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Abstract

Speculative decoding (SD) accelerates Large
Language Model (LLM) generation by using
an efficient draft model to propose the next few
tokens, which are verified by the LLM in a
single forward call, reducing latency while pre-
serving its outputs. We focus on retrieval-based
SD where the draft model retrieves the next to-
kens from a non-parametric datastore. Sparse
retrieval (He et al., 2023, REST), which oper-
ates on the surface form of strings, is currently
the dominant paradigm due to its simplicity and
scalability. However, its effectiveness is lim-
ited due to the usage of short contexts and exact
string matching. Instead, we introduce Dense
Retrieval for Speculative Decoding (DReSD), a
novel framework that uses approximate nearest
neighbour search with contextualised token em-
beddings to retrieve the most semantically rele-
vant token sequences for SD. Extensive experi-
ments show that DReSD achieves (on average)
87% higher acceptance rates, 65% longer ac-
cepted tokens and 19% faster generation speeds
compared to sparse retrieval (REST).

1 Introduction

Generative transformers (Vaswani, 2017) are cur-
rently the dominant artificial intelligence paradigm
with recent LLMs scaled to tens (or even hundreds)
of billions of parameters (Brown et al., 2020; Liu
et al., 2024; Dubey et al., 2024). In spite of their
strong capabilities, the auto-regressive nature of
generation requires a costly forward pass for each
new token. Various solutions have been proposed
to accelerate LLMs such as Flash Attention (Shah
et al., 2024), Mixture of Experts (Fedus et al., 2022;
Jacobs et al., 1991), Tensor Parallelism (Shoeybi
et al., 2019), Linear Attention (Qin et al., 2024)
and others. The focus of our work is Speculative
Decoding (Leviathan et al., 2023), which seeks to
accelerate generation by using an efficient draft

* Equal contribution with first author, conducted during a
research internship at Huawei Noah’s Ark Lab, London.

Figure 1: Fastest configurations for selected SD meth-
ods (greedy decoding), relative to auto-regressive gener-
ation (LLM), CL = CodeLlama, LC = Llama2-Chat.

model to propose the next few tokens that are veri-
fied in a single forward call of the LLM (Stern et al.,
2018), guaranteeing its outputs. While several vi-
able SD paradigms exist (Xia et al., 2024; Zhang
et al., 2024a; Ryu and Kim, 2024; Zimmer et al.,
2024), this work specifically focuses on retrieval-
based SD where a draft model retrieves token se-
quences from a non-parametric datastore, usually a
suffix array/automaton. Sparse retrieval has estab-
lished itself as the dominant paradigm (He et al.,
2023; Yang et al., 2023; Saxena, 2023; Hu et al.,
2024), largely due to its simplicity and efficiency.
However, we hypothesise that this approach suf-
fers from limitations such as lower precision due
to the use of short contexts and reduced recall due
to exact string matching. As an alternative, we in-
troduce Dense Retrieval for SD (DReSD) which
seeks to overcome these limitations by utilising
approximate nearest neighbour search with contex-
tualised token representations. DReSD is a novel
plug-and-play SD framework based on semantic
similarity that shows significantly improved accep-
tance rates. Through extensive experimentation,
we identify three critical factors of dense retrieval
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for SD and show how an optimal configuration can
accelerate generation by up to 4.64x1.

Summary of Contributions: We conduct a de-
tailed comparative analysis of sparse and dense
retrieval for SD in order to identify the critical fac-
tors of effective dense retrieval. To address these,
we propose a novel SD framework (for the first
time, to our best knowledge) for easy LLM inte-
gration. Results show that DReSD achieves (on
average, across all experiments) 87% higher accep-
tance rates, 65% longer accepted tokens and 19%
faster generation compared to sparse retrieval.

2 Background

2.1 Speculative Decoding

Let x represent the input tokens (x1, x2, ..., xt) such
as a prompt and any tokens generated up to time
step t. Auto-regressive generation requires a full
forward pass through the model xt+1 = LLM(x)
to decode every new token xt+1, which is very
resource-intensive for large LLMs. Therefore, a
smaller draft modelMDRAFT efficiently proposes
k next tokens (xt+1, xt+2, ..., xt+k), denoted xd,
which can then be verified with a single forward
call xv = llm_verify(xd). Verification only accepts
tokens xv that would have been generated by the
LLM, irrespective of utilising SD. MDRAFT can
be a small LLM (Miao et al., 2023), a retrieval-
based model (He et al., 2023), a subset of LLM’s
parameters called ‘draft heads’ (Cai et al., 2024; Li
et al., 2024b; Ankner et al., 2024) or no auxiliary
draft model at all, called ‘self-drafting’ (Mamou
et al., 2024). Each paradigm has its trade-offs and
the landscape is evolving rapidly (Xia et al., 2024;
Zhang et al., 2024a; Ryu and Kim, 2024).

2.2 Retrieval-based Speculative Decoding

Since SD operates at the token level, it requires a
continuous interaction betweenMDRAFT and the
LLM. In retrieval-based SD, MDRAFT is repre-
sented by a non-parametric, training-free, static
or dynamic datastore from which next token se-
quences are efficiently drafted and finally verified
by the LLM. Retrieval-based SD can be broadly
divided into sparse and dense retrieval.

1The code and data are available at https://github.com/
huawei-noah/HEBO/tree/DReSD

2.2.1 Sparse Retrieval for SD
Sparse retrieval employs exact string matching2 to
retrieve k next tokens (xt+1, xt+2, ..., xt+k) from
the datastore, which contains a large body of pre-
tokenized text similar to the target task(s), allowing
for appropriate drafting. There are two types of
sparse retrieval datastores for SD.

A static datastore keeps its content unchanged
during inference. The most similar work (and our
main baseline) is Retrieval-based Speculative De-
coding (He et al., 2023, REST). REST matches the
longest possible suffix of the current context x, a
sequence of up to c tokens (xt−c, xt−c+1, ..., xt), to
exact token sequences (suffixes) in the datastore
to provide k draft candidates (xt+1, xt+2, ..., xt+k)
for LLM verification. The main limitation of exact
string matching is that minor perturbations in x will
result in a failure to retrieve useful candidate drafts.

A dynamic datastore keeps updating its content
continuously during inference (Yang et al., 2023;
Luo et al., 2024; Saxena, 2023), which means it
benefits from recently generated token sequences
that align well with the LLM, particularly for tasks
with repetitive texts. Combinations of static and dy-
namic datastores are also possible (Hu et al., 2024).
However, as the focus of our work is a systematic
‘apples to apples’ comparison of sparse and dense
retrieval, these methods are not appropriate for a
direct comparison with DReSD (or REST). We
aim to explore (for the first time) the comparative
efficacy of static datastores for the purpose of SD.

2.3 Dense Retrieval for SD

The key assumption behind DReSD is that seman-
tic similarity of contextualised token embeddings
should provide superior retrieval compared to ex-
act string matching. Therefore,MDRAFT is repre-
sented by a non-parametric datastore that employs
approximate nearest neighbour search (Shrivastava
and Li, 2014; Sun et al., 2023, ANNS) to match
the (full) current context x to similar contexts in
the datastore in order to draft the next tokens xd for
LLM verification. ANNS is a technique for finding
the closest data point(s) for a given query in a pos-
sibly high-dimensional vector space (Karpukhin
et al., 2020). Nearest Neighbour Speculative De-
coding (Li et al., 2024a, NEST) is the only work
using dense retrieval, to our best knowledge. How-

2https://en.wikipedia.org/wiki/Suffix_array or
https://en.wikipedia.org/wiki/Suffix_automaton.
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Figure 2: A flowchart of the DReSD framework.

ever, its primary focus is retrieval augmented fu-
sion with attribution, not SD. NEST relies on ap-
proximate verification to fuse the LLM and the re-
trieved knowledge, which means the LLM outputs
are not guaranteed. Additionally, while NEST did
not consider exact verification in their experiments,
we can estimate from their results that minimal
speed-ups would be achieved under that setting.

3 DReSD

Algorithm 1 DReSD: An algorithmic overview.

1: x← tokenizer(prompt)
2: v← LLM(x) ▷ Section 3.1.
3: while not(EOS ∨MAX_LEN) do
4: v← z_norm(v) ▷ Section 3.2.
5: vl ← PCA(v) ▷ Section 3.3.
6: vl ← m_norm(vl) ▷ Section 3.4.
7: xd ←MDRAFT(vl) ▷ Section 3.5.
8: v, xv ← batch_verify(xd) ▷ Section 3.6.
9: x← x+ xv ▷ Append xv

10: return x

We are now ready to introduce Dense Retrieval
for Speculative Decoding, shown in Figure 2 and
Algorithm 1 above. Focusing on the latter, the user
prompt is tokenised in step 1 and embedded in step
2. Entering the loop (3), the embedding is nor-
malised (4), then reduced (5) to optimise storage
and compute requirements. After a second normal-
isation step (6), we query the datastore to retrieve
the draft next tokens (7). They are verified by the
LLM (8), returning the accepted token(s) and the
embedding of the last accepted token. We append
the accepted token(s) to the current context and
begin a new iteration, which ends when we reach
maximum sequence length or the <EOS> token.

3.1 Token Embeddings

The initial step is to generate a contextualised token
embedding v ← LLM(x) to represent the current
state of the LLM that will be used to retrieve candi-
dates for the next tokens. In DReSD, v is the last
hidden state before the language modelling head3.
As in standard SD, LLM(x) will also generate the
next token xt+1, which we additionally use to filter
retrieved candidate drafts. Even if all draft tokens
are rejected, xt+1 ensures that each SD iteration
produces at least one valid token.

3.2 Z-scores Normalisation

Before we perform dimensionality reduction, we
centre the empirical mean around 0 with a standard
deviation of 1 to reduce the correlation between dif-
ferent embedding dimensions (Ethayarajh, 2019;
Reimers and Gurevych, 2019), see Equation 1. We
randomly sample ∼1 million (full size) token em-
beddings V from the datastore to estimate the mean
and standard deviation for efficient inference.

v =
v − E[V]√
Var[V] + ϵ

(1)

3.3 Dimensionality Reduction

Using the full LLM hidden state v with thousands
of dimensions is not scalable. As such, data com-
pression and noise reduction are necessary steps for
DReSD to reduce storage requirements and acceler-
ate nearest neighbour search. Principal Component
Analysis (Shlens, 2014, PCA) is a highly effec-
tive and algorithmically simple solution for this,
allowing for efficient inference, too. We use PCA
to transform v into a low-dimensional vector vl

3Alternative LLM components may be used for the current
state representation but this is out of the scope of this work.
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that captures the largest variation in the data, using
the first l principal components Wl by computing
vl ← vWl. We fit the PCA model on the same ∼1
million token embeddings V from section 3.2.

3.4 Magnitude Normalisation

We further standardise the embedding vl by scaling
each to have a unit length of 1 using Lp normali-
sation over the last dimension (columns), see Eq.
2. This is a standard transformation required for
effective (dot product) nearest neighbour search.

vl =
vl

max(∥vl∥2, ϵ)
(2)

3.5 Datastore

We utilise Scalable Nearest Neighbours4(Guo et al.,
2020) for approximate nearest neighbour search
(time complexity Ologn). The datastore D is for-
matted as a key-value store fD : k 7→ v where
k is a token embedding vtl at time step t and v is
a sequence of the next N tokens (xt+1, ..., xt+N),
obtained from datasets similar to the target task(s).
Cosine similarity is used as a standard distance met-
ric, see Equation 3. The next token xt+1 obtained
from step 3.1 is used to filter drafts that do not start
with xt+1, further enhancing retrieval accuracy.

MDRAFT(vl) = fD(argmax
vtl∈D

sim(vl, v
t
l ))

sim(vl, v
t
l ) =

vl · vtl
max(∥vl∥2 · ∥vtl ∥2, ϵ)

(3)

3.6 Batch Verification

We use batch verification (Yang et al., 2024; Stew-
art et al., 2024) for all experiments, which gener-
alises standard SD verification to multiple drafts,
see Figure 3. Batch verification has shown benefits
for SD, particularly at lower batch sizes (Ni et al.,
2024; Zhang et al., 2024b). As this requires a for-
ward call to the LLM, we extract the embedding
v from the last accepted token of xv to efficiently
feed into the next iteration (step 8, Algorithm 1).
Following our baseline, for nucleus and greedy gen-
eration, we first sample tokens conditioned on the
draft sequences, then accept the longest sequence
that exactly matches the outputs of the LLM.

4https://github.com/google-research/
google-research/tree/master/scann

Figure 3: An illustration of batch verification with 5
drafts (rows) with a length of 8 (columns). The EOS
id (0 in this example) is used as padding. The green
sequence is accepted, blue sequences are discarded.

4 Experimental Setup

4.1 Models

We evaluate methods on LLMs from the Llama2
family (Touvron et al., 2023), courtesy of Hugging-
face transformers (Wolf, 2019). Specifically, we
benchmark CodeLlama (7B and 13B), CodeLlama-
Instruct (7B) and Llama2-Chat (7B and 13B). The
MDRAFT for vanilla Speculative Decoding (with
a small LLM drafter) features Llama-Chat-68M5,
fine-tuned from Llama-68M (Miao et al., 2023).

4.2 Datasets and Tasks

We test models on 100 randomly selected CodeAl-
paca (Chaudhary, 2023) prompts, which include
code generation, debugging, explanation and other
code tasks. The datastore for this code assistant
is built from EvolInstructCode (Luo et al., 2023),
comprising ∼78K prompts with responses, trun-
cated to 1,024 max tokens. We also evaluate on 80
MT-Bench6 (Zheng et al., 2023) prompts (first turn
specifically, due to the compute required for the
number of experiments). The datastore for this gen-
eral personal assistant is built from a random subset
of 80K (‘train-sft’) UltraChat-200K7 (Ding et al.,
2023) examples, prompts and responses truncated
to 1,024 max tokens, once again, first turn to limit
the scope of the long, multi-turn conversations. For
the final datastore sizes, see Table 1.

4.2.1 In-Distribution Data
The datasets used to populate the datastore are often
generated by some version of ChatGPT whose out-
puts are not necessarily representative of the target

5https://huggingface.co/Felladrin/
Llama-68M-Chat-v1

6https://huggingface.co/datasets/
HuggingFaceH4/mt_bench_prompts

7https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k
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Models EVOL MRR U-CHAT MRR

OOD datastores (Sec. 4.2.1)

CL-7B 30.9M 93.7 46.3M 97.5
CL-13B 30.9M 92.5 - -
LC-7B 30.9M 93.6 46.3M 97.9
LC-13B 30.9M 93.7 - -
CL-I-7B 30.9 93.9 46.3M 97.9

Sec. ID datastores (Sec. 4.2.1)

CL-7B 19.3M 87.6 - -
CL-13B 19.3M 85.5 - -
LC-7B 19M 90.3 56.8M 75.2
LC-13B 19M 90.4 - -
CL-I-7B - - 57.2M 75.9

Table 1: Datastore sizes in tokens + corresponding MRR.
EVOL = EvolInstructCode, U-CHAT = UltraChat.

LLM (Llama2). That is, the datastore outputs are
out-of-distribution (OOD) with respect to the LLM.
As this divergence increases, the acceptance rates
and decoding speeds are expected to decrease. To
investigate the effect of in-distribution (ID) token
sequences, we generate responses for each LLM
and use those to populate the datastore. We re-
fer to Llama2 responses as the ID datastore and
ChatGPT responses as the OOD datastore.

4.3 Metrics

Hardware Dependent metrics are heavily influ-
enced by the choice, availability and optimisation
level of hardware components. Nevertheless, in
order to provide indicative walltime improvements,
we use tokens-per-second (abbreviated to TPS) as
the standard metric, reporting the median of three
runs. TPS is measured on a single NVIDIA V100
(32GB) GPU with 96 CPUs and 500GB of RAM.

Hardware Independent metrics are more appro-
priate for algorithmic comparisons that are indepen-
dent of optimisation tricks and hardware quality.
Mean Acceptance Rate (MAR) is the number of
tokens drafted divided by the number of tokens
accepted by the LLM. MAR is computed at the
prompt level, then averaged over all prompts.

Retrieval Only We also conduct intrinsic evalua-
tion to assess the quality of the nearest neighbour
search. We use Mean Reciprocal Rank8, shown in

8A presence of duplicate embeddings in a large datastore
can lead to lower scores, even with near-perfect retrieval.

Equation 4, where ranki is the position of the cor-
rect item and N is the number of embeddings in the
datastore (a score of 1 equates to perfect retrieval).

MRR =
1

N

N∑

i=1

1

ranki
(4)

5 Results

We provide reference metrics for auto-regressive
decoding with the base LLM, vanilla speculative de-
coding (Leviathan et al., 2023) and Prompt Lookup
Decoding (PLD), a dynamic retrieval method that
uses the current input tokens for drafting (Saxena,
2023). Our main point of reference is REST (He
et al., 2023), which is created from the same data
as DReSD. For all experiments, we generate up to
128 new tokens per prompt.

5.1 Mean Acceptance Rates
We first examine the average acceptance rates in
a highly controlled setting where the draft lengths
are as identical as possible. This is to test our core
assumption that, all things being equal, dense re-
trieval would more accurately match the current
context to useful sequences of next tokens in the
datastore, relative to sparse retrieval. The hypothe-
sis is confirmed in Figure 4 as significantly higher
MAR for DReSD, on average 87% higher. This
translates to fewer verification calls due to longer
accepted drafts, on average 65% longer than REST.

Figure 4: Mean Acceptance Rates (MAR) for the Code
Assistant. Suffix "-I" denotes the ID datastore setting.

5.2 Effective Dense Retrieval
Sparse retrieval libraries had been highly optimised
over time, therefore, a high-performing datastore
is a critical component of DReSD. It is imperative
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Figure 5: Cumulative Explained Variance Ratio for a
256-dimensional PCA model. We use the first 64 dims.

to maximise the algorithmic efficiency of DReSD
to amortise the relatively higher cost of “vanilla”
dense retrieval. Reducing the large dimensionality9

of LLM hidden states while preserving the most in-
formative features is a top priority. Figure 5 shows
the cumulative explained variance ratio for the first
256 principal components from which we select 64
after a dimensionality ablation. Table 2 shows that
retaining more than 64 principal components pro-
vides no meaningful improvement in downstream
metrics. The pre-PCA (Equation 1) and post-PCA
(Equation 2) normalisation steps are particularly
important since the MRR scores sharply drop with-
out these transformations. The most remarkable ob-
servation is that selecting just over 1% of the 4096
to 5120 dimensional LLM hidden state features is
enough to capture between 30%-40% of explained
variance in PCA, and achieves such strong retrieval
performance (see MRR, in Table 1 and 2). There
is a surprisingly high degree of redundancy in the
LLM hidden state in terms of the minimum features
required for effective dense retrieval, an important
discovery for any future work.

Metrics 32D 64D 96D 128D

MAR 20.1 22.5 22.8 23
Calls 37 34.6 34.7 34.5
TPS 32 35 36 35

MRR 85.5 93.6 94.2 94.2

Table 2: An ablation of PCA dimensionality reduction.
‘Calls’ = the average number of LLM verification calls.

9https://pypi.org/project/torch-pca/

Figure 6: Mean Acceptance Rates with high (CodeAl-
paca, "-C") & low (MT-Bench, "-M") prompt alignment.

5.3 Importance of Datastore Alignment

Another critical component of retrieval-based SD is
datastore alignment, which we split into a) prompt
alignment, b) response alignment, and c) sam-
pling alignment. These multiplicatively influence
overall effectiveness, which means that poor align-
ment in any of them can adversely impact perfor-
mance. Let us examine why in more detail.

Prompt alignment is typically satisfied by pop-
ulating the datastore with prompts highly related
to the target task(s) such as code, maths or general
question answering. After a brief qualitative assess-
ment, this appears to have been reasonably satisfied
for the code assistant, however, only to some de-
gree for MT-Bench tasks. Despite strong response
alignment (ID datastore) and retrieval (MRR, Ta-
ble 1), the poor prompt alignment leads to lower
acceptance rates (see Figure 6), relative to CodeAl-
paca. Since this result reflects prior findings (He
et al., 2023), we think that choosing a more prompt-
aligned dataset will result in faster decoding. In any
case, dense retrieval (DReSD) outperforms sparse
retrieval (REST) by ∼90% in Figure 6.

Response alignment is the similarity of outputs
between the LLM and the model(s) that generated
the datastore, i.e. draft sequences with a low prob-
ability under the LLM lead to high rejection rates
and slow decoding speeds, regardless of the capa-
bilities of the model(s) that generated the datastore.
A qualitative comparison of Llama2 (ID datastore)
and ChatGPT (OOD datastore) responses reveals
significant differences in writing styles, knowledge
depth and response lengths. The effects of these
differences can be observed in Figures 1, 4 and 9
by comparing methods with and without the suffix
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Figure 7: Investigating the impact of increasing draft lengths (left) and the number of drafts (right) on MAR, TPS
and LLM verification calls, using a greedy datastore with greedy generation on code assistant tasks (CodeAlpaca).

Figure 8: MAR for "-I" = ID datastore (nucleus genera-
tion) with "-N" = nucleus and "-G" greedy sampling.

"-I", showing that the ID datastore has a strong
positive effect in all cases. For example, MAR in-
creased by ∼70% on average for CodeAlpaca with
an ID datastore despite being ∼40% smaller than
the OOD datastore, emphasising the importance of
response alignment over sheer data quantity.

Sampling alignment refers to the similarity of
hyperparameters with which the datastore content
was generated and the sampling hyperparameters at
inference time. For instance, in Figure 9 (left), the
best speed-ups were achieved with greedy sampling
and a ‘greedy’ datastore. In contrast, nucleus sam-
pling (temperature=0.7, p=0.9510) with a ‘greedy’
datastore resulted in lower speed-ups (Figure 9,
right). In another ablation (Figure 8), the ID datas-
tore was generated with nucleus sampling, using 3
responses of up to 128 tokens per prompt (see Table

10Nucleus hyperparameters are the same in all experiments.

1 for final datastore sizes). There was no significant
difference between MAR scores with greedy or nu-
cleus sampling this time. In summary, the more
permissive the sampling parameters are, e.g. a high
temperature, the greater the LLM’s expressivity
that will need to be covered by the datastore. This
is particularly the case for open-ended tasks such
as creative writing where the number of ‘correct’
responses is usually much greater than in a coding
or maths task, for example. In contrast, low temper-
ature sampling can achieve fast decoding speeds
with a much smaller ‘greedy’ datastore.

5.4 Optimal Draft Shape

The final critical factor for achieving high decod-
ing performance is the shape of the draft because
each additional token sent for verification increases
the cost of the LLM forward pass (see Figure 3
for an illustration of a 5 x 8 draft). While REST
outputs drafts that encode shallow and wide trees
(10 x 6, on average, cannot be altered), DReSD
can modify this shape to potentially achieve higher
speed-ups. For instance, when the draft shape is
matched to REST, DReSD outperforms it by 15%
to 28% with nucleus sampling and 10% to 29%
with greedy decoding (TPS, Figure 9). Switching
to the ID datastore (suffix "-I"), the margins are
slightly smaller, 2% to 15% for nucleus sampling
and 4% to 20% for greedy generation. However,
the optimal REST draft (wide and shallow) is not
necessarily optimal for DReSD (narrow and deep).
Therefore, we investigate the optimal draft shape
using an ablation of the number and the length
of drafts with a ’greedy’ ID datastore and greedy
decoding, shown in Figure 7. The number of drafts
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Figure 9: TPS metrics for a selection of LLMs and configs: "-G" = greedy decoding, "-I" = uses ID datastore (greedy
generation), "-N" = nucleus sampling, "-B" = our best setup (see section 5.5), LLM = auto-regressive generation.

is fixed to 10 for ‘Impact of Draft Length’ (left)
and the length of each draft is fixed to 10 tokens for
‘Impact of the Number of Drafts’ (right). Based on
the findings of this ablation, the best configurations
are DReSD-IBN (10 x 10), yielding between 10%
and 23% speed-up relative to REST for nucleus
sampling and DReSD-IBG, (3 x 20), yielding 42%
to 218% faster speeds for greedy decoding. As a
general principle: 1) we should increase the draft
length for higher acceptance rates and vice versa,
and 2) include fewer drafts for greedy generation
but more drafts (shorter) for nucleus sampling.

Models SD PLD REST DReSD

CL-7B 1.63x 2.21x 3.79x 5.47x
LC-7B 1.32x 1.11x 2.89x 4.11x
CL-13B 1.40x 1.93x 2.60x 5.67x
LC-13B 1.33x 1.27x 2.13x 3.33x

Average 1.42x 1.63x 2.85x 4.64x

Table 3: Average speed-ups relative to auto-regressive
generation on the code assistant tasks (CodeAlpaca).

5.5 Walltime Improvements
Table 3 provides the speed-up ratios for vanilla
SD with Llama-Chat-68M, Prompt Lookup De-
coding (dynamic sparse retrieval), REST (static
sparse retrieval) and DReSD (static dense retrieval).
The averages show that every SD method acceler-
ates standard auto-regressive LLM generation by at
least 40%, with higher speed-ups observed for the
’smaller’ 7B models. PLD is most effective for very
repetitive outputs, which can be a property of the
task and/or the model. For example, CodeLlama

(not instruction-tuned), has a tendency to produce
repetitive texts, particularly on code assistant tasks.
This is why the effectiveness of PLD drops sharply
for instruction-tuned models. Our best configura-
tion for REST, shown in Figure 9 with suffix "-IG",
gives an average 2.85x speed-up. DReSD using
drafts of shape (3 x 20 tokens) and the ID datastore
(suffix "-IBG") averaged a remarkable 4.64x im-
provement over auto-regressive decoding. Figure
1 provides a visual summary of these configura-
tions in relation to other baseline methods. The
speed-ups on MT-Bench are relatively more mod-
est, up to ∼1.52x, due to poor prompt alignment
discussed earlier (5.3). Still, DReSD significantly
outperformed REST, which achieved only ∼1.15x
speed-up with the same dataset(s). This confirms
our hypothesis that dense retrieval is the superior
search paradigm for speculative decoding.

5.6 Storage Requirements

Compared to sparse retrieval, the datastore size for
dense retrieval is significantly larger (even with 64-
dimensional embeddings), on average between 30x-
40x, depending on the dataset/task and tokenizer.
For example, the datastore size for MT-Bench us-
ing Llama-2-Chat-7B is only 15.7GB (46.3 million
tokens). CodeAlpaca (19 million tokens) is even
smaller at just 6.49GB for an average of 4.64x ac-
celeration over baseline (Table 3). Given that disk
storage and RAM are significantly cheaper than
GPU rental, the running costs of DReSD are ex-
pected to be lower than REST, despite the datastore
overheads. Lastly, the computationally demanding
datastore creation is a one-time operation.
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6 Conclusions

We have presented a comparative analysis of dense
and sparse retrieval for speculative decoding in
order to identify and overcome the limitations of
the dominant (sparse) paradigm. To address these,
we have introduced DReSD, Dense Retrieval for
Speculative Decoding, a novel framework that re-
trieves candidate drafts from a non-parametric data-
store based on semantic similarity (via approximate
nearest neighbour search) instead of exact string
matching. DReSD introduces a scalable and effec-
tive dense retrieval protocol that can easily integrate
into modern LLMs. Exhaustive comparisons using
several model and task configurations have demon-
strated that DReSD achieves (on average across all
settings) 87% higher acceptance rates, 65% longer
accepted tokens and 19% faster generation speeds
compared to sparse retrieval (REST). This is en-
abled by three critical factors: a) a fast and accurate
dense retrieval via dimensionality reduction and
dual normalisation of LLM embeddings, b) a care-
ful datastore alignment (particularly the ID datas-
tore) with high acceptance rates, longer drafts and
fewer LLM calls, c) an optimal draft shape explored
via careful ablations that enabled up to 4.64x aver-
age speed-ups over baseline auto-regressive gener-
ation. We hope that our findings will enable new
retrieval-based SD methodologies in the future.

7 Limitations

We acknowledge that sparse retrieval methods typi-
cally have lower storage and preprocessing require-
ments, which can make their adoption more fea-
sible for low compute budgets compared to our
proposed methodology. Simultaneously, we recog-
nise the lack of software and/or hardware optimisa-
tion for DReSD that could fully realise its potential
in terms of faster decoding speeds compared to
the highly optimised sparse retrieval libraries. Fi-
nally, related work has shown that combinations of
dynamic and static retrieval may bring complemen-
tary strengths to the overall approach, therefore,
DReSD could be extended to such hybrid specula-
tive decoding version in future work. In terms of
social impact or ethical concerns, our work has no
particular impact as we solely focus our methodol-
ogy on decoding speeds from pretrained language
models. No modification of datasets and/or LLMs
has been performed in this work. For full trans-
parency, all code, models and data are readily avail-
able in the open-source NLP community.
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A Appendix

The following tables contain the results used to
generate the bar charts in the paper.

TPS CodeLlama-7B Llama2-Chat-7B CodeLlama-13B Llama2-Chat-13B

LLM 19 19 15 15
SD 31 25 21 20
PLD 42 21 29 19
REST 72 55 39 32
DReSD 104 78 85 50

Table 4: Fastest configurations for a selection of meth-
ods (greedy decoding), relative to auto-regressive gener-
ation (LLM), CL = CodeLlama, LC = Llama2-Chat.

MAR CodeLlama-7B Llama2-Chat-7B CodeLlama-13B Llama2-Chat-13B

SD 29.6 17.8 18.9 19.1
PLD 32.7 10.0 22.4 12.7
REST 28.1 18.0 20.3 17.9
DReSD 45.5 31.9 32.4 32.9
REST-I 33.4 35.0 27.0 29.5
DReSD-I 49.4 48.1 51.3 46.3

Table 5: Mean Acceptance Rates (MAR) for the Code
Assistant. Suffix "-I" denotes the ID datastore setting.

TPS CodeLlama-7B Llama2-Chat-7B CodeLlama-13B Llama2-Chat-13B

REST-G 32 27 19 17
DReSD-G 37 32 21 22
REST-IG 72 55 39 32
DReSD-IG 75 61 47 36
DReSD-IBG 104 78 85 50

REST-N 34 28 19 18
DReSD-N 39 36 22 22
REST-IN 45 48 26 27
DReSD-IN 48 49 30 30
DReSD-IBN 52 53 32 33

Table 6: Tokens-per-second for a selection of LLMs
and configurations: "-G" = greedy decoding, "-I" =
uses the ID datastore, "-N" = nucleus sampling, "-B" =
our best setup (see section 5.5), LLM = auto-regressive
generation.

MAR CodeLlama-Instruct-7B Llama2-Chat-7B

REST-C 16.7 18.0
REST-M 9.3 8.0

DReSD-C 29.0 31.9
DReSD-M 18.5 17.3

Table 7: Mean Acceptance Rates with high (CodeAl-
paca, "-C") & low (MT-Bench, "-M") prompt alignment.

MAR CodeLlama-Instruct-7B Llama2-Chat-7B

REST-IG 10.0 8.4
DReSD-IG 25.2 22.4
REST-IN 11.0 9.4
DReSD-IN 25.3 23.4

Table 8: Mean Accepted Rates with an ID datastore "-I",
nucleus sampling "-N" and greedy "-G" decoding.
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