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Abstract

Word alignment plays a crucial role in vari-
ous natural language processing tasks, such as
serving as cross-lingual signals for sentence
embedding, reducing hallucination and omis-
sion in machine translation, and facilitating
the construction of training data for simulta-
neous speech translation. Current state-of-the-
art approaches usually rely on: (1) supervised
data and large-scale weakly supervised data
constructed from Wikipedia and (2) multilin-
gual Transformer encoder-based models. How-
ever, we find that the current state-of-the-art
encoder-based method, BinaryAlign, suffers
from the issue of insufficient labeled data, and
we further improve it with self-training with a
small amount of parallel data. In addition, con-
sidering the impressive performance of multi-
lingual large language models on many nat-
ural language processing tasks, we also ex-
plore the possibility of using these decoder-
based large language models as word aligners.
We observe that although fine-tuning large lan-
guage models with labeled data produces ac-
ceptable results, augmenting the training with
pseudo-labeled data further enhances model
performance. Based on the findings, we pro-
pose a semi-supervised framework to improve
the large language model-based word aligners.
Experimental results demonstrate that the pro-
posed method with a small amount of paral-
lel data outperforms the current state-of-the-art
method on various word alignment datasets.

1 Introduction

Word alignment aims to identify correspondences
between source and target words in a translation
sentence pair, as shown in Figure 1. Although
word alignment was initially proposed to enhance
statistical machine translation (Brown et al., 1993),
advancements in both word alignment and deep
learning techniques have broadened its application

*Qiyu Wu contributed to this paper when he was a student
at The University of Tokyo.
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Figure 1: A Japanese-English word alignment exam-
ple. Note that word alignment not only takes care of
the corresponding word(s) within the source and target
sentences but also considers the positional information.
The English words hino in green and hino in blue are
different for the Japanese word 日野 , which apprears
in the second position (zero-indexed) of the Japanese
sentence. The English word of in red does not have
the corresponding Japanese word (null word alignment).

to a wide range of tasks in natural language pro-
cessing (NLP). For example, Chi et al. (2021) use
word alignment in cross-lingual language model
pretraining. Word alignment is utilized by Miao
et al. (2024a) to improve cross-lingual sentence
embedding. Wu et al. (2024) leverage word align-
ment preference data to mitigate hallucination and
omission in machine translation models. Word
alignment can also be utilized in the simulta-
neous speech translation domain for data cura-
tion (Ouyang et al., 2025b; Fu et al., 2025). Other
possible applications include alleviating the over-
translation and under-translation problems in ma-
chine translation (Tu et al., 2016), XML-structured
parallel text segment extraction (Hashimoto et al.,
2019) and constrained neural machine transla-
tion (Song et al., 2019; Chen et al., 2021).

Representative studies for improving word
alignment with supervised methods include
SpanAlign (Nagata et al., 2020), WSPAlign (Wu
et al., 2023) and BinaryAlign (Latouche et al.,
2024). SpanAlign (Nagata et al., 2020) reformu-
lates the word alignment task as a SQuAD-style
span prediction question answering task. WS-
PAlign (Wu et al., 2023) relaxes the requirement of
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Figure 2: Trend of F1 scores as the amount of unlabeled
parallel sentences in the training data increases, using
our semi-supervised framework on the test set of the
Japanese-English word alignment dataset, KFTT (Neu-
big, 2011). Note that one unit (653) is the size of the
labeled data. The yellow dotted line denotes the F1 score
of the current state-of-the-art method, BinaryAlign (La-
touche et al., 2024).

manually labeled data in SpanAlign with a large-
scale weak supervision pretraining dataset (2 mil-
lion noisy sentence pairs) based on entity links
from Wikipedia and contextual word embeddings
from multilingual encoder-based language mod-
els. BinaryAlign (Latouche et al., 2024) further
reformulates the word alignment task as a binary
sequence labeling task, achieving the new state-of-
the-art performance.

These supervised methods for word alignment
are highly dependent on (1) manually labeled
datasets (Nagata et al., 2020; Latouche et al., 2024)
or large-scale weak word alignment signals ex-
tracted from Wikipedia entity links and contextual
word embeddings of encoder-based models to relax
the strict requirement of labeled data (Wu et al.,
2023) and (2) multilingual encoder models (Na-
gata et al., 2020; Wu et al., 2023; Latouche et al.,
2024). This raises the following questions: (1) can
the potential of multilingual encoder-based mod-
els be fully leveraged by only using the labeled
datasets for the current state-of-the-art method, Bi-
naryAlign? If not, is there a way of using a small
amount of data to improve it instead of utilizing a
large-scale weakly supervised pre-training dataset
like WSPAlign? (2) given the success of LLMs
across a wide range of NLP tasks, how effective are
multilingual LLMs for the word alignment task?

We find that the issue of insufficient labeled
data in word alignment prevents both multilingual
encoder-based and decoder-based large language

models from fully utilizing their advantages, lead-
ing to suboptimal performance as shown in Fig-
ure 2. Figure 2 presents the trend of F1 scores on
the Japanese word alignment dataset KFTT, as we
progressively increase the number of parallel sen-
tences used for training our multilingual encoder
(SemiAlign-E) and decoder (SemiAlign-D) mod-
els.

Based on the aforementioned findings, we
propose a semi-supervised framework named
SemiAlign, which is short for leveraging Semi-
supervised learning to improve word Alignment,
designed to alleviate the challenge of limited la-
beled data in word alignment by utilizing a small
amount of unlabeled parallel text. We demonstrate
the effectiveness of our method for both multilin-
gual encoder-based and decoder-based language
models. The contributions of this paper can be
summarized as follows:

• We find that the current state-of-the-art
method, BinaryAlign (Latouche et al., 2024),
which is based on a multilingual encoder
model, suffers from the issue of limited la-
beled data, leading to suboptimal perfor-
mance.

• We also observe the issue of limited labeled
data when fine-tuning multilingual decoder-
based language models as word aligners. We
investigate the important factors that affect the
word alignment performance of multilingual
decoder language models.

• We propose a semi-supervised framework
to mitigate the issue of limited labeled data
in both scenarios, and the proposed method
achieves new state-of-the-art performance on
all language pairs that we evaluate with a
small amount of unlabeled data.

2 Methodology

Background. Given a source sentence x =
[x1, . . . , xn] and its target sentence y =
[y1, . . . , ym], where xi denotes the i-th word in
the source sentence (1 ≤ i ≤ n) and yj represents
the j-th word in the target sentence (1 ≤ j ≤ m),
word alignment aims to find a set of source and
target word pairs in sentences x and y:

A = {(xi, yj) : xi ∈ x, yj ∈ y}, (1)

The output space is a set of two-element ordered tu-
ples. xi and yj in each pair of A are the words that
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Figure 3: The proposed semi-supervised framework, SemiAlign, illustrated with the Japanese-English training
process as an example. The left sub-figure illustrates the process of training multilingual encoder models with
self-training. The right sub-figure presents the process of training multilingual decoder models using LoRA with the
combination of the pseudo-labeled data predicted by the encoder models and the labeled data. Note that for decoder
models, we append positional information to each word to resolve positional ambiguities arising from repeated
occurrences of the same word in a sentence. The detailed prompt example for the right sub-figure can be found in
Figure 5 (Appendix A.6).

are semantically equivalent to each other within
the context of sentences x and y. The xi and yi
are typically represented as the positions of words
in the source and target sentences because word
alignment considers positional information. It is
worth noting that in some word alignment datasets,
each alignment pair in the set A is annotated with
one of two types of labels: possible alignment (P)
and sure alignment (S).

2.1 Unlabeled Data Collection and
Preparation

To improve word alignment with semi-supervised
learning, we first need unlabeled data. Unlike WS-
PAlign, which uses entity hyperlinks in Wikipedia
for Wikipedia entity words and contextual word em-
beddings for common words as weak word align-
ment signals, we utilize parallel corpora that do not
contain any weak signals. The parallel corpora are
denoted as Du.

Preprocessing of Unlabeled Data. Given the
raw parallel sentences, we perform some prepro-
cessing steps for further training. The first step
is tokenization. For English sentences, we use
the Moses tokenizer (Koehn et al., 2007), while
for other languages, we employ corresponding
language-specific tokenizers. The second step in-
volves lowercasing the parallel sentences if the la-

beled data is in lowercase. This step is omitted for
Chinese and Japanese, as these languages do not
distinguish between uppercase and lowercase char-
acters. Beyond the aforementioned steps, we also
remove any empty lines in the parallel corpora. As
the parallel corpora are sourced from different ori-
gins, some may have been partially preprocessed.
In such cases, we omit the corresponding prepro-
cessing steps that have been applied.

2.2 Multilingual Encoders: Self-Training

For encoder models, we utilize the idea of self-
training (Amini et al., 2025) to fully leverage the
power of encoder-based language models and mit-
igate the issue of limited labeled data instead of
using weak supervision signals from Wikipedia
entity links (Wu et al., 2023). After the prepro-
cessing of unlabeled data, we utilize the current
state-of-the-art model, BinaryAlign, to generate the
pseudo-labels for unlabeled data Du. The pseudo-
labeled data is denoted as Dp. Then we combine
the pseudo-labeled data Dp and the labeled data
Dl to re-train an encoder model via the binary se-
quence labeling task of BinaryAlign, as shown in
the left sub-figure of Figure 3. After training, we
can obtain SemiAlign-E.
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2.3 Multilingual LLMs: Exploring the
Possibility as Word Aligners

In this section, we first evaluate the performance
of LLMs that are fine-tuned on labeled data to gain
insights into the effectiveness of LLM-based word
aligners using standard supervised fine-tuning.
Subsequently, we investigate whether incorporating
semi-supervised learning can further improve the
performance of LLM-based word aligners. Given
that generating labels with LLM-based word align-
ers is relatively computationally intensive, we pri-
marily leverage the pseudo-labeling capabilities of
encoder-based methods. Specifically, we employ
the trained encoder model, SemiAlign-E, from the
previous section to generate pseudo-labels for the
unlabeled data.

Controlling Generation Granularity. Word
alignment can be reformulated as different
tasks (Nagata et al., 2020; Latouche et al., 2024).
Previous studies (Nagata et al., 2020; Wu et al.,
2023) define the task as a SQuAD question answer-
ing task via span prediction or a binary sequence
labeling task (Latouche et al., 2024). For decoder-
based LLMs, it is necessary to reformulate the word
alignment task as a generative task while incorpo-
rating positional information. Additionally, the gen-
eration granularity should be carefully considered
when feeding translation pairs into these LLMs.
However, the optimal generation granularity for
LLM-based word aligners remains underexplored.
We investigate two levels of generation granular-
ity: (1) “full mode”, where the model outputs all
aligned word pairs with their positions given the
source and target sentence in a single pass; and
(2) “marker mode”, where a specific word in the
source sentence is marked with special tokens, and
the model outputs its corresponding aligned words
with positions in the target sentence. The special
tokens are represented by the orange symbols in
the right panel of Figure 3. The prompt formats
for “full mode” and “marker mode” can be found
in Appendix A.6.

We use the cross-entropy loss for next token pre-
diction to train our decoder models. The training
data is the combination of pseudo-labeled data and
labeled data. We mask the instruction prompt part
when computing the loss during the training follow-
ing self-instruct (Wang et al., 2023). To augment
the training data, we incorporate both source-to-
target and target-to-source alignment directions.

Symmetric Alignment for LLMs. For the
marker mode generation, we mark one word in
the source sentence and let the model predict its
corresponding words and positions in the target
sentence. This prediction can also be performed in
the other direction. Following SpanAlign (Nagata
et al., 2020) and WSPAlign (Wu et al., 2023), we
perform the symmetric alignment during evaluation
or prediction. Specifically, we obtain predictions
from both alignment directions and combine them
via union operation, preserving all predictions from
both directions.

3 Experiments

3.1 Datasets

We mainly evaluate the performance of the
proposed method on four language pairs:
Japanese-English (ja-en), German-English (de-en),
Romanian-English (ro-en) and Chinese-English
(zh-en). We use ISO 639-1 language codes1

to denote languages in the following tables.
Specifically, “ja” denotes Japanese. “zh” denotes
Chinese. “ro” denotes Romanian. “de” represents
German. “en” corresponds to English. We also
test our method on some low-resource languages
including Swedish (sv), Finnish (fi), and Hebrew
(he).

Labeled Data. For Japanese-English (ja-en)
word alignment, we use The Kyoto Free Transla-
tion Task (KFTT) word alignment dataset (Neubig,
2011). In this dataset, we adopt the same data splits
as those used in SpanAlign (Nagata et al., 2020),
WSPAlign (Wu et al., 2023) and BinaryAlign (La-
touche et al., 2024) with the script available at the
repository of SpanAlign2. The Romanian-English
word alignment dataset comes from Mihalcea and
Pedersen (2003). The German-English word align-
ment dataset is provided by Vilar et al. (2006).
The Chinese-English word alignment dataset is ob-
tained from the TsinghuaAligner website3. We
use the v1 version of the dataset following Bina-
ryAlign. Note that we use the same splitting ap-
proach as WSPAlign following BinaryAlign in the
above datasets. Moreover, we utilize the Finnish-
Greek (fi-el) and the Finnish-Hebrew (fi-he) word
alignment datasets from Imani et al. (2021) and the

1https://en.wikipedia.org/wiki/List_of_ISO_
639_language_codes

2https://github.com/nttcslab-nlp/word_align
3https://nlp.csai.tsinghua.edu.cn/~ly/systems/

TsinghuaAligner/TsinghuaAligner.html
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Lang Method Precision (%) Recall (%) F1 (%) ↑ AER (%) ↓
ja-en SpanAlign (Nagata et al., 2020) 77.3 78.0 77.6 22.4

WSPAlign (Wu et al., 2023) 81.6 85.9 83.7 16.3
BinaryAlign* (Latouche et al., 2024) 87.74 84.46 86.07 13.93
Llama3.1 Inst + SFT 78.65 89.76 83.84 16.16
SemiAlign-E (ours) 88.34 86.91 87.62 12.38
SemiAlign-D (ours) 88.09 88.63 88.36 11.64

de-en SpanAlign (Nagata et al., 2020) 89.9 81.7 85.6 14.4
WSPAlign (Wu et al., 2023) 90.7 87.1 88.9 11.1
BinaryAlign* (Latouche et al., 2024) 93.79 90.73 92.23 7.74
Llama3.1 Inst + SFT 85.46 90.98 88.14 11.93
SemiAlign-E (ours) 94.55 90.93 92.70 7.27
SemiAlign-D (ours) 93.97 90.69 92.31 7.66

ro-en SpanAlign (Nagata et al., 2020) 90.4 85.3 86.7 12.2
WSPAlign (Wu et al., 2023) 92.0 90.9 91.4 8.6
BinaryAlign* (Latouche et al., 2024) 92.67 92.51 92.59 7.41
Aya Expanse + SFT 80.37 87.72 83.89 16.11
SemiAlign-E (ours) 93.55 92.68 93.11 6.89
SemiAlign-D (ours) 94.65 89.52 92.02 7.98

zh-en SpanAlign (Nagata et al., 2020) - - - 8.9
WSPAlign (Wu et al., 2023) - - - 7.6
BinaryAlign* (Latouche et al., 2024) 95.63 94.13 94.87 5.12
Llama3.1 Inst + SFT 92.60 96.00 94.27 5.73
SemiAlign-E (ours) 95.57 95.14 95.35 4.65
SemiAlign-D (ours) 96.18 95.13 95.65 4.35

Table 1: Results of different methods on word alignment datasets. SemiAlign-E denotes the multilingual encoder
models that are trained with the proposed method. SemiAlign-D indicates the multilingual large language models
that are trained with our framework. “SFT” indicates the results of supervised fine-tuning using labeled word
alignment datasets. “BinaryAlign*” denotes the best reproduced results of BinaryAlign with precision, recall, F1
and AER shown to give a detailed comparison. We highlight in bold the best performance of F1 and AER scores
because higher F1 and lower AER scores indicate better performance.

English-Swedish (en-sv) word alignment dataset
from Holmqvist and Ahrenberg (2011) to evaluate
the performance of various models on low-resource
languages. The number of training, validation and
test examples in the labeled data can be found in
Table 10.

Unlabeled Data. For Japanese-English, we use a
subset of the KFTT translation data (Neubig, 2011).
For Romanian-English, we use the training parallel
corpus4 from Vilar et al. (2006). For the German-
English pair, we use a subset of News Commentary
v18.1 (Kocmi et al., 2023) as the unlabeled data.
For Chinese-English pair, we use the News Com-
mentary v16. For English-Swedish, Finnish-Greek
and Finnish-Hebrew pairs, we utilize subsets of
CCMatrix v1.0 (Schwenk et al., 2021; Fan et al.,
2021; Tiedemann, 2012). The max number of unla-
beled data that we use is shown in Table 11. More
details about the unlabeled data can be found in
Appendix A.2

4http://web.eecs.umich.edu/~mihalcea/wpt/data.
protected/Romanian-English.training.tar.gz

3.2 Evaluation Metrics
We evaluate the word alignment quality using Preci-
sion (P), Recall (R), F1 and Alignment Error Rate
(AER) (Och and Ney, 2003) for all experiments
following previous works (Nagata et al., 2020; Wu
et al., 2023). The details of evaluation metrics can
be found in Appendix A.5.

Note that BinaryAlign (Latouche et al., 2024)
only presents the AER scores for all language pairs.
We reimplement BinaryAlign using BinaryAlign
repository5 and present the best reproduced pre-
cision, recall, F1 and AER scores for a fair and
detailed comparison.

3.3 Models
To evaluate the effectiveness of our method, we
consider two types of multilingual language mod-
els: encoder-based and decoder-based language
models.

Multilingual Encoders. We utilize mDeBERTa-
v3-base6 (He et al., 2023) as our base model follow-
ing BinaryAlign. For the reproduced BinaryAlign

5https://github.com/ubisoft/ubisoft-laforge-
BinaryAlignWordAlignementasBinarySequenceLabeling/

6https://huggingface.co/microsoft/mdeberta-v3-base
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experiments, we also use mDeBERTa-v3-base as
the base model for a fair comparison. All hyper-
parameters in the reproduced BinaryAlign experi-
ments are the same as BinaryAlign. We present the
best reproduced results on all language pairs. For
the experiments that use pseudo-labeled data, the
total batch size is 32. The number of epoch is 1.
For other hyperparameters, we follow the setting
in BinaryAlign which can be found in its GitHub
repository.

Multilingual LLMs. For decoder-based LLMs,
we mainly use Llama-3.1-8B-Instruct (Dubey et al.,
2024) as our base model. The only exception is
the Romanian English pair because we find that the
best result of the Romanian-English pair is based
on the aya-expanse-8b (Dang et al., 2024). The
total batch size is 32. The initial learning rate is
2e-5. The scheduler type is “cosine”. We utilized
LoRA for parameter-efficient training. For the ex-
periments that leverage pseudo-label data, the num-
ber of epochs is 1. We use bf16 mixed precision
training. The optimizer is “adamw_torch”. The
weight decay is set to 0. Additional training details
and LoRA settings can be found in Appendix A.3
and A.4.

3.4 Baselines

We mainly compare our method with three ap-
proaches: SpanAlign, WSPAlign and BinaryAlign.
SpanAlign is a supervised word alignment train-
ing method that reformulates the word alignment
task as a question answering task (Rajpurkar et al.,
2018) via span prediction. WSPAlign focuses on
utilizing large-scale weak signals from entity hy-
perlinks in Wikipedia articles for word alignment
pre-training to improve SpanAlign. BinaryAlign
reformulates the word alignment task as a binary
sequence labeling task achieving a good balance
between outputting all word alignments at once (all-
at-once) and predicting one target word for each
source word (one-by-one way) in one pass. For
multilingual decoder-based LLMs, we present the
results of the models that are supervised fine-tuned
on labeled data for reference (SFT row) in Table 1.

3.5 Low-Resource Settings

Zero-Shot Setting. In the zero-shot setting, the
training sets of the word alignment datasets for our
target language pairs are not available. We assess
the performance of our models that are trained on a
different language pair on the test set of the target

word alignment dataset directly. We use the models
that are trained on the word alignment datasets of
high-resource language pairs (ja-en, ro-en, de-en
and zh-en) and evaluate their performance on three
low-resource languages, that is, English-Swedish
(en-sv), Finnish-Greek (fi-el), and Finnish-Hebrew
(fi-he).

Few-Shot Setting. In this setting, we train our
models with few-shot examples for a language pair
and evaluate the models in the same language pair.
Specifically, we use 32 examples from the training
sets of word alignment datasets to serve as super-
vision signals. For SemiAlign-D, we use the same
number of pseudo-labeled examples as the labeled
examples (32), considering the training cost. For
SemiAlign-E, we evaluate two different settings for
pseudo-labeled data: one using 32 pseudo-labeled
examples and the other using the pseudo-labeled
examples that yield the best results in the fully su-
pervised setting. We present the superior results
from these two configurations. For the pseudo-
labelers, we choose the BinaryAlign models that
are trained with 32 examples for each language pair.
These models also serve as our baseline methods
for comparison. We evaluate different approaches
in this setting with seven language pairs (ja-en, ro-
en, de-en, zh-en, en-sv, fi-el and fi-he).

4 Results and Analysis

The main results are presented in Table 1,
demonstrating that the proposed method achieves
new state-of-the-art performance. The Japanese-
English word alignment dataset shows the most
significant improvement. For the encoder-based
model, the AER score of SemiAlign-E improves
from 13.93 to 12.38 compared to BinaryAlign. For
decoder-based LLMs, the AER score of SemiAlign-
D improves from 16.16 to 11.64 compared with
its SFT baseline. The average F1 and AER
scores of SemiAlign-E and SemiAlign-D across
the four datasets differ by about 0.1 and better
than BinaryAlign. On average, the improvement
in AER scores across the four datasets shows that
SemiAlign-D achieves a greater performance gain
over the SFT baseline compared to SemiAlign-E’s
improvement over BinaryAlign. This indicates that
the size of the training data has a relatively larger
impact on multilingual large language models.

A Small Amount of Unlabeled Data Boosts the
Performance of BinaryAlign. We re-train Bi-
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Lang Method P R F1 AER
en-sv BinaryAlign (ja-en) 94.54 97.28 95.89 4.21

SemiAlign-D (ja-en) 91.42 92.87 92.14 7.91
SemiAlign-E (ja-en) 94.77 97.63 96.18 3.92
BinaryAlign (ro-en) 91.55 97.25 94.31 5.95
SemiAlign-D (ro-en) 91.04 92.49 91.76 8.30
SemiAlign-E (ro-en) 92.38 97.43 94.84 5.40
BinaryAlign (de-en) 95.73 96.86 96.29 3.75
SemiAlign-D (de-en) 95.37 94.61 95.00 4.98
SemiAlign-E (de-en) 96.60 96.86 96.73 3.28
BinaryAlgin (zh-en) 98.24 93.5 95.81 4.11
SemiAlign-D (zh-en) 97.44 93.92 95.65 4.24
SemiAlign-E (zh-en) 98.30 93.95 96.08 3.85

fi-el BinaryAlign (ja-en) 83.09 76.69 79.76 20.24
SemiAlign-D (ja-en) 82.07 76.18 79.02 20.98
SemiAlign-E (ja-en) 83.03 78.53 80.72 19.28
BinaryAlign (ro-en) 80.87 84.20 82.50 17.50
SemiAlign-D (ro-en) 82.74 73.75 77.99 22.01
SemiAlign-E (ro-en) 83.76 83.62 83.69 16.31
BinaryAlign (de-en) 86.66 70.32 77.64 22.36
SemiAlign-D (de-en) 87.63 77.27 82.13 17.87
SemiAlign-E (de-en) 87.09 71.89 78.76 21.24
BinaryAlign (zh-en) 88.87 68.47 77.35 22.65
SemiAlign-D (zh-en) 86.15 77.49 81.59 18.41
SemiAlign-E (zh-en) 87.84 70.03 77.93 22.07

fi-he BinaryAlign (ja-en) 70.54 63.49 66.83 33.17
SemiAlign-D (ja-en) 71.06 62.03 66.24 33.76
SemiAlign-E (ja-en) 72.96 62.86 67.54 32.46
BinaryAlign (ro-en) 70.83 57.08 63.22 36.78
SemiAlign-D (ro-en) 77.90 58.96 67.12 32.88
SemiAlign-E (ro-en) 79.39 55.35 65.23 34.77
BinaryAlign (de-en) 82.58 40.07 53.96 46.04
SemiAlign-D (de-en) 84.52 58.86 69.39 30.61
SemiAlign-E (de-en) 86.70 42.48 57.02 42.98
BinaryAlign (zh-en) 84.87 54.04 66.04 33.96
SemiAlign-D (zh-en) 62.16 40.20 48.82 51.18
SemiAlign-E (zh-en) 81.34 55.43 65.93 34.07

Table 2: Zero-shot evaluation results. The first column
denotes the test language pair. The language pairs in
parentheses in the Method column indicate the training
language pair.

naryAlign using self-training with one iteration.
All hyperparameter settings are the same as Bina-
ryAlign except that the number of epochs is set to 1
and the batch size is changed from 8 to 32. We can
observe that the self-training with the small-scale
corpora boost the performance of BinaryAlign on
all language pairs in Table 1. The most obvious
one is Japanese-English pair and the self-training
improves the AER score by 1.6.

Utilizing Labeled Data Is Not Enough for Multi-
lingual LLM-Based Word Aligners. For a bet-
ter comparison and investigation of factors that
affect the word alignment performance of decoder-
based language models, we mainly fine-tune the
Llama-3.1-8B-Instruct for all languages with the la-
beled data as the baseline. For Romanian-English,
we use the aya-expanse-8b model because we find
that its performance on this language pair is bet-
ter. For the SFT version of these large language
models, the number of epochs is 5. The other hyper-
parameters are the same as the main experiments.
In Table 1, we find that the performance of using

the labeled data is not competitive compared with
BinaryAlign. We also observe that the proposed
framework with a small amount of parallel data
improves the decoder-based word aligners by 1.4
on Chinese-English, 4.5 on Japanese-English, 4.3
on German-English, 6.68 on Romanian-English re-
spectively. This indicates that the multilingual large
language model-based word aligners are leveraging
the pseudo-labeled data efficiently.

Zero-Shot Setting. The results of zero-shot set-
ting are shown in Table 2. For the models that
are trained on Japanese-English data and evaluated
on other language pairs, SemiAlign-E achieves
the best performance. For the models that are
trained on Romanian-English data, SemiAlign-E is
a good choice in most cases. Overall, SemiAlign
maintains its generalization performance on low-
resource languages and, in most cases, SemiAlign-
E even outperforms BinaryAlign. The reason may
be that the base model of SemiAlign-E has been
pre-trained on data from a large number of lan-
guages. In contrast, the base models of SemiAlign-
D, such as Llama-3.1-8B-Instruct and aya-expanse-
8b, are typically pretrained on a relatively smaller
number of languages during the pre-training phase.

Lang Method P R F1 AER
ja-en BinaryAlign 81.86 72.33 76.8 23.2

SemiAlign-D 68.44 78.04 72.93 27.07
SemiAlign-E 84.10 73.39 78.38 21.62

ro-en BinaryAlign 90.65 90.92 90.78 9.22
SemiAlign-D 76.75 85.86 81.05 18.95
SemiAlign-E 91.80 91.18 91.49 8.51

de-en BinaryAlign 93.07 90.49 91.76 8.21
SemiAlign-D 83.10 87.45 85.22 14.83
SemiAlign-E 93.34 90.90 92.10 7.87

zh-en BinaryAlign 94.73 91.40 93.04 6.96
SemiAlign-D 89.67 90.24 89.96 10.04
SemiAlign-E 95.07 91.39 93.19 6.81

en-sv BinaryAlign 95.96 97.46 96.70 3.34
SemiAlign-D 87.17 92.99 89.99 10.18
SemiAlign-E 96.73 97.22 96.97 3.04

fi-el BinaryAlign 91.06 86.22 88.58 11.42
SemiAlign-D 82.79 87.69 85.17 14.83
SemiAlign-E 91.48 87.79 89.60 10.40

fi-he BinaryAlign 86.03 76.21 80.82 19.18
SemiAlign-D 78.00 88.54 82.94 17.06
SemiAlign-E 86.85 79.17 82.83 17.17

Table 3: Few-shot evaluation results. The first column
denotes the training and test language pair. The number
of available labeled word alignment examples is 32.

Few-Shot Setting. We present the results of dif-
ferent methods in the few-shot setting in Table 3.
In this setting, we only use 32 labeled examples
to train our base models, and generate pseudo-
labeled examples for unlabeled data using the
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Lang Method # Parameters # Examples Inference Time
ja-en BinaryAlign/SemiAlign-E 276M 357 0h:00m:43s

SemiAlign-D 8B 2h:03m:15s
ro-en BinaryAlign/SemiAlign-E 276M 98 0h:00m:23s

SemiAlign-D* 8B 1h:01m:12s
de-en BinaryAlign/SemiAlign-E 276M 208 0h:00m:13s

SemiAlign-D 8B 1h:04m:11s
zh-en BinaryAign/SemiAlign-E 276M 450 0h:01m:02s

SemiAlign-D 8B 3h:12m:48s

Table 4: Actual inference time on the test sets of word alignment datasets. SemiAlign-D* in the ro-en row indicates
that we use aya-expanse-8b as the base model rather than llama-3.1-8b-instruct model.

model trained with 32 labeled examples. After
that, we re-train our base models with our semi-
supervised framework. We find that SemiAlign-E
usually achieves better performance in this setting
compared with BinaryAlign and SemiAlign-D ex-
cept the fi-he pair. We observe that, in fi-he pair,
SemiAlign-D that is trained with 32 pseudo-labeled
examples achieves the best performance.

Error Analysis. We conduct an error analysis to
explore scenarios in which the proposed method
fails. Specifically, we collect all incorrect pre-
dictions in the test sets of the Japanese-English,
German-English, Romanian-English, and Chinese-
English word alignment datasets at the word level.
We categorize the incorrect predictions into three
types: (1) refusal errors, where the model produces
no target word predictions despite the existence
of valid alignments; (2) single misalignment error,
where one incorrect target word is predicted; and
(3) multiple misalignment errors, where several
incorrect target words are generated for a single
source word. We also present an analysis of incor-
rect predictions obtained by examining each source
words that have gold alignments.

The statistics of incorrect predictions of
SemiAlign-D and SemiAlign-E by iterating over
each source word and the source words that have
gold alignments are shown in Table 5, 6, 7, and 8
correspondingly.

Lang # refusal (%) # single misalignment (%) # multiple misalignments (%)
ja-en 20.40 46.20 33.40
de-en (w. p) 45.40 36.35 18.24
de-en (w/o. p) 27.50 52.92 19.58
ro-en 42.77 41.33 15.90
zh-en (w. p) 39.61 40.02 20.36
zh-en (w/o. p) 27.48 51.40 21.12

Table 5: Distribution of prediction error types for
SemiAlign-D, obtained by iterating over each source
word of the test sets of different languages. “(w. p)”
indicates that we consider possible alignments while
“(w/o. p)” denotes that we do not consider them during
the analysis.

Efficiency Analysis. Table 4 presents the ac-
tual inference time on the test sets of word align-

Lang # refusal (%) # single misalignment (%) # multiple misalignments (%)
ja-en 27.23 32.16 40.61
de-en (w. p) 50.77 29.45 19.79
de-en (w/o. p) 35.10 43.74 21.16
ro-en 48.84 34.98 16.17
zh-en (w. p) 54.53 19.25 26.22
zh-en (w/o. p) 38.44 35.14 26.42

Table 6: Distribution of prediction error types for
SemiAlign-D by iterating over the source words that
have gold alignments of the test sets. “(w. p)” indicates
that we consider possible alignments while “(w/o. p)”
denotes that we do not consider them during the analy-
sis.

Lang # refusal (%) # single misalignment (%) # multiple misalignments (%)
ja-en 21.24 53.24 25.52
de-en (w. p) 44.84 40.11 15.04
de-en (w/o. p) 25.95 57.79 16.26
ro-en 18.84 51.09 30.07
zhen (w. p) 33.88 44.98 21.14
zhen (w/o. p) 22.86 55.58 21.57

Table 7: Distribution of prediction error types for
SemiAlign-E by iterating over each source word of the
test sets. “(w. p)” indicates that we consider possible
alignments while “(w/o. p)” denotes that we do not
consider them during the analysis.

ment datasets, model sizes, and number of exam-
ples. SemiAlign-E has the same efficiency as Bi-
naryAlign because they use the same base encoder
models and their inference processes are identical.

For SemiAlign-D, which uses LLMs as the base
model, although it achieves the highest scores on
ja-en and zh-en as shown in Table 1, SemiAlign-
D has the following disadvantages: slower infer-
ence speed and larger model size. Therefore, for
pipelines or tasks that are sensitive to latency, it
is preferable to use a more lightweight encoder
model, SemiAlign-E.

Effect of the generation granularity. Decoder-
based large language models treat the word align-
ment task as a generative task. Before performing
the prediction, we must determine the generation
granularity first.

To determine the optimal level of generation
granularity for the decoder-based language mod-
els, we evaluate the performance of the models
across different granularity levels using the la-
beled data. The results of using different levels
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Lang # refusal (%) # single misalignment (%) # multiple misalignments (%)
ja-en 27.97 41.60 30.43
de-en (w. p) 50.40 33.33 16.26
de-en (w/o. p) 33.56 48.71 17.73
ro-en 22.91 44.05 33.04
zhen (w. p) 47.95 23.22 28.83
zhen (w/o. p) 33.03 37.84 29.13

Table 8: Distribution of prediction error types for
SemiAlign-E by iterating over the source words that
have gold alignments. “(w. p)” indicates that we con-
sider possible alignments while “(w/o. p)” denotes that
we do not consider them during the analysis.

of generation granularity are shown in Table 9. As
shown in Table 9, we find that the performance
of “marker mode” demonstrates significantly supe-
rior performance. This indicates that LLM-based
word aligners perform well at the word level, out-
putting the corresponding words given one marked
word. The word alignment performance deterio-
rates when LLM-based word aligners generate all
aligned words for a sentence in a single pass.

Generation Mode Ja-En De-En Ro-En Zh-En
Full Mode 26.60 17.33 23.64 9.95
Marker Mode 16.16 11.93 14.66 5.73

Table 9: AER scores of different generation granulari-
ties using labeled data.

More ablation studies and experimental results
are available in Appendix B.

5 Related Work

Word alignment. The research community has
proposed various methods to improve word align-
ment based on the multilingual Transformer en-
coder models (Devlin et al., 2019; Conneau et al.,
2020) . There are two categories of research
that focus on improving word alignment perfor-
mance on multilingual encoder-based language
models (Latouche et al., 2024). One category con-
sists of methods based on contextual word embed-
dings extracted from encoder models (Jalili Sabet
et al., 2020; Dou and Neubig, 2021; Wang et al.,
2022a). For example, SimAlign (Jalili Sabet et al.,
2020) proposes three new alignment methods based
on contextual word embeddings. The other cate-
gory involves supervised learning for word align-
ment. SpanAlign (Nagata et al., 2020) redefines
the word alignment task as a span prediction-based
question answering task. WSPAlign (Wu et al.,
2023) proposes large-scale weakly pre-training
for word alignment, using entity links and con-
textual word embeddings for entity and common
words, due to the different representation level of

them (Schick and Schütze, 2020; Wu et al., 2021).
BinaryAlign (Latouche et al., 2024) reformulates
the word alignment task as a binary sequence label-
ing task, achieving the new state-of-the-art perfor-
mance. Both of the above categories are based on
the multilingual encoder language models. How-
ever, considering that autoregressive decoder-based
LLMs have achieved impressive performance on
many NLP tasks, such as coding, reasoning and
machine translation (Shojaee et al., 2023; Wu et al.,
2024; Dubey et al., 2024; Miao et al., 2024b; Dang
et al., 2024), we also explore the possibility of us-
ing multilingual LLMs as word aligners, an avenue
that remains relatively unexplored by the research
community.

Semi-Supervised Learning. Semi-supervised
learning aims to improve various machine learning
systems with labeled data and unlabeled data (Yang
et al., 2023). Recently, researchers have success-
fully applied semi-supervised learning to various
emergent domains, such as sentence semantics (Wu
et al., 2022; Zhao et al., 2024), multimodal do-
mains (Wang et al., 2022b; Deng et al., 2024;
Ouyang et al., 2025a; Hoyer et al., 2025), aspect
sentiment quad prediction (Zhang et al., 2024), im-
proving reasoning ability of large language mod-
els (Wang et al., 2024) and reward modeling (Li
et al., 2024; He et al., 2024). In this work, we in-
vestigate the application of semi-supervised learn-
ing on word alignment through self-training and
pseudo-labeling.

6 Conclusion

In this paper, we find that the current state-of-the-
art method, BinaryAlign, can be further improved
with semi-supervised learning with a small amount
of unlabeled data. We also explore the possibility
of utilizing multilingual LLMs as word aligners.
We observe that fine-tuning multilingual LLMs us-
ing the labeled data is insufficient, and not com-
parable to the current state-of-the-art BinaryAlign.
Therefore, we also utilize the pseudo-labeled data
from the encoder-based word alignment models
to improve multilingual LLM-based word align-
ers in our proposed framework. Both multilingual
encoder models and LLMs that are trained with
the proposed method achieve competitive perfor-
mance, outperforming the current state-of-the-art
method on average. The extensive experimental re-
sults demonstrate the effectiveness of the proposed
method.
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Limitations

We explore the possibility of using multilingual
LLMs as word aligners and propose SemiAlign-D.
However, compared to SemiAlign-E, the primary
limitation of SemiAlign-D lies in their high compu-
tational requirements, while their performance in
word alignment is not significantly superior to that
of SemiAlign-E. In order to fully leverage the po-
tential of LLMs, we need to explore better ways to
do word alignment using LLMs in the future. An-
other interesting future direction is how to mitigate
confirmation bias. Confirmation bias is a common
dilemma for semi-supervised learning. All pseudo-
labelers cannot avoid introducing confirmation bias.
Figure 2 in the paper shows the performance trend
of our method when the number of pseudo-labeled
data increases. From the figure, we find that the
impact of confirmation bias is relatively small on
the performance of our method. The reason for the
minimal impact of confirmation bias in our method
might be that our models are trained using a sin-
gle iteration within the semi-supervised framework.
This single iteration minimizes the accumulation of
errors in the predicted pseudo-labels during train-
ing.

Ethics Statement

This paper aims to improve the word alignment
performance of multilingual pre-trained language
models. All datasets that are used in this paper are
publicly available without copyright issues. We
use mDeBERTa-v3-base, Llama-3.1-8B-Instruct
and aya-expanse-8b models in our experiments ad-
hering to the respective model licenses. Note that
certain models built upon large language models
may generate content irrelevant to word alignment
if their prompts are not properly configured.
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A Additional Experimental Details

A.1 Word Alignment Dataset Statistics

Table 10 shows the number of training, validation
and test sets of word alignment datasets that we use
covering different levels of supervision.

Lang # Train # Val # Test
fully supervised

ja-en 653 225 357
de-en 300 - 208
ro-en 150 - 98
zh-en 450 - 450

few shot
ja-en 32 225 357
de-en 32 - 208
ro-en 32 - 98
zh-en 32 - 450
en-sv 32 - 192
fi-el 32 - 791
fi-he 32 - 200

zero shot
en-sv - - 192
fi-el - - 791
fi-he - - 200

Table 10: Number of training, validation and test exam-
ples in different supervision settings.

A.2 Details of Parallel Data

For Japanese-English, we use a subset of the KFTT
translation data (Neubig, 2011). Specifically, we
use a subset of the cleaned and tokenized version of
the training set of the translation data. The original
training set contains about 330K sentences. For
the tokenized English sentences in the training set,
we further preprocessed the text by lowercasing all
English tokens.

For Romanian-English, we use the training par-
allel corpus7 from Vilar et al. (2006). The parallel
corpus comes from three sources, Orwell’s 1984,
the Romanian Constitution and parallel texts col-
lected from the Web. We remove empty lines and
use a subset of the parallel sentences.

For the German-English pair, we use a subset
of News Commentary v18.1 (Kocmi et al., 2023)
as the unlabeled data. The only preprocessing step
before using these parallel sentences is the tokeniza-

7http://web.eecs.umich.edu/~mihalcea/wpt/data.
protected/Romanian-English.training.tar.gz

tion with Moses tokenizer 8 (Koehn et al., 2007).
For Chinese-English pair, we use the News Com-

mentary v16. For preprocessing, we use Moses
tokenizer to tokenize the English sentences and
utilize the Jieba tool9 (accurate mode) to tokenize
the Chinese sentences in the parallel sentences and
remove empty lines.

For English-Swedish, Finnish-Greek and
Finnish-Hebrew pairs, we utilize subsets of
CCMatrix v1.0 (Schwenk et al., 2021; Fan et al.,
2021; Tiedemann, 2012). We use spacy to do the
word segmentation for these language pairs.

The max number of unlabeled data that we use
is shown in Table 11.

Lang Max Num
ja-en 52,240
de-en 30,000
ro-en 30,000
zh-en 36,000
en-sv 30,000
fi-el 30,000
fi-he 30,000

Table 11: Size of parallel data.

A.3 Training Details
For all supervised fine-tuning experiments, we used
the PyTorch(2.4.0) (Paszke et al., 2019), transform-
ers (4.45.2) (Wolf et al., 2020) and PEFT (0.12.0)
libraries for loading model weights and training.
We utilized vLLM10 (version 0.6.2) (Kwon et al.,
2023) to speed up inference and evaluation. Most
experiments are conducted on a server with four
NVIDIA RTX 6000 Ada GPUs. Our largest ex-
periment takes approximately 60 hours of training
time on a single NVIDIA RTX 6000 Ada GPU.
For LLM-based word aligners, we mainly utilized
LoRA (Hu et al., 2022) for parameter-efficient fine-
tuning.

A.4 LoRA training details
We use LoRA for decoder-based language models.
The rank parameter is set to 64. The alpha param-
eter for LoRA scaling is set to 256. The dropout
probability for LoRA layers is set to 0.05. The tar-
get modules for LoRA layers contains “gate_proj”,
“down_proj”, “down_proj”, “up_proj”, “q_proj”,

8https://github.com/moses-smt/mosesdecoder/
blob/master/scripts/tokenizer/tokenizer.perl

9https://github.com/fxsjy/jieba
10https://github.com/vllm-project/vllm

19884

http://web.eecs.umich.edu/~mihalcea/wpt/data.protected/Romanian-English.training.tar.gz
http://web.eecs.umich.edu/~mihalcea/wpt/data.protected/Romanian-English.training.tar.gz
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/fxsjy/jieba
https://github.com/vllm-project/vllm


“v_proj”, “k_proj” and “o_proj” for Llama and Aya
series models.

A.5 Evaluation Metric Details
Given a set of predicted alignment (A), a set of
sure alignment (S) and a set of possible alignment
(P ), Precision, Recall, F1 and AER are computed
as follows:

Precision(A,P) =
|A ∩ P|
|A| (2)

Recall(A,S) = |A ∩ S|
|S| (3)

F1 =
2 · Precision ·Recall

Precision+Recall
(4)

AER(A,S,P) = 1− |A ∩ S|+ |A ∩ P|
|A|+ |S| (5)

A.6 Prompt Format and Example
Figure 6 is the prompt format of “marker mode”.
The model reponse contains a JSON output. The
above panel shows the situation where the model
outputs a JSON output when the marked source
word has valid alignments. The below panel
presents how the model deals with “no alignment”
situation. Figure 4 shows a prompt example of
“full mode”. Figure 5 shows a prompt example of
“marker mode”.

B Ablation Studies

Multi-language Training. We discuss whether
combining the training data of all language pairs
could further improve the word alignment perfor-
mance of SemiAlign-D.

We mainly discuss two settings:

• Whether the combination of the labeled data
from the four language pairs improves the
performance of LLM-based word aligners or
not.

• Whether combining labeled and unlabeled
data from all language pairs based on the
size of labeled data per each language pair
improves the performance or not.

Table 12 shows the AER scores of single lan-
guage pair (single-lang) and all language pair
(multi-lang) training. We find that the results of
using all training data are better if we only use the

labeled data. However, if we add pseudo-labeled
data to our training data, the results of separately
training SemiAlign-D are better in most cases ex-
cept the Chinese-English pair.

SemiAlign-D Ja-En De-En Ro-En Zh-En
labeled only

single-lang 16.16 11.93 14.66 5.73
multi-lang 14.47 9.21 10.61 4.54

labeled + unlabeled
single-lang 11.64 7.27 7.98 4.36
multi-lang 11.92 7.98 8.72 4.35

Table 12: AER results of single language training and
multi-language training. Lower AER scores indicate
better performance.

Number of Iterations. In this section, we dis-
cuss the effect of increasing iterations for self-
training of SemiAlign-E. Figure 7 shows the AER
scores of the first iteration and second iteration
on the Japanese-English word alignment dataset.
We observe that the second iteration of training
provides limited improvement in word alignment
performance, possibly due to the presence of noisy
pseudo-labeled data.

Effect of Using BinaryAlign-predicted Pseudo-
labeled Data and Using SemiAlign-E-predicted
labels. Table 13 shows the results of SemiAlign-
D on the Japanese-English dataset when using
BinaryAlign-predicted labels and SemiAlign-E-
predicted labels. We present the best results in their
settings. We find that using SemiAlign-E-predicted
labels is slightly better than using BinaryAlign-
predicted labels.

Precision Recall F1 AER
BinaryAlign 88.53 87.99 88.26 11.74
SemiAlign-E 88.09 88.63 88.36 11.64

Table 13: Results of SemiAlign-D using different
pseudo-labeled data. BinaryAlign means the results
of using BinaryAlign-predicted labels. SemiAlign-E
means the results of using SemiAlign-E-predicted la-
bels

Zero-shot Cross-lingual Transfer Between High-
resource Languages. In this section, we evaluate
the zero-shot cross-lingual transfer performance of
multilingual large language models as word align-
ers between high-resource languages. We use the
SemiAlign-D model that is trained on one language
pair, for example, Japanese-English or Chinese-
English pair. Then we evaluate the model on the
Romanian-English word alignment dataset directly.
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Role: system

Content: You are a helpful AI assistant for word alignment.

Role: user

Content: Please give me the word alignment information between the following two sentences. The parallel sentences: 

足利_0 義満_1 （_2 あしかが_3 よしみつ_4 ）_5 は_6 室町_7 幕府_8 の_9 第_10 3_11 代_12 征夷_13 大_14 

将軍_15 （_16 在位_17 1368_18 年_19 -_20 1394_21 年_22 ）_23 で_24 あ_25 る_26 。_27

yoshimitsu_0 ashikaga_1 was_2 the_3 3rd_4 seii_5 taishogun_6 of_7 the_8 muromachi_9 shogunate_10 and_11 

reigned_12 from_13 1368_14 to1394_15 ._16

Role: assistant

Content: Here is the word alignment information:

```json

[{'足利_0': ['ashikaga_1']}, {'義満_1': ['yoshimitsu_0']}, {'あしかが_3': ['ashikaga_1']}, {'よしみつ_4': 

['yoshimitsu_0']}, {'室町_7': ['muromachi_9']}, {'幕府_8': ['shogunate_10']}, {'の_9': ['of_7']}, {'第_10': ['the_3']}, 

{'3_11': ['3rd_4']}, {'代_12': ['3rd_4']}, {'征夷_13': ['seii_5']}, {'大_14': ['taishogun_6']}, {'将軍_15': 

['taishogun_6']}, {'在位_17': ['reigned_12']}, {'1368_18': ['1368_14']}, {'年_19': ['1368_14']}, {'1394_21': 

['to1394_15']}, {'年_22': ['to1394_15']}, {'で_24': ['was_2']}, {'あ_25': ['was_2']}, {'る_26': ['was_2']}, {'。_27': 

['._16’]}]

```.

Prompt Example for LLM-based Word Alignment (Type: Full Mode)

Figure 4: Prompt example of the “full mode”.

Through this setting, we want to know the potential
zero-shot cross-lingual transfer performance if our
LLM-based word aligner SemiAlign-D is used on
an unseen language pair.

Specifically, we trained the SemiAlign-D on the
combination of the German-English labeled and
pseudo-labeled data. Then we test its performance
on Romanian-English word alignment test set.

The results are shown in Table 14. These results
demonstrate that the pseudo-labeled data helps
zero-shot cross-lingual transfer. We notice that
the F1 and AER scores when we train models on
De-En and test on Ro-En are larger than the ones
of training models on Ja-En and testing on Ro-En.
The reason might be that German is more similar to
Romanian compared to Japanese in some linguistic
aspects.

SemiAlign-D Ro-En (F1) Ro-En (AER)
De-En (only labeled) 82.45 17.55
De-En (labeled + unlabeled) 84.35 15.65
Ja-En (only labeled) 79.24 20.76
Ja-En (labeled + unlabeled) 80.20 19.80

Table 14: Result of zero-shot cross-lingual transfer on
SemiAlign-D. The row name denotes the training lan-
guage pair. The column name shows the test language
pair. Higher F1 and lower AER scores indicate better
performance.

Effect of Possible Alignment. Some word align-
ment datasets have possible alignments. For exam-
ple, German-English word alignment dataset has
possible alignments. In this section, we investi-
gate the effect of training with possible alignment
and without it using multilingual large language
models.

Table 15 shows the results on the German-
English dataset when using the labeled data with
possible alignments and the labeled data without
possible alignments. We find that the results with-
out using possible alignment are better in F1 and
AER scores.

Precision Recall F1 AER
w/ possible alignment

93.63 90.75 92.17 7.80
w/o possible alignment

93.97 90.70 92.31 7.66

Table 15: Results of SemiAlign-D trained with the la-
beled data and pseudo-labeled data on German-English
language pair. "w/ possible alignment" means the re-
sults of using possible alignments in the labeled data.
"w/o possible alignment" means the results of not using
possible alignment in the labeled data.

Effect of Using LoRA, QLoRA and Full Pa-
rameter Fine-tuning. Table 16 shows the results
of using LoRA, QLoRA and Full parameter fine-
tuning on the test set of Japanese-English word
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Role: system

Content: You are a helpful AI assistant for word alignment.

Role: user

Content: Please give me the word alignment information between the following two sentences given the marked word 

with  ¶ . The parallel sentences: 

¶ 足利_0  ¶ 義満_1（_2あしかが_3よしみつ_4）_5は_6室町_7幕府_8の_9第_10 3_11 代_12征夷_13大
_14将軍_15（_16在位_17 1368_18 年_19 -_20 1394_21 年_22）_23で_24あ_25る_26。_27

yoshimitsu_0 ashikaga_1 was_2 the_3 3rd_4 seii_5 taishogun_6 of_7 the_8 muromachi_9 shogunate_10 and_11 

reigned_12 from_13 1368_14 to1394_15 ._16

Role: assistant

Content: Here is the word alignment information:

```json

{“足利_0”: [“ashikaga_1”]}

```.

Prompt Example for LLM-based Word Alignment (Type: Marker Mode)

Figure 5: Prompt example of the “marker mode” for supervised fine-tuning of LLM-based word alignment models.
The input is the marked source sentence and target sentence.

alignment dataset, KFTT. We find that the LoRA
verison achieves the best performance.
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Role: system

Content: You are a helpful AI assistant for word alignment.

Role: user

Content: Please give me the word alignment information between the following two sentences given the marked word 

with {context_sep}. The parallel sentences: {marked_sent_src}\n\n\n{sent_tgt_with_id}

Role: assistant

Content: There is no word alignment information for the marked word.

Prompt Format for LLM-based Word Alignment (Type: Marker Mode)

Role: system

Content: You are a helpful AI assistant for word alignment.

Role: user

Content: Please give me the word alignment information between the following two sentences given the marked word 

with {context_sep}. The parallel sentences: {marked_sent_src}\n\n\n{sent_tgt_with_id}

Role: assistant

Content: Here is the word alignment information:\n\n```json\n{label_str}\n```.

Prompt Format for LLM-based Word Alignment (Type: Marker Mode)

Figure 6: Prompt format of “marker mode” for supervised fine-tuning of LLM-based word alignment models. The
input is the marked source sentence and target sentence.

Method Precision Recall F1 AER
SemiAlign-D (LoRA) 88.09 88.63 88.36 11.64
SemiAlign-D (QLoRA) 87.82 88.48 88.15 11.85
SemiAlign-D (Full) 89.12 87.18 88.14 11.86

Table 16: Results of using LoRA, QLoRA and “full parameter fine-tuning” on the test set of Japanese-English word
alignment dataset, KFTT.

10 20 30 40 50 60 70 80
Number of training examples (unit: 653)

84.5

85.0

85.5

86.0

86.5

87.0

87.5

F1
 (%

)

SemiAlign-E
SemiAlign-E (2nd iteration)
BinaryAlign

Figure 7: Comparison between the F1 scores of the
SemiAlign-E after the first iteration and second iteration
training on the Japanese-English dataset. Higher F1
scores mean better performance.
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