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Abstract

Understanding the structure of multi-party con-
versation and the intentions and dialogue acts
of each speaker remains a significant challenge
in NLP. While a number of corpora annotated
using theoretical frameworks of dialogue have
been proposed, these typically focus on either
utterance-level labeling of speaker intent, miss-
ing wider context, or the rhetorical structure of
a dialogue, losing fine-grained intents captured
in dialogue acts. Recently, the Dependency
Dialogue Acts (DDA) framework has been
proposed for modeling both the fine-grained
intents of each speaker and the structure of
multi-party dialogues (Cai et al., 2023). How-
ever, there is not yet a corpus annotated with
this framework available for the community to
study. To address this gap, we introduce a new
corpus of 33 English language dialogues with
over 9,000 utterance units, densely annotated
using the Dependency Dialogue Acts (DDA)
framework.Our dataset spans four genres of
multi-party conversations from different modal-
ities: (1) physics classroom discussions, (2)
engineering classroom discussions, (3) board
game interactions, and (4) written online game
chat logs. Each session is doubly annotated and
adjudicated to ensure high-quality labeling. We
present a description of the dataset and annota-
tion process, an analysis of speaker dynamics
enabled by our annotation, and a baseline evalu-
ation of LLMs as DDA parsers. We discuss the
implications of this dataset for understanding
dynamics between speakers and for developing
more controllable dialogue agents.

1 Introduction

Understanding and representing speaker intention
has long been a fundamental challenge in dialogue
analysis, spanning multiple disciplines, including
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†bking2@ucsc.edu

(1) BP: Okay, w ho wants to go first?

(2) AD: I' ll go first .

(3) AD: Alr ight , w hat  would the MA of 
this pulley be?

(4) AD: I just  said 2.

(5) EM: I also said 2.

(6) RA: I said 4

(7) TN: I also said 2.

TaskManage, OpenQuest ion

Answer , Commit

Quest ionInfoRequest , Greet ing

Answer

Answer

Similar

Answer
Cont rast

AnswerSimilar

Figure 1: An example dialogue snippet from the Pulley
K12 data annotated with Dependency Dialogue Acts
(DDA) structure

linguistics, philosophy, cognitive science, and ar-
tificial intelligence (Austin, 1975; Searle, 1979;
Mann and Thompson, 1988). Accurately model-
ing and interpreting speaker intentions is crucial
for dialogue system development, particularly in
areas such as explainable AI, human-computer in-
teraction, and conversational AI safety. Effective
speaker intention modeling requires capturing not
only explicit dialogue acts but also implicit com-
municative goals, social dynamics, and discourse
structures that shape how interactions unfold.

Over the years, various annotation frameworks
and corpora have been developed to analyze dis-
course structure and speaker intentions in dialogue.
Switchboard DAMSL (SWBD; Jurafsky 1997) pi-
oneered utterance-level annotation by categoriz-
ing dialogue acts such as questions, statements,
and back-channels, in two-person phone conver-
sations. Meanwhile, Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) and Penn Dis-
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course TreeBank (PDTB) (Prasad et al., 2008) fo-
cused on structural text coherence by identifying
discourse relations such as elaboration, contrast,
and causality, laying the groundwork for under-
standing how speakers build meaning beyond iso-
lated utterances. Segmented Discourse Representa-
tion Theory (SDRT) (Lascarides and Asher, 2007)
extended this approach to dialogue, modeling multi-
turn dependencies and coherence relations crucial
for capturing conversational flow.

While these frameworks and corpora have sig-
nificantly advanced computational dialogue un-
derstanding, they face challenges in multi-party
conversations, where interactions are more frag-
mented, overlapping, and dynamic. Where two
speakers on the phone might share uninterrupted
joint attention, real-world multi-party dialogues are
situated in complex tasks and contain deviations
whose structure could be missed in frameworks like
SWBD, which focus on utterance-level labels. Al-
ternatively, frameworks focused on rhetorical struc-
ture might miss subtle distinctions in a speaker’s
communicative intent, such as whether a speaker
is ‘proposing’ someone take an action, which is
open to rejection, or ‘directing’ they do, which is
not. To better capture the complexities encountered
in multi-party dialogue, Cai et al. (2023) propose
the Dependency Dialogue Act (DDA) framework,
a general purpose framework for capturing multi-
party speaker intentions and structure. A visualiza-
tion of the DDA structure is shown in Figure 1. To
our knowledge, no publicly available corpus has
previously been annotated with the DDA frame-
work, limiting its adoption and evaluation.

In this work, we present the first publicly re-
leased corpus of multi-party dialogues annotated
with the DDA framework, capturing deep, struc-
tured representations of speaker intentions. Our
corpus spans four domains, including both spoken
and written (chat) modalities across 33 English lan-
guage multi-party dialogues.

Our primary goal is to develop benchmark data
that enables the evaluation of AI systems in collab-
orative multi-party conversations. Unlike dyadic
exchanges, multi-party dialogues present additional
challenges, such as overlapping speech, conflict-
ing intentions, implicit coordination strategies, and
emotional dynamics. Human communicators are
not always perfectly rational, meaning interactions
are often shaped by personal biases, misunder-
standings, and differing levels of assertiveness. As
such, an AI system capable of accurately identify-

ing speaker intentions and behavioral patterns can
help reduce unnecessary tension, promote effective
collaboration, and support more structured group
discussions. Despite the importance of this goal,
existing frameworks and benchmarks for analyz-
ing AI systems’ understanding of multi-party dia-
logue remain limited. Our corpus provides a deep,
structured approach for evaluating an AI system’s
understanding of multi-party dialogue.

Structured representations like DDA also pro-
vide an opportunity for controllable generation.
While the rise of large language model-based
(LLM) AI chat agents has reshaped the dialogue
systems landscape, current LLMs still require elab-
orate prompt engineering to produce desirable be-
haviors consistently, even after fine-tuning (Addle-
see et al., 2023). Their dialogue actions are not in-
herently controllable, which means that modifying
an agent’s behavior often requires trial-and-error
adjustments to the prompts rather than direct inter-
vention at the intent and strategy level. By equip-
ping conversational AI systems with the ability to
reason about complex speaker intentions within the
DDA framework, we move closer to developing
AI agents that can navigate collaborative scenar-
ios, facilitate productive discussions, and promote
synergy between human participants. This struc-
tured framework will help AI agents understand,
anticipate, and appropriately respond to multi-party
dialogue dynamics, ultimately improving explain-
ability, controllability, and safety in conversational
AI applications.

The contributions of this paper:

• We present the DDA Corpus: the first multi-
party dialogue corpus annotated with the De-
pendency Dialogue Acts (DDA) annotation
scheme, spanning 4 domains and including
both spoken and written (chat) modalities.

• We release a codebook for the DDA frame-
work with detailed definitions and software
tools supporting annotation1 to facilitate com-
munity use and customization.

• We analyze the annotations by measuring
inter-annotator agreement across different
granularity levels, present the statistical char-
acteristics of our DDA Corpus, and demon-
strate how our representation captures multi-
party speaker dynamics.

1Available at: https://github.com/NSF-iSAT/DDA-corpus
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• We conduct a baseline evaluation of LLMs
as DDA parsers to assess their understanding
of intention and structure in multi-party dia-
logue.

2 Related Work

The study of dialogue acts and speaker intention
modeling has driven the development of various
annotation schemes and corpora, serving as bench-
marks for dialogue systems. In this section, we
review key annotation frameworks, multi-party di-
alogue corpora, and recent evaluations of LLMs’
capabilities in multi-party dialogue settings.

2.1 Dialogue Act Annotation Schemes
DAMSL and SWBD-DAMSL DAMSL (Dia-
logue Act Markup in Several Layers; Core and
Allen 1997) and its variant Switchboard DAMSL
(Jurafsky, 1997) are two of the pioneering dialogue
act annotation schemes, in which individual utter-
ances are labeled with classes corresponding to
their function within a conversation. The DAMSL
family of schemes builds on previous approaches
by allowing multiple labels to be applied to each
utterance; however, they are limited in that they are
only designed with two-party (dyadic) dialogues
in mind, and so make no attempt to capture reply
or rhetorical structure as it is assumed that each
utterance corresponds to its immediate predecessor,
forming a simple adjacent pair.

ISO 24617-2 In addition to dialog acts, the ISO
standard (Bunt et al., 2012) supports the annotation
of various relationships between units of dialog
as backward pointing edges: rhetorical relations,
which describe how two dialog units are logically
or structurally related; and dependence relations, in
which one unit’s semantic content depends on an-
other’s. These relational annotations capture more
complex dialog structures than previous schema,
but are limited in that dialog act annotations still
correspond to dialog units, and so the schema can-
not handle cases in which a dialog unit has multiple
different relations to multiple previous dialog units
(as there would be no way of disambiguating which
relations correspond to which units).

Dialogue Dependency Acts Cai et al. (2023) pro-
pose Dialogue Dependency Acts (DDA), which
places labels on response edges rather than the di-
alog units themselves. This allows more complex,
multi-relational dialog structures to be captured;

as a consequence, annotators can label all possible
relations between dialog units as opposed to only
the most prominent one. The compact dependency
edges function like highways, streamlining the an-
notation process by making dependencies more
intuitive. Each relation can be naturally read as an
English statement reflecting the speaker’s intention
and attention, making the scheme easier to learn,
customize and apply.

2.2 Multi-Party Dialogue Corpora

Here we describe multi-party dialogue corpora rele-
vant to our intended use-case: the facilitation of col-
laborative, goal-oriented interactions. We thereby
limit the discussion to corpora that are unscripted,
synchronous, and of a collaborative nature. For a
broader discussion of multi-party dialogue corpora
we refer the reader to Mahajan and Shaikh (2021).

Pulley K12 Puntambekar et al. (2021) collect a
conversational dataset examining K-12 students’
learning behaviors in physical and virtual lab en-
vironments.2 The dataset includes interactions be-
tween students and with their teacher.

Sensor Immersion K12 Cao et al. (2023) col-
lect a dataset from a U.S. public middle school
STEM classroom over four class periods. Students
engaged in a STEM curriculum unit focused on
developing digital sensor skills. The recordings
primarily capture student discussions during col-
laborative problem-solving activities related to en-
gineering challenges.

TEAMS The TEAMS corpus (Litman et al.,
2016) is a dataset containing textual transcriptions
and audio recordings from sessions of the coop-
erative board game Forbidden Island, played by
groups of three to four adult speakers. The stated
purpose of TEAMS is to study entrainment (when
group members begin to speak more like one an-
other) and participation dominance. Analysis in
the original work generally focuses on acoustic fea-
tures such as pitch and volume, finding that many
of these features converge over the course of the
play session.

STAC The STAC corpus (Asher et al., 2016) con-
sists of textual chat and gameplay logs from on-
line sessions of the game The Settlers of Catan.
In contrast to the TEAMS dialogues which were

2Referred to as“Pulley" because the primary topic of the
physics class in this study is pulleys and forces.
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Source Pulley K12
(Puntambekar et al., 2021)

Sensor Immersion K12
(Cao et al., 2023)

TEAMS
(Litman et al., 2016)

STAC
(Asher et al., 2016)

Source Type Spoken Spoken Spoken Written
# of Dialogues 1 26 4 2
Total # of Slash Units 1123 4765 1922 1267
Avg. # of Speakers 7.0 4.58 3.0 3.5
Avg. Edge Dist. 1.26 1.31 1.48 2.46
Release Terms IRB required IRB required GNU-GPL CC BY-NC-SA 4.0
Scenario Physics Class Engineering Class In-Person Board Game Online Board Game
Multimodal Access transcript video access audio access chat log
Demographics info K12 students K12 students adults N/A

Table 1: Contents of the Studied and Released Corpus. Source Type is from the taxonomy of Mahajan and Shaikh
(2021).

spoken and transcribed, STAC’s dialogues come
from textual messages, and contain misspellings
and non-standard language. The board game is
also competitive instead of the collaborative. STAC
also contains situated grounding messages originat-
ing from the game itself, which describe gameplay
events and on which many player utterances de-
pend rhetorically. The original STAC corpus is
annotated with dialogue acts specific to in-game
negotiation and discourse relations in the style of
Segmented Discourse Coherence Theory (Asher
and Lascarides, 2003). Our annotations provide a
richer set of dialogue acts, covering the frequent
non-negotiation dialogues.

2.3 Multi-Party Capabilities of LLMs

A number of recent works find that successful par-
ticipation in multi-party conversation by LLMs de-
pends highly on understanding discourse structure.
Tan et al. (2023) evaluate GPT-3.5 and GPT-4 on
tasks related to multi-party conversations (MPCs),
including prediction of speakers and addressees
of utterances, emotion detection, and generation
of appropriate responses. They find that the in-
clusion of a simple speaker-addressee structure in
prompts generally improves MPC understanding
and generation capabilities. Gu et al. (2021) in-
troduce MPC-BERT, a variant of the BERT lan-
guage model trained in a multitask setting with
the auxiliary tasks of reply-to-utterance prediction,
speaker prediction, and speaker-addressee predic-
tion. They find that the incorporation of these MPC
tasks improves performance substantially on the
Ubuntu IRC dataset’s response selection task. Ad-
dlesee et al. (2023) study several language mod-
els’ goal-tracking and intent-recognition capabili-
ties in a multi-party hospital memory clinic setting.
Their findings suggest that goal-tracking and intent-
recognition performance change drastically in com-

parison to previous work using dyadic conversation.
Our work provides a comprehensive labeled struc-
ture for understanding multi-party conversations
which can be applied to these settings.

3 Coding Scheme

We closely follow the DDA framework definition
and provide our domain-aware customizations of
the coding scheme of DDA.

Slash Unit (SU) as Atomic Unit of Analysis: In
the DDA framework, a Slash Unit (SU) is the fun-
damental unit of analysis and annotation. It ap-
proximates the minimal functional segment of an
utterance, ensuring that each unit corresponds to a
meaningful communicative act.

Dialogue Act (DA) Categories: Each SU is as-
signed one or more Dialogue Act (DA) labels to
represent its communicative function.

Response Dependency Structure: Dependency
edges encode response relations between SUs.
Each edge is directed from the dependent SU (the
responding unit) to its head SU (the unit it responds
to), effectively capturing: Functional dependencies
(e.g., an Answer depends on a Question), Rhetori-
cal dependencies (forming discourse pairs between
discourse units), and Content dependencies (e.g. a
confusing statement raising a question).

Label Set Hierarchy: To improve annotation
consistency and agreement on DDA’s Discourse
Relation label set, we adopt a hierarchical labeling
strategy. When annotators encounter ambiguity or
struggle to find a fine-grained label that accurately
captures the speaker’s intention, they are encour-
aged to revert to a coarser-grained label. This ap-
proach ensures greater reliability in labeling while
preserving interpretability. Additionally, we an-
alyze agreement and model performance across
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different hierarchy levels in Sec. 5 and 7.2. We
provide the full hierarchy in Appendix B.

3.1 Changes

Over- and Under-segmentation Perfect segmen-
tation is challenging, and we adapt the annotation
scheme to accommodate both over-segmented and
under-segmented units in our dataset.

Example 1: Merging Over-Segmented Units

(1) A: I think that [long pause]
(2) A: we can just connect the two pins.

(2) --(empty)--> (1)

In this case, the two Slash Units clearly form
a single meaningful unit. To avoid unnecessary
fragmentation, we introduce a connection edge to
merge them into a single unit, allowing them to
share the same functional and rhetorical labels.

Example 2: Annotating Within-SU Relations

(3) B: Anyone has an ore?
(4) C: I have one, but you're almost achieving a

monopoly, so ...

(4) --Conceded--> (4)

In SU (4), C states “I have one”, but then con-
cedes “you’re almost achieving a monopoly.” We
would like to annotate this ‘Concession’, but stan-
dard discourse relation annotation requires at least
two distinct SUs. To capture this structure with-
out forcing additional segmentation, we extend the
DDA scheme to support within-SU dependencies
through self-pointing edges with discourse labels.
This approach preserves critical speaker intentions
while deferring further segmentation to future pro-
cessing.

3.2 Domain Specific Conventions

Certain intentions and behaviors fall outside the
original scope of the DDA scheme. Below, we
summarize the most notable customized coding
conventions observed in our corpus:

Reading Aloud: Reading action differs signifi-
cantly from a regular statement, as the intention is
not merely to share information but also to process
it or lend authority to an argument. To capture this
behavior, we use a combined label of Statement +
Self Talk, with additional underlying intentions en-
coded based on context. For example, when paired
with Action Directive, the annotation reflects the
intent of using the read material as a suggestion for
others’ actions.

Pointing Out Objects: Indicating the location
of objects that participants interact with is a com-
mon dialogue action in collaborative settings. To
represent this, we use a combination of Action Di-
rective + Give Details, which reflects the speaker’s
intent to direct the listener’s attention.

Microphone Testing: Another frequently ob-
served dialogue action in our recordings is micro-
phone testing. We assign the labels Exclamation
+ Self-Talk to encode the speaker’s intent when
producing noise for this purpose.

For additional discussion and resolutions col-
lected during the annotation process, we refer read-
ers to the discussion forum.3

4 Dataset Formation and Quality Control

We manually annotated multi-party conversational
data across various domains. In this section, we
show the annotation process, an overview of the
core characteristics of the dataset, distributions of
the DDA labels and how our annotation process
ensures the quality of the annotation.

As previously mentioned, all annotations were
performed on manually transcribed conversations.
However, where available, multimodal cues such
as speaker expressions, gestures, gaze patterns, and
vocal tones were taken into account to ensure a
more comprehensive representation of speaker in-
tentions and actions. We construct DDA through
a web-based DDA annotation application.4 Each
session is doubly annotated by trained annotators
with linguistics backgrounds.

We employ a systematic adjudication process
as our primary strategy for quality control and to
address the initially moderate inter-annotator agree-
ment. This process not only resolves minor dis-
crepancies but also enhances overall annotation
quality, even though in-depth interpretation and
annotation of dialogue data remain inherently chal-
lenging. The adjudication process has evolved
from a group discussion and voting approach to a
more asynchronous collaboration method, improv-
ing efficiency while maintaining annotation quality.
Initially, group discussions required at least two
annotators to deliberate and reach consensus. As
annotators became more familiar with the DDA
coding scheme, the process transitioned to an asyn-
chronous workflow.

3https://github.com/NSF-iSAT/DDA-corpus/discussion-
forum

4https://dda.colorado.edu/v2/
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In the asynchronous adjudication process, once
independent annotations are completed, the two
annotators attempt to justify their disagreements
on DDA edges per SU. This is done through: First,
Densely Paraphrasing – REwriting the original ut-
terance to make dialogue acts and discourse struc-
ture more explicit while preserving the intended
meaning. Second, Documenting Decision Ratio-
nale on edges with disagrement. A third annotator
then reviews these justifications and casts a decid-
ing vote in the event of a tie. Among all dialogue
sessions, Pulley K12 conversations and 3267 out
of 4765 SUs in the Sensor Immersion K12 datatset
were adjudicated via real-time group discussion,
while the reminder of the released dataset was ad-
judicated asynchronously.

Table 1 presents an overview of the DDA struc-
tural patterns and the distribution of labels within
the transcribed dialogues. Furthermore, to provide
a visualization of the annotated dataset, Figure 2
illustrates the distribution of Dialogue Acts (DA)
across the four domains we analyzed. Visualization
of discourse relation distributions can be found in
Figure 3.

These annotations and visualizations serve as a
foundation for further analysis of dialogue flow, dis-
course coherence, and conversational engagement
patterns within multi-party interactions.

5 Inter-Annotator Agreement

Since DDA is not a straightforward classification
task but still relies on a finite set of labels, we adapt
Krippendorff’s Alpha (Krippendorff, 2004) to eval-
uate inter-annotator agreement for our annotations.
Each dialogue consists of a set of SUs, denoted as
U = {u1, . . . , uN}. Each annotator a ∈ A pro-
vides an annotation xi,a for each ui. Here xi,a is a
set of edges or labels, depending on the aspect we
consider.

We define a distance function δ(x, y) ≥ 0 on the
annotation domain Ω. Krippendorff’s alpha can be
defined as:

α = 1− Do

De

where

Do =
∑

ui∈U

∑

a,a′∈A
a<a′

wui,a,a′ δ
(
xui,a, xui,a′

)

stands for observed disagreement with wui,a,a′ de-

Figure 2: Distribution of Dialogue Act Categories across
the four domains. Labels are arranged in descending
order of frequency in the corpus.

note a weight parameter, which we assign as 1.

De =
∑

v∈Ω

∑

w∈Ω
p(v)p(w)δ(v, w)

where p(v) is the empirical proportion of the anno-
tation value v ∈ Ω across all (ui, a) pairs. Formally
this is:

p(v) =

∑
ui∈U

∑
a∈A 1[xui,a = v]∑

ui∈U
∑

a∈A 1[xui,aexists]

here we consider each annotator’s annotation as
one “value” from Ω. An annotation can be then
defined as:

xui,a ⊆ Ωjoint = {(f, l, t) | f, t ∈ Z,

f ≥ t, l ∈ LDDALabel}

δjoint(x, y) = 1− |x ∩ y|
|x ∪ y|
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Domain Edge α Label α(l3) Label α(l2) Label α(l1) Joint α(l3) Joint α(l2) Joint α(l1)

Sensor Immersion K12 0.671 0.513 0.539 0.603 0.384 0.410 0.480
TEAMS 0.638 0.550 0.572 0.648 0.369 0.389 0.456
STAC 0.732 0.572 0.618 0.648 0.458 0.500 0.604
Pulley K12 0.710 0.533 0.548 0.576 0.427 0.443 0.514

overall 0.669 0.532 0.559 0.630 0.388 0.414 0.486

Table 2: Inter-annotator agreement (α) for different domains and different granularity levels of DDA labels. With l3
being the finest level and l1 being the coarsest level

Figure 3: Distribution of Discourse Relation Categories
across the four domains. Labels are arranged in descend-
ing order of frequency in the corpus.

For joint annotations, we set δjoint = 0 for exact
matches, δjoint = 1 when both directional and label
slots mismatch, and 0 < δjoint < 1 when there are
partial matches of either label or edge direction.
We use Jaccard set distance for δ. In general, a
higher positive α value indicates a greater level of
agreement beyond chance between annotators.

To have a better understanding of the intricate
annotation task, we incorporate a label hierarchy
within the DDA label set. Table 2 presents α val-
ues across different domains and levels of label
granularity.

6 Downstream Use Cases

The development of the DDA corpus is driven not
only by theoretical interest but also by its practical
applications. One key use case of the DDA frame-
work is in collaborative learning analysis, where
it can be used to assess students’ interaction dy-

namics in group discussions. By aggregating DDA
edges across a dialogue session, we can construct
a holistic representation of speaker interaction be-
haviors. Figure 4 illustrates this approach, where
each node represents a speaker in a given session,
and incoming edges denote DDA response edges
directed toward the speaker’s utterance, while out-
going edges indicate the opposite. This speaker dy-
namics graph captures interaction patterns through-
out an entire session, both when considering all
response dependencies or particular subsets. For
example in Figure 4 (a),(b) and (c), considering all
response dependencies shows more frequent com-
munication between particular speakers in a group
for different domains. In (d1) and (d2), we can iso-
late subsets of relations to consider, such as those
with Forward communicative function (asking a
‘Question’, making a ‘Proposal’, etc.) or Backward
communicative function (providing an ‘Answer’,
‘Accept’, or ‘Acknowledgment’). Where (c) shows
significant communication between the Pilot and
Messenger or Pilot and Engineer, (d1-2) highlight
that the Pilot is driving most of the discussion in
each case.5 With an automated DDA parser, such
analyses could be generated dynamically, enabling
real-time analysis of group discussions.

Another important application of the DDA struc-
ture is in dialogue policy development, particularly
for improving AI-driven conversational agents. By
leveraging DDA annotations, AI systems can in-
fer speaker intentions more effectively, even when
users do not explicitly verbalize their thought pro-
cesses. The structured representation of speaker re-
lations provides a richer context for response gener-
ation, facilitating a more transparent, controllable,
and interpretable dialogue system.
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Joint Label Edge

Model F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec.
Sensor Immersion K12

Llama-3.1-8B-Instruct (zero-shot) 0.06 0.06 0.06 0.62 0.70 0.55 0.58 0.56 0.60
(few-shot) 0.05 0.07 0.04 0.59 0.63 0.56 0.53 0.61 0.46

Human(reference) 0.63 0.67 0.59 0.86 0.92 0.81 0.89 0.91 0.87
TEAMS

Llama-3.1-8B-Instruct (zero-shot) 0.10 0.10 0.09 0.73 0.80 0.66 0.67 0.64 0.69
(few-shot) 0.06 0.07 0.04 0.75 0.74 0.76 0.59 0.67 0.54

gpt-4o (zero-shot) 0.18 0.18 0.19 0.79 0.83 0.74 0.75 0.67 0.86
Human(reference) 0.66 0.68 0.63 0.90 0.96 0.85 0.88 0.88 0.88

STAC
Llama-3.1-8B-Instruct (zero-shot) 0.10 0.12 0.09 0.66 0.80 0.56 0.48 0.46 0.50

(few-shot) 0.08 0.12 0.06 0.68 0.74 0.64 0.49 0.57 0.43
gpt-4o (zero-shot) 0.27 0.29 0.25 0.73 0.78 0.69 0.76 0.71 0.81
Human (reference) 0.69 0.71 0.68 0.89 0.91 0.87 0.90 0.91 0.89

Table 3: Results for LLM parsing of Dependency Dialogue Acts (DDA) structures, in the Sensor Immersion K12,
TEAMS, and test STAC domains, with the best model performance in bold. An estimate of human performance
computed from our annotation process is given as reference. We find gpt-4o strongly out-performs other methods
but falls well short of the human annotator reference.

7 DDA Parsing with LLMs

We evaluate whether LLMs can analyze conversa-
tional structure and intents using the DDA coding
scheme. To do this, we prompt a variety of pro-
prietary and open-source models with the task of
incrementally constructing a DDA parse.

7.1 Experimental Setup
We describe the prompts, models, and evaluation
metrics used in our parsing experiments.

Datasets For all of our experiments, we use the
dialogues from the Pulley K12 domain as devel-
opment data or as a source for few-shot examples.
Using the remaining domains as test data allows
us to measure generalization across shifts in set-
ting and dialogue modality. Specifically, we eval-
uate on near-domain data from Sensor Immersion
K12 classroom dialogues, a different domain in
the same spoken modality (TEAMS), and a distant
domain in a written modality (STAC).

Prompting Approaches We consider prompting
approaches in an incremental setting, inspired by
the LLaMIPA SDRT discourse parser (Thompson
et al., 2024). For each new set of incoming utter-
ance(s) from a speaker, we predict new edges to
add to an on-going DDA parse.6 We use a chat-

5Note that some relations have neither a forward nor back-
ward communicative function. Table 5 details the relations in
each group.

6To prevent prompting with incomplete dialogue context,
we add adjacent slash units if they are from the same speaker.

formatted prompt which provides general instruc-
tions for DDA Parsing as a text-to-code problem,
as we find text-to-code helps ensure a structurally
valid parse. The system prompt includes the defini-
tion of each DDA relation as a simple python class,
where all relations have a source and target to indi-
cate the edge direction. We evaluate models ability
to parse DDA under two prompt settings. For a
‘zero-shot’ approach, we give only a definition of
each relation type and instructions for forming a
parse. For a ‘few-shot’ approach, we additionally
provide a fixed set of k = 5 demonstrations ran-
domly sampled from the Pulley K12 domain. To
prevent label bias in our sample of examples, we
ensure each example demonstrates a unique combi-
nation of DDA labels when sampling. Details for
each prompt are available in Appendix A.

Models We run experiments using LLaMa 3.1
8B Instruct (Grattafiori et al., 2024) and gpt-4o
(OpenAI et al., 2024). To satisfy data use con-
straints, we evaluate with gpt-4o only on the openly
released domains: TEAMS & STAC. For the same
reason, we run only the ‘zero-shot’ approach, as
the ‘few-shot’ setting requires demonstrations from
the Pulley K12 domain.

Evaluation Metrics As an overall assessment of
parse quality, we compute the F1 over the set of
labeled edges in each graph, which we refer to as
Joint F1. Only a perfect parse scores a Joint F1 of
1. We are also interested in the ability of a parser to
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Figure 4: Sample speaker dynamics graphs from the
(a) STAC corpus, (b) Sensor Immersion K12, and (c-d)
TEAMs corpus arranged from top to bottom

classify the speaker intent of a slash unit, regardless
of how it is attached to the graph. To assess this, we
compute a Label F1 over the out-going labels for
each slash unit. Finally, to assess structure without
consideration of labels, we compute an Edge F1
over the targets of the unlabeled edges. For each of
these F1 measures, we also report the precision and

recall. For reference, we estimate the performance
of a human annotator from our annotation process
as the average of each F1 measure when comparing
each annotator’s labeling to the gold adjudicated
result.7

7.2 Results

Table 3 presents our parsing results across the three
evaluation domains for each model, compared with
our human reference. We find the ‘zero-shot’ gpt-
4o approach significantly outperforms both ‘zero-
shot’ and ‘few-shot’ LLaMa 3.1. Remarkably, we
find the inclusion of few-shot examples does not
help, and in some cases even hurts performance.
Overall, LLM performance for all approaches falls
well short of our estimated human performance.
We think a number of factors might explain this.
First, human annotators are able to use dialogue
video and audio as context when annotating, giving
key insights into understanding the dialogue that
are not captured in a transcript. Second, annotators
communicate with each other about the annotation
process, establishing norms and conventions for
phenomena discovered in each dialogue domain
that are not captured in relation definitions. We
leave development of an improved DDA parser
that could leverage these features to future work.

8 Conclusion and Future Work

While we produce DDA resources for structured
speaker intention modeling and their characteris-
tics and potential impact, several directions remain
open for our future exploration. One of our concur-
rent efforts is to further evaluate the impact of DDA
as an intention representation in facilitating dia-
logue policy learning and response generation. We
aim to assess whether structured intention represen-
tation improves dialogue coherence and response
controllability and will compare DDA-driven mod-
els against dialogue act tagging based approaches.

Additionally, we plan to expand DDA annota-
tions to additional datasets, both within our exist-
ing domains and in new conversational settings.
This expansion will enable cross-domain analysis,
helping to identify commonalities and variations
in speaker intention patterns across educational,
collaborative, and social dialogue contexts.

7It is possible this over-estimates human performance since
each annotator contributes their draft labeling to the adjudi-
cation process, though an un-biased estimate would require
costly triple annotation. Despite this short-coming, we think
this estimate can be useful for comparisons.
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Limitations

The DDA annotation process, though intuitive, is
time-intensive and requires trained annotators, lim-
iting scalability for large datasets. While it cap-
tures utterance-level dependencies, it lacks higher-
order discourse modeling, making it less suited
for multi-session dialogues. Enhancing efficiency
may require hierarchical discourse structures and
context-aware AI integration. Additionally, data ac-
cess control imposes privacy and compliance con-
straints, restricting corpus expansion and broader
deployment. Future work should explore secure
data-sharing protocols to balance accessibility and
privacy while maintaining annotation quality.

Ethics Statement

Our research is designed to support deeper eval-
uation of speaker intention, a process that inher-
ently involves interpretive analysis. Throughout
this work, we uphold strict standards of data pri-
vacy and ethical responsibility to ensure that all
human subject research is conducted with no risk
of harm to participants. All data used in this study
were collected with explicit informed consent, and
we are committed to protecting the privacy and
rights of every individual involved.

We further commit to fairness and the conscien-
tious minimization of bias in both our methodol-
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research community to adopt similarly rigorous
standards in the pursuit of safe and responsible
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A Parsing Prompts

We present our prompts for incremental DDA pars-
ing as text-to-code. The system prompt is presented
in Figure 5, and the instance prompt is presented
in Figure 6. The system prompt describes the task
and defines all DDA relations and demonstrates
the expected output format. The instance prompt
contains details for the current dialogue turn, in-
cluding the dialogue history and the turn for the
incremental parse.
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level 1 level 2 level 3

Temporal
Asynchronous

Before
After

Synchronous Synchronous

Contingency

Cause
Causing
Caused

Motivation
Motivating
Motivated

Justify
Justifying
Justified

Condition
Conditioning
Conditioned

Negative-Condition
NegConditioning
NegConditioned

Purpose
Purposing
Purposed

Enablement
Enabling
Enabled

Evaluation
Evaluating
Evaluated

Comparison

Contrast Contrast
Similarity Similar

Concession
Conceding
Conceded

Expansion

Instantiation
Instantiating
Instantiated

Equivalence Restate/Equal

Level-of-Detail
GivingDetails
GivenDetails

Disjunction Alternative

Exception
Excluding
Excluded

Conjunction Conjunction

Manner
GivingManner
GivenManner

Substitution
Substituting
Substituted

Table 4: Discourse relations adapted from Penn Dis-
course Treebank 3.0 (Kim et al., 2020)

B DDA Relation Label Hierarchy

Both dialogue acts and rhetorical relations in DDA
are hierarchically organized, allowing annotators
to use a coarser grain label when a slash unit is
ambiguous. This hierarchy also permits leveled
analyses of agreement, where finer-grain labels are
summarized by their higher-level categories, as in
Table 2.

In Table 5 we present the hierarchy of dialogue
acts, and in Table 4 we present the hierarchy for
discourse relations.

level 1 level 2 level 3
Answer Answer

Accept
Agreement

Reject
Collaborative
Completion
Appreciation
Downplayer
Sympathy

Acknowledge
Signal non

-understanding

Backward
Communicative

Function
Understanding

Correction
Abandoned

Stalling
communicative

status
communicative

status
Self-talk

Statement
Statements

Opinion
OfferCommiting speaker

future action Commit
Proposal
Action

Directive
Question

Info-request
Open

Question

Influencing
addressee

future action
Rhetorical
Question
Apology
Thanking

Exclamation

Forward
Communicative

Function

Other
forward
function Explicit

performative
Greeting

(conventional
opening)

Conventional
closing

Communication
Management

Welcome
TakeStock

Information
Level

Task Task
Management
Incomplete

HedgeOther Other
Joke

Table 5: Dialogue Acts adapt from Switchboard
DAMSL scheme
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You are an assistant with an expertise in annotating multi-party conversations using "Dependency Dialogue Acts" or DDA, a new framework combining
rhetorical relations and dialogue acts. The framework unifies rhetorical relations from PDTB and dialogue acts from Switchboard-DAMSL. You are
tasked with annotating portions of ongoing conversations. A DDA relation can be defined by a dataclass with a `source` and `target` attribute. `
source` indicates the index of the speaker's utterance, and `target` indicates the index of the dependent utterance.

```python
@dataclass
class DDARelation:

source: int # index of the source utterance
target: int # index of the target utterance

```

Each relation is a unique subclass of `DDARelation`. Here is the list of relations and their simplified definitions:

{relations_definitions}

Always be sure to adhere to the following facts and rules:
1. Annotations in DDA are edges which connect a speaker's utterance to a previous utterance using one of the relations. This is called a dependency.
2. An utterance may relate to more than one previous utterance, so be sure to capture all edge dependencies.
3. Dependency edges are directed from speaker (`source`) to each dependent utterance (`target`). Self-pointing edges have `source` == `target`.
4. Edges always point to a previous utterance in the history, or to the source for a self-pointing edge. Therefore, `target` <= `source`.
5. An utterance may relate to the same previous utterance in multiple ways. Each rhetorical or dialogue-act relationship is a separate edge dependency.
6. Be specific: carefully consider the intent of the speaker and choose the relations that best capture this function.
7: Be thorough: speakers often convey multiple intentions in a single utterance, especially when applying rhetoric to facilitate a communicative

function, requiring multiple edges.
8. Utterances which start a new conversation thread can be annotated with a self-pointing edge (`source` == `target`).
9. Format: You will produce a list of DDA dependency edges in a code-block, prefixed with 'Parse:', for each new set of utterances in the conversation.
10. Format: Use ONLY the above relation labels, do NOT create your own.
11. You will provide no information that does not adhere to this format.

In each turn, you'll be given the next utterance(s) in the conversation, and some contextual information about the ongoing parse. You need to give a
parse for the new utterances in the dialogue in a code-block prefixed

with 'Parse:', which will be processed by the system to incrementally update the ongoing parse.
DO NOT include edges from other messages! Only include the new edges that are introduced in the new set of utterances.
In the code block, set the variable `edges` to the new edges of your incremental parse. For example:

Parse:
```python
edges = [

QuestionInfoRequest(source=0, target=0)
]
```{example_str}

Figure 5: System prompt used in parsing experiments. The relation_definitions is replaced with a line for each
relation and its definition. The example_str is replaced with the in-context examples. We found adding in-context
examples as historic ‘messages’ in the prompt degraded performance.

Here is a part of a conversation between {n_speakers} speakers. They are {speakers_description}
discussing {conversation_topic}. Please produce a DDA parse:

History:
{history}

Next Turn:
{current_turn}

Figure 6: The prompt used in our parsing experiments for each problem instance, following the system prompt.
The history is the k = 12 most recent utterances in the dialogue and their speakers. The current turn provides
new utterances to parse. We format each prompt with short descriptives derived from the domain. For example,
all dialogues in the Sensor Immersion K12 domain are parsed with speakers_description as ‘middle school
students’ and conversation_topic as ‘a lab on sensors’
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