), PIQA (Bisk et al., 2020).
Language: CHID (Zheng et al., 2019). Knowl-
edge: CommonSenseQA (CoQA) (Reddy et al.,
2019), BoolQ (Clark et al., 2019). Examination:
MMLU (Hendrycks et al., 2020), CMMLU (Li
et al., 2024). Understanding: Race-High/Middle
(H/M) (Lai et al., 2017), C3 (Sun et al., 2020)
and PG19 (Rae et al., 2019). For generative tasks,

20195

LLM Method Ratio
Benchmarks

Avg. Per.
CMNLI HeSw PIQA CHID CoQA BoolQ Race-H Race-M C3 MMLU CMMLU

Llama2
7B

Dense 0.0% 32.99 71.26 77.91 41.66 64.62 71.62 35.71 34.19 43.56 45.39 32.92 50.17 100.00
LLMPruner 27.0% 34.33 56.46 71.22 25.25 42.51 55.20 22.56 22.35 25.64 23.33 25.25 36.74 73.23
SliceGPT 26.4% 31.70 50.27 66.21 20.79 41.36 38.32 21.07 21.66 39.78 28.92 25.37 35.04 69.84

LaCo 27.1% 34.43 55.69 69.80 36.14 45.70 64.07 22.61 23.61 39.67 26.45 25.24 40.31 80.35
ShortGPT 27.1% 32.95 53.02 66.43 24.68 47.99 74.71 32.25 35.17 39.62 43.96 32.25 43.91 87.52

Llama2
13B

Dense 0.0% 32.99 74.78 79.71 47.35 66.91 82.39 57.95 60.38 47.51 55.00 38.40 58.49 100.00
LLMPruner 24.4% 33.03 67.76 76.66 35.64 50.86 56.42 22.47 22.08 32.33 25.21 24.71 40.65 69.50
SliceGPT 23.6% 29.82 55.71 69.04 19.31 47.26 37.86 23.41 24.03 41.92 37.14 25.79 37.39 63.93

LaCo 24.6% 32.86 64.39 63.20 40.10 52.66 63.98 54.49 56.55 44.93 45.93 32.62 50.16 85.76
ShortGPT 24.6% 33.00 66.64 73.45 36.61 58.64 62.48 58.35 60.17 46.90 54.69 38.38 53.57 91.59

Baichuan2
7B

Dense 0.0% 33.37 67.56 76.17 85.56 63.14 74.10 52.63 51.04 64.55 53.87 56.95 61.72 100.00
LLMPruner 24.2% 32.28 53.66 71.82 69.80 47.83 61.19 21.96 22.28 41.64 24.93 25.69 43.01 69.69
SliceGPT 22.2% 32.07 25.29 50.33 14.85 19.57 39.30 23.53 22.49 26.58 25.18 25.25 27.68 44.85

LaCo 24.2% 33.00 52.28 68.50 76.24 47.26 56.15 28.99 27.72 50.85 31.53 31.24 45.80 74.21
ShortGPT 24.2% 33.30 56.96 67.68 65.63 46.70 67.83 53.26 46.76 56.33 45.77 47.87 53.46 86.62

Baichuan2
13B

Dense 0.0% 33.21 71.10 78.07 86.51 65.60 77.89 67.27 68.94 65.64 59.50 61.30 66.82 100.00
LLMPruner 24.3% 33.80 53.57 71.82 72.77 38.82 56.54 21.17 21.61 39.89 23.19 25.18 41.67 62.36
SliceGPT 22.8% 32.07 25.85 51.03 10.40 18.02 37.83 21.56 21.52 24.99 22.95 25.26 26.50 39.66

LaCo 24.7% 33.03 60.71 68.88 76.73 55.45 62.35 56.92 57.80 61.10 51.35 53.65 58.00 86.80
ShortGPT 24.7% 32.81 60.55 71.60 80.17 54.30 62.54 55.77 56.41 60.16 52.11 58.86 58.66 87.79

Table 2: Comparison of pruning methods on multiple-choice natural language benchmarks. The last column reports
the relative performance retention.

we use three benchmarks, including Xsum (Hasan
et al., 2021), GSM8K (Cobbe et al., 2021) and
StrategyQA (Geva et al., 2021).

Baselines. To evaluate the effectiveness of our
methods, we compared several structured pruning
methods for large language models, including:

1) LLMPruner (Ma et al., 2024), which adopts
structured pruning that selectively removes non-
critical coupled structures based on gradient in-
formation, maximally preserving the majority of
the LLM’s functionality. LLMPruner applies post
training to the pruned model, but for fair compari-
son, we do not apply post training to it.

2) SliceGPT (Ashkboos et al., 2024), which is a
post-training scheme that replaces each weight ma-
trix with a smaller matrix, reducing the embedding
dimension of the network. Specifically, it applies
PCA to the hidden representation from shallow to
deep layers, and incorporates the dimension reduc-
tion matrix into the existing network.

3) LaCo (Yang et al., 2024), which is a pruning
method for large language models based on reduc-
ing layers. LaCo gradually merges similar layers
from deep to shallow and sets a threshold to avoid
continuously merging too many layers.

4.2 Main Results
We conduct comparative experiments against base-
lines commonly employed in large language mod-
els. Considering the current structured pruning
methods generally use reduce ratios no more than
30% (Ma et al., 2024; Ashkboos et al., 2024;

LLM Method Benchmarks Avg. Per.
Xsum GSM8K StrategyQA

Llama2
7B

Dense 18.54 15.69 51.53 28.59 100.00
LLMPruner 11.51 0.61 44.20 18.77 65.65
SliceGPT 4.89 3.34 45.70 17.98 62.89

LaCo* 13.01 1.44 39.08 17.84 62.40
ShortGPT 11.13 1.60 30.26 14.33 50.12

ShortGPT-gen 14.88 14.71 48.95 26.18 91.57

Llama2
13B

Dense 22.19 28.89 63.58 38.22 100.00
LLMPruner 19.17 1.90 43.70 21.59 56.49
SliceGPT 5.27 1.90 38.30 15.16 39.67

LaCo* 15.18 2.58 43.88 20.55 53.77
ShortGPT 17.59 2.35 46.00 21.98 57.51

ShortGPT-gen 21.76 26.91 62.70 37.12 97.12

Table 3: Evaluation on generative benchmarks. “*” in-
dicates our reproduced results.

Yang et al., 2024; Namburi et al., 2023; Michel
et al., 2019; Gordon et al., 2020), we perform ex-
periments with approximately 25% of the layers
pruned. We use PG19 as the calibration dataset for
layer importance and perplexity calculation. We
list the removed layers and investigate the effects
of calibration datasets in Appendix A.

The experimental results of the multiple-choice
tasks are presented in Table 2. The evaluation on
the generative benchmarks are shown in Table 3.
Additional experiments exploring different param-
eter reduction proportions will be discussed in the
subsequent sections.

The results demonstrate that our pruning meth-
ods surpass the baseline methods, maintaining
most of the models’ capabilities. Furthermore, we
note that the approach of reducing layers (Short-
GPT/LaCo) outperforms the method of reducing
the embedding dimensions (LLMPruner/SliceGPT)
in multiple-choice tasks. Further experimental anal-

20196

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

BI

BI

Baichuan-7B-Base
Llama2-7B-Base

0 5 10 15 20 25 30
0

5

10

15

20

25

N
or

m

Norm

Baichuan-7B-Base
Llama2-7B-Base

0 5 10 15 20 25 30
layer_id

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

m
ag

ni
tu

de

Relative magnitude

Baichuan-7B-Base
Llama2-7B-Base

0 5 10 15 20 25 30
layer_id

101

102

103

104

Pe
rp

le
xi

ty

Perplexity

Baichuan-7B-Base
Llama2-7B-Base

Figure 5: Comparison of different importance metrics on ShortGPT. Perplexity is calculated by removing each
single layer, other metrics are calculated by hidden states of each layer.

ysis will be presented in the ensuing sections.
In order to make a more fair comparison with

LLMPruner and SliceGPT, we compared them with
the same settings as their original papers in Ap-
pendix C. These experiments further demonstrate
that ShortGPT achieves superior performance com-
pared to the other pruning methods.

The results show that coarse-grained pruning
methods, such as removing layers, often outper-
form fine-grained methods like SliceGPT or LLM-
Pruner. We speculate that the reason is that the
LLM is actually very robust, as shown in Figure 2,
removing any deep layer individually actually has
very little impact on the final output, which means
it is difficult to define the importance of a finer-
grained module and perform pruning.

4.3 Varying metric and pruning ratio

The core principle of our methods is to rank layers
by their importance and remove the less significant
ones. The choice of importance metric significantly
influences the outcome. In this section, we define
and compare several different importance metrics:

• Sequential: The importance is directly pro-
portional to the sequence order, with shal-
lower layers being less important. This can be

implemented by assigning the negative value
of each layer’s index as its importance metric.

• Norm/Reverse-order: This metric posits that
importance is inversely proportional to the
sequence order. It assigns higher importance
scores to the shallower layers. This method
gives the same order as measuring importance
by hidden states norm as Figure 5 shows.

• Relative Magnitude: Proposed in (Samragh
et al., 2023), this metric assumes layers with
larger || f(x)

x+f(x) || are of higher importance,
where f is the layer transformation function.

• BI: we calculate the BI score mentioned in
Section 3.1 as importance metric.

Figure 5 shows the different metrics. We observe
that shallower layers in the LLM are more crucial
than deeper ones. Figure 6 shows the results of
removing layers by different metrics, demonstrat-
ing that our proposed BI outperforms other met-
rics. The method of Relative Magnitude is highly
competitive, indicating that relative values can also
reflect the importance to some extent. It is worth
noting that the hidden states norm seems to be a
good metric when only considering the MMLU
benchmark, but the perplexity is relatively poor.

20197

0 9 19 28 38 47 56 66 75 84 94

101

102

103

104

105

106
Pe

rp
le

xi
ty

Llama2-7B-Base

0 8 15 22 30 38 45 52 60 68 75 82 90 98

101

102

103

104

105

106

Llama2-13B-Base

0 9 19 28 38 47 56 66 75 84 94
Pruning Ratio(%)

25

30

35

40

45

M
M

LU

0 8 15 22 30 38 45 52 60 68 75 82 90 98
Pruning Ratio(%)

25

30

35

40

45

50

55

Sequential Reverse-order Relative Magnitude BI

Figure 6: Performance of ShortGPT on MMLU and perplexity when we prune by different metrics, with increasing
pruning ratio. We can see that as the pruning ratio increases, the performance of the model declines.

Model Ratio CMNLI HeSw PIQA CHID CoQA BoolQ Race-H Race-M C3 MMLU CMMLU Avg. Per.

Mamba
2.8B

0.0% 35.97 61.84 75.52 35.56 56.35 60.67 24.90 25.30 42.08 26.29 25.32 42.71 100.00
10.9% 32.95 59.71 73.01 32.52 52.66 51.41 24.27 25.21 41.10 26.01 25.00 40.35 94.47
20.3% 31.29 55.69 69.64 29.12 48.32 62.20 23.61 23.61 41.59 25.69 25.37 39.65 92.84
25.0% 29.96 52.38 68.77 26.02 44.96 62.20 23.67 23.26 40.71 24.32 24.89 38.29 90.37
31.3% 28.25 47.02 64.91 21.38 44.96 62.17 21.87 22.77 40.44 24.48 24.77 36.64 85.79

RWKV
7B

0.0% 32.07 65.98 77.09 85.36 62.65 62.72 38.56 45.47 57.97 31.85 28.54 53.48 100.00
9.4% 32.60 56.41 73.94 78.12 49.55 62.35 25.90 25.77 54.68 27.29 25.03 46.51 86.97

18.8% 32.11 49.47 71.55 65.63 40.54 61.19 22.04 23.75 49.15 26.35 25.00 42.43 79.34
25.0% 32.41 39.73 65.13 52.60 29.65 60.92 22.56 21.59 41.86 25.52 25.08 37.91 70.89
28.1% 33.11 32.22 60.01 32.47 28.34 60.85 22.27 21.31 37.81 25.64 25.15 34.47 64.45

Table 4: ShortGPT on Mamba and RWKV.

We further validated the effects of different prun-
ing ratios on ShortGPT. Experiments are conducted
on the Llama2 and Baichuan2 models, observing
the perplexity and MMLU. The results for Llama2,
as shown in Figure 6, demonstrate that the mod-
els’ performance generally declines as the pruning
ratio increases. However, we observe a notable
phenomenon: the MMLU score exhibits a sharp
drop at a specific layer. This sudden decrease sug-
gests the presence of certain critical layers within
the network that play a particularly important role
in maintaining performance. Similar patterns are
observed in the Baichuan2 models, as illustrated in
Appendix B.

4.4 Redundancy on non-transformer LLMs

To determine whether the observed layer redun-
dancy is specific to Transformers, we extend our in-
vestigation to include two popular non-Transformer
models, RWKV-7B (Peng et al., 2023) and Mamba-
2.8B (Gu and Dao, 2023). Our experiments reveal
that these models also exhibit resilience to layer
removal, maintaining performance despite the elim-
ination of certain layers. Table 4 shows that Short-
GPT is applicable and effective for Mamba and
RWKV models, suggesting that the redundancy is
universal across current LLMs.

4.5 Post training to restore performance

To mitigate the performance loss resulting from
layer removal in ShortGPT, we explore post-

20198

Method Ratio CMNLI HeSw PIQA CHID CoQA BoolQ Race-H Race-M C3 MMLU CMMLU Avg.

Dense 0.0% 32.99 71.26 77.91 41.66 64.62 71.62 35.71 34.19 43.56 45.39 32.92 50.17
ShortGPT 27.1% 32.95 53.02 66.43 24.68 47.99 74.41 32.25 35.17 39.62 43.96 32.25 43.88
ShortGPT+post-train 24.0% 32.99 54.83 68.12 31.82 58.32 72.36 34.18 34.68 40.37 44.47 32.73 45.90

Table 5: Post training Llama2-7B to restore performance.

Method Ratio/Layer Perplexity MMLU Throughput (speed up)
Baseline 0.0%/32 8.03 43.17 4331.23 Token/s (1.00x)

3.1%/31 8.37 42.88 4399.31 Token/s (1.02x)
9.4%/29 9.44 42.31 4602.26 Token/s (1.06x)

ShortGPT 12.5%/28 10.24 41.62 4680.68 Token/s (1.08x)
15.6%/27 11.42 43.17 4756.94 Token/s (1.10x)
25.0%/24 22.29 41.68 5045.59 Token/s (1.16x)
27.1%/23 40.78 43.35 5146.99 Token/s (1.19x)

Table 6: ShortGPT on Llama2-7B-Base-GPTQ.

Method MMLU CMMLU
Llama2-7B-Baseline 45.4 32.9
4-bit quantization 44.9 32.5
ShortGPT (27.1%) 44.0 32.3
4-bit quantization then ShortGPT 42.4 31.0
ShortGPT then 4-bit quantization 41.2 30.5

Table 7: Performance comparison of different methods

training strategies inspired by (Chen et al., 2024).
Our approach consists of two key steps: 1) Re-
placement: We substitute the removed layers with
lightweight Multi-Layer Perceptrons (MLPs). 2)
Retraining: We subsequently retrain the modified
model. The results in Table 5 demonstrate the po-
tential of post training to recover performance loss.
Appendix D shows the post training settings.

4.6 Orthogonal to Quantization

In this section, we show that ShortGPT is orthogo-
nal to quantization. We apply ShortGPT to Llama2-
7B quantized by GPTQ algorithm. Table 6 shows
that ShortGPT is compatible with quantization, and
applying it to the quantized model can further im-
prove its efficiency. In addition, we compare the
performance of the model applied ShortGPT before
and after quantization. The results shown in Table
7 further indicates that quantization and ShortGPT
are orthogonal operations.

5 Related works

Pruning: pruning (LeCun et al., 1989; Han et al.,
2015) aims to reduce model redundancy, including
static pruning and dynamic pruning. Static prun-
ing (Dong et al., 2017; Fang et al., 2023) removes
model components based on various metrics. LLM-
Pruner (Ma et al., 2024) removes structures accord-

ing to gradient information. LaCo (Yang et al.,
2024) uses layer merging. Dynamic pruning (Tang
et al., 2021; Hua et al., 2019; Gao et al., 2019) pre-
serves the entire model and accelerates models by
skipping unimportant components. Dynamic prun-
ing methods typically do not perform fine-tuning
or retraining (Cheng et al., 2024). Ada-Infer (Fan
et al., 2024) introduces early-exit to stop forward
propagation at intermediate layers, but its perfor-
mance on generative benchmarks such as GSM8K
decreases to nearly zero. In our methods, ShortGPT
is a static pruning method, while ShortGPT-gen is a
dynamic pruning method. Notably, ShortGPT-gen
preserves most of the performance of dense models
on generative tasks in a training-free manner.

Quantization: quantization (Liu et al., 2021;
Gholami et al., 2022; Dettmers et al., 2022, 2024)
can save computational costs of deep learning mod-
els. It converts models’ floating-point weights
into integers or other discrete forms. LUT-GEMM
(Park et al., 2022) quantifies weights and optimizes
matrix multiplication in LLMs using BCQ format.
SPQR (Dettmers et al., 2023) identifies and isolates
abnormal weights, stores them with higher accu-
racy and converts others into 3-4 bits. Our pruning
methods and quantization method are orthogonal.

Model redundancy: researchers have long no-
ticed significant redundancy in nonlinear models
(Catchpole and Morgan, 1997). Recently, Trans-
former models have been widely applied. Re-
searchers have also studied their redundancy. In
(Bian et al., 2021), researchers analyzed redun-
dancy in attention mechanisms, where similar re-
dundancy patterns are observed among attention
heads. In (Dalvi et al., 2020), researchers dissect
BERT (Devlin et al., 2018) and XLNet (Yang et al.,
2019), studying how much redundancy they exhibit
at representation level and the fine-grained neuron
level. However, the redundancy of decoder-only
LLMs still needs to be explored.

6 Conclusion

In this work, we uncovered the significant layer-
wise redundancy of LLMs, Our research demon-
strates that certain layers contribute minimally to

20199

overall network functionality and can be removed
without substantially compromising model perfor-
mance. Based on our observation, we introduce
Block influence to quantify the importance of each
layer and propose simple and straightforward prun-
ing methods for multiple-choice tasks and gener-
ative tasks. Our experiments demonstrates that it
is possible to maintain approximately 90% of a
LLM’s performance while reducing the computa-
tional requirements in approximately 25% of the
LLM’s layers. Our work suggests potential avenues
for improving the efficiency of models by reducing
their inherent redundancy.

7 Limitations

Although our methods demonstrates strong com-
petitiveness compared to current methods, there are
some limitations that must be acknowledged. The
negative effect of ShortGPT is significant on certain
generative tasks, which creates barriers to its practi-
cal use. When we remove 25% layers from Llama2-
7B or Baichuan2-7B, the performance on GSM8K
deceases to nearly zero. In contrast, ShortGPT-gen
preserves most of models’ performance on gen-
erative tasks, but it does not reduce the sizes of
models.

Acknowledgments

We sincerely thank the reviewers for their insight-
ful comments and valuable suggestions. This work
was supported by Beijing Natural Science Foun-
dation (L243006), Beijing Municipal Science and
Technology Project (Nos. Z231100010323002),
the Natural Science Foundation of China (No.
62476265, 62306303).

References
Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-

nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan,
and Kenneth Church. 2021. On attention redundancy:
A comprehensive study. In Proceedings of the 2021
conference of the north american chapter of the as-
sociation for computational linguistics: human lan-
guage technologies, pages 930–945.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of

the AAAI conference on artificial intelligence, pages
7432–7439.

Edward A Catchpole and Byron JT Morgan. 1997.
Detecting parameter redundancy. Biometrika,
84(1):187–196.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024.
Compressing large language models by stream-
lining the unimportant layer. arXiv preprint
arXiv:2403.19135.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.
2024. A survey on deep neural network pruning-
taxonomy, comparison, analysis, and recommenda-
tions. arXiv preprint arXiv:2308.06767.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and
Yonatan Belinkov. 2020. Analyzing redundancy
in pretrained transformer models. arXiv preprint
arXiv:2004.04010.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Al-
istarh. 2023. Spqr: A sparse-quantized representa-
tion for near-lossless llm weight compression. arXiv
preprint arXiv:2306.03078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng
Yan. 2017. More is less: A more complicated net-
work with less inference complexity. arXiv preprint
arXiv:1703.08651.

20200

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng
Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. 2024. Not all layers of llms
are necessary during inference. arXiv preprint
arXiv:2403.02181.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi,
and Xinchao Wang. 2023. Depgraph: Towards any
structural pruning. arXiv preprint arXiv:2301.12900.

Elias Frantar and Dan Alistarh. 2023. Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774.

Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert
Mullins, and Cheng zhong Xu. 2019. Dynamic chan-
nel pruning: Feature boosting and suppression. arXiv
preprint arXiv:1810.05331.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristo-
tle use a laptop? a question answering benchmark
with implicit reasoning strategies. arXiv preprint
arXiv:2101.02235.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. 2022. A
survey of quantization methods for efficient neural
network inference. In Low-Power Computer Vision,
pages 291–326. Chapman and Hall/CRC.

Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M Sohel Rahman, and Rifat Shahriyar. 2021. Xl-sum:
Large-scale multilingual abstractive summarization
for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and
Laurent Sifre. 2022. Training compute-optimal large
language models. arXiv preprint arXiv:2203.15556.

Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru
Zhang, and G. Edward Suh. 2019. Channel gating
neural networks. arXiv preprint arXiv:1805.12549.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2024. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. 2020. Understanding the difficulty
of training transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5747–5763.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei
Ma, and Wen Gao. 2021. Post-training quantization
for vision transformer. Advances in Neural Informa-
tion Processing Systems, 34:28092–28103.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2024.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Satya Sai Srinath Namburi, Makesh Sreedhar, Srinath
Srinivasan, and Frederic Sala. 2023. The cost of com-
pression: Investigating the impact of compression on
parametric knowledge in language models. arXiv
preprint arXiv:2312.00960.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeong-
wook Kim, Youngjoo Lee, and Dongsoo Lee. 2022.
nuqmm: Quantized matmul for efficient inference
of large-scale generative language models. arXiv
preprint arXiv:2206.09557.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Stella Biderman, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, et al.

20201

2023. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048.

Ofir Press, Noah A Smith, and Mike Lewis. 2021.
Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint
arXiv:2108.12409.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
Chloe Hillier, and Timothy P Lillicrap. 2019. Com-
pressive transformers for long-range sequence mod-
elling. In International Conference on Learning Rep-
resentations.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Mohammad Samragh, Mehrdad Farajtabar, Sachin
Mehta, Raviteja Vemulapalli, Fartash Faghri, De-
vang Naik, Oncel Tuzel, and Mohammad Rastegari.
2023. Weight subcloning: direct initialization of
transformers using larger pretrained ones. arXiv
preprint arXiv:2312.09299.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020. In-
vestigating prior knowledge for challenging chinese
machine reading comprehension. Transactions of the
Association for Computational Linguistics, 8:141–
155.

Yehui Tang, Yunhe Wang, Yixing Xu, Yiping Deng,
Chao Xu, Dacheng Tao, and Chang Xu. 2021. Man-
ifold regularized dynamic network pruning. arXiv
preprint arXiv:2103.05861.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Dongdong Zhang, and Furu Wei. 2024. Deepnet:
Scaling transformers to 1,000 layers. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In In-
ternational Conference on Machine Learning, pages
10524–10533. PMLR.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin
Ou, Xinyi Yu, Bohan Zhuang, et al. 2023. Prun-
ing meets low-rank parameter-efficient fine-tuning.
arXiv preprint arXiv:2305.18403.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019.
Chid: A large-scale chinese idiom dataset for cloze
test. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
778–787.

A Detailed Strategies for Layer Removal

We list different layer removal strategies in Table
8. The removed layers in Table 2 and Table 3
are listed in Table 9. To investigate the effects
of calibration datasets, we also list the removed
layers of Llama2 models when using MMLU as
calibration dataset in Table 10. We can observe that
the calibrations datasets hardly affect the removed
layers, demonstrating the robust of our BI metric.

B ShortGPT on Baichuan2 models

The effects of different pruning ratios on Baichuan2
models’ performance are shown in Figure 7.

C A Fair comparison with SliceGPT and
LLMPruner

For a fair comparison with LLMPruner and
SliceGPT, we do the same experiments as in the
original papers of LLMPruner and SliceGPT. The
results are provided in Table 11 and Table 12. We
take the same settings as the corresponding paper.
The results demonstrate that our method is highly
competitive.

D Setup for post training

Table 13 shows the post training settings.

20202

0 9 19 28 38 47 56 66 75 84 94

102

104

106

108

P
er

p
le

x
it
y

Baichuan2-7B-Base

0 8 15 22 30 38 45 52 60 68 75 82 90 98

101

102

103

104

105

106

107

Baichuan2-13B-Base

0 9 19 28 38 47 56 66 75 84 94

Pruning Ratio(%)

25

30

35

40

45

50

55

M
M

L
U

0 8 15 22 30 38 45 52 60 68 75 82 90 98

Pruning Ratio(%)

30

40

50

60

Sequential Reverse-order Relative Magnitude BI

Figure 7: Pruning by different pruning ratios on Baichuan2 models.

Strategy Description

Sequential Layers are removed sequentially
from the beginning of the model.
The process starts with layer 0 and
progressively includes more layers
for removal (e.g., {0}, {0, 1}, . . .).

Reverse-order This strategy involves starting from
the model’s final layer and progres-
sively removing layers in reverse or-
der (e.g., {-1}, {-1, -2}, . . .).

Relative Magnitude Layers are removed in ascending
order based on their Relative Mag-
nitude values. The process accu-
mulates layers from those with the
smallest to the largest values, mir-
roring the sequential strategy’s accu-
mulation method.

BI (Block Influence) A similar accumulation approach as
the Sequential strategy, but layers
are ordered and removed according
to their BI scores, starting from the
lowest and moving to the highest.

Table 8: Strategies for Layer Removal in Models.

E Setup for training post-norm model
and pre-norm model

Table 14 lists the specific training settings for pre
norm and post norm in Section 2.1.

Model Removed Layers

Llama2-7B 21, 22, 23, 24, 25, 26, 27, 28, 29
Llama2-13B 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
Baichuan2-7B 22, 23, 24, 25, 26, 27, 28, 29, 30
Baichuan2-13B 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

Table 9: Removed Layers for Benchmark Models, using
PG19 as calibration dataset.

Model Removed Layers

Llama2-7B 21, 22, 23, 24, 25, 26, 27, 28, 29
Llama2-13B 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

Table 10: Removed Layers for Llama2 models, using
MMLU as calibration dataset.

20203

Model Pruning ratio Method BoolQ PIQA Hellaswag Winogrande Arc-e Arc-c OBQA Avg.

Llama
7B

Ratio=0% Baseline 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25
Ratio=20% LLMPruner 59.39 75.57 65.34 61.33 59.18 37.12 39.80 56.82

Ratio=21.9 % ShortGPT 68.26 72.28 61.70 63.77 60.22 39.00 41.60 58.12

Llama
13B

Ratio=0% Baseline 68.47 78.89 76.24 70.09 74.58 44.54 42.00 64.97
Ratio=20% LLMPruner 67.68 77.15 73.41 65.11 68.35 38.40 42.40 61.79
Ratio=20% ShortGPT 68.41 76.36 72.90 67.40 68.62 39.20 41.00 61.98

Table 11: Comparison between ShortGPT and LLMPruner. The Table is corresponding to the Table 1 of LLM-
Pruner (Zhang et al., 2023).

Model Pruning ratio Method PIQA Hellaswag Winogrande Arc-e Arc-c Avg.

Llama2
7B

0% Baseline 79.11 75.99 69.06 74.58 46.25 69.00
20% SliceGPT 71.87 58.10 63.04 69.87 43.09 61.19
25% SliceGPT 68.55 58.10 62.04 57.46 35.07 56.24
30% SliceGPT 66.10 52.69 56.82 35.07 56.82 53.50

21.9% ShortGPT 72.76 66.39 66.27 59.39 39.85 60.93
25% ShortGPT 70.53 62.68 64.70 58.39 39.51 59.16

31.6% ShortGPT 67.87 62.19 64.38 56.57 40.86 58.37

Llama2
13B

0% Baseline 80.47 79.39 72.22 77.48 49.23 71.76
20% SliceGPT 71.87 69.38 63.04 69.87 43.09 63.45
25% SliceGPT 68.55 67.48 58.10 62.50 37.88 58.90
30% SliceGPT 66.10 65.11 52.69 56.82 35.07 55.16
20% ShortGPT 76.95 74.67 71.14 69.56 45.63 67.59
25% ShortGPT 74.39 71.65 70.98 67.09 43.93 65.61
30% ShortGPT 72.11 71.93 67.19 61.09 40.88 62.64

Llama2
70B

0% Baseline 82.70 83.84 77.98 80.98 57.34 76.57
20% SliceGPT 76.61 72.98 74.92 80.51 55.20 72.04
25% SliceGPT 74.92 68.74 74.92 77.90 51.71 69.64
30% SliceGPT 72.31 63.69 73.40 51.71 47.61 61.74
20% ShortGPT 76.02 78.87 71.69 76.02 52.95 71.11
25% ShortGPT 73.20 76.72 71.85 73.20 49.90 68.97
30% ShortGPT 74.44 75.31 72.33 74.44 49.22 69.15

Table 12: Comparison between ShortGPT and SliceGPT. The Table is corresponding to the Table 7 of
SliceGPT (Ashkboos et al., 2024).

Parameter Value

Global Batch Size 2048
Sequence length 4096
Precision bf16
Learning Rate Scheduler cosine
Max Learning Rate 2e-5
Min Learning Rate 1e-5
Warm-up steps 3000
Training Tokens 50B
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.98
Gradient Clip 1.0

Table 13: Post training parameters.

Parameter Value

Global Batch Size 2048
Sequence length 4096
Precision bf16
Learning Rate Scheduler cosine
Max Learning Rate 4e-4
Min Learning Rate 5e-5
Warm-up steps 3000
Training Tokens 200B
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.98
Gradient Clip 1.0
Tokenizer Llama2
Layers 32
Hidden state 2048
Attention heads 32
Head dim 64
FFN size 5504
Activation function Silu

Table 14: Training parameters.

20204

