Data Interpreter: An LLM Agent For Data Science

Sirui Hong'* , Yizhang Lin'*, Bang Liu?’, Bangbang Liu'", Binhao Wu'’, Ceyao Zhang'¢"
Danyang Li'", Jiaqi Chen?®, Jiayi Zhang®', Jinlin Wang'’, Li Zhang?®', Lingyao Zhang'",
Min Yang®', Mingchen Zhuge’", Taicheng Guo®', Tuo Zhou*', Wei Tao®', Xiangru Tang®",
Xiangtao Lu'’, Xiawu Zheng!'®’, Xinbing Liang'''", Yaying Fei'?", Yuheng Cheng'¢",
Yongxin Ni'®?, Zhibin Gou'*", Zongze Xu''*", Yuyu Luo®’, Chenglin Wu'*

'DeepWisdom, 2Université de Montréal & Mila, *Fudan University ‘HKU *"HKUST(GZ)
6SIAT,CAS "KAUST 8University of Notre Dame ?Yale University *Xiamen University
UECNU 2BJUT '3Hohai University “Tsinghua University 1’NUS CUHK-Shenzhen

Abstract

Large Language Model (LLM)-based agents
have excelled in various domains but face sig-
nificant challenges when applied to data sci-
ence workflows due to their complex, multi-
stage nature. Current LLM-based agents strug-
gle with non-linear relationships, recursive de-
pendencies, implicit data- and logic-dependent
reasoning, and managing extensive context. In
this paper, we introduce Data Interpreter, an
LLM-based agent that addresses these chal-
lenges through hierarchical graph-based mod-
eling to represent the complexity and a pro-
gressive strategy for step-by-step verification,
refinement, and consistent context manage-
ment. Extensive experiments confirm the ef-
fectiveness of Data Interpreter. On InfiAgent-
DABench, it boosts performance by 25% (from
75.9% to 94.9%), and on machine learning and
open-ended tasks, it lifts accuracy from 88%
to 95% and from 60% to 97%, respectively.
Moreover, our method surpasses state-of-the-
art baselines by 26% on the MATH dataset. We
will release the code upon publication.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various reasoning
tasks (Hong et al., 2023; Wu et al., 2023a; Wang
et al., 2023a,b; Chen et al., 2024; Zhang et al.,
2024b,a), showcasing their ability to understand
complex contexts, generate coherent responses, and
even tackle multi-step problem-solving tasks.
Among the many areas where LLMs have been
applied, data science stands out as a field of partic-
ular importance, but also one that presents unique
challenges (Hu et al., 2024; Qin et al., 2020). Data
science tasks, including machine learning, data

“These authors contributed equally to this work.

"The authors are listed in alphabetical order.

*Chenglin Wu (E-mail: alexanderwu@deepwisdom.ai), is
the corresponding author.

analysis, table-based question answering, and math-
ematical reasoning, involve multi-stage workflows
that require both precise logical and numerical rea-
soning across various datasets. These data science
workflows are inherently complex and involve mul-
tiple steps, with each task building upon the re-
sults of previous ones (Hu et al., 2024; Liu et al.,
2024c; Li et al., 2024a). The complexity arises
from the interdependencies across different stages,
where tasks are not only sequential, but may also
involve parallel processes, feedback loops, and re-
cursive relationships. Furthermore, many data sci-
ence tasks require reasoning that is both data- and
logic-dependent, introducing implicit dependencies
that are not always clearly stated. For example, in
machine learning workflows, the transformation of
categorical variables across different stages of a
pipeline (e.g., encoding methods) may not always
be consistent, leading to misalignments that de-
grade model performance. LLMs may struggle to
capture these implicit dependencies, applying dif-
ferent methods inconsistently, which can result in
erroneous conclusions and degraded performance.

To address these challenges, several (LLM agent-
based) frameworks have been proposed, as shown
in Table 1. However, these existing solutions still
have significant limitations in tackling the issues
faced by LLMs when applied to data science tasks.
One major issue is hallucinations and error prop-
agation. Errors can compound through dependent
tasks, leading to increasingly unreliable results.
While most current frameworks include verifica-
tion mechanisms, as shown in Table 1, their ap-
proach of generating complete code at once, rather
than step-by-step atomic code, increases the risk of
hallucinations propagating through task dependen-
cies. Another challenge is that many data science
tasks require reasoning that is both data- and logic-
dependent as discussed, linear plan structures inad-
equately capture the often non-linear relationships
in data science tasks (Wang et al., 2024d; Rawte

19796

Findings of the Association for Computational Linguistics: ACL 2025, pages 19796-19821
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Table 1: Comparison of DS agent frameworks. Code Exec. (Code Execution): indicates how code is executed in
real-time; Memory: represents the framework’s memory structure for storing context and history; Expandable:
denotes if the framework supports custom extensions and modules; Domains: specifies the primary application areas
(ML: Machine Learning, DA: Data Analysis, TQA: Table Question Answering, MR: Mathematical Reasoning).

* Indicates open-source framework

Framework Plan Structure | Verification | Code Exec. | Memory | Expandable Domains
AutoML-GPT (zhang et al., 2023a) - X X Raw X ML
HuggingGPT* (shen etal., 2024) - X X Raw X ML, DA, TQA, MR
MLCopilot* (zhang et al., 2024b) - X X Raw X ML
AutoGen* (Wu et al., 2023a) Linear v All-at-once Raw X ML, DA, TQA, MR
TaskWeaver® (Qiao et al., 2023) Linear v Progressive Raw v ML, DA, TQA, MR
OpenHands* (Wang et al., 2024b) Linear v All-at-once Raw v ML, DA, TQA, MR
AIDE* (Schmidt et al., 2024) Hierarchical v All-at-once Tree v ML
DS-Agent* (Guo etal., 2024) Linear v All-at-once Raw X ML
AutoML-Agent (Trirat et al., 2024) Linear v All-at-once Raw X ML
AutoKaggle* (Li et al., 2024b) Linear v All-at-once Raw v ML

Data Interpreter* Hierarchical Ve Progressive Graph N ML, DA, TQA, MR

et al., 2023) most existing framework, as shown in
Table 1. Finally, contextual memory and long-term
dependencies present a significant challenge. The
lengthy steps in data science tasks generate exten-
sive contextual information. However, most current
frameworks rely on raw memory structures, which
are inadequate for managing relevant context, as
shown in Table 1.

To address the above challenges, we propose
Data Interpreter, a framework that leverages hi-
erarchical graph-based modeling to systematically
structure and manage task relationships, as shown
in Figure 1. By explicitly organizing both high-
level task relationships and low-level computa-
tional (i.e., action) dependencies into a structured
graph format, Data Interpreter ensures a clear rep-
resentation of the workflow’s complexity.

Building on this graph-based structure, Data
Interpreter implements a progressive strategy for
managing long-term dependencies. The framework
identifies task dependencies and represents them as
a reasoning graph, progressively verifying and re-
fining each node to ensure the continuity of context
throughout the process. This progressive verifica-
tion ensures that earlier steps inform later ones,
allowing Data Interpreter to handle complex, multi-
step workflows while maintaining coherence and
accuracy across extended tasks. This results in
a graph-based memory that ensures each task is
grounded in a consistent context, minimizing the
risk of errors propagating through the workflow.

Our experiments demonstrate that Data Inter-
preter significantly outperforms existing methods
across several benchmarks, achieving a 25% per-
formance boost on the public dataset InfiAgent-
DABench (Hu et al., 2024) and a 26% improve-

ment on the MATH dataset (Hendrycks et al., 2021).
Compared to other open-source frameworks, Data
Interpreter consistently shows notable advance-
ments in machine learning and open-ended tasks.

2 Related Work

LLMs as Data Science Agents LILMs demon-
strate expert-level knowledge in machine learning
and have made significant progress in automat-
ing data science tasks (Xie et al., 2024). Early
research focused on using LLMs to write code,
aiming to simplify complex computations involved
in reasoning processes (Gao et al., 2023; Chen
et al., 2022; Zhu et al., 2024). Code interpreters
with function-calling mechanisms have become
the popular approach for enabling LLMs to han-
dle complex reasoning and scientific tasks (Zhou
et al., 2023; Gou et al., 2024; Wang et al., 2024a;
Huang et al., 2023b; Hassan et al., 2023; Qiao
et al., 2023; Zhang et al., 2024b). Recently, frame-
works like AutoML-GPT (Zhang et al., 2023a),
MLCopilot (Zhang et al., 2024b), AutoKaggle (Li
et al., 2024b), AutoML-Agent (Trirat et al., 2024).
Specifically, Zhang et al. (2023b) and Liu et al.
(2024b) focus primarily on machine learning tasks
but lack comprehensive data science capabilities,
particularly in handling multimodal data and auto-
matically detecting and fixing errors in the work-
flow. Although frameworks such as AutoGen (Wu
et al., 2023a), TaskWeaver (Qiao et al., 2023),
Agent K (Grosnit et al., 2024), HuggingGPT (Shen
et al., 2024), DS-Agent (Guo et al., 2024), and
AIDE (Schmidt et al., 2024) support data science
scenarios, they face challenges in scalability, so-
phisticated planning, and effective long context
management. End-to-end frameworks tailored for

19797

Task
Dependency

Task Action

Project

1 - Data
Exploration

4 - Feature
Engineering

2 - Correlati
on Analysis

Read
csv

Data
Splitting

General
Selection

Correlation

Fill
Missing
Value

Target
Mean
Encoder

Descriptive
Statistics

XGBoost

3 - Outliers
Detection

Variance
Based
Selection

MinMax
Scale

Isolation
Forest

Evaluation

Generate
task graph

Generate
action graph

This is a dataset featuring sensor readings from water pump, aimed at

5 - Model Training

6 - Model
Evaluation

time sensor.00 sensor.01

o 20WM6NS) oocs 4700201

predicting machine operational status (normal or faulty). Your tasks include conducting a e
comprehensive data analysis encompassing correlation analysis, causal inferences, data 1
exploration, anomaly detection, and feature engineering.

o

200877114
2 ! 2510648

47135410
14:48

Visualization
7 - Visualization

Model
Serializati-
on

Classificat
-ion
Report

and prediction
results with high-

quality graphs.

Confusion
Matrix

I
I
I
I
|
|
I
|
|
I
I
I
I
|
|
|
|
|
I
I
I
Visualize the analysis |
|
|
|
|
|
I
I
I
I
|
I
|
|
I
I
I
I
I
|
|

° pegcteiove | |

Task Graph Generator

[Action Graph Generator] [Graph Executor

] Graph Generation
&

[}
I
I
1
1
1
:
Feedback & |
I
I
1
1
1
1
I
[}

7y Execution Process
Input Output Input Output
project info task graph task graph v action graph Trajectory v
[Large Language Model H Tools]

Figure 1: Data Interpreter Workflow. A project requirement is decomposed into a task graph, then further
transformed into an action graph consisting of executable code sequences. The framework employs task and action
graph generators to create this structured hierarchy, while the graph executor provides real-time feedback through

reflection.

data science tasks are still underdeveloped. To fill
this gap, we propose a unified framework designed
for data science, thoroughly benchmarked across
various tasks and settings, providing key insights
into the effectiveness of LLMs in this field.

Graph-Based Planning for LLM Agents Plan-
ning is a crucial capability for LLM-based agents,
enabling them to create structured action plans
for solving problems (Huang et al., 2024b; Chen
etal., 2024). While early approaches like CoT (Wei
et al., 2022; Yao et al., 2022) used sequential plan-
ning, more recent methods like ToT (Yao et al.,
2024) and GoT (Besta et al., 2023) have adopted
tree and graph structures to refine LLM prompts.
This graph-based paradigm has been further devel-
oped in various systems like DSPy (Khattab et al.,
2023) and PRODIGY (Huang et al., 2023a), with

recent work focusing on enhancing node prompts
and agent coordination through graph connectiv-
ity (Zhuge et al., 2024; Vierling et al., 2024).

However, these approaches often struggle with
multistep, task-dependent problems in data sci-
ence domains. While OpenHands (Wang et al.,
2024b), offers an agent interaction platform with
event streaming and sandboxing, it requires im-
provements in plan management and code verifica-
tion for complex data science tasks. In this paper,
we use a hierarchical structure that adapts to real-
time data changes.

3 Methodology

In this section, we first present the foundational for-
mulation of hierarchical graph modeling for data
science problems, defining the task graph and ac-

19798

tion graph in Section 3.1. Next, we detail the itera-
tive process of the hierarchical graph structure in
Section 3.2 and illustrate how our Data Interpreter
benefits from the graph-based structured memory.
Finally, in Section 3.3, we introduce programmable
node generation, explaining how we integrate ex-
pertise at different granularities to improve the per-
formance of LLMs.

3.1 Hierarchical Graph Modeling

Data science problems, particularly those involving
machine learning, encompass extensive detailing
and long-horizon workflows, including data pre-
processing, feature engineering, and model training.
Drawing inspiration from the application of hier-
archical planning in automated machine learning
tasks (Mohr et al., 2018; Mubarak and Koeshiday-
atullah, 2023), we organize the data science work-
flow via a hierarchical structure, which initially
decomposes the intricate data science problem into
manageable tasks (shown in brown area) and fur-
ther breaks down each task into executable code
(shown in yellow, see Figure 1).

Formally, we define the task-solving process as
a function P that takes an input x to produce an
output § = P(x). Our goal is for P to generate
solutions that closely approximate or match the an-
ticipated output y. However, due to the complexity
of P, which may involve various operations and
intermediate data, fully automating the solution to
a task is typically challenging, as mentioned in Hut-
ter et al. (2019); Zhuge et al. (2024).

Task Graph. Data Interpreter leverages the rea-
soning capability of LLMs for general task decom-
position, decomposing the task-solving process of
P into a series of sub-processes {pi,p2,p3,- ..}
each of which can be atomic and verifiable. As
illustrated in Figure 1, a workflow decomposed by
Data Interpreter for a machine operational status
prediction problem includes tasks such as: data ex-
ploration, correlation analysis, outliers detection,
feature engineering, model training, model eval-
uation, and visualization, with each sub-process
systematically derived from the original project
requirements. The primary challenge lies in deter-
mining the relationships r = (p;, p;) € R between
these sub-processes, which define the order of exe-
cution: which sub-tasks must be executed first, and
which can be executed in parallel or after others.
We represent all sub-processes as rask nodes
within P, where an edge (p;, p;) indicates that sub-

process p; depends on the output of sub-process
p;, forming a Directed Acyclic Graph (DAG) G
that embodies the entire function P for project
requirement x. To execute the task graph, we can
compute the task output, which is formally defined
as follows:

9 =9 {pi(2)}ie, R), (1)

where G represents a DAG composed of the sub-
processes {p1, p2, 3, - - -}, interconnected through
the relationships R, which model the dependencies
between tasks.

As shown in Figure 1, The graph topology ex-
hibits complex dependencies that cannot be repre-
sented by simple sequential or tree-based structures,
as tasks may have multiple predecessors and suc-
cessors. The detailed task graph representation and
the prompt for task decomposition can be found in
Appendix B.1.

Action Graph. Each task node expands into an
action subgraph within the overall action graph.
Specifically, each task node p; is further decom-
posed into more granular steps, represented by A;,
forming an implicit graph of atomic operations
(01,02, ...). These atomic operations correspond
to executable code snippets or functions, providing
fine-grained control for each task p;. As illustrated
in Figure 1, the visualization task is divided into
three distinct code snippets, with the confusion
matrix calculation handled by sklearn. Thus, the
complete task-solving process can be expressed as:

§=9{Ai@)}LR) @

Ai(x) = (o01,09,...) represents the refined
steps for processing input z. Each atomic oper-
ation o; may depend not only on x but also on
other parameters or previous operations’ outputs.
G connects these atomic action graphs according
to the dependency relationships ‘R, forming a com-
prehensive representation of the entire data science
workflow. The dynamic contextual data are auto-
matically managed through inter-task dependen-
cies, making the workflow scalable and flexible for
complex applications.

3.2 [Iterative Graph Refinement

Graph-based Episodic Memory. As previously
discussed, data science tasks generate abundant
contextual information due to their lengthy steps.
In Data Interpreter, we adopt a graph-based data

19799

: . . Task Node Status | . Task graph optimization

| Success

1 in case of execution failure
Failure Not executed Updated |

Figure 2: Task Graph refinement of Data Interpreter.
Task graph refinement for the failed task. After task
execution, Task 3.3 fails. The refined task graph inte-
grates existing success tasks, replaces task 3.3 with the
updated task 3.3, and introduces new tasks 4.1, 4.2, 4.3,
and 5.

structure to store reasoning context. It maintains
memory of reasoning steps and intermediate results
during the conversion from task nodes to action
graphs, as shown in Figure 6 in the appendix. The
agent’s memory expands and updates along with
the task graph refinement, beginning with an ini-
tial memory state at task graph initialization. As
task nodes are progressively converted into action
graphs, Data Interpreter uses a temporary memory
to store intermediate data results, generated code,
and debugging processes. When a task node’s state
is updated, the temporary memory is cleared, retain-
ing only the generated code and execution results
for the current task node. Consequently, during the
problem-solving process, dynamic contextual data
is automatically constructed and acquired through
task interdependencies. This avoids the need to re-
trieve the entire context at once, maintaining input
relevance and offering flexibility and scalability for
broader data science applications.

Iterative Graph Refinement. During task node
execution, a task is marked as Success if the cor-
responding code executes successfully. If it fails,
Data Interpreter leverages LLMs to debug the code
based on runtime errors, making up to a predefined
number of attempts to resolve the issue. If the prob-
lem persists after the set attempts, the task node is
flagged as Failure, as shown in Figure 2.

To ensure runtime verification and provide real-
time feedback during execution, Data Interpreter
incorporates a stateful graph executor that man-
ages both execution and debugging using reflection
mechanisms (Shinn et al., 2024). Specifically, if the
execution encounters exceptions or fails a verifica-
tion check, the action graph generator dynamically
reflects on the execution results and then regener-
ates the code to resolve the issue or optimize the
output, providing data-driven feedback.

For failed tasks, Data Interpreter regenerates

the task graph based on current episodic memory
and the execution context, as depicted in Figure 2.
Given the task dependencies, the regenerated task
graph is sorted topologically and compared to the
original using a prefix matching algorithm (Wald-
vogel, 2000) to identify differences in task descrip-
tions. This comparison helps identify divergence
points (forks), and the final output includes all un-
changed tasks before the fork, along with any new
or modified tasks after the fork. This approach
allows Data Interpreter to efficiently locate the par-
ent node of the failed task and seamlessly integrate
the newly generated task and its subsequent tasks
into the original graph. It directly leverages the
completed memory of all dependent tasks during
re-execution, avoiding unnecessary code regenera-
tion or redundant executions.

Using continuous monitoring and iterative up-
dates, Data Interpreter avoids the inefficiencies as-
sociated with generating all tasks upfront. This
dynamic adjustment of code and planning, based
on task outcomes, allows for modifications at vari-
ous levels of granularity, greatly enhancing overall
efficiency.

3.3 Programmable Node Generation

Action Node. As described in Section 3.1, action
graph A;(x) = (01,02, . ..), is represented in code
format as an implicit graph of various operations.
Here, we define the operators as action nodes. An
action node encapsulates executable computational
logic, integrating both tool-based operations and
application programming interface (APIs) into co-
hesive code snippets.

Programmable Node Generation. Effective
tool selection and integration, particularly in the
context of task-specific requirements, play a cru-
cial role in the success of task execution, as noted
in prior research (Qian et al., 2023; Yuan et al.,
2024; Huang et al., 2024a; Liu et al., 2023). In
Data Interpreter, we leverage the typology and de-
scription of tasks to enrich the task-specific context,
thereby enhancing the decision-making process for
tool selection and code generation.

Given each task description p;, Data Interpreter
retrieves candidate tools from the toolset 1" =
{t1,t2,...,tn} , ranks them by functionality rele-
vance, and selects the top-£ tools for the task.

Instead of generating isolated function calls,
Data Interpreter integrates tools, APIs, and code
snippets in context into a context-aware operation.

19800

Table 2: Performance comparisons on Data Analysis.
Results marked with * are reported by Hu et al. (2024)
and Jing et al. (2024). Rows marked with { indicate
the baseline for comparison. The A column represents
the improvement of the agent framework compared to
the baselines. The best results are highlighted in bold.
C.Accuracy indicates Competition-level Accuracy (Jing
etal., 2024), and RPG refers to the Relative Performance
Gap (Jing et al., 2024) metric.

Methods | Model Metric A (%)
InfiAgent-DABench Accuracy
gemini-pro 56.42%
gpt-3.5-turbo-0613 60.70*
Model-only gpt-4-0613 78.99%%
gpt-4-0613 75.21
gpt-4o 75.92% -
XAgent gpt-4-0613 47.53* -31.46
AutoGen gpt-4-0613 71.49 -7.50
Data Interpreter gpt-4-0613 73.55 -5.44
Data Interpreter gpt-4o 94.93 +19.01
DS-Bench Data Analysis C.Accuracy
AutoGen gpt-4o 26.72%F
AutoGen gpt-4o-mini 21.01%F -
Data Interpreter gpt-4o 28.75 +7.60
Data Interpreter gpt-40-mini 24.46 +16.42
DS-Bench Data Modeling RPG
AutoGen gpt-4o 34.74%%
AutoGen gpt-4o-mini 11.24% -
Data Interpreter gpt-4o 52.43 +50.92
Data Interpreter gpt-4o-mini 37.84 +236.65

This process can form three levels of advanced op-
erations: 1) Basic tool extension with added func-
tionality, 2) Tool chaining via concatenating their
outputs, creating a sequential flow of tools, and 3)
Nested tool calls with control logic for complex de-
pendencies. Programmable node generation relies
on in-context learning with retrieved context, en-
suring efficient and adaptive tool integration. The
prompt for programmable node generation can be
found in Figure 12. This can be viewed as develop-
ing advanced and composite tool forms.

4 [Experiments

4.1 Experimental setup

Data Analysis. For data analysis tasks, we eval-
uated our approach using two publicly available
benchmarks: InfiAgent-DABench (Hu et al., 2024)
and DS-Bench (Jing et al., 2024). These bench-
marks are specifically designed to comprehensively
evaluate LLM performance in real-world data anal-
ysis tasks. Following the evaluation setups in these
benchmarks, we used accuracy as the primary met-
ric for InfiAgent-DABench and competition-level

accuracy, which is calculated by averaging the ac-
curacy scores obtained from each competition for
DS-Bench. We conducted comparative evaluations
mainly against AutoGen (Wu et al., 2023a), utiliz-
ing gpt-4o, gpt-4-0613 and gpt-4o-mini with tem-
perature set to 0 following the original benchmark
configurations.

Machine Learning. For machine learning prob-
lems, we conduct extensive experiments across
three evaluation settings: (1) ML-Benchmark.
We construct ML-Benchmark, a dataset consist-
ing of 8 Kaggle machine learning tasks (de-
tailed in Appendix C.1. The evaluation met-
rics for ML-Benchmark are provided in Ap-
pendix C.2. We compare our approach against
a comprehensive set of baselines, including XA-
gent (Team, 2023), AutoGen, Openlnterpreter (Lu-
cas, 2023), TaskWeaver (Qiao et al., 2023), and
OpenHands (Wang et al., 2024¢). By default, we
use gpt-4-1106-preview with temperature set to 0.
(2) DS-Bench Data Modeling. We evaluate on
DS-Bench data modeling tasks (74 tasks) using the
RPG metric (Jing et al., 2024), comparing against
AutoGen with gpt-4o and gpt-4o-mini. (3) MLE-
Bench Lite. We evaluate on MLE-Bench (Chan
et al., 2024a), creating MLE-Bench Lite with 8 ran-
domly sampled tasks. Due to budget constraints,
we use a 3-hour time limit per task with gpt-4o.
Detailed experimental setups for machine learning
tasks are provided in the Appendix C.1.

Mathematical Reasoning. We evaluated four
categories (C.Prob, N.Theory, Prealg, Pre-
calc) of level-5 problems from the MATH
dataset (Hendrycks et al., 2021), following the set-
ting of (Wu et al., 2023b). The level-5 problems
were chosen for their complexity and the challenges
in reliable numeric interpretation. We used Math-
Chat (Wu et al., 2023b) and AutoGen (Wu et al.,
2023a) as baselines for the MATH benchmark. As
default, we used gpt-4-1106-preview with tempera-
ture set to 0.

Open-ended Task. To verify the capability for
dynamic data handling, we also crafted the Open-
ended task benchmark comprising 20 tasks. De-
tails about the dataset are in the Appendix C.1.
We adopted AutoGen, Openlnterpreter, and Open-
Hands as baselines, with average results reported
over three runs. We adopted gpt-4-1106-preview
with the temperature set to 0.

19801

Table 3: Performance Comparisons on Machine Learning Task Benchmarks. This table reports the compre-
hensive score of each task. “WR”, “BCW”, “ICR”, “SCTP”, and “SVPC” represent “Wine recognition”, “Breast
cancer wisconsin”, “ICR - Identifying age-related conditions”, “Santander customer transaction prediction”, and

“Santander value prediction challenge”, respectively.

Model / Task ‘ WR BCW Titanic House Prices SCTP ICR SVPC ‘ Avg. ‘ Cost ($)
AutoGen 0.96 0.99 0.87 0.86 0.83 077 0.73 | 0.86 -
Openlnterpreter 1.00 0.93 0.86 0.87 0.68 058 044 | 0.77 -
TaskWeaver 1.00 098 0.63 0.68 0.34 074 048 | 0.69 0.37
XAgent 1.00 0.97 0.42 0.42 0 0.34 0.01 | 045 20.09
OpenHands 0.98 0.98 0.87 0.94 093 073 0.73 | 0.88 3.01
Data Interpreter | 0.98 0.99 0.91 0.96 094 096 0.89 | 0.95 0.84

Table 4: Performance Comparisons on Open-ended Task Benchmarks. This table reports the completion rate of
each task. The tested tasks include “OCR” (Optical Character Recognition), “WSC” (Web Search and Crawling),
“ER” (Email Reply), “WPI” (Web Page Imitation), “IBR” (Image Background Removal), “T2I” (Text-to-Image),
“I2C” (Image-to-Code), and “MGG” (Mini Game Generation).

Model/Task | OCR WSC ER WPl IBR T2I 12C MGG | Avg. | Cost($)
AutoGen 0.67 065 010 026 1.00 0.10 020 0.67 0.46 -
Openlnterpreter 050 030 0.10 036 1.00 050 0.25 020 | 040 -
OpenHands 0.60 087 010 0.16 1.00 050 0.80 0.90 0.60 1.41
Data Interpreter | 0.85 096 098 1.00 1.00 1.00 1.00 093 | 0.97 0.41
4.2 Main Results 7.9%, respectively. It was the only framework to
. achieve a score above 0.9 on tasks such as Titanic,
Performance on Data Analysis. As demon-

strated in Table 2, with gpt-4-0613, Data Inter-
preter achieved a score of 73.55, outperforming
AutoGen by 2.9%. In particular, it still did not sur-
pass the performance of directly invoking the LLM.
We found that this is primarily due to the growing
context overhead in the problem-solving process,
where the context length exceeds the maximum
window size of gpt-4-0613, leading to task failures.
However, by incorporating LLMs like gpr-4o with
longer context windows, Data Interpreter demon-
strated outstanding performance, improving results
by 25% compared to direct LLM inference. This in-
dicates that Data Interpreter significantly enhances
the LLM’s multi-step reasoning capabilities across
a wide range of data analysis tasks, especially as
the number of interaction rounds increases and the
context overhead grows.

For DS-Bench Data Analysis tasks, compared
to AutoGen, Data Interpreter showed notable im-
provements of 7.60% and 16.42% in competition-
level accuracy when using gpt-4o and gpt-4o-mini
respectively.

Performance on Machine Learning. As shown
in Table 3, Data Interpreter achieved a comprehen-
sive score of 0.95 across tasks, outperforming Au-
toGen (0.86) and OpenHands (0.88) by 10.3% and

House Prices, SCTP, and ICR. Additionally, the
Data Interpreter demonstrated a significant advan-
tage over other frameworks, with improvements of
31.5% and 21.9% over OpenHands on the ICR and
SVPC tasks, respectively. Notably, Data Interpreter
solved the tasks more efficiently, achieving an aver-
age score of $ 0.84 while operating at only 27.9%
of OpenHands’s cost. Data Interpreter consistently
completed all mandatory processes in all datasets,
maintaining superior performance. Further details
can be found in Table 6 in the Appendix.

In data modeling tasks on DS-Bench, Data In-
terpreter exhibited substantial performance gains
compared to AutoGen, with a 50.92% RPG im-
provement using gpt-4o and a remarkable 236.65%
improvement using gpt-4o-mini, as shown in Ta-
ble 2. These significant enhancements demonstrate
Data Interpreter’s superior capabilities in handling
complex modeling tasks across different model con-
figurations.

For MLE-Bench Lite, as shown in Table 5,
Data Interpreter achieved competitive performance
with remarkable efficiency gains. Despite signif-
icantly reduced time constraints, our framework
achieved the best performance on 3 out of 8 tasks,
particularly in image processing tasks (dog-breed-
identification:1.0596, dogs-vs-cats-redux:0.1094).

19802

@ MathChat @ AutoGen @ Data Interpreter

0.82
0.8 0.74
0.68 0.66
0.59 0.6 0.6 063
06" 0.52
0.4
0.29
0.19

0.2 0.12

) I—.

C.Prob N.Theory Prealg Precalc

0.590'610.65

Accuracy

Algebra

Figure 3: Performance on the MATH dataset. We
evaluate all the problems with difficulty level 5 from 4
categories of the MATH dataset.

Data Interpreter completes all tasks with an aver-
age cost of $0.37 and execution time under 900
seconds, achieving a 75% win rate against Open-
Hands and 42.9% win rate against AIDE (exclud-
ing AIDE’s failed task), validating the practical
viability for real-world ML engineering workflows.

Performance on MATH Problem. As illustrated
in Figure 3, Data Interpreter achieved the best re-
sults across all tested categories, reaching 0.82 ac-
curacy in the N.Theory category, marking a 0.16
improvement over AutoGen performance. In the
category with the most challenging, Precalc, Data
Interpreter obtained an accuracy of 0.29, an in-
crease of 0.17 compared to AutoGen. On aver-
age, our Data Interpreter showed 26.5% relative
improvement compared to AutoGen.

Performance on Open-ended Tasks. Table 4
illustrates that the Data Interpreter achieved a com-
pletion rate of 0.97, marking a substantial 110.8%
improvement compared to AutoGen and 61.7%
improvement compared to OpenHands. In OCR-
related tasks, the Data Interpreter maintained an
average completion rate of 0.85, outperforming Au-
toGen, Openlnterpreter, and OpenHands by 26.8%,
70.0%, and 41.7%, respectively. In the tasks requir-
ing multiple steps and utilizing multimodal tool-
s/interfaces, such as WPI, 12C, and T2I, the Data
Interpreter emerged as the sole method to execute
all steps. Baseline frameworks failed to log in and
obtain the status of the ER task, resulting in a lower
completion rate. In contrast, Data Interpreter dy-
namically adjusted to task requirements, achieving
a completion rate of 0.97.

4.3 Ablation Study

Ablation on core modules. We conducted ab-
lation experiments with three configurations on
the ML-Benchmark: CE (Code execution with Re-
Act (Yao et al., 2022)), CE + IGR (adding iterative

@CE ECE+IGR WALL

0.95
0oL 0.89
0.8
o
0.66
017 017

.74
House Prices SCTP SVPC ICR Avg

ir 0.96 0.96 0.96 0.04

Comprehensive Score

Figure 4: Ablation on core modules. Evaluated with
Comprehensive Score on ML-Benchmark. “CE” de-
notes Code Execution with ReAct, and“IGR” stands
for Iterative Graph Refinement. “ICR”, “SCTP”, and
“SVPC” represent “ICR - Identifying age-related condi-
tions”, “Santander customer transaction prediction”, and
“Santander value prediction challenge”, respectively.

—— GPT-4-Turbo
—— GPT-3.5-Turbo
Qwen-72B-Chat

— Mixtral-8x7B
— Yi-34B-Chat
—— Qwen-14B-Chat

— Llama2-13B-Chat —— Qwen-7B-Chat

— Llama2-7B-Chat GPT-40
DeepSeek-7B-Chat

GPT-40 mini

BCW
e ——

Figure 5: Evaluation on ML-Benchmark. Left: com-
pletion rate. Right: comprehensive score.

graph refinement), and ALL (our complete frame-
work). As shown in Figure 4, iterative graph re-
finement improved performance from 0.37 to 0.85
on average, enhancing dataset preparation and real-
time tracking. Our complete framework further
boosted the comprehensive score by 10.6%, reach-
ing 0.94 average performance across all tasks. We
detailed the numerical results in Table 8.

Ablation on different base LLMs. Based on
GPT-40 and GPT-40-mini, Data Interpreter shows
further improvement in task completion across a
wide range of tasks, as illustrated in Figure 5. In
machine learning tasks, LLMs like Qwen-72B-
Chat (Bai et al., 2023) and Mixtral-8x7B (Jiang
et al., 2024) performed comparably to GPT-3.5-
Turbo, while smaller LLMs experienced perfor-
mance degradation. Our Data Interpreter handled
data loading and analysis effectively with smaller
models but had limitations with tasks requiring ad-
vanced coding proficiency. Mixtral-8x7B achieved
high completion rates in three tasks, but faced chal-
lenges in the WSC task. Smaller LLMs also en-

19803

Table 5: Performance Comparisons on MLE-Bench-Lite. Performance comparison of AIDE, OpenHands, and
Data Interpreter across various tasks. Bold values indicate the best performance for each task. | indicates lower is
better, 1 indicates higher is better. Tasks include “SAI” (spooky-author-identification), “RAP” (random-acts-of-
pizza), “NPC” (nomad2018-predict-conductors), “ACI” (aerial-cactus-identification), “LC” (leaf-classification),
“DBI” (dog-breed-identification), “DCR” (dogs-vs-cats-redux), and “DI”’ (detecting-insults). Baseline results are

directly report from MLE-Bench (Chan et al., 2024b).

Model / Task [SAIL RAPT NPC| ACIT LC| DBIJ DCR] DIt | Time Cost($)
AIDE 0.4533 0.6227 0.0636 0.9998 0.6729 5.4768 0.8993 NA | ~24h -
OpenHands 0.5894 0.5918 0.1835 0.8728 0.9021 2.8599 0.3867 0.8678 | <24h -
Data Interpreter | 0.7338 0.6312 0.0663 0.9993 0.6749 1.0596 0.1094 0.5110 | <900s $0.37

countered execution failures due to restricted cod-
ing abilities when acquiring images or parsing web-
page results, as shown in Figure 5.

Ablation on reasoning enhanced LLMs. We
further evaluate reasoning-enhanced models like
DeepSeek-V3 (Liu et al., 2024a) and QwQ-
32B (Team, 2025) to assess their performance and
whether our framework can provide further im-
provements. As shown in Table 9, results present
compelling evidence for Data Interpreter’s contin-
ued relevance in the era of advanced LLMs. Data
Interpreter improves QwQ-32B’s average perfor-
mance from 0.296 to 0.411 (+39%) and DeepSeek-
V3’s from 0.501 to 0.551 (+10%).

5 Conclusion

We introduced Data Interpreter, an LLM-based
agent that addresses data science challenges
through a novel hierarchical graph representation.
By continuously monitoring data changes and
adapting to dynamic environments via iterative
task refinement and graph optimization, it robustly
manages data analysis, machine learning, and rea-
soning tasks. Leveraging hierarchical decomposi-
tion, fine-grained execution, validation, and itera-
tive modifications, Data Interpreter harnesses the
LLM’s planning and coding abilities to tackle com-
plex multi-step workflows. Extensive experiments
confirm its superiority over state-of-the-art open-
source frameworks in machine learning, mathemat-
ical problem-solving, and real-world applications,
marking a significant advance in LLM-driven data
science solutions.

6 Limitations

Precise self-improvement. Human data scien-
tists usually perform multiple experiments on a
dataset, focusing on pipeline optimization and hy-
perparameter tuning (Liu et al., 2021; Hutter et al.,

2019). While Data Interpreter effectively tracks
task progress and code execution, it currently lacks
mechanisms for conducting multiple experiments
and deriving insights from numerical feedback for
automatic self-improvement on specific datasets.
DAG constraint detection mechanism. Our cur-
rent implementation does not include an explicit
DAG constraint detection mechanism, we rely on
the LLM’s inherent ability to avoid cycles dur-
ing task planning, as observed in our experiments.
However, such mechanisms could enhance robust-
ness in handling less structured domains or highly
complex dependencies. Incorporating cycle detec-
tion and resolution strategies in future iterations
would ensure improved reliability and adaptabil-
ity across diverse applications. Full-scale evalua-
tion on mathematical problems. For the MATH
problem, our experiments are limited to level-5
problems, primarily due to the budget constraints,
we will explore more cost-effective strategies to
evaluate our Data Interpreter on a wider range of
mathematical problems in future studies.

7 Ethics Statement

This study introduces Data Interpreter to system-
atically structure and manage task relationships,
emphasizing legal and ethical compliance through-
out its deployment. We utilize only authorized and
de-identified data to uphold fairness and inclusivity
in training and system design, thereby minimiz-
ing bias. Our process is transparent, with detailed
sharing of methodology and outcomes to ensure
reproducibility. The deployment of this method
is conducted responsibly, limiting its application
to lawful and beneficial purposes. We encourage
active collaboration and feedback to continuously
refine our approach, focusing on its fairness, ac-
countability, and positive societal impact.

19804

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James
Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, Lil-
ian Weng, and Aleksander Madry. 2024a. Mle-
bench: Evaluating machine learning agents on
machine learning engineering. arXiv preprint
arXiv:2410.07095.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James
Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, Lil-
ian Weng, and Aleksander Madry. 2024b. Mle-
bench: Evaluating machine learning agents on ma-
chine learning engineering.

Jiaqi Chen, Yuxian Jiang, Jiachen Lu, and Li Zhang.
2024. S-agents: self-organizing agents in open-
ended environment.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In ICML.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. ToRA: A tool-integrated reasoning
agent for mathematical problem solving.

Antoine Grosnit, Alexandre Maraval, James Doran,
Giuseppe Paolo, Albert Thomas, Refinath Shahul
Hameed Nabeezath Beevi, Jonas Gonzalez, Khy-
ati Khandelwal, Ignacio lacobacci, Abdelhakim
Benechehab, Hamza Cherkaoui, Youssef Attia El-
Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs Kegl,
Haitham Bou-Ammar, and Jun Wang. 2024. Large
language models orchestrating structured reasoning
achieve kaggle grandmaster level.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,
Yi Chang, and Jun Wang. 2024. Ds-agent: Auto-
mated data science by empowering large language
models with case-based reasoning. arXiv preprint
arXiv:2402.17453.

Md Mahadi Hassan, Alex Knipper, and Shubhra
Kanti Karmaker Santu. 2023. Chatgpt as your per-
sonal data scientist.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2023. Metagpt: Meta programming for multi-agent
collaborative framework. In The Twelfth Interna-
tional Conference on Learning Representations.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li,
Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu.
2024. Infiagent-dabench: Evaluating agents on data
analysis tasks.

Qian Huang, Hongyu Ren, Peng Chen, Gregor KrZmanc,
Daniel Zeng, Percy Liang, and Jure Leskovec. 2023a.
Prodigy: Enabling in-context learning over graphs.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2023b. Benchmarking large language models as ai
research agents.

Shijue Huang, Wanjun Zhong, Jianqgiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, et al. 2024a. Planning,
creation, usage: Benchmarking llms for comprehen-
sive tool utilization in real-world complex scenarios.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024b. Understanding
the planning of llm agents: A survey.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren.
2019. Automated machine learning: methods, sys-
tems, challenges. Springer Nature.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2024. Dsbench: How far
are data science agents to becoming data science ex-
perts?

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2023. Dspy: Compiling

19805

declarative language model calls into self-improving
pipelines.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural language
to SQL: are we fully ready? Proc. VLDB Endow.,
17(11):3318-3331.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney
Zheng, Minghao Liu, Xinyao Niu, Yue Wang, Jian
Yang, Jiaheng Liu, Wanjun Zhong, Wangchunshu
Zhou, Wenhao Huang, and Ge Zhang. 2024b. Au-
tokaggle: A multi-agent framework for autonomous
data science competitions.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Siyi Liu, Chen Gao, and Yong Li. 2024b. Large lan-
guage model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang,
and Yuyu Luo. 2024c¢. A survey of nl2sql with large
language models: Where are we, and where are we
going? Preprint, arXiv:2408.05109.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui,
Zhiheng Li, Xizhou Zhu, Lewei Lu, Qifeng Chen,
Yu Qiao, Jifeng Dai, et al. 2023. Controlllm: Aug-
ment language models with tools by searching on
graphs.

Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Es-
calera, Fabio Ferreira, Isabelle Guyon, Sirui Hong,
Frank Hutter, Rongrong Ji, Julio CS Jacques Ju-
nior, et al. 2021. Winning solutions and post-
challenge analyses of the chalearn autodl challenge
2019. TPAMI.

Killian Lucas. 2023. GitHub - KillianL.ucas/open-
interpreter: A natural language interface
for computers. https://github.com/

KillianLucas/open-interpreter.

Felix Mohr, Marcel Wever, and Eyke Hiillermeier. 2018.
Ml-plan: Automated machine learning via hierarchi-
cal planning. Machine Learning.

Yousef Mubarak and Ardiansyah Koeshidayatullah.
2023. Hierarchical automated machine learning (au-
toml) for advanced unconventional reservoir charac-
terization. Scientific Reports.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang,
Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue
Zhang, Lu Wang, Minghua Ma, Pu Zhao, Si Qin,

Xiaoting Qin, Chao Du, Yong Xu, Qingwei Lin,
Saravan Rajmohan, and Dongmei Zhang. 2023.
Taskweaver: A code-first agent framework.

Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2020.
Making data visualization more efficient and effec-
tive: a survey. VLDB J., 29(1):93-117.

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A
survey of hallucination in large foundation models.
arXiv preprint arXiv:2309.05922.

Dominik Schmidt, Zhengyao Jiang, and Yuxiang Wu.
2024. Introducing weco aide.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face. NeurlPS.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning.

Qwen Team. 2025. Qwq-32b: Embracing the power of
reinforcement learning.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving. https://github.com/
OpenBMB/XAgent.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang.
2024. Automl-agent: A multi-agent llm framework
for full-pipeline automl.

Lukas Vierling, Jie Fu, and Kai Chen. 2024. Input
conditioned graph generation for language agents.

Marcel Waldvogel. 2000. Fast longest prefix matching:
algorithms, analysis, and applications. Doctoral dis-
sertation, SWISS FEDERAL INSTITUTE OF TECH-
NOLOGY ZURICH.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe-
cutable code actions elicit better 1lm agents.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, Hoang H. Tran,
Fuqgiang Li, Ren Ma, Mingzhang Zheng, Bill Qian,
Yanjun Shao, Niklas Muennighoff, Yizhe Zhang,
Binyuan Hui, Junyang Lin, Robert Brennan, Hao
Peng, Heng Ji, and Graham Neubig. 2024b. Open-
hands: An open platform for ai software developers
as generalist agents.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, et al. 2024c. Open-
devin: An open platform for ai software developers as
generalist agents. arXiv preprint arXiv:2407.16741.

19806

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023a. Describe,
explain, plan and select: Interactive planning with
large language models enables open-world multi-task
agents. In NeurIPS.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng He,
Zilong Zheng, Yaodong Yang, Xiaojian Ma, and
Yitao Liang. 2023b. Jarvis-1: Open-world multi-
task agents with memory-augmented multimodal lan-
guage models. arXiv preprint arXiv:2311.05997.

Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xi-
aojian Ma, and Yitao Liang. 2024d. Rat: Re-
trieval augmented thoughts elicit context-aware rea-
soning in long-horizon generation. arXiv preprint
arXiv:2403.05313.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. NeurIPS.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023a. Autogen:
Enabling next-gen llm applications via multi-agent
conversation framework.

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu,
Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee,
Richard Peng, and Chi Wang. 2023b. An empirical
study on challenging math problem solving with gpt-
4.

Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang.
2024. Haichart: Human and Al paired visualization
system. Proc. VLDB Endow., 17(11):3178-3191.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2024.
Tree of thoughts: Deliberate problem solving with
large language models. NeurIPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. 2024a. Aflow:
Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and
Yuqing Yang. 2024b. Mlcopilot: Unleashing the
power of large language models in solving machine
learning tasks.

Shujian Zhang, Chengyue Gong, Lemeng Wau,
Xingchao Liu, and Mingyuan Zhou. 2023a. Automl-
gpt: Automatic machine learning with gpt.

Wengqi Zhang, Yongliang Shen, Weiming Lu, and Yuet-
ing Zhuang. 2023b. Data-copilot: Bridging bil-
lions of data and humans with autonomous workflow.
arXiv preprint arXiv:2306.07209.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, et al. 2023. Solving challeng-
ing math word problems using gpt-4 code interpreter
with code-based self-verification.

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and
Nan Tang. 2024. Are large language models good
statisticians? In NeurIPS.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. 2024. Language agents as optimizable
graphs.

19807

A Broader Impact

Our work has the potential to significantly reduce
the costs associated with a wide range of cus-
tomized data science tasks, empowering profession-
als in the field to enhance their automation capabili-
ties and efficiency. However, the flexibility of tools
integration, while convenient for local code snip-
pets integration, comes with potential risks. For
example, if users provide malicious code intended
for unauthorized system penetration or web attacks,
it could lead to security vulnerabilities. In our ex-
periments, we mitigate this risk by prompting our
Data Interpreter to check the codes before generat-
ing new codes. Additional saftguards against these
risks include collaborating exclusively with LLMs
that adhere to robust safety policies.

B Implementation Details

B.1 Task Graph Generation

Task node structure. Figure 6 illustrates the
structure of each task. Each task includes instruc-
tions, dependencies, code, and status flags to man-
age execution flow and maintain consistency. The
dependencies and flags track node relationships and
runtime status, while instructions and code describe
tasks in natural and programming languages respec-
tively. Code is automatically executed in sequence
to ensure variable consistency between tasks, with
execution results stored as runtime outputs.

Task 1

instruction

dependent_task_ids:[]

Task 3.1

dependent_task_ids:[2]

code
is_finished:False

Task 3.2

Runtime dependent_task_ids:[2]
Result code

is_finished:False

Runtime
Result

Figure 6: Task node structure showing instructions, de-
pendencies, code, and status components

Task graph prompt and example. The prompt
design for task graph generation is shown in Fig-
ure 7, which guides the system to decompose com-
plex machine learning tasks into structured, ex-
ecutable components. To illustrate the detailed
implementation process, we provide a concrete ex-
ample of a task graph generated by our framework

for a specific machine learning task in Figure 8.

B.2 Action Graph Generation

Action graph prompt. Data Interpreter utilizes
LLMs to generate an action graph for each task. For
each task node, we maintain the execution context
and task graph state via plan status, and generate
code using the prompt shown in Figure 9.

B.3 Iterative Graph Refinement

Refinement prompt template. The prompt for
reflection and debugging when iteratively refine
action graph is shown in Figure 10.

Refine graph example. We detail how Data In-
terpreter resolves task failures and refines the task
graph dynamically. Initially, the task graph is cre-
ated as described in Figure 8. When encountering
task execution failures (e.g., Task 4: feature engi-
neering), Data Interpreter utilizes a reflection-based
debugging prompt (REFLECTION_PROMPT) to
iteratively analyze errors and propose improved im-
plementations. After repeated failures (e.g., three
unsuccessful attempts to execute the action graph),
Data Interpreter restructures the task graph: Tasks
1-3 remain unchanged, but Task 4 is simplified to
basic feature creation, a new Task 5 for feature se-
lection is introduced, and subsequent tasks (e.g.,
original Task 5 becoming Task 6) are automatically
reindexed with updated dependencies, as shown in
Figure 11.

B.4 Programmable Node Generation

Programmable node generation prompt. The
programmable node generation component lever-
ages in-context learning with retrieved context to
ensure efficient and adaptive tool integration. As
shown in Figure 12, the prompt enables the system
to dynamically combine retrieved pre-defined tools
with standard Python packages, creating composite
tool forms that adapt to specific task requirements.
The one-shot learning approach allows the system
to generate specialized nodes for complex opera-
tions like data preprocessing and analysis, going
beyond simple predefined functions to enable flexi-
ble data science capabilities.

C Experiment Details

C.1 Dataset & Experiment Settings

InfiAgent-DABench. InfiAgent-DABench fo-
cuses on evaluating the data analysis capabilities

19808

PLAN_PROMPT =

Figure 7: Prompt for task graph generator

of agents. It comprises 257 data analysis prob-
lems, categorized into the following seven areas
and their combinations: summary statistics, feature
engineering, correlation analysis, machine learning,
distribution analysis, outlier detection, and compre-
hensive data preprocessing. Each category includes
problems with varying difficulty levels.

ML-Benchmark. We collect several typical ma-
chine learning datasets from Kaggle!. This dataset
encompassed eight representative machine learn-
ing tasks categorized into three difficulty levels,
ranging from easy (level 1) to the most complex
(level 3). Each task was accompanied by data, a
concise description, standard user requirements,
suggested steps, and metrics (see Table 14 in the
Appendix). For tasks labeled as “toy", the data
were not divided into training and test splits, which
required the framework to perform data splitting
during modeling.

DS-Bench. DS-Bench (Jing et al., 2024), a com-
prehensive benchmark with 466 data analysis and
74 data modeling tasks from Eloquence and Kag-
gle competitions, designed to evaluate data science
agents in realistic settings involving long contexts,
multimodal tasks, large data files, multi-table struc-

"https://www.kaggle.com/

tures, and end-to-end data modeling. We followed
the DS-Bench evaluation setup, randomly sampling
64 tasks for data analysis and 10 tasks for data mod-
eling in our experiments.

MLE-Bench Lite. MLE-Bench (Chan et al.,
2024b) assesses Al agents’ capabilities in machine
learning engineering through 75 curated Kaggle
competitions, focusing on model training, dataset
preparation, and experimental execution. Fol-
lowing Jimenez et al. (2024), we crafted MLE-
Bench Lite for effective evaluation, which con-
sists of 8 randomly sampled tasks from MLE-
Bench. We evaluated these tasks with a 3-hour
time limit per task, in contrast to the 24-hour
limit for AIDE (Schmidt et al., 2024) and Open-
Hands (Wang et al., 2024c). The experimental
setup utilized a single 24GB GPU, 125GB mem-
ory, and a 36-core CPU, running gpt-4o with
temperature set to 0.

Open-ended Task Benchmarks. To evaluate the
ability to generalize to real-world tasks, we devel-
oped the Open-ended task benchmark, comprising
20 tasks. Each task required the framework to un-
derstand user needs, break down complex tasks,
and execute code. They delineated their require-
ments, foundational data or sources, completion

19809

steps, and specific metrics. The scope was broad,
encompassing common needs like Optical Char-
acter Recognition (OCR), web search and crawl-
ing (WSC), automated email replies (ER), web
page imitation (WPI), text-to-image conversion
(T2I), image-to-HTML code generation (I12C), im-
age background removal (IBR), and mini-game
generation (MGG). Figures 16 and 17 showcase
several typical Open-ended tasks in the following
illustrations. For each task, we include the neces-
sary data, user requirements, and the assessment
pipeline.

MATH Dataset. The MATH dataset (Hendrycks
et al., 2021) comprises 12,500 problems, with
5,000 designated as the test set, covering various
subjects and difficulty levels. These subjects in-
clude Prealgebra (Prealg), Algebra, Number The-
ory (N.Theory), Counting and Probability (C.Prob),
Geometry, Intermediate Algebra, and Precalculus
(Precalc), with problems categorized from levels
“1" to “5" based on difficulty. Following the set-
ting of Wu et al. (Wu et al., 2023b), we evaluated
four typical problem types (C.Prob, N.Theory, Pre-
alg, Precalc), excluding level-5 geometry problems
from the test set.

Complex Tasks for ML. To demonstrate the ef-
fectiveness of our Data Interpreter in more com-
plex scenarios, we provide additional analysis from
DS-Bench experiments. These datasets encompass
diverse data types and analytical challenges across
multiple domains. Time-series analysis tasks
include “Ion" (liverpool-ion-switching), “Covid-
19" (covid19-global-forecasting-week-4), and “De-
mand" (demand-forecasting-kernels-only). NLP
and multi-label tasks include “Readability" (com-
monlitreadabilityprize), “Essay" (learning-agency-
lab-automated-essay-scoring-2), and “Box-Office"
(tmdb-box-office-prediction). These complex tasks
are used in our ablation study with reasoning-
enhanced LLMs.

C.2 Evaluation Metrics

In the MATH benchmark (Hendrycks et al., 2021),
accuracy served as the chosen evaluation metric,
aligning with the setting proposed in (Wu et al.,
2023b; Hendrycks et al., 2021). For the ML-
Benchmark, three evaluation metrics were utilized:
completion rate (CR), normalized performance
score (NPS), and comprehensive score (CS). These
metrics provided comprehensive insights into the
model performance and were defined as follows:

Completion rate (CR). In the task requirements de-
scription, there were T' steps, and the task comple-
tion status of each step was denoted by a score sy,
with a maximum Score S, of 2 and a minimum
score Spin Of 0. The task completion status cate-
gories were defined as follows: missing (score of
0), fail (score of 0), success - non-compliant (score
of 1), success-compliant (score of 2), and optional
step (not involved in scoring). To measure the
completion level, we proposed a completion ratio
where the numerator was the sum of scores s; for
each step, and the denominator was the sum of the
maximum possible scores for all steps (Syqz X T):

CR = izt 3

" Smaz X T)
Normalized performance score (NPS). In our ML-
Benchmark, each task was associated with its evalu-
ation metric, which may vary between tasks, includ-
ing metrics such as accuracy, F1, AUC, RMSLE,
etc. For metrics such as accuracy, F1, and AUC,
we presented the raw values to facilitate compari-
son across identical data tasks. We normalize all
performance values s:

1

1+s
S, otherwise.

, if s is smaller the better
NPS =

This transformation ensured that loss-based metrics
like RMSLE are scaled from O to 1, with higher
normalized performance score values indicating
better performance.

Comprehensive score (CS). To simultaneously as-
sess both the completion rate of task requirements
and the performance of generated machine learning
models, we calculated the weighted sum of CR and
NPS as follows:

CS = 0.5 x CR+ 0.5 x NPS. 5)

Considering the lack of unified performance stan-
dards for Open-ended tasks, we default to NPS = 0
and directly equate CS to CR.

InfriAgent-DABench & MATH Dataset. In
specific domains such as InfriAgent-DABench
and MATH Dataset, Data Interpreter consistently
shows superior accuracy (63.3% and 94.93% re-
spectively) while maintaining competitive effi-
ciency, as demonstrated in Table 10. Notably, on
InfriAgent-DABench, our approach achieves better
performance with lower cost ($0.017 vs. $0.112)
compared to AutoGen.

19810

Table 6: Additional performance comparisons on ML benchmark. “WR", “BCW", “ICR", “SCTP", and
“SVPC" represent “Wine recognition"", “Breast cancer wisconsin", “ICR - Identifying age-related conditions",
“Santander customer transaction prediction”, and “Santander value prediction challenge", respectively. “Avg."

denotes “Average".

Model / Task WR BCW Titanic House Prices = SCTP ICR SVPC Avg.
Completion rate

AutoGen 0.92 1.00 0.92 0.83 0.83 0.83 0.83 0.88
Openlnterpreter 1.00 0.90 0.92 0.88 0.85 0.91 0.88 0.90
TaskWeaver 1.00 1.00 0.83 0.88 0.67 0.83 0.80 0.86
XAgent 1.00 1.00 0.83 0.83 0 0.67 0 0.62
OpenHands 1.00 1.00 0.92 1.00 1.00 0.83 1.00 0.96
Data Interpreter 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Normalized performance score

AutoGen 1.00 0.97 0.82 0.88 0.82 0.71 0.63 0.83
Openlnterpreter 1.00 0.96 0.81 0.87 0.52 0.25 0 0.63
TaskWeaver 1.00 0.96 0.43 0.49 0 0.65 0.17 0.53
XAgent 1.00 0.94 0 0 0 0 0 0.28
OpenHands 0.96 0.96 0.81 0.87 0.86 0.62 0.45 0.79
Data Interpreter | 0.96 0.99 0.82 0.91 0.89 0.91 0.77 0.89

Table 7: Additional performance comparisons on
MATH dataset. “Avg." and “Std." denotes “Average",
“Standard Deviation" respectively.

Data Interpreter

Category | MathChat AutoGen . i .

Avg. Triall Trail2 Trail3 Std.(%)
C.Prob 0.52 0.59 0.68 0.70 0.66 0.68 2.05
N.Theory 0.60 0.66 082 0.81 0.82 0.82 0.99
Prealg 0.60 0.63 074 073 0.75 0.75 1.20
Precalc 0.19 0.12 029 0.28 0.30 0.29 1.13

C.3 Additional Results
C.3.1 ML-Benchmark and MATH

For a more comprehensive evaluation, Table 6
presents detailed results on the ML-Benchmark
for both Completion Rate and Normalized Perfor-
mance Score metrics while Table 7 provides de-
tailed scores on the MATH dataset.

C.3.2 MLE-Bench Lite Results

The detailed results in Table 13 demonstrate Data
Interpreter’s performance across MLE-Bench Lite
tasks with corresponding execution times and costs.
Data Interpreter shows particularly strong perfor-
mance on image multi-class log loss tasks. All
tasks were successfully completed within 452.21s
on average while maintaining competitive per-
formance at an average cost of $0.37 per task.
Compared to specialized frameworks like AIDE,
our experiments demonstrate that Data Interpreter
achieves comparable ML performance with higher
implementation success rates. However, Data Inter-
preter is designed as a general-purpose framework

for diverse data science tasks beyond just machine
learning, providing valuable research solutions for
the broader data science community.

C.4 Ablation Study

C.4.1 Ablation on core modules

Table 8 presents detailed ablation results on the ML
benchmark, evaluating CR, NPS, and CS. We ana-
lyze the contribution of each core component in our
framework, including Code execution with ReAct
(CE), iterative graph refinement (IGR), and pro-
grammable node generation (PNG). As shown in
the table, each module contributes significantly to
the overall performance, with the complete frame-
work (PNG enabled) achieving high performance
across all evaluated tasks.

C.4.2 Comparison with reasoning LLMs

We investigate whether our framework remains
valuable in the era of reasoning-enhanced large
language models. Table 9 demonstrates that even
with advanced reasoning capabilities from models
like QWQ-32B and DeepSeek-V3, our Data Inter-
preter framework provides substantial performance
improvements, highlighting its continued relevance
as LLMs evolve.

C.5 Overhead Analysis

We compared our token cost (average per task) and
inference time (average per task) across the ML-
Benchmark, Open-ended Task Benchmark, MATH

19811

Table 8: Ablation on core modules. Evaluated with CR, NPS and CS on ML-Benchmark. “CE" stands for Code
Execution with ReAct, “IGR" stands for Iterative Graph Refinement, and “PNG" denotes Programmable Node
Generation. “ICR", “SCTP", and “SVPC" represent “ICR - Identifying age-related conditions", “Santander customer
transaction prediction", and “Santander value prediction challenge", respectively.

CE IGR PNG | House Prices SCTP SVPC ICR | Avg.
Completion rate T
v 0.58 0.33 0.67 0.33 0.48
v v 1.00 1.00 0.92 0.88 0.95
v v v 1.00 1.00 1.00 1.00 1.00
Normalized performance score 1
v 0.43 0 0.64 0 0.27
v v 0.91 0.82 0.68 0.60 0.75
v v v 0.91 0.89 0.77 0.91 0.87
Comprehensive score T
v 0.51 0.17 0.66 0.17 0.37
v v 0.96 0.91 0.80 0.74 0.85
v v v 0.96 0.95 0.89 0.96 0.94

Table 9: Performance comparison with reasoning-enhanced models on Time-series and NLP Tasks from
DS-Bench. All metrics are RPG (). Dataset abbreviations: “lon” (liverpool-ion-switching), “Covid-19” (covid19-
global-forecasting-week-4), “Demand” (demand-forecasting-kernels-only), “Readability” (commonlitreadabili-
typrize), “Essay” (learning-agency-lab-automated-essay-scoring-2) and “Box-Office” (tmdb-box-office-prediction).

Model ‘ Time-series ‘ NLP ‘ Avet
Ion Covid-19 Demand | Readability Essay Box-Office
QWQ-32B 0.00 0.83 0.00 0.41 0.53 0.00 0.30
DeepSeek-V3 0.00 0.82 0.70 0.43 0.63 0.43 0.50
Data Interpreter (QWQ-32B) 0.37 0.04 0.73 0.36 0.54 0.43 0.41
Data Interpreter (DeepSeek-V3) | 0.47 0.56 0.73 0.48 0.64 0.43 0.55

Table 10: Overhead analysis on InfriAgent-DABench
and MATH Dataset. “Cost” represents the total cost
in USD, “Time” indicates the total execution time in
seconds, “Avg.” denotes “Average”. Bold values indi-
cate the best performance for each metric within each
dataset.

Model / Metric ‘ Cost($)/ Time(s)] Acec.t
InfriAgent-DABench

AutoGen (gpt-40) 0.112 42.42 88.72
AutoGen (gpt-4-0613) 0.423 45.69 71.49
DI (gpt-40) 0.017 49.44 94.93
DI (gpt-4-0613) 0.311 51.09 73.55
MATH Dataset

AutoGen (gpt-4-1106-preview) 0.242 120.99 50.0

DI (gpt-4-1106-preview) 0.336 211.57 63.3

Dataset, and InfriAgent-DABench, while also re-
porting our performance. Specifically, our experi-
ments were conducted on a Linux operating system
with a 24GB GPU, and each task was allocated
a maximum time budget of 3 hours. Our frame-
work demonstrates state-of-the-art performance
with competitive efficiency.

ML-Benchmark. On ML-Benchmark (See Ta-
ble 12), Data Interpreter achieves the highest com-

prehensive score (0.95) among all frameworks,
though with moderate cost ($0.84) and inference
time (237.31s), as shown in Table 12. While frame-
works like Openlnterpreter achieve lower costs
(%0.21) through one-time code generation, they
show inferior performance (0.77).

Open-ended tasks. In Table 11, for Open-ended
tasks, Data Interpreter significantly outperforms
baselines with a comprehensive score of 0.953,
maintaining reasonable cost ($0.34) compared to
OpenHands ($1.41) and AutoGen ($0.30).

D Runtime Results

Different graphs We provide three runtime re-
sults of our Data Interpreter to demonstrate its ca-
pabilities, showcasing the task graph, action graph,
and overall graph structure as shown in Figure 13.

Execution results We present results from open-
ended tasks (tasks 4, 14, and 15) in Figure 14. Addi-
tionally, Figure 15 demonstrates Data Interpreter’s
data analysis and visualization capabilities through
programmable node generation functionality.

19812

Table 11: Overhead comparison on Open-ended Tasks. “OCR”, “WSC", “WPI”, and “IBR” represent “Optical
Character Recognition”, “Web Search and Crawling”, “Web Page Imitation”, and “Image Background Removal”,
respectively. “Cost” represents the total cost in USD, “Time” indicates the total execution time in seconds, “Avg.”
denotes “Average”.

Model / Task | OCR wsC WPI IBR | Avg.
Cost ($)).

AutoGen 0.10 0.18 0.43 0.48 0.30
Openlnterpreter 0.28 0.08 0.15 0.07 0.15
OpenHands 1.27 1.88 1.26 1.24 1.41
Data Interpreter 0.275 0.69 0.23 0.18 0.34
Time (s)J

AutoGen 68.85 57.28 154.46 79.26 90.05
Openlnterpreter 133.00 109.00 102.00 68.00 103.00
OpenHands 190.00 196.00 94.00 146.00 156.50

Data Interpreter 77.00 293.00 65.00 34.00 117.25

Comprehensive Score

AutoGen 0.67 0.65 0.26 1.00 0.65
Openlnterpreter 0.50 0.30 0.36 1.00 0.54
OpenHands 0.60 0.87 0.16 1.00 0.66
Data Interpreter 0.85 0.96 1.00 1.00 0.95

Table 12: Overhead analysis on ML Benchmark. “SCTP", and “SVPC" represent “ICR - Identifying age-related
conditions", “Santander customer transaction prediction", and “Santander value prediction challenge", respectively.
“Cost" represents the total cost in USD, “Time" indicates the total execution time in seconds, “Avg." denotes
“Average".

Model / Task ‘ Titanic House ICR SCTP SVPC Avg.
Cost ($)

AutoGen 0.08 0.25 0.19 0.48 0.58 0.32
Openlnterpreter 0.26 0.15 0.27 0.18 0.21 0.21
OpenHands 2.66 3.01 3.35 3.24 2.78 3.01
TaskWeaver 0.35 0.38 0.36 0.29 0.48 0.37
XAgent 21.15 17.16 27.81 14.12 20.23 20.09
Data Interpreter 0.65 0.84 0.76 0.54 1.41 0.84
Time (s){

AutoGen 124.71 84.11 136.91 280.60 244.04 174.07
Openlnterpreter 116.66 132.00 170.00 239.00 296.00 190.73
OpenHands 164.00 133.00 148.00 282.00 212.00 187.80
TaskWeaver 109.76 279.25 151.97 182.13 119.62 168.55
XAgent 5400.00 5107.00 5400.00 6023.00 9000.00 | 6186.00

Data Interpreter 168.01 193.21 184.77 244.39 396.17 237.31

Comprehensive Scoret

AutoGen 0.87 0.86 0.83 0.77 0.73 0.86
Openlnterpreter 0.86 0.87 0.68 0.58 0.44 0.77
OpenHands 0.87 0.94 0.93 0.73 0.73 0.88
TaskWeaver 0.63 0.68 0.34 0.74 0.48 0.69
XAgent 0.42 0.42 0.00 0.34 0.01 0.45
Data Interpreter 0.91 0.96 0.94 0.96 0.89 0.95

19813

"task_id": "1",
"dependent_task_ids": [],
"instruction": "Perform data loading and preliminary exploration of the
train and eval datasets. Fill missing values and apply MinMax scaling.",
"task_type": "eda"
}y
{

"task_id": "2",
"dependent_task_ids": [
"1"

1,

"instruction": "Conduct correlation analysis and provide descriptive
statistics.",

"task_type": "eda"
}y
{

"task id": |l3"’
"dependent_task_ids": [
lllll

1,

"instruction": "Perform outlier detection using Isolation Forest to identify
and handle anomalies.",

"task_type": "eda"
by
{

"task_id": "4",
"dependent_task_ids": [
"2",
ll3ll
1,
"instruction": "Execute feature engineering, including General Selection,
Target Mean Encoding, and Variance Based Selection to prepare features for model
training.",

"task_type": "feature_engineering"
}y
{
"task_id": "5",
"dependent_task_ids": [
|l4ll
1,
"instruction": "Split the data and train predictive models using Random
Forest and XGBoost.",
"task_type": "model_train"
by
{
"task_id": "e6",
"dependent_task_ids": [
|l5"
1,
"instruction": "Evaluate the model's performance and generate an evaluation
report.",
"task_type": "model_evaluate"
by
{
"task_id": "7",
"dependent_task_ids": [
"5",
|l6ll
1,
"instruction": "Visualize the analysis and prediction results, including
classification reports and confusion matrix, and serialize the model.",
"task_type": "visualization"

}

Figure 8: Actual task graph generated by Data Interpreter for the machine learning pipeline described in Figure 1.
19814

GRAPH_STATUS =

Action_Graph_Prompt =

Figure 9: Prompt for action graph generator

Table 13: Data Interpreter Performance and Efficiency on MLE-Bench-Lite. Performance of Data Interpreter
with execution time and costs across various tasks.

Task ‘ Data Type Evaluation Metric Lower is Better ‘ Performance Metric ‘ Time (s) | Cost ($)]
spooky-author-identification Text Multi Class Log Loss v 0.7338 200.85 0.09
random-acts-of-pizza Text AUC X 0.6312 294.97 0.25
nomad2018-predict-conductors Tabular RMSLE v 0.0663 477.23 0.16
aerial-cactus-identification Image AUC X 0.9993 266.75 0.05
leaf-classification Image Multi Class Log Loss v 0.6749 347.32 0.17
dog-breed-identification Image Multi Class Log Loss v 1.0596 407.07 0.27
dogs-vs-cats-redux Image Log loss v 0.1094 820.54 0.12
detecting-insults Text AUC X 0.5110 802.92 1.81
Average 452.21 0.37

19815

REFLECTION_PROMPT = """

[example]

Here is an example of debugging with reflection.
{debug_example}

[/example]

[context]
{context}

[previous impl]:
{previous_impl}

[instruction]

Analyze your previous code and error in [context] step by step, provide me with
improved method and code. Remember to follow [context] requirement. Don't forget
to write code for steps behind the error step.

Output a json following the format:

‘T 'json

{{
"reflection": str = "Reflection on previous Implementation”,

"improved impl": str = "Refined code after reflection.”,

}}

mmn

Figure 10: Prompt for reflection and debugging

"task_id": "4",
"dependent_task_ids": [
"2",
||3ll
1,
"instruction": "Create engineered features from sensor readings",
"task_type": "feature_engineering"

by
{

"task_id": "5",
"dependent_task_ids": [
||4",
1,
"instruction": "Perform feature selection using statistical methods and
importance analysis",
"task_type": "feature_engineering"

by
{

"task_id" : ll6ll’
"dependent_task_ids": [
|l4ll’
"5"
1,
"instruction": "Train a predictive model to determine machine status",
"task_type": "model_train"
by

Figure 11: Example of refined task graph

19816

- You can utilize pre-defined tools in any code lines from 'Available Tools' in the
form of Python Class.

- You can freely combine the use of any other public packages, like sklearn, numpy,
pandas, etc..

Each Class tool is described in JSON format. When you call a tool, import the tool
from its path first.
{tool_schemas}

when the current task is "do data preprocess, like fill missing value, handle
outliers, etc.", the code can be like:
“python

from metagpt.tools.libs.data_preprocess import FillMissingValue

train_processed = train.copy ()
test_processed = test.copy ()
num_cols = train_processed.select_dtypes (include="number') .columns.tolist ()
if '"label' in num_cols:

num_cols.remove ('label')
fill missing_value = FillMissingValue (features=num_cols, strategy='mean')
fill missing_value.fit (train_processed)
train_processed = fill _missing_value.transform(train_processed)
test_processed = fill missing_value.transform(test_processed)

for col in num_cols:
low, high = train_processed[col].quantile([0.01, 0.99])

train_processed[col] = train_processed[col].clip(low, high)
test_processed[col] = test_processed[col].clip(low, high)
" Tend

- Ensure the output new code is executable in the same Jupyter notebook with the
previous tasks code has been executed.

- Always prioritize using pre-defined tools for the same functionality.

- Always copy the DataFrame before processing it and use the copy to process.

Figure 12: One-shot tool usage prompt

19817

o o i industrial machines, aimed cti i Thisis aimage.
0 L or faulty). Your tasks i i i l
o e .

t, convert the imag includi CcsSand JSinonego,and Thisisamath problem: Suppose that a 30-digi
i i SN

teger N is composed of thirteen $7§s and
file.The image path: {img_path}. NOTE: All requi d seventeen $35s. ivided by $3657

a
been fully i

ine's status. Vi
jon results. Train data path: {train_path}, eval data path: {eval_path}. o

TaskGraph Action Graph TaskGraph Action Graph Task Graph ° Action Graph
1Data Exploration 1Image Exploration 1Calculate Sum

analysis and pre

ReadCsv FillMissingValue MinMaxScale Image Analyze Sum of digits

2 comrel 2Image To Webpage

Analysi

O Correlation DescriptiveStatistics Generate HTML code Generate CSS code Generate JS code Modulo Check Analyza Last
3 Outliers Detection 3 Verify Operation lity by 9
O S Verify HTML code _ Verify CSS code Verify HTML code
4Feature 31dentify Results
Engineering asave . Check Validate Last
Oe—I . N ; o igits
General TargetMean VarianceBased SaveHTMLcode SaveCSScode Save HTML code
Selection Encoder Selection
4 Combine Remainders

" — o)
mdﬂénmmg O O forsontore B codea et Final Remainer
(O X6Boost Orign Generation

l Datasplitting
@ code & result

Love up i th argest A1 8 . commnty

O . Evauation () ML communty =
Sm———— - e —_— s ot s
it by 3 remsinr oy
R ClassificationReport
ModelSerialization A== [}
ConfusionMatrix HTML
Problem solving Graph Problem solving Graph
Problem Solving Graph B codesresult B

1 B = it : ~

e remitr 7.4

[OJRequirement ~ [Oltask [OJAction data [OJnode > Execution ——> Dependency Relation

(a) Machine Learning Problem (b) Open-ended Problem (c) Mathematical Problem

Figure 13: Runtime examples of Data Interpreter: machine learning, webpage imitation, and math problem
solving

scraping scrape_web_playwright

target_url

html_content scrape_web_playwright(url=target_url)

print(html_content[1[:500])
Title Scroll to Fetch More (Shown 500 Records)Click to Fetch All R. Rating RO. Avg. Initial & A R. Avg. Rating Mean Conf. Avg. Con
31 Turning large language models into cognitive models 8888 3555 6.75A:1.25 8.00 4.50

Conf. Confidence

34 Curiosity-driven Red-teaming for Large Language Models 8888 3334 575 4:2.25 8.00 325

35 Large Language Models to Enhance Bayesian Optimization 8888 5333 575 0:2.25 800 3.50

57 GenSim: Generating Robotic Simulation Tasks via Large Language Models 8888 4334 7.50 £:0.50 8.00 3.50 Spotiight
7 MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models 8,8,8,8 44,43 7.25 0:0.75 800 375 Spotlight
84 Step-Back Prompting Enables Reasoning Via Abstraction in Large Language Models 8,88 433 6.670:1.33 8.00 33 Posig
85 Large Language Models are Efficient Learners of Noise-Robust Speech Recognition 6,8,8,10 4434 8.00 4:0.00 8.00 375

108 Amortizing intractable inference in large language models 58,8,10 43,44 7.25 4:0.50 775 375

131 Generative Adversarial Inverse Multiagent Learning 6,6,8,10 2233 675 8:075 7.50 250

191 DP-OPT: Make Large Language Model Your Differentially-Private Prompt Engineer 6888 3344 5.50 4:2.00 7.50 3.50

198 Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning 6888 3,442 675:075 7.50 325

219 ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search 6,8,8,8 4533 6750:075 7.50 375

259 OctoPack: Instruction Tuning Code Large Language Models 688 345 733 8:0.00 733 400

273 Evaluating Large Language Models at Evaluating Instruction Following 688 343 7.33 4:0.00 7.33 3.33

275 LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models 688 44,4 8.00 4:-0.67 733 4.00

289 (ReL Strkes Back: Explitng Activation Sparsty in Large Language Models 688 434 5.67 4:1.67 733 367

333 Large Language Models Are Not Robust Multiple Choice Selectors 5888 4324 675 8:0.50 7.25 325

342 AffineQuant: Affine Transformation Quantization for Large Language Models 5888 4534 425 8:3.00 7.25 4.00

353 Dola: Decoding by Contrasting Layers Improves Factuality in Large Language Models ~ 5,8,8,8 3,444 650 8:0.75 7.25 375

379 L2MAC: Large Language Model Automatic Computer for Unbounded Code Generation 6,6,8,8,8 343,44 6.60 8:0.60 7.20 360

380 Beyond Memorization: Violating Privacy via Inference with Large Language Models 66,888 35424 7.20 2:0.00 7.20 3.60

425 Retrieval meets Long Context Large Language Models 66,6888 433344 6.838:0.17 7.00 350

438 Grounding Multimodal Large Language Models to the World 6,688 44,44 675 8:0.25 7.00 4.00

493 LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models 6,688 3,443 6.678:0.33 7.00 350

Unveiling the Pitfalls of Knowledge Editing for Large Language Models

6688 3343 6.50 4:0.50 7.00 325

intricate deta vibrant colors, a ng

rt SDEngine

onstruct the

ayload = s

Figure 14: Image background removal / text-to-image / web search and crawling by Data Interpreter

19818

Figure 15: Data analysis and visualization capabilities of Data Interpreter

(wocrawery |

Scenario Description: Scan all the necessary fields and amounts from the given file and then create an Excel sheet with the extracted data

User Requirement: This is an English invoice image.

Your goal is to perform OCR on the image, extract the total amount from ocr result and save as table, using PaddleOCR.
The PaddleOCR environment has been fully installed, try to use Paddleocr as much as possible.

Image path: ./workspace/CORD _test/image/receipt 00001.png

Pipeline Requirement:

1.Load and read images from a given folder/path

2.Install OCR tools/software

3.Using OCR tools/software to extract necessary fields and amounts
4.Collect results and convert them to a DataFrame

5.Save the result in a csv/xlsx forma

Performance Requirement: Recall / Precision / Accuracy

Data:
- Task 1: - Task 2:) - Task 3:

PHO CAP1TAL
107 State Street
Montpelier Vermont
802 225 6163 e

24-2017 06:58 PM
045656
G

Scenario Description: Crawling and organizing web form information

Data: -

Pipeline Requirement:

1.0pen target URL

2.Select and filter the required information

3.Download or transform the data, convert them into a specified format
4.Output in a tabular form

Performance Requirement: Recall / Precision / Accuracy

User Requirement:

- Task 4:

Get data from “paperlist” table in https://papercopilot.com/statistics/iclr-statistics/iclr-2024-statistics/, and save it to a csv file. paper title must
include ‘multiagent’ or ‘large language model".

notice: print key variables

N -

Figure 16: Open-ended task cases (OCR and web search and crawling). We present task 4, omitting similar
tasks for brevity.

19819

(5) Image Background Removal (Task 14)

Scenario Description: Remove the background of a given image

User Requirement: This is an image, you need to use python toolkit rembg remove the background of the image. image path:'./data/Ixt.jpg'; save
path:'./data/Ixt_result.jpg'

Data:

Pipeline Requirement:

1. Read a local image

2. Install image background removal tools/software

3. Using background removal tools/software to remove the background of the target image
4. Save the new image

Performance Requirement: Correctness

(6) Text2Img (Task 15)
Scenario Description: Use SD tools to generate images
User Requirement: I want to generate an image of a beautiful girl using the stable diffusion text2image tool, sd_url=""
Data: -
Pipeline Requirement: -

Performance Requirement: -

(7) Image2Code (Task 16-17)
Scenario Description: Web code generation

User Requirement:

- Task 16:

This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save
webpage code in a file.The image path: ./medium.png .NOTE: All required dependencies and environments have been fully installed and
configured.

- Task 17:
This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save
webpage code in a file.The image path: ./gemini.png .NOTE: All required dependencies and environments have been fully installed and configured.

Data: (Task 16-17 in order)

O¥ Medium Cusar vemswne e Sann
Stay curious. Welcome to
B e S the Gemini era

Pipeline Requirement: -

Performance Requirement: -

Figure 17: Open-ended task cases (image background removal, text-to-image, and image-to-code)

19820

* AsO'TeAd J[ds\oSuoyreyo

suuose xardwod -uonoipaid-an[ea-1opuriues\ioseiep, :yred eiep [ead © Aso-urenjds\aSuafeyo-uonoipaid
10§ 9[qEINS ‘SUWN[0d -on[eA-1opuejues\joseiep, yied vlEp UIRI] BIRp [BAD o) UO FISINY Modoy 108
3G ‘o1qel 9[Surs -1e) oy 101paxd 0) Surpepowr pue ‘Sueaursus armed) ‘Surssedordord eep ‘sisk[eue
“uoISsaI3aI ‘sonfeA e)ep w0y 198Ie) 9y ST uwnjod 1981l YL, “IPwoIsno [enualod yoes 1oy suon
AISINA ¢ uorssaISoy uonoesuen Sunoipaid Ansnpuy -oesuer) Jo anfea 9y 1o1paid 01 SI [20S INOX “JAseIRp [BIOUBUY S JOWIOISNO B ST SIY], an[eA JopurIues 80

* ASOTeASII[ds\suonIpuOd
-paje[ar-afe-Anuapi-1onjeselep, :yied e1ep [eAd ¢ AsdurenJijds\suonipuos-pajeaI-ode
-Kynuapr-1orgeserep, :yied e1ep UlRl], "BIEP [EAS 9Y) UO 2100 T Modoy 1e3Ie) oYy
jo1paid 03 Surpapowr pue ‘Sureaurdus amesy ‘Suissacoidaid eiep ‘sisk[eue viep wioj

qqe) 93urs -1od "Sse[D SI Uwn[od 1351} AYJ, "SUONIPUOD ISAY) JO JUO YIIM PISOUSEIP U2dq Jou
‘swoydwAs yeay jo sey 1o sey 102[qns B 1oyiaym 1o1paid o) SI [e03 INOX 'SUONIPUOD paje[aI-afe Iy}
14 4 uoneayisse[d Kreurg Ansnpuyp 0) paYuI] SONSLIAIOLIRYD (I[eaY paziwkuour K1y I9A0 YIIm JISLIRP [EOIPAW B ST STy, Surkynuapy - YOI L0
* AsO'TeAd Jds\uonorpaid-uonoesuen
-1owo)sno-Japueiues\1aseep, yied eep [eAd ‘ Asoruren Jijds\uonsipaid-uonoesuen
dqer -Iowo)sno-1opueues\1aselep, ped eiep utel], e1ep [eAd oY) uo DNV Hodoy “105Ie)
S[3urs ‘suonoesuen oy Jo1paxd 01 Surepowr pue ‘Furesurdus ammed) ‘Surssacordard eiep ‘siskfeue erep
JowoIsnd 1o1paid o) woyed 198Ie) 9Y) SI uwnjod 1d3Ie) AYJ, "AIMNJ AY) Ul Uondesurs dYIdads € ayew
onvy 4 UONBOYISSE[D) uoneoyIsse[d Kreurg Ansnpuy 1[4 S1WO0ISND YOIy 101paid 0) SI [20S INOX "19seIep [eIOURUY S JOWOISND B ST SIYJ, JOWOISn) IOpuelueS 9
* ASo'[eAd J[ds\sanbruyod)
-uorssaI3aI-pasueape-saoid-asnoy\aseiep, :yed elep [ead © Aso uren jjds\sanbruyoa)
d1qe -uotssaISar-pasueape-sootd-osnoyyeseiep, yed eiep urel], “eiep [eAd ay) uo doud
93uis ‘uorssardar $3[LS PAAISqO) Jo wiyLe3o] 2y pue danfea pajorpaid ayy Jo wiypLe3o] ay) usamlaq
‘soynqune Kradoxd ASINY Moday 198181 oy 101paxd 01 Surjopowr pue ‘Suriooursus axmes) ‘Surssooord-aid
y3noxy saoud vIRp ‘SISA[RUR BIEP WLIOJISJ "OJLIJI[ES ST uwnjod 1951e) o], "Somjeaj it uo paseq
FISINI T uoIssaIdoy asnoy Sunorpaig Jouurdog Kyradoid e jo ooud ayes ay 1o1paid 03 st (03 oKk pue “Jaserep 2oud asnoy e st Sy, $9011 aSnoH S0
* ASO'TRAS T IT[dS\OTURIINIASRIRD,
aped eep [ead < asourenjids\orueinyeseiep, :yied ejep urel] ‘ejep [eAd ay) uo Koel
Jqer -nooe 1odoy e81e) oy 101pard 01 Surpepowr pue ‘SunesurSus armyeay ‘Surssooord
S[SuIs ‘[BAIAINS JO -o1d eiep ‘SISA[eue BIRp WIOJId] "POAIAING ST UWN[OD 1951) AU, "SIWOIINO [BAIAINS
20V T uonesyIsse[) uonedyIsse[o Kreurg Jouurdog 108uassed 101paid 01 st (203 INOA pue 9aseiep [BAIAINS JAFuassed dwuwlL, B ST SIYL orueL], 0
JueuSiew
10 uStuaq 1o1paid 0)
uoneoyIsse[o Areuiq KoeInooe uoNEpIEA MOYS PUE ‘(UONEPI[eA SB 9(7) S1951e) 101paid 01 [opour
o0V I uonesyISSe[) ‘Y@ 1o d[qeing Koy, © uren “j0[d © 9pN[oUI “)aseIEP 190UE)) ISLAIE UISUOISIAY UIRIS UO SISK[RUE B)ep uny I1090UR) Isealg €0
uorssaiar pue
uonesyisse[o odwis Koranooe uonoIpaid Moys pue 13s 153} St 9,()7 Y Sse[o auim Jorpaid o)
20V I uoneIYISSE[) ‘Y4 oy A[qeang Ko, [opow © uren pue o[d e apnjour 19se1ep UoNIUS0I AUIAY UIBI[YS UO SISK[RUR BIRp Uy uonIuS021 AUIA 20
uorssaiar pue
uonesyisse[d odwis
I vada ‘Vad 1oy dqeing Ko, j0[d & Surpnjour ‘Joseiep SLJ UIBS[YS UO SISA[RUE Bjep uny Sup 10
ampp Amoysig adAy, ysel, uonduosa jesereq adAp, 19seiRqg ‘boy 1esn QweN Jasereq ar

‘pasn oaw pue ‘Kynoyyrp ‘adAy ysel ‘adA) 19seiep
‘sjuowaInbar 1osn paepues ‘uondrrosop ‘owreu Joseiep Sulpn[our Jaseiep JIewyoudg-TIA Ul Jo s[reled] 9[qeL

19821

