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Abstract

We introduce PruneVid, a training-free visual
token pruning method designed to enhance the
efficiency of multimodal video understanding.
While Large Language Models (LLMs) have
shown promising performance on video tasks
due to their advanced visual comprehension ca-
pabilities, the substantial redundancy inherent
in video data poses significant computational
challenges. To address this issue, PruneVid (1)
reduces intrinsic video redundancy by merg-
ing temporally static and spatially similar to-
kens, and (2) leverages LLMs’ inherent ability
to selectively prune visual tokens irrelevant to
specific queries, thereby improving model effi-
ciency. We validate our method across mul-
tiple video benchmarks, demonstrating that
PruneVid can prune over 80% of tokens while
maintaining competitive performance when
combined with different video LLMs. Our re-
sults highlight PruneVid’s superior effective-
ness and efficiency compared to existing prun-
ing methods.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Yang et al., 2024; Touvron et al., 2023) have
significantly advanced multi-modal understanding
owing to their exceptional reasoning capabilities
and proficiency in following instructions. Within
the realm of video understanding, recent studies (Li
etal., 2023c; Lin et al., 2023; Zhang et al., 2023; Li
et al., 2024b, 2023a; Xu et al., 2024a; Wang et al.,
2024a) have capitalized on the use of pre-trained
LLMs as foundational models to address video
question-answering tasks. However, the redun-
dancy inherent in video content (Pan et al., 2021;
Tong et al., 2022) can lead to significant computa-
tional expenses for LLMs due to the quadratic com-
plexity of attention mechanisms. Consequently,
effectively reducing the number of video tokens
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while preserving model performance emerges as
an intriguing area of research.

Existing approaches to video token pruning,
nonetheless, face notable limitations. For in-
stance, LLaMA-VID (Li et al., 2023c) compresses
a video into context and content tokens but neces-
sitates expensive pretraining processes. LLaVA-
PruMerge (Shang et al., 2024) utilizes CLIP (Rad-
ford et al., 2021) token correlations but overlooks
the relevance of tokens to specific questions. KV
cache methods like Look-M (Wan et al., 2024)
and Elastic Cache (Liu et al., 2024d) merge multi-
modal inputs by prioritizing text tokens, requiring
full visual token encoding (Zhang et al., 2024; Liu
et al., 2024c¢), which becomes inefficient for long
sequences. While FastV (Chen et al., 2025) em-
ploys LLM attention patterns to prune tokens, it
lacks video-specific optimizations and does not ad-
equately address the reduction of video inputs.

In light of these challenges, we identify three
essential criteria that an optimal token prun-
ing method for multi-modal video understanding
should satisfy. First, the method should be training-
free, allowing seamless integration with existing
models without necessitating extensive retraining
or fine-tuning. Second, inherent video redundancy
needs to be reduced to save computations on tokens
with similar representations along both spatial and
temporal dimensions. Third, it must retain visual
tokens that are specifically relevant to the given
queries, ensuring that the model maintains high
performance and mitigates the risk of hallucina-
tions when lacking pertinent information (Huang
et al., 2024).

To achieve our objectives, we present PruneVid,
a training-free approach for pruning video tokens
to achieve efficient video understanding. As il-
lustrated in Fig. 1 (a), our method first tackles in-
trinsic video redundancy by identifying static re-
gions—areas with minimal variation due to mo-
tion or camera movements, often corresponding to
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Figure 1: An illustration of PruneVid. (a) PruneVid begins by identifying static video regions with minimal
temporal variation, reducing redundancy through temporal token merging. Then, spatial redundancy is compressed
via clustering and merging, followed by question-guided attention in the LLM to select task-relevant visual tokens.
(b) Static regions correspond to areas with minimal change, whereas dynamic regions display object or camera
motion; thus, static regions can be compressed together temporally. (c) Attention map visualization across 32 layers
shows persistent focus on question-relevant visual regions (e.g., hands and window).

the background (see Fig. 1 (b)). We merge these
static tokens along the temporal dimension, reduc-
ing computational burden by eliminating redundant
temporal information. Next, we employ a cluster-
ing technique (Du et al., 2016) to merge spatially
similar tokens in both static and dynamic regions,
further compressing the input.

Subsequently, within the LLM, we utilize atten-
tion scores between the question and video tokens
at an intermediate layer to distinguish and preserve
discriminative visual tokens essential for answer-
ing the question, while pruning irrelevant ones. As
depicted in Fig. 1 (c), attention visualizations re-
veal that the model consistently focuses on crucial
features—such as hand movements and related ob-
jects (e.g., a window)—that are directly relevant
to the question. This demonstrates that important
visual regions can be effectively pinpointed using
attention mechanisms, capitalizing on the LLM’s
reasoning and instruction-following strengths. Ad-

ditionally, for the key-value caches from previous
layers, we retain only the essential visual tokens,
reducing computational demands during the decod-
ing phase.

We integrate PruneVid with three video LLMs:
PLLaVA (Xu et al., 2024a), ST-LLM (Liu
et al., 2024b), and LLaVA-OneVision (Li et al.,
2024a), and evaluate their performance on multi-
ple video benchmarks, including MVBench (Li
et al., 2024b), Video-MME (Fu et al., 2024),
Egoschema (Mangalam et al., 2023), and
VideoChatGPT-Bench (Maaz et al., 2023). Our ex-
tensive experiments demonstrate that PruneVid can
prune over 80% of visual tokens with only minimal
performance degradation in certain cases. Notably,
our method can occasionally enhance model per-
formance. Furthermore, it achieves competitive
results compared to the baseline model while re-
ducing FLOPs by 74% to 80%, and reducing GPU
memory usage.
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The main contributions of this paper are as fol-
lows: (1) We introduce PruneVid, a training-free
framework that efficiently prunes video tokens for
video understanding tasks, seamlessly integrating
with off-the-shelf video LLMs. (2) Our method
minimizes video redundancy by merging static to-
kens over time and clustering spatially similar ones.
Additionally, we leverage attention scores between
the question and video tokens within the LLM to
retain only the visual tokens pertinent to answering
the questions. (3) Through extensive experiments
across multiple benchmarks, we demonstrate that
PruneVid consistently achieves superior efficiency
and effectiveness with various video LLMs com-
pared to existing approaches.

2 Related Work

2.1 Video Large Language Model

Recent Video LLMs fall into training-free and
training-required paradigms. Training-free meth-
ods adapt image LLMs for videos through spatial
compression: FreeVA (Wu, 2024) compacts frame
features, IG-VLM (Kim et al., 2024) grids frames
into images, and SF-LLaVA (Xu et al., 2024b) em-
ploys SlowFast (Feichtenhofer et al., 2019) net-
works for temporal modeling. While efficient,
these methods handle only short clips due to lim-
ited temporal reasoning.

Training-required approaches enhance video
understanding through dataset-driven adaptation.
Video-ChatGPT (Maaz et al.,, 2023), Video-
LLaVA (Lin et al., 2023), and PLLaVA (Xu et al.,
2024a) extend image LLMs with video tuning. Oth-
ers optimize tokenization (VideoChat2 (Li et al.,
2024b), VILA (Lin et al., 2024)), integrate au-
dio (Chat-UniVi (Jin et al., 2024)), or use dy-
namic masking (LLaMA-VID (Li et al., 2023c), ST-
LLM (Liu et al., 2024b)). LLaVA-OneVision (Li
et al., 2024a) expands LLaVA (Liu et al., 2024a)
with multi-signal inputs. Unlike these methods,
PruneVid enhances efficiency of existing Video
LLMs without additional training.

2.2 Visual Token Pruning

Vision-centric token pruning methods reduce com-
putational overhead through dynamic selection
(DynamicViT (Rao et al., 2021)), architecture sim-
plification (FastViT (Vasu et al., 2023)), or token
merging (ToMe (Bolya et al., 2023), SPViT (Kong
et al., 2022)). For multi-modal tasks, LLaVA-
Prumerge uses CLIP attention (Radford et al.,

2021) to prune visual tokens, while FastV (Chen
et al., 2025) removes tokens with low atten-
tion weights relative to [EO0S]. Our work fo-
cuses on video-specific token pruning across both
paradigms.

3 Method

To efficiently process video data, our method strate-
gically minimizes redundancy in visual tokens be-
fore inputting them into the LLM and effectively
identifies question-relevant visual tokens within
the LLM. In this section, we first introduce the nec-
essary preliminaries and then provide a detailed
explanation of our approach.

3.1 Preliminaries

Our model processes input sequences in two dis-
tinct phases: (1) pre-filling, where we combine
the question and visual tokens to establish initial
representations, and (2) autoregressive decoding,
where we generate the answers. Specifically, let
X, € RNa*C denote the question tokens, and
X, € RNoxC represent the merged visual tokens
(as detailed in Sec. 3.2), where IV, N/, and C are
the numbers of question tokens, visual tokens, and
channels, respectively. These tokens are concate-
nated into a single sequence X € R(Na+Ny)xC

In the transformer’s L layers, each layer [ com-
putes queries Q(1), keys KO, and values V1 via
linear projections. To enforce autoregressive con-
straints, we apply causal attention:

O (FON\T
Q<@>+m>, 0

where the mask m ensures that each position only
attends to previous positions, which is set as either
0 or —oo. During the pre-filling phase, we store
key-value (KV) caches KV = (KO V) for
all layers.

In the decoding phase, we generate tokens au-
toregressively using these caches, which avoids the
recomputation of historical tokens and enhances
efficiency. To optimize memory and computation,
we compress the KV caches from early layers (as
detailed in Sec. 3.3) by retaining only the rele-
vant visual tokens selected via LLM-guided atten-
tion. For layers 1 < [ < M, the compressed

(K" K| and

A®D — Softmax (

caches are defined as K() =

v —
quence length to |S| + N,, where S is the set of

[f/;,(l); V;](l)], effectively reducing the se-
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Figure 2: Illustration of the PruneVid framework. The framework starts by segmenting the input video into
distinct scenes to better capture content variations. Within each scene, we decompose the video tokens into static and
dynamic ones based on temporal changes. Static tokens, representing regions with minimal motion, are compressed
along the temporal dimension to reduce redundancy. Both static and dynamic tokens are then further compressed
by merging spatially similar tokens in the spatial dimension. Afterward, by using the question-to-video attention
weights learned from an intermediate layer, we determine which tokens should be pruned to improve efficiency.

indices of the selected visual tokens (see Sec. 3.3).
This compression preserves inference quality while
significantly enhancing efficiency.

3.2 Spatial-Temporal Token Merging

As depicted in Fig. 2, given an input video con-
sisting of 1" frames, we first extract visual to-
kens from each frame using a visual encoder. Let
XY € RNXC denote the visual tokens for frame
t, where N, is the number of tokens per frame.
The complete set of visual tokens for the video is
x, ={x", xP?, ... x"y.

Recognizing that videos often consist of multi-
ple distinct scenes, it is beneficial to segment the
video into separate scenes before identifying static

tokens. This preliminary step allows for more pre-
cise localization of static regions within each scene,
as static tokens may vary significantly from one
scene to another. To achieve this, we perform tem-
poral clustering based on the visual content of the
frames. Specifically, we begin by computing an
average pooled feature vector f(!) € RC for each
frame ¢, obtained by averaging over its tokens. This
provides a compact representation of the visual con-
tent in each frame. Utilizing the sequence of fea-
tures { M, ..., £(D)}, we then apply the Density
Peaks Clustering with k-Nearest Neighbors (DPC-
KNN) (Du et al., 2016) algorithm to group the
frames into B temporal segments {71, T2, ..., Tp}.
To ensure that consecutive frames are clustered to-
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gether, we constrain the clustering process to accept
only continuous frames as members of the same
cluster. If a frame falls into a non-consecutive (dis-
continuous) cluster, it is reassigned to a neighbor-
ing cluster whenever possible. If no neighboring
cluster is available, that frame is then assigned to a
new cluster. Each segment 7, comprises a subset of
consecutive frames that exhibit similar visual con-
tent, effectively delineating different scenes within
the video.

Within each temporal segment 7T, we analyze
the spatial tokens across the frames to identify
static tokens—those that remain largely unchanged
throughout the segment. For each spatial location
t (where 1 < i < N,), we extract the sequence of
tokens {X,St) () | t € Tp} and compute the feature
similarities between every pair of tokens in this
sequence. Specifically, for tokens at times ¢ and ¢/
within 7y, the similarity is measured using cosine
similarity sgt’t/):

X0 x" )
|57 @) 157 @)l

We then compute the average similarity for each
spatial location ¢ within the segment:

= 54 ©

t HET
t<t’

S(t’t/) =

2

2

Tokens with an average similarity above a thresh-
old 7 are considered static: Zgic = {i | 5i > 7}.

For these static tokens, we perform temporal
averaging within the segment to compress temporal
redundancy:

, Vi € Tatic. (4)

X0 3 x00)

’ b‘ teTy

The dynamic tokens, corresponding to
Zaynamic = {1,..., Ny} \ Zstatc, are retained
without temporal averaging to preserve important
motion information.

To further reduce spatial redundancy, we per-
form spatial clustering within each scene, again
using the DPC-KNN algorithm. We apply this
clustering separately to both the static and dy-
namic tokens. For frame ¢, we cluster the static
tokens {Xz(,t) (1) | i € Ztatic } and dynamic tokens
{Xl(,t) (7) | © € Zgynamic} into respective clusters.
We then average the tokens within each cluster to
represent them with a single token.

After completing these merging operations, we
obtain a reduced set of visual tokens X. » by collect-
ing and concatenating the merged visual tokens for
the entire video with significantly less redundancy.

3.3 LLM-Guided Token Selection

We further reduce the visual tokens by leveraging
the LLM’s internal attentions to select the most
relevant tokens with respect to the given question.

Consider the LLM with L layers. During the
pre-filling stage, we target the )M -th layer, where
1 < M < L, to compute cross-attention weights
between the question tokens and the merged visual
tokens to obtain a measure of relevance.

At the M-th layer, we calculate the attention
matrix AM) € RWo+Na)x(Ny+Na) T extract the
cross-attention scores between question and visual

tokens, we select the submatrix Agi\,/[) € RNaxNy.

AR = AMD[N:, <N, 5)
where AM)[N,:, :N!] corresponds to the atten-
tion scores from the question tokens to the visual
tokens.

Next, we compute the maximum attention values
a, € RNs for each visual token by applying max
pooling over all question tokens. This approach
captures the most informative tokens, as not all
question tokens are equally important. We then
sort the attention scores in descending order and
select the top a% of visual tokens. The set of
indices for the selected tokens is represented by S.

By focusing on the top a% tokens, we align the
model’s attention with the most question-relevant
visual information. To finalize the pre-filling stage,
we combine the selected visual tokens with the
question tokens, enabling processing in the remain-
ing (L — M) layers of the LLM. The KV vectors
derived from the retained visual tokens and ques-
tion tokens, calculated in the last (L — M) layers,
are stored in the KV cache for the decoding pro-
cess.

To reduce memory and computation, we com-
press KV caches from layers 1 <! < M by retain-
ing only the a% selected visual tokens (indices S).
For each layer [, we compress the visual token keys
and values via row selection:

RO - KOS, V0 -

and concatenate them with question token matrices
Kél), Vq(l) to form the final caches:

RO~ [ROKD), VO -7V, )

vUS,, ()
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Table 1: Comparison with the state-of-the-arts. Performance and efficiency comparison are measured across
different methods and benchmarks, where the retained ratio and FLOPs are averaged across all the benchmarks.

The best results of pruning methods are bolded.

Method Retained Ratio FLOPs (x) MVBench VideoMME _FgoSchema VideoChatGPT-Bench
Subset/Fullset| TU CU CO DO CI Avg
PLLaVA 100.0% 1.00x 46.6 444 4787426 |233 3.62 2.93 2.86 321 2.99
PLLaVA w/ FastV 30.0% 033x 46.1 436 4627410 |238 349 2.89 2.76 3.14 2.93
PLLaVA w/ Prumerge 55.7% 0.53x 456 438 4527404 |234 352 2.90 2.76 3.15 2.93
PLLaVA w/ Look-M 20.0% 1.00x 46.6 443 47.0/423 |28 341 275 2.65 3.00 2.82
PLLaVA w/ Ours 162% 0.23x 47.6 450 49.0/42.6 |2.44 351 2.99 2.78 320 2.98
ST-LLM 100.0% 1.00x 549 420 56.2/45.6 |2.46 346 2.66 2.63 3.08 2.86
ST-LLM w/ FastV 30.0% 037x 4209 345 4807385 |201 223 1.55 1.94 1.69 1.88
ST-LLM w/ Look-M 20.0% 1.00x 540 406 540/445 |235 341 260 251 3.01 2.78
ST-LLM w/ Ours 151% 0.26% 543 414 54.6/447 |2.40 343 2.63 2.60 3.04 2.82
LLaVA-OneVision 100.0% 1.00 58.0 5822 62.0/60.0 [2.75 3.70 339 2.97 3.50 3.6
LLaVA-OneVision w/ FastV 30.0% 030x 572 576 62.6/60.0 |2.65 3.61 328 2.85 3.39 3.16
LLaVA-OneVision w/ Prumerge 55.2% 0.49x 52.9 56.7 62.2/60.0 |2.72 3.64 3.32 2.94 3.44 321
LLaVA-OneVision w/ Look-M 20.0% 1.00% 570 58.0 62.0/59.8 |2.71 370 329 2.89 3.44 321
LLaVA-OneVision w/ Ours 17.0% 0.20% 575 58.6 62.6/595 |2.73 3.72 3.8 2.94 3.51 3.24

This reduces the sequence length from NV}, + N, to
|S| 4+ Ny, cutting memory and FLOPs proportion-
ally while maintaining decoding efficiency.

4 Experiment

4.1 Datasets and Evaluation Metrics

Generic Multi-Choice VideoQA. MVbench (Li
et al., 2024b) encompasses 20 temporally challeng-
ing tasks that cannot be addressed using a single
frame. Each task includes 200 test samples, format-
ted as multiple-choice VideoQA. These samples
require the model to choose the correct answer
from several provided options.

Long-form Multi-Choice VideoQA. We conduct
evaluations of our models using two well-regarded
benchmarks for long-form video benchmarks:
Video-MME (Fu et al., 2024) and Egoschema
(Mangalam et al., 2023). In these evaluations, the
models are tasked with selecting the correct answer
from multiple-choice options.

Text Generation. VideoChatGPT-Bench, intro-
duced by (Maaz et al., 2023), focuses on five
aspects: Correctness of Information (CI), De-
tail Orientation (DO), Contextual Understand-
ing (CU), Temporal Understanding (TU), and
Consistency (CO). For evaluation, we use
GPT-3.5-Turbo-0125 for scoring.

4.2 Baselines

We benchmark against three visual token prun-
ing approaches: (1) LLaVA-PruMerge (Shang
et al., 2024) leverages CLIP attention sparsifica-
tion with adaptive ratio tuning via outlier detec-
tion; (2) Look-M (Wan et al., 2024) extends text-
only KV cache compression to multi-modal sce-

narios via pivotal merging; (3) FastV (Chen et al.,
2025) prunes tokens with low attention scores. All
comparisons use official implementations on video
benchmarks for fairness.

4.3 Implementation Details

We use NVIDIA A100 GPUs with 80GB of
memory for all experiments. We implement
PruneVid, LLaVA-PruMerge, Look-M, and FastV
on three 7B video LLMs: PLLaVA (Xu et al.,,
2024a), ST-LLM (Wang et al., 2024a), and LLaVA-
OneVision (Li et al., 2024a). LLaVA-PruMerge is
incompatible with ST-LLM, so it is excluded from
related comparisons. As per the official settings,
the input frames are set to 16 for both PLLaVA
and ST-LLM, and 32 for LLaVA-OneVision. For
the VideoChatGPT-Bench, ST-LLM uses 64 input
frames. Besides, for spatial-temporal merging, the
threshold 7 is set to 0.8, the temporal segment ratio
is 0.25, and the spatial merging ratio is 0.5. Across
all benchmarks, the token selection ratio « is set
as 0.4, and attention calculations use the 10th layer
(M). For FastV, we prune the tokens at the 2nd
layer and set the retained ratio to 0.3 to achieve
roughly comparable FLOPs to our method. Ad-
ditionally, the FLOPs in the experiments are mea-
sured in relation to the visual tokens in the LLM.
For the diagnostic study in Sec. 4.5, we conduct
experiments based on PLLaVA.

4.4 Main Result

As shown in Tab. 1, our method consistently
achieves superior performance compared to other
pruning methods while retaining fewer tokens
and achieving lower FLOPs. For instance, us-
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Table 2: Ablation study of the proposed modules. The displayed retained ratio and FLOPs are averaged results

measured on MVBench and VideoMME.

No. |Baseline Static Token Spatial Merge Attentlon:based Retained Ratio FLOPs (x)| MVBench VideoMME
Merge Selection
1 v 100.0% 1.00x 46.6 444
2 v v 71.5% 0.69 % 46.9 43.6
3 v v 50.0% 0.48x 47.6 44.6
4 v v v 36.1% 0.34x 472 44.7
5 v v 40.0% 0.59x 47.1 444
6 v v v v 14.1% 0.20x 47.6 45.0

Table 3: Efficiency comparison for visual token pruning methods. TTFT stands for time-to-first-token, which is
commonly used for evaluating the efficiency of LLMs. TPS stands for tokens-per-second. The accuracy is measured

on MVBench.
Method | FLOPs (x) | TTFT Speed Up (x) | TPS | GPUMem | Accuracy
Baseline 1.00 x 1.00 x 167.3 20G 46.6
Baseline w/FastV 0.33 x 1.15 % 183.8 19G 46.1
Baseline w/Prumerge 0.53 x 1.32 x 188.2 19G 45.6
Baseline w/Look-M 1.00 x 0.15 % 149.3 35G 46.6
Baseline w/Ours 0.23 x 1.55 x 191.5 17G 47.6

ing PLLaVA, our approach retains only 16.2%
of tokens yet surpasses the performance of other
pruning methods and even the baseline model on
MVBench, VideoMME, and Egoschema. Similar
patterns are observed with ST-LLM and LLaVA-
OneVision, where our method maintains robust
performance with retained ratios as low as 15.1%
and 17.0%, respectively, across all benchmarks.
This underscores our approach’s effectiveness in
balancing accuracy with significant reductions in
computational overhead.

In contrast, while Prumerge maintains compet-
itive accuracy on some models, it fails to do so
with substantially reduced token budgets. Look-
M achieves decent performance but requires the
vanilla attention implementation for all layers, re-
sulting in lower efficiency. Additionally, FastV
struggles to maintain consistent performance across
different models; although it performs well on
PLLaVA and LLaVA-OneVision, its accuracy on
ST-LLM is unsatisfactory, indicating a lack of ro-
bustness across diverse architectures. Our method
effectively adapts by identifying and preserving
only the most informative tokens, delivering strong
overall performance with significantly reduced
computational costs.

4.5 Diagnostic Study

Ablation of Module Designs. As presented in
Tab. 2, we conduct comprehensive ablation experi-

ments to evaluate the efficiency and performance
of the proposed modules. Our analysis reveals that
merging static tokens along the temporal dimen-
sion (Row 2) eliminates 28.5% of redundant tokens
while maintaining baseline performance (Row 1).
This demonstrates that over one-fourth of static to-
kens can be merged to enhance efficiency without
sacrificing accuracy. Furthermore, by applying spa-
tial merging (Row 3), we reduce spatial redundancy
by half, achieving notable gains in efficiency and
even improving accuracy on MVBench compared
to the baseline. When combining both spatial and
temporal merging techniques (Row 4), the spatial-
temporal redundancy is reduced by 63.9%, high-
lighting the complementary nature of these meth-
ods. Additionally, incorporating attention-based
token selection (Row 5) captures question-relevant
visual tokens and eliminates 60% of irrelevant ones,
thereby refining the model’s focus. The integra-
tion of all these techniques (Row 6) achieves the
best balance between efficiency and performance,
significantly reducing computational complexity
with a retained ratio of only 14.1% and achieving
the highest accuracy across both MVBench and
VideoMME. These results validate the synergis-
tic effects of the proposed modules in effectively
mitigating video redundancy.

Efficiency Analysis. As shown on Tab. 3, We
compare multiple visual token pruning methods
with respect to FLOPs, TTFT speed-up, TPS, GPU
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Figure 3: Visualization of the question-to-visual attentions and token selection with the guidance of the attentions.

memory usage, and accuracy. Overall, FastV and
Prumerge both demonstrate notable FLOPs reduc-
tion and moderate speed gains, though their in-
fluence on accuracy remains slightly adverse. By
contrast, Look-M manages to preserve accuracy
comparable to the baseline but incurs very low
TTFT and TPS, and escalates GPU memory to a
high level, suggesting that its underlying layer-wise
strategy increases overhead. In contrast, our pro-
posed method achieves the most efficient balance
by yielding the best efficiency and the highest ac-
curacy, clearly underscoring the advantages of our
token pruning approach over existing techniques.

Attention-Guided Token Selection. Fig. 5 il-
lustrates our model’s ability to localize question-
relevant regions through LLM capacity, focusing
on latent visual semantics: (a) The model identi-
fies the key object mentioned in the question, the
blanket, and uses the temporal cue (after) from the
question to locate additional relevant visual ele-
ments, such as objects on the table and the person’s
hand movements in frames 2, 6, and 7. These de-

tails are not directly provided in the question and
are inferred through the model’s reasoning abilities.
(b) The model accurately detects the action of the
person holding food in frames 7 and 8, and infers
that the presence of a bag the person puts down is
relevant for answering the question, even though
the bag is not mentioned. This demonstrates the
model’s ability to reason about relevant objects
based on contextual cues.

Performance on Fast-Changing Samples.
We conduct experiments on the video-MME,
MVBench, and Ego-schema (fullset) datasets,
where we utilize RAFT (Teed and Deng, 2020)
for optical flow estimation to identify the 10%
most dynamic samples in each category, forming
our “fast-changing” subset. The following table
presents a comparison between the full dataset and
this fast-changing subset in terms of retained ratio
and performance metrics, using PLLaVA as the
baseline.

The results demonstrate that our method main-
tains robust performance even on fast-changing

19966



Table 4: Performance comparison on the full dataset (“Full”’) and the fast-changing video subset (“Fast”). The

retained ratio is averaged across three datasets.

Method Retained Ratio (ST-Merge) Retained Ratio (Final) MYVBench Video-MME  Ego-schema

Full Fast Full Fast Full Fast Full Fast Full Fast
Baseline 100% 100% 100% 100% 46.6 475 444 440 426 439
Baseline w/Ours ~ 40.2% 44.0% 16.1% 17.6% 476 49.6 450 434 426 434

Table 5: Performance comparison using different retained ratios across multiple benchmarks.

Model Retained Ratio FLOPs(x) MVBench VideoMME Egoschema (Sub/Full) VCG Bench
PLLaVA 100.0% 1.00 46.6 44.4 47.8/42.6 2.99
PLLaVA w/Ours 24.3% 0.27 47.4 45.0 48.9/42.4 2.98
PLLaVA w/Ours 16.2% 0.23 47.6 45.0 49.0/42.6 2.98
PLLaVA w/Ours 8.1% 0.17 46.9 44.6 48.2/42.3 2.93
ST-LLM 100.0% 1.00 54.9 42.0 56.2/45.6 2.86
ST-LLM w/Ours 22.7% 0.31 54.3 41.3 54.6/45.2 2.83
ST-LLM w/Ours 15.1% 0.26 54.3 414 54.6/44.7 2.82
ST-LLM w/Ours 7.6% 0.21 53.9 41.6 54.2/45.0 2.76
LLaVA-OV 100.0% 1.00 58.0 58.2 62.0/60.0 3.26
LLaVA-OV w/Ours 25.5% 0.27 57.5 58.1 61.8/59.8 3.25
LLaVA-OV w/Ours 17.0% 0.20 57.5 58.6 62.6/59.5 3.24
LLaVA-OV w/Ours 8.5% 0.17 57.1 56.9 60.2/58.6 3.11

video content. Specifically, for videos with more
dynamic content, the spatial-temporal merging
module yields a slightly higher retained ratio
(44.0% vs. 40.2% on the full set) since fewer static
regions can be merged. However, after applying
our attention-based pruning strategy, the final re-
tained ratios become very similar (17.6% for fast-
changing vs. 16.1% for the full set).

Overall, our approach achieves excellent effi-
ciency even on rapidly changing samples, with only
minimal performance degradation compared to the
baseline. These results validate the versatility and
effectiveness of our method across different types
of video content, including those with substantial
frame-to-frame variations.

Performance with Different Retained Ratios. To
further illustrate the generalization of our method,
we have extended our experiments by including
additional results with various retained ratios, as
detailed in Table 5. Specifically, by adjusting «
while keeping all hyperparameters constant across
the different models, we demonstrate that even with
a pruning ratio exceeding 90%, our method can still
achieve performance comparable to the original
models. This result underscores the robustness and
generalization capability of our approach.

More ablation studies on hyper-parameters
and visualizations are provided in Appendix A.

5 Conclusion

We propose PruneVid, a training-free visual token
pruning method for efficient multi-modal video un-
derstanding. By merging redundant tokens and
using LLM attention to select relevant visual infor-
mation, PruneVid significantly reduces computa-
tional cost while maintaining or even improving
performance. Experiments show that PruneVid can
prune over 80% of visual tokens with minimal im-
pact on accuracy. Our method integrates easily
with existing video LLMs and provides a practical
solution for efficient long-video processing.

6 Limitations

Our method only prunes tokens based on a single
layer of attention, without considering the differ-
ences and redundancy across different layers. Ex-
ploring layer-wise pruning strategies that leverage
multi-layer attention information is left for future
work.
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A Appendix

A.1 Quantitive Results

Ablation Study on Token Selection Ratio o and
the Position of Pruning Layer 1. As shown in
Fig. 4 (a), we observe that when pruning attention
from the 10th layer onward, model accuracy, de-
spite minor fluctuations, gradually saturates. There-
fore, selecting M as 10 for token pruning results
in lower computational costs compared to pruning
at later layers. Additionally, we find that using a
larger o does not necessarily yield better results.
For instance, when M is 10, an « of 0.4 achieves
better accuracy than 0.5, as retaining more tokens
may introduce irrelevant information, adversely af-
fecting the outcome.

Ablation Study on threshold 7 and temporal
segment ratio. As depicted in Fig. 4 (b), we ob-
serve that performance consistently improves as 7
increases from 0.6 to 0.8, while the performance
between 7 = 0.8 and 7 = 0.9 remains similar.
Given that setting 7 = 0.8 allows the model to
merge more tokens along the temporal dimension,
resulting in a higher compression ratio, we select
7 = 0.8. Concerning the temporal segment ratio,
the variation in its values does not significantly
affect performance. We found that setting it as ei-
ther 0.25 or 1.0 delivers good results across the two
datasets. However, since setting it as 1.0 treats each
input frame as an individual segment, which hin-
ders the effective temporal merging of static tokens,
we choose to set 0.25.

Ablation Study on threshold 7 and spatial
merging ratio. As shown in Fig. 4 (¢), the perfor-
mance is comparable for 7 values of 0.8 and 0.9,
with 7 = 0.8 being slightly superior, which is a
similar phenomenon as in Fig. 4 (b). Regarding the
spatial merging ratio, setting it to 0.5 provides the
optimal accuracy. This is because a smaller value
leads to an overly aggressive merging of spatial
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Figure 4: The ablation study of hyper-parameters on MVBench and VideoMME.

tokens, which degrades performance. On the other
hand, setting it to 1.0 is unable to merge redundant
tokens, which also adversely affects efficiency.

Combined with State-of-the-Art Models. We
further evaluated our method on Qwen2.5 VL (Bai
et al., 2025), a recent state-of-the-art MLLM. The
results are summarized in Table 6. Our method
achieves a significant reduction in FLOPs (by over
78%) while maintaining competitive performance
on all benchmarks, demonstrating compatibility
and scalability with recent SOTA models.

These results confirm that our approach can
be effectively extended to SOTA models such
as Qwen2.5-VL, maintaining strong performance
while significantly reducing computational require-
ments. We additionally conduct ablation studies on
Qwen2.5 VL, which further verify the compatibil-

ity of our modules with the latest SOTA architec-
tures.

A.2 Qualitative Results

Attention-Guided Token Selection. Fig. 5 (a):
Although the question does not explicitly mention
a book, the model successfully identifies key vi-
sual regions associated with the book by reasoning
over the visual content and contextual information
provided. (b): The model effectively focuses on
the person’s hand movements, which are essen-
tial for answering the question. Despite the lack
of explicit emphasis on hand motions in the ques-
tion, the model infers their significance through
contextual reasoning. (c): The model accurately
attends to the action of the man taking the bag,
even though the question only references the per-
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Table 6: Performance on Qwen2.5 VL.

Model Retained Ratio FLOPs(x) MVBench VideoMME Egoschema (Sub/Full) VCGBench
Qwen 2.5 VL 100.0% 1.00 65.5 65.3 64.0/61.0 3.33
Qwen 2.5 VL w/Ours 18.1% 0.21 64.9 64.8 63.0/60.3 3.28

son on the couch. This demonstrates its ability to
reason beyond the explicit scope of the question.
(d): The model precisely focuses on the person’s
hand movements, which are highly relevant to an-
swering the question, while disregarding irrelevant
content and regions. This highlights the model’s
strong capacity to comprehend the question and
extract critical visual information effectively.
Attention Map Comparison. In Fig. 6, we in-
clude comparisons between our LLM’s attention
maps and those of several strong video encoders,
including UMT (Li et al., 2023b) and InternVideo2
(Wang et al., 2024b). The results show that, unlike
these models, the question-to-vision attentions in
the LLM accurately focus on visual tokens that are
pertinent to the question. In contrast, the other mod-
els often struggle to pinpoint key tokens and may
focus on irrelevant objects or background elements.
These observations suggest that LLMs possess a
unique ability to align visual information with lin-
guistic context through their reasoning capabilities,
which is not simply a byproduct of standard atten-
tion mechanisms in typical video encoders.
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Figure 5: More examples of visualizations of the question-to-visual attentions and token selection.
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Figure 6: Attention map comparison of video encoders and our method.
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