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Abstract

Improving the truthfulness of LLMs to alleviate
hallucinations has become critical for promot-
ing the practical deployment of LLMs. Current
fine-tuning-based methods ignore the intrin-
sic discrepancy in the truthfulness correlations
across LLM internal modules, and instead treat
them equally, which may potentially decrease
the performance of truthfulness improvement.
In this paper, we propose a truthfulness-driven
rank-adaptive LoRA method to improve LLM
truthfulness (RaLFiT), which adaptively allo-
cates the ranks in LoRA training according to
the truthfulness correlations of modules within
LLM. Specifically, it first measures the truth-
fulness correlation of each LLM module by a
probing process, and allocates higher ranks to
strongly correlated modules, which means a
larger update subspace during training. Experi-
mental results on TruthfulQA show that RaL-
FiT consistently outperforms previous state-of-
the-art methods across the Llama LLM family,
verifying its effectiveness and superiority, and
for the first time makes the performance of 7B
Llama LLMs exceed GPT-4.

1 Introduction

Large language models (LLMs) have developed
rapidly in recent years and are gradually affecting
various industries (OpenAI, 2023; Dubey et al.,
2024). However, a significant challenge that limits
their wider application, especially in safety-critical
domains such as healthcare, is the phenomenon
of hallucination, where LLMs sometimes generate
fluent, natural, but untruthful responses (Ji et al.,
2023). Therefore, alleviating hallucinations in
LLMs has attracted increasing research attention.

Alleviating hallucinations aims to induce LLMs
to be prone to generate truthful responses rather
than untruthful responses, that is, to improve the
truthfulness of LLMs. Existing efficient methods to
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Figure 1: Truthfulness correlation of internal modules
within the LLM (Llama2-7B-chat). A probe model is
trained for each module to classify truthful/untruthful
responses with the module’s output representation as
input, and the truthfulness correlation is measured by
probe accuracy.

improve truthfulness are training-free without mod-
ifying the LLM itself, including Contrast Decoding
(Zhang et al., 2023b; Kai et al., 2024) and Represen-
tation Editing (Li et al., 2023; Chen et al., 2024b).
Specifically, Contrast Decoding steers the output
probability towards the truthful responses by the
prediction difference between the "strong"/"weak"
model in truthfulness; Representation Editing pre-
computes truthful directions by paired represen-
tations of truthful/untruthful responses and shifts
representations along these directions during infer-
ence. Due to their training-free nature, both meth-
ods are lightweight but offer limited improvement
in truthfulness.

In contrast, existing parameter-efficient fine-
tuning (PEFT) based methods have achieved
promising performance by updating parameters
with the training objective of improving truthful-
ness (Chen et al., 2024a; Joshi et al., 2024). Low-
Rank Adaptation (LoRA, Hu et al., 2022), as the
most common PEFT technique, assumes that the
changes in LLM parameters can be captured by
matrices of much lower complexity (i.e. low rank),
and instead of modifying a large matrix in the LLM,
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represents it using two smaller matrices whose
product is approximately the same as the original
matrix. However, current truthfulness improve-
ment methods directly apply LoRA as an out-of-
the-box PEFT technique to LLM without further
adaptation towards truthfulness, which treats all
matrices across modules equally without distin-
guishing between specific modules.

In fact, there are significant discrepancies in
the truthfulness correlations across different mod-
ule types (MHA or FFN) and layers. We train
a probe model for each module to classify truth-
ful/untruthful responses with the module’s output
representation as input, and measure the module’s
truthfulness correlation by probe accuracy (see Fig-
ure 1). The results show that MHA modules in
certain middle layers can achieve 80% truthfulness
probing accuracy, while the performance of most
FFN modules approaches random guessing. There-
fore, the discrepancy in truthfulness correlations
across modules is objective, and efficiently model-
ing this discrepancy during fine-tuning may bring
more improvement to LLM’s truthfulness.

Intuitively, a straightforward way to model this
discrepancy is to allocate more trainable param-
eters to the modules that are more relevant to
truthfulness. To this end, we propose a Rank-
adaptive LoRA Fine-tuning method to improve
Truthfulness in LLMs (RaLFiT), which adaptively
allocates the ranks in LoRA training according
to the truthfulness correlations of modules within
LLM. Specifically, we first measure the truthful-
ness correlation of each MHA or FFN module
within LLM by a probing process, as shown in
Figure 1. Then, instead of employing the uni-
fied rank setting in vanilla LoRA, we set the rank
value that is positively correlated with the truth-
fulness correlation for each module, that is, the
so-called truthfulness-driven rank-adaptive LoRA.
This means that modules that are more relevant to
truthfulness will be allocated more trainable pa-
rameters and a larger update subspace, which are
brought by higher ranks in LoRA. This adaptive
allocation facilitates more precise and effective op-
timization in the subsequent training phase. Finally,
the LLM is fine-tuned through the rank-adaptive
LoRA and Direct Preference Optimization (DPO,
Rafailov et al., 2023) algorithm to effectively im-
prove the truthfulness of LLM.

Also, some works specifically study the adap-
tive rank in LoRA for more efficient training when
adapting to downstream tasks (Zhang et al., 2023a;

Ding et al., 2023). They design heuristic scoring
functions for rank importance during training, such
as sensitivity-based, l0 norm-based, etc., and mix
rank adjustment with training together. This in-
creases training complexity and variable trainable
parameters may lead to training instability. In con-
trast, RaLFiT predetermines the rank allocation
based on the truthfulness correlations across mod-
ules before training, and does not involve any rank
adjustment during the training process.

To verify the effectiveness of RaLFiT, we con-
duct an evaluation on multiple-choice and open-
generation benchmarks for truthfulness. Exper-
imental results show that RaLFiT surpasses all
baselines, and for the first time makes the perfor-
mance of 7B Llama LLMs exceed GPT-4 (Ope-
nAI, 2023). In addition, the generalization results
on other benchmarks show that RaLFiT does not
significantly reduce the core capabilities of LLM,
and even partly improves it. Finally, we also
conduct a further analysis of RaLFiT to provide
more insights for future research development of
parameter-adaptive PEFT.

The main contributions of this paper are as fol-
lows: (1) We investigate the possibility of intro-
ducing truthfulness correlation to guide fine-tuning
to improve LLM’s truthfulness effectively. (2) We
propose RaLFiT, which adaptively allocates the
ranks in LoRA training according to the truthful-
ness correlation of modules within LLM. (3) Ex-
perimental results show that RaLFiT significantly
improves the truthfulness of LLMs, achieving new
state-of-the-art on the TruthfulQA benchmarks.

2 Preliminary

2.1 Task Formulation

Given a truthfulness dataset D = {(qi, a+i , a−i )},
where qi represents a question, a+i is the truth-
ful response, and a−i is the untruthful response,
the LLM is guided to generate responses aligned
with a+ while minimizing tendencies to produce
a−. In fine-tuning algorithms, supervised fine-
tuning (SFT) aligns the LLM output with truthful
responses by directly training on truthful responses
{(qi, a+i )} and maximizing the conditional genera-
tion probability p(a+i |qi), while Direct Preference
Optimization (DPO) aligns the LLM with human
preferences by comparing paired responses and op-
timizing the preference probability p(a+i ≻ a−i |qi).
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2.2 Low-Rank Adaption

As the most commonly used PEFT technique,
LoRA is designed to greatly reduce the number of
trainable parameters during fine-tuning, which is
orthogonal to the fine-tuning algorithm itself. The
core of LoRA is to parameterize the incremental
update △W of a large weight matrix W0 in LLMs
as a low-rank matrix by the product of two much
smaller matrices:

W0 +△W = W0 +BA,

where W0 ∈ Rd×k, B ∈ Rd×r, A ∈ Rr×k and
rank r ≪ min(d, k), significantly reducing the
number of trainable parameters. The effectiveness
of LoRA depends on the specific applied matrices
and the chosen rank for the specified matrices, rep-
resenting the size of the trainable parameters and
the update subspace. In practice, LoRA is generally
applied to query and value projections (i.e. WQ

and W V ) in MHA modules, and the chosen rank
for all matrices is unified.

3 Method

To guide LoRA training with truthfulness corre-
lations of modules, we propose RaLFiT. In this
section, we first present probing-based truthfulness
correlation measurement for each module within
LLM, and then introduce the truthfulness-driven
rank-adaptive LoRA training. The overall frame-
work is depicted in Figure 2.

3.1 Truthfulness Correlation Probing

In RaLFiT, a probing process (Alain and Bengio,
2017) is employed to measure truthfulness cor-
relations of modules within LLM, which decide
the subsequent rank allocation. As current LLMs
have almost adopted the stacked transformer ar-
chitecture, where each layer therein consists of a
multi-head attention (MHA) module and a fully
connected feed-forward network (FFN) module,
we take MHAs and FFNs as the probing targets.

First, we need to prepare a probing dataset for
each module. Specifically, we build this on the
truthfulness dataset D = {(qi, a+i , a−i )}ni=1. The
truthful and untruthful responses a+i , a

−
i are con-

catenated with the question qi separately and then
fed into the LLM to collect the output representa-
tion of each module at the last token. Each mod-
ule’s output representations and corresponding bi-
nary labels about truthfulness make up the probing

dataset P = {(ri, li)}2ni=1, ri ∈ Rd, li ∈ {0, 1},
where d is the dimension of LLM’s hidden states.

Then, a probe model is introduced to measure
the truthfulness correlation of each module by this
probing dataset. Specifically, the probing dataset P
is randomly split into training and validation sets
by 4:1. We train a probe model on the training
set and its classification accuracy on the validation
set is used to measure how much each module is
related to truthfulness. The probe model here can
be any lightweight classifier1, such as Logistic Re-
gression (LR), Multilayer Perceptron (MLP), etc.
The truthfulness correlation of a module is simply
defined as the normalized accuracy:

Corr = 2 ∗ |Acc− 0.5|.

The higher probing accuracy suggests that there is
more truthfulness evidence underlying the output
representation, and the corresponding module has
the stronger truthfulness correlation. In particular,
the probing accuracy of a module approaches 0.5,
i.e. random guessing, meaning that there is no truth-
fulness evidence in the output representation of the
module and the module is more likely responsible
for some truthfulness-irrelevant part in the LLM2.

3.2 Rank-adaptive LoRA Training
To effectively improve the truthfulness of the LLM,
an adaptive rank allocation scheme is required be-
fore LoRA training. Due to the residual mechanism
in the transformer, the final output representation
of the LLM (used to predict the next token dur-
ing generation) can be approximately viewed as
the sum of output representations of all MHA and
FFN modules when ignoring layer regularization.
This means that the LLM truthfulness almost de-
pends on all modules linearly. Meanwhile, among
them, some modules are strongly related to truthful-
ness while others are not (see Figure 1). Therefore,
when using LoRA training to improve the truth-
fulness of the LLM, a larger rank value should be
allocated to the modules that are more related to
truthfulness, which means more trainable parame-
ters and a larger update subspace. Specifically, we
allocate the rank values that are positively corre-
lated with the truthfulness correlation of the module
from the whole rank budget:

ranki =
Corrαi∑

1≤i≤2∗N Corrαi
∗ budget,

1See subsection 5.1 for a comparison of probe models.
2See Appendix A for all probe results.
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Figure 2: The overall framework of RaLFiT. A probing process measures the truthfulness correlation of each module
within the LLM, and then the rank values are adaptively allocated according to corresponding correlations.

where N means the number of the LLM layer, with
totally 2 ∗ N modules involved in the allocation,
and α is a hyperparameter for allocation sharpness3.
This adaptive allocation will facilitate more precise
and effective optimization in subsequent training,
thereby further improving LLM truthfulness.

Finally, instead of directly supervised fine-tuning
on truthful responses, we train RaLFiT on paired
truthful/untruthful responses with the DPO algo-
rithm, which has been verified to be superior to SFT
in truthfulness improvement (Chen et al., 2024a).

4 Experiments

4.1 Experimental Settings

Datasets and Evaluation Metrics To evaluate
the LLM truthfulness, we established our experi-
ments on the TruthfulQA benchmark (Lin et al.,
2022), and additionally evaluate the core capabili-
ties of LLMs by three other benchmarks, i.e., ARC
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), and MMLU (Hendrycks et al., 2021).

TruthfulQA is considered a mainstream bench-
mark to measure the LLM truthfulness, containing
817 questions in total, each of which comes with
an average of 3.2 truthful responses and 4.1 un-
truthful responses. It includes two task: multiple-
choice and open-ended generation. In multiple-
choice, given the question, the conditional prob-
abilities of all candidate responses are computed
for LLM and mutiple-choice accracy (MC1, MC2)

3When α is set to 0, it degenerates to vanilla LoRA.

depends on the ranking of truthful and untruth-
ful responses. Specifically, MC1 accuracy is the
percentage of assigning the highest probability to
the best response, while MC2 accuracy is the per-
centage of the samples where the normalized total
probability assigned to truthful responses is higher
than that of untruthful ones. In open-ended gener-
ation, LLM generates a response to each question
and two fine-tuned GPT-3 models are employed
to evaluate the truthfulness and informativeness of
generated responses. The metrics True and Info
respectively refer to the percentage of generated re-
sponses deemed truthful/helpful by the correspond-
ing evaluation model and True * Info serves as a
comprehensive measure. Since OpenAI has depre-
cated the fine-tuning API of the GPT-3 model, we
evaluate generated responses with two fine-tuned
GPT-4o-mini instead.

ARC Challenge, HellaSwag, and MMLU are
three prominent benchmarks to evaluate LLMs,
adopted by Open LLM Leaderborad (Beeching
et al., 2023). They respectively focus on complex
reasoning on science questions, commonsense rea-
soning, language understanding. Following the
evaluation configurations in Open LLM Leader-
board4, we adopt Accuracy as the metric.

LLMs To verify the effectiveness of RaLFiT
on different LLMs, we conduct experiments
on Llama family, including Llama-7B, Llama2-
7B, Llama2-7B-chat, Llama3-8B and Llama3-8B-

4https://github.com/EleutherAI/lm-evaluation-harness
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instruct. Llama2-7B-chat is used for most subse-
quent experiments unless explicitly stated.

Baselines We compare RaLFiT against the fol-
lowing baseline methods, which represent the cur-
rent state-of-the-art on the TruthfulQA benchmarks:
(1) For Contrastive Decoding, SH2 (Kai et al.,
2024) employs this strategy when comparing out-
put probabilities from truthful/untruthful prompts,
while ICD (Zhang et al., 2023b) compares the orig-
inal LLM with the fine-tuned untruthful LLM. (2)
For Representation Editing, ITI (Li et al., 2023)
and TrFr (Chen et al., 2024b) seek truth-related di-
rections respectively by linear probing/multi-linear
orthogonal probing and shift representations along
these directions, while TruthX (Zhang et al., 2024)
employs an autoencoder to decouple semantic and
truthful subspaces from LLM’s representations,
and edits in the truthful subspace. (3) For PEFT-
based methods, RED (Wu et al., 2024) only fine-
tunes the scaling and biasing vectors of representa-
tions avoiding over-parameterization. LoFiT (Yin
et al., 2024) selects top-k attention heads with the
largest norm of scaling vectors of representations
through the first training, and further trains the bias
vector for representation of these heads through
the second training. The other LoRA-based base-
lines involve SFT, DPO, GRATH (Chen et al.,
2024a) which iteratively optimizes training data
and LLM. Besides, we also compare RaLFiT with
rank-adaptive LoRA varients. AdaLoRA (Zhang
et al., 2023a) which adjusts rank allocation through
a sensitivity-based importance scoring function dur-
ing training, while Sora (Ding et al., 2023) intro-
duces a gate unit to LoRA during training, and
adjusts the rank under the sparsity of the gate.

Implementation Details Following ITI and
TruthX, we use 2-fold cross-validation to ensure
that no test data is leaked during the whole pro-
cess of RaLFiT. Besides, the probe model used in
RaLFiT is the MLP classifier with default configu-
ration in scikit-learn (Buitinck et al., 2013), and the
sharpness hyper-parameter α is set to 1 in the main
result, meaning a linear allocation. To directly im-
prove the truthfulness of the final output represen-
tation in LLM, we intuitively choose the matrices
that are computationally closest to the output rep-
resentations of modules to apply LoRA, namely
output projection WO in MHAs and down projec-
tion WD in FFNs5. All training configurations

5See subsection 5.4 for a comparison of applied matrices.

follow LoFiT, and all experiments are conducted
on a single NVIDIA-RTX A800 GPU with 80G
memory. In addition, for a fair comparison to RaL-
FiT, all PEFT-based baselines except SFT employ
the DPO algorithm, and all LoRA-based methods
apply LoRA to WO and WD with an average rank
budget of 8.

4.2 Main Results

Table 1 presents the performance of RaLFiT and
all baselines on the TruthfulQA benchmark. Ex-
perimental results show that RaLFiT significantly
outperforms all baselines in both multiple-choice
and generation tasks, verifying its effectiveness and
superiority in improving LLM truthfulness.

Specifically, compared to LoRA (DPO), the
direct baseline of RaLFiT, RaLFiT can improve
+2.48 average accuracy on multiple-choice task and
+1.3 truthfulness on generation task, which is at-
tributed to the truthfulness-driven rank-adaptive
setting in RaLFiT. This suggests that it matters to
consider modules’ correlations to truthfulness dur-
ing training. It is also partly reflected in non-LoRA
methods, i.e., RED and LoFiT. While these two
methods both consider fine-tuning the scaling and
bias vectors of internal representations in LLMs,
LoFiT performs additional truthfulness-relevant
attention head selection instead of directly fine-
tuning all modules in RED, and thus significantly
outperforms RED.

In addition, not all rank-adaptive methods are ef-
fective to truthfulness improvement. Compared to
the original LoRA, the other rank-adaptive methods
have varying degrees of performance degradation,
especially AdaLoRA. We attribute this to the in-
creased training complexity and unstable parameter
training, caused by mixing rank adjustment with
training together, while RaLFiT pre-determines the
rank allocation before training to maintain the in-
dependence and stability of training.

Generalizability across more Benchmarks To
evaluate the core capabilities of LLMs fine-tuned
on TruthfulQA, we conduct an experiment on
three benchmarks and the results are shown in Ta-
ble 2. We can see that RaLFiT and LoRA (DPO)
even significantly improve the reasoning capabil-
ities of LLM on ARC Challenge and HellaSwag
benchmarks, with a slight decrease in language
comprehension capability on MMLU benchmark,
while LoRA (SFT) decreases overall. As found in
GRATH, DPO is superior to SFT in both improv-
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Methods Multiple-Choice Open-Ended Generation

MC1 (%) MC2 (%) AVG (%) True (%) Info (%) True*Info (%)

Llama2-chat 33.66 51.29 42.48 64.14 85.07 54.56

Contrastive Decoding

SH2 33.90 57.07 45.49 64.38* 65.59* 42.23*
ICD 46.32 69.08 57.70 - - -

Representation Editing

ITI 34.64 51.55 43.10 65.73 83.47 54.86
TrFr 36.70 - - 67.44* 80.91* 54.56*
TruthX 54.22 73.90 64.06 67.81 92.66 62.83

Fine-tuning Methods

RED 48.60 66.98 57.79 80.29 88.24 70.85
LoFiT 54.50 74.90 64.70 - - -
LoRA (SFT) 41.01 58.74 49.88 69.52 83.85 58.29
LoRA (DPO) 57.78 75.24 66.51 81.64 93.76 76.54
GRATH 54.71 69.10 61.91 - - -
AdaLoRA 45.96 65.84 55.90 79.80 87.88 70.13
Sora 56.80 74.31 65.56 81.76 92.90 75.95

RaLFiT 60.22 77.76 68.99 82.98 93.27 77.40

Table 1: Main results on TruthfulQA. All results on the generation task are evaluated by fine-tuned GPT-4o-mini,
except the results with * which are evaluated by fine-tuned GPT-3.

Methods # Param ARC HellaSwag MMLU

Llama2-chat - 53.67 78.60 47.27
LoRA (SFT) 5.96M 52.56 76.92 46.73
LoRA (DPO) 5.96M 58.28 79.78 46.94
RaLFiT 5.11M 58.11 79.83 46.77

Table 2: Performance across more Benchmarks after
fine-tuning on TruthfulQA.

ing truthfulness and maintaining core capabilities
for LLMs, and RaLFiT also inherits this property.
By the way, due to allocating more rank to WO

rather than WD with more dimensions, RaLFiT
uses fewer trainable parameters than vanilla LoRA.

Results on More LLMs To further verify the ef-
fectiveness of RaLFiT, we experiment on 7B/8B
LLMs in the Llama LLM family. From Figure 3,
we can see that RaLFiT can provide further im-
provements over LoRA across all LLMs, benefit-
ing from the adaptive rank allocation. Excitingly,
RaLFiT for the first time makes the performance
of all 7B Llama LLMs exceed GPT-4 (OpenAI,
2023) on TruthfulQA. Furthermore, we observe
that RaLFiT brings more truthfulness improvement
for the base LLMs (Llama2-7B, Llama3-8B) than
their chat versions (Llama2-7B-Chat, Llama3-8B-
Instruct), while their chat versions perform better

truthfulness themselves.

5 Analyses

To gain more insights into RaLFiT, we conducted
analytical experiments on some influencing factors,
including probe models, rank budgets, allocation
sharpness, and matrices applying LoRA.

5.1 Effect of Probe Models

The probe model is used to measure the truthful-
ness correlation of internal modules and further
decides the rank allocation, the choice of which
is quite important to RaLFiT. In this subsection,
we conduct a comparative experiment on a linear
model (Logistic Regression), a non-linear model
(MLP) and their variants with input feature nor-
malization, to explore the effect of different probe
models in RaLFiT.

Table 3 presents RaLFiT’s performance with dif-
ferent probe models. We can see MLP outperforms
Logistic Regression consistently. This is because
the non-linear model has a stronger probing ca-
pability, bringing more accurate measurements of
truthfulness correlation, and thus the rank alloca-
tion in RaLFiT is more adaptive. Besides, feature
normalization may lose some information, leading
to less accurate measurements of truthfulness corre-
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Figure 3: Results on the Llama LLM family.

lation, although it helps the probe model converge
in practice.

5.2 Effect of Rank Budgets

In this subsection, we explore the performance of
vanilla LoRA and RaLFiT under different rank bud-
gets. From Figure 4, we can see RaLFiT can bring
further improvement on LLM truthfulness over
vanilla LoRA across varying rank budgets, veri-
fying the broad effectiveness of the proposed rank-
adaptive allocation. In addition, vanilla LoRA and
RaLFiT, respectively, reach the best performance
at the average rank budget of 4 and 8 rather than
the highest 32, suggesting that the higher rank (i.e.,
more trainable parameters) does not mean a greater
improvement. This also indirectly indicates the
importance of allocating an adaptive rank to each
internal module within the LLM, as we consider in
this paper.

5.3 Effect of Allocation Sharpness

In RaLFiT, the sharpness for rank allocation is de-
termined by both the truthfulness correlation distri-
bution and the sharpness hyper-parameter α. Given
the inherent truthfulness correlations obtained by
probing, a larger α represents a sharper rank allo-
cation, while α = 0 denotes the equal allocation in
vanilla LoRA.

Figure 5 shows RaLFiT’s performance with vary-
ing sharpness hyper-parameter α. We can see that
the performance of RaLFiT first increases and then
decreases slightly as α increases, reaching its op-
timum when α = 1, that is, the ranks are linearly
allocated according to the truthfulness correlations.
This means that adaptively allocating ranks based
on truthfulness correlations does indeed bring fur-
ther truthfulness gains to the LLM, but extremely
sharp allocations, that is, allocating the vast major-
ity of the rank budget only to modules with high

Probe Models MC1 (%) MC2 (%) AVG (%)

LR 59.25 77.31 68.28
MLP 60.22 77.76 68.99
LR (normed) 59.12 77.45 68.29
MLP (normed) 59.61 77.32 68.47

Table 3: Effect of Probe Models.

Figure 4: Performance under different rank budgets.

Figure 5: Performance with varying sharpness hyper-
parameter α.

correlations, will partially reduce this gain.

5.4 Effect of Matrices Applying LoRA

In this subsection, we explore the performance
when different matrices are chosen to apply LoRA.
We conduct experiments on three different groups
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Applied Matrices MC1 (%) MC2 (%) AVG (%)

WQ,WV 55.09 73.95 64.52
+RaLFiT 58.39 76.75 67.57

WV ,WU 57.53 75.55 66.54
+RaLFiT 59.61 77.95 68.78

WO,WD 57.78 75.24 66.51
+RaLFiT 60.22 77.76 68.99

Table 4: Effect of Varying Matrices Applying LoRA.

of applied matrices and the results are shown in
Table 4. We can see RaLFiT consistently out-
performs vanilla LoRA across different applied
matrices, benefiting from the adaptive rank alloca-
tion. Besides, we observe that the general setting of
LoRA (i.e., WQ and W V as applied matrices) per-
forms the worst, because this setting only focuses
on the adaptation of MHA modules and ignores the
other FFN modules. Futher, when choosing WO

and WD as applied matrices that are computation-
ally closest to the output representations of MHA
and FFN modules, RaLFiT can obtain the best per-
formance. This is probably because the adaptation
of WO and WD may more directly improve the
truthfulness of the output representations of MHA
and FFN modules, the sum of which determines
the final prediction of the LLM.

6 Related Work

Initial methods for improving truthfulness focus
primarily on the inference phase. They attempt to
achieve this by adjusting only the output probabili-
ties or intermediate representations without modi-
fying LLM parameters, respectively corresponding
to Contrast Decoding and Representation Editing.

Contrast Decoding adjusts the output probability
towards the truthful responses by amplifying the
predictions from the truthful model while suppress-
ing the untruthful ones, and the truthful/untruthful
model here is in a broad sense. Specifically, Dola
(Chuang et al., 2024) takes higher layers of the
LLM as the truthful model and lower layers as the
untruthful model; SH2 (Kai et al., 2024) consid-
ers the LLM prompted with factual information as
the truthful model while ICD (Zhang et al., 2023b)
treats an LLM fine-tuned with non-factual samples
as the untruthful model.

Representation Editing seeks truth-related direc-
tions by paired representation of truthful/untruthful
responses and shifts representations along these
directions. Specifically, ITI (Li et al., 2023) lo-

cates truth-related representation in MHA heads by
linear probing and computes the shifting direction
by the difference vector of the paired representa-
tion. NL-ITI (Hoscilowicz et al., 2024) and TrFr
(Chen et al., 2024b) respectively expand non-linear
probing and multi-linear orthogonal probing on ITI.
TruthX (Zhang et al., 2024) uses an auto-encoder
to map LLM’s representations into semantic and
truthful latent spaces and edits in the truthful space.

Benefiting from the development of PEFT (such
as LoRA) and alignment (such as DPO) techniques,
some fine-tuning based methods emerge, usually
with significant truthfulness improvements. Specif-
ically, RAHF (Liu et al., 2024) first collects truth-
ful/untruthful representations under opposite stim-
ulus conditions and then introduces LoRA matri-
ces to learn the difference vector. GRATH (Chen
et al., 2024a) generates pairwise truthfulness train-
ing data, optimizes the LLM via LoRA and DPO,
and introduces an iteration mechanism to training
data refinement and LLM optimization. However,
they usually take LoRA as an out-of-box PEFT
technique, and do not consider exploiting truthful-
ness correlations of modules to further optimize
LoRA training as in this paper.

Some rank-adaptive methods are designed for
more efficient training when adapting to down-
stream tasks (Zhang et al., 2023a; Ding et al., 2023).
They score all ranks based on features during train-
ing, such as sensitivity, l0 norm, etc., and perform
rank adjustment interspersed in training, leading
to increased training complexity and instability. In
contrast, RaLFiT directly measures the truthfulness
correlations of modules and adaptively allocates
ranks before training.

7 Conclusion

To improve the truthfulness of the LLM, this paper
proposes RaLFiT, which adaptively allocates the
ranks in LoRA training according to the truthful-
ness correlation of modules within LLM. It first
measures the truthfulness correlation of each mod-
ule within the LLM seperately by a probing process,
and the corresponding rank is simply set to be pos-
itively correlated with the truthfulness correlation.
Extensive experiments show that RaLFiT consis-
tently outperforms previous state-of-the-art by a
significant margin on both mutiple-choice and gen-
eration tasks, and for the first time makes the perfor-
mance of 7B Llama LLMs exceed GPT-4, verifying
its effectiveness and superiority. Further analytical
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experiments on key settings provide more in-depth
insights in RaLFiT.

Limitation

RaLFiT measures truthfulness correlations of LLM
modules by probing output presentation of mod-
ules, and then allocates adaptive ranks to modules.
However, for the sake of simplicity, RaLFiT only
decomposes the LLM into MHA and FFN mod-
ules to probe, and does not further study the dif-
ferences in truthfulness correlations between the
sub-modules within MHA and FFN, which can be
left for future research.
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Methods Qwen2.5-14B Qwen2.5-32B

Original LLM 38.7 39.2
LoRA (DPO) 60.8 64.6
RaLFiT 61.9 65.6

Table 5: Evaluation on Larger-scale LLMs.

where the probe model is MLP. We can see that
except for the Llama2 series, almost all LLMs show
high truthfulness correlations on the middle MHA
and FFN, while the first few layers and the last few
layers are lower. As for Llama2 LLMs, their FFNs
always exhibit low truthfulness correlations.

B Direct Preference Optimization

We employ the DPO algorithm to improve the truth-
fulness of LLM. Given the truthfulness dataset
D = {(qi, a+i , a−i )}, the loss function of DPO can
be formulated as

LDPO(πθ;πref) = −E(q,a+,a−)∼D

[
log p(a+ ≻ a−|q)

]
,

p(a+ ≻ a−|q) = σ

(
β log

πθ(a
+|q)

πref(a+|q) − β log
πθ(a

−|q)
πref(a−|q)

)
,

where πθ is the model to be fine-tuned, σ is the
logistic function and β serves as a parameter that
regulates the deviation from the reference model
πref. DPO enables LLMs to learn the human pref-
erence for truthfulness directly from paired data.

C Larger-scale LLM Evaluation

To verify the effectiveness of the proposed method
on larger-scale LLM, we conduct experiments on
Qwen2.5-14B and Qwen2.5-32B. Their MC1 ac-
curacy is presented in Table 5. The results show
that although on the larger-scale LLM, RaLFiT
can still bring a non-trivial further improvement on
truthfulness.
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Figure 6: The probe results of the base models in Llama LLM family.

Figure 7: The probe results of the chat models in Llama LLM family.
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