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Abstract

Uniform Meaning Representation (UMR) is a
cross-lingual document-level graph-based rep-
resentation that is based on Abstract Meaning
Representation (AMR) but is extended to in-
clude document-level semantic relations such
as coreference as well as modal and tempo-
ral dependencies. With recent advancements
in UMR annotation efforts, a reliable evalua-
tion metric is essential for assessing annotation
consistency and tracking progress in automatic
parsing. In this paper, we present AnCast++,
an aggregated metric that unifies the evalua-
tion of four distinct sub-structures of UMR:
(1) sentence-level graphs that represent word
senses, named entities, semantic relations be-
tween events and their participants, aspectual
attributes of events as well as person and num-
ber attributes of entities, (2) modal dependen-
cies that represent the level of certainty that a
source holds with respect to an event, (3) tem-
poral dependencies between events and their
reference times, and (4) coreference relations
between entities and between events. In par-
ticular, we describe a unified method TC? for
evaluating temporal and coreference relations
that captures their shared transitive properties,
and present experimental results on English and
Chinese UMR parsing based on UMR v1.0 cor-
pus to demonstrate the reliability of our metric.
The tool has been made publicly available on
Github '

1 Introduction

Uniform Meaning Representation (Van Gysel et al.,
2021) is the latest iteration in a series of semantic
representation frameworks beginning with Prop-
Bank (Palmer et al., 2005), whose focus on the
predicate-argument structure has been inherited
by Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013). The current unified schema of
UMR features a sentence-level representation sim-
ilar to AMR, albeit with several modifications to

"https://github.com/umr4nlp/ancast

promote cross-lingual applicability (Flanigan et al.,
2022; Bonn et al., 2023b). In addition, UMR intro-
duces a document-level structure that extends be-
yond sentence boundaries to capture inter-sentence
semantic connections such as coreference as well
as modal and temporal dependencies. These in-
clude entity and event coreference, temporal rela-
tions among events and between events and time ex-
pressions, as well as modal dependencies between
events and their sources, referred to as conceivers
(Van Gysel et al., 2021; Vigus et al., 2019; Yao
et al., 2021).

Figure 1 shows a sample UMR annotation for a
short document of 2 sentences as an illustration:

1. Activists alleged that the prisoners were likely
being mistreated yesterday.
2. Their allegation went unnoticed by the public.

In the gold UMR graph on the left of Figure 1,
the 3 light blue nodes at the top represent ubiqui-
tous abstract concepts, which includes the ROOT
node that ensures the graph is single-rooted. AUTH
(author of the text) and DCT (document creation
time) serve as sub-roots of modal and temporal
dependencies respectively.

A modal dependency graph (MDG) captures the
epistemic certainty and polarity with which the
conceivers view events or cite other conceivers
(Yao et al., 2021; Van Gysel et al., 2021). In
the example, the author is certain that the alle-
gation by the activists has already been made
(“:full-affirmative’ edge from AUTH to ‘sla:allege-
017). Then activists are partially certain that prison-
ers are mistreated (‘:partial-affirmative’ edge from
‘sla2:activist’ to ‘slm:mistreat-01"). MDG can be
traced by following the red edges in the figure.

A temporal dependency graph (TDG) annotates
the temporal relations between events and time
expressions such as DCT (Zhang and Xue, 2018).
Since all of the events in this example apparently
took place in the past, the blue edges originating
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Figure 1: On the left is the gold UMR graph for “Activists alleged that the prisoners were likely being mistreated
yesterday. Their allegation went unnoticed by the public.” Light blue nodes indicate special nodes ROOT, AUTHOR
and DCT (Document Creation Time). Modal relations are shown in red edges, temporal relations in blue edges, and
the clusters of co-referent events and entities are highlighted in the same color such as green and yellow respectively.
REF-N stands for refer-number, and REF-P for refer-person. On the right is the test UMR graph with artificial

errors for the same sentence for illustration purposes.

from DCT are labeled ‘:before’ which indicates that
they happened before this document was created
by the author.

Coreference chain can be found by identify-
ing nodes linked by edge labels such as ‘:same-
event’ and ‘:same-entity.” In the sample docu-
ment, ‘alleged’ (‘sla:allege-01’) and ‘allegation’
(‘s2a:allege-01") from sentence 1 and 2 both refer
to the same event. Furthermore, the pronoun ‘their’
(‘s2p:person’) in the second sentence refers to ‘the
activists’ (‘sla2:activist’) in the first sentence.

Finally, the two sentence sub-graphs rooted at
‘sla:allege-01" and ‘s2g:g0-08’ respectively show
some deviations from their corresponding UMR
annotations. The purple ‘:aspect’ edges in the
figure represent aspect which annotates the internal
state of an event regarding whether it is an on-going,
finished or habitual event, or simply a state with
no changes over the course of action, or possibly
something else (Donatelli et al., 2018, 2019). In
the example, the mistreatment is described as on-
going (thus ‘activity’), whereas the allegation and
going un-noticed events have both been completed
(hence the ‘performance’ value). It is also worth
pointing out that the explicit support for plurality of
nominals as well as person for pronouns visualized
with cyan-colored edges.

In the era of Large Language Models (LLMs),
the role of symbolic meaning representations such
as UMR and its precursor, AMR, has changed dra-
matically. Prior to LLMs, datasets annotated with

symbolic meaning representations were routinely
used to train supervised models as components
in pipeline NLP systems such as information ex-
traction (e.g., Pan et al., 2015; Garg et al., 2016;
Rao et al., 2017), summarization (e.g., Liu et al.,
2015; Liao et al., 2018), machine translation (e.g.,
Song et al., 2019; Nguyen et al., 2021), question
answering (e.g., Sachan and Xing, 2016; Mitra and
Baral, 2016; Kapanipathi et al., 2021), and dia-
log systems (e.g., Bonial et al., 2020; Bai et al.,
2021). Increasingly, symbolic representations are
now used to complement LLMs by providing struc-
ture, consistency, and interpretability (Liang et al.,
2024; Edge et al., 2024). While LLMs excel at
generating fluent and contextually appropriate re-
sponses, they often lack the explicit, systematic
framework needed for tasks that require precise se-
mantic representation, cross-linguistic consistency,
or detailed reasoning. UMR fills these gaps by
offering a clear, interpretable framework to repre-
sent meaning, which can enhance applications such
as multilingual NLP, fact verification, and explain-
able Al Thus, UMR and other symbolic systems
work alongside LLMs to ensure that language un-
derstanding is not only fluent and adaptable, but
also accurate, transparent, and reliable in scenar-
ios that demand high levels of interpretability and
rigor.

Thanks to the recent release of UMR v1.0 (Bonn
et al., 2023a, 2024), it is now possible to explore au-
tomatic UMR parsing (Chun and Xue, 2024). How-
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ever, while there are evaluation methods for each of
the sub-structures of UMR, a unified framework for
assessing the quality of the overall UMR structure
is still lacking. This paper introduces AnCast++,
a novel tool that implements a metric to measure
the accuracy of UMR graphs. AnCast++ starts by
mapping vertices between two graphs using the
node alignment approach described in (Sun and
Xue, 2024). Based on this alignment, the scores
of sentence-level graph as well as the modal, tem-
poral dependencies, and coreference relations are
computed before finally producing a micro-average
score that aggregates the scores of the four compo-
nents making up the UMR graph. Since temporal
dependencies and coreference relations both give
rise to graph structures that can be further com-
pleted via transitive closure, we develop a unified
algorithm, TC?, to leverage this structural com-
monality and compute scores for both components.

The remainder of this article is organized as fol-
lows. In Section 2, we briefly describe the node
alignment method used in AnCast. This is followed
by a discussion of the evaluation metric for modal
dependencies. We then present 7’C?, a method
for computing transitive closures of temporal and
coreference relations of UMR and calculating the
similarity between temporal and coreference sub-
graphs using the LEA-inspired method (Moosavi
and Strube, 2016). After that, we describe the
method for allocating weights to the four compo-
nents. Section 3 provides experimental results on
the use of this metric to measure the output of a
UMR parser. Section 4 discusses related work, and
Section 5 concludes the paper.

2 Methodology

Developing an evaluation metric for comparing
UMR graphs presents two core challenges: (i)
comparing transitive and expandable relation sets,
specifically temporal and coreference relations
within the UMR graph, and (ii) assigning appropri-
ate weights to different components of the output to
generate a comprehensive score for the graph of the
entire document. The first step in comparing two
UMR graphs with nodes that may potentially have
different labels is to establish a node mapping using
an alignment algorithm. To tackle this problem, An-
Cast++ adopts the anchor and broadcast algorithm
proposed in AnCast (Sun and Xue, 2024) to iden-
tify node alignment and produces a score by com-
paring sentence-level semantic graphsin UMR. In

this section, we briefly summarize the anchor-and-
broadcast algorithm used to obtain node mappings
(Section 2.1). We then present the sub-metrics for
each component of the UMR graph: the metric for
evaluating sentence-level graphs (Section 2.2), the
metric for evaluating modal dependencies (Section
2.3), and the metric for temporal dependencies and
coreference relations (Section 2.4). Finally, we
present how the sub-metrics are aggregated into the
full UMR metric in AnCast++ (Section 2.5).

2.1 Obtaining Node Mapping

The core strategy of AnCast is to identify the best
possible match for each node individually, rather
than to seek a global optimum as Smatch (Cai and
Knight, 2013). This approach makes the match-
ing process more interpretable and transparent, and
avoids assigns similarity scores to graphs that may
have similar structure but with nodes that carry en-
tirely different meanings. In addition, the anchor
and broadcast algorithm used is an O(n?) algo-
rithm and it is considerably more efficient than the
hill-climbing approaches adopted in Smatch.

The central idea of the anchor-and-broadcast al-
gorithm is to leverage the local and neighboring
information of each node to improve alignment
accuracy. The local information of a node encom-
passes its intrinsic properties, such as its lemma-
—the base form of a word—-and its specific word
sense, which defines its meaning in context. By cal-
culating the intrinsic similarities between each pair
of nodes from the reference graph and the response
graph, an intrinsic similarity matrix .S is generated.
Each cell of this matrix represents the similarity
score of a pair of nodes based on their intrinsic
properties and associated attributes (e.g., aspectual
values of an event, person and number attributes of
an entity). Based on this intrinsic similarity matrix
S, node pairs with a high similarity score are set as
the initial anchor for the alignment algorithm.

However, it is unlikely that a node from the ref-
erence graph will always have the same intrinsic
properties as some node in the response graph. To
make the alignment algorithm work, the intrinsic
properties of the nodes need to be supplemented
with neighboring information, based on the obser-
vation that a pair of aligned nodes tend to have same
aligned neighbors. The similarity of a node pair
can thus be recalculated based on anchors in their
neighborhood, and in this sense the similarity of the
anchors is broadcast to its neighbors. Node pairs
with high similarities will again be designated as
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Gold Test
Variable | Label Variable [ Label

sla allege-01 s3a allege-01
sla2 activist s3a2 activist
sim mistreat-01 s3m mistreat-01
sip prisoner s3p prisoner
sly yesterday s3y yesterday
s2n notice-01 s4n notice-03
s2p2 public s4p2 public
s2p person s4p person
s2a allege-01 s4a allege-01

NULL s4g 20-08

Table 1: Node mapping between the reference and test
UMR graphs in Figure 1, where each row represents
an alignment. Because AnCast prioritizes the intrinsic
information of the node over its position in the graph,
it correctly aligns s2n to s4n, which are in different
positions relative to the root.

anchors for the next round of recalculation and the
process repeats itself till it converges. The reader is
referred to (Sun and Xue, 2024) for details on how
the anchor matrices are computed.

Given the gold and test graphs in Figure 1, the
output of the anchor and broadcast algorithm of
AnCast is shown in Table 1. It should be noted that
a pre-defined null node serves as the placeholder
for the unaligned nodes, such as the one aligned
with s4g:go-08, as it does not a corresponding node
in the gold graph.

2.2 Sentence Level Evaluation

The AnCast score for a pair of sentence-level
graphs is based on labeled relation scores (Sun
and Xue, 2024), which calculates the weighted av-
erage of the similarity score of pairs of triples from
the reference graph and the response graph, where
a triple consists of a parent node and a child node
as well as the relation between them. This score is
calculated based on pairs of nodes using the gold
graph as the reference graph and test graph as the
response graph to calculate the precision or recall.

For a pair of nodes (v1,v2) in one graph, con-
sidering its aligned counterpart (w1, w2) in another
graph based on the node mappings, the pairwise
LR score for (v1,v2) sp is calculated as

Sp = Sc * Sol (1)

where s. is the concept similarity, the average
of the concept overlap score between S,,,, and
Svyw, Within the two pairs and s,; is the number
of overlaps between the set of relation labels L,
between (v1, v2) and the corresponding set L; be-

tween (w1, w2). The concept similarity s, is calcu-
lated as:

Se = S'Ul'wl + S'U2w2 (2)

2
The number of overlapping labels is computed
(assuming it is possible to have multiple labels

between a pair of nodes) as

sa =y 1rely 3)

reLy

The overall labeled relation precision / recall
score is the weighted average of all pairwise scores.
Since for an overwhelming majority of cases, the
number of labels between a parent node and a child
node is 1, it is essentially a plain average of all
pairwise scores.

1
U= 4
RTAPI @

Using the gold graph as the reference graph and
the test graph as the response graph, we will get
the overall recall r(s). Using the test graph as the
reference and the gold as the response, we will get
the overall precision p(s).

Based on the gold and test UMR graphs in Figure
1 and the node mappings in Table 1, we identify
12 matched edges for the sentence-level graphs.
Dividing the number of matched edges by the total
number of sentence-level edges in either the test
graph or the gold graph, we can get a precision p(s)
of 0.71 and a recall r(s) of 0.75.

2.3 Modal Dependency Evaluation

Unlike temporal or coreference dependencies
which are graphs (Yao et al., 2021), a Modal De-
pendency Graph generally takes the form of a tree
structure with directed edges from a parent to a
child. Calculating the similarity score for the modal
dependency graphs is straightforward and amounts
to counting the number of overlapping modal de-
pendency triples between the gold graph and the
test graph.

Given the two modal dependency graphs in Fig-
ure 2 (which are modal dependency subgraphs from
the UMR gold and test graphs in Figure 1) and the
node mappings in Table 1, we observe 3 match-
ing triples: (author :full-affirmative allege-01
[s1a|s3a]), (author :full-affirmative allege-
01 [s2a|s4a]) and (author :full-affirmative
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Figure 2: Gold and test modal dependency sub-graphs
from UMR graphs in Figure 1. ‘+] ‘P+’ and ‘N+
stand for full-affirmative, partial-affirmative
and neutral-affirmative respectively.

notice-01 [s2n]|s4n]). Dividing this by the total
number of edges in the reference graph (5) and the
response graph (5), we get a recall r(m) of 0.6 and
a precision p(m) of 0.6.

2.4 TC?: A unified metric for evaluating
temporal and coreferential relations

In this subsection, we introduce 7°C? (Transitive
Closure of Temporal and Coreferential relations), a
novel unified metric we design to evaluate temporal
and coreference relations as both exhibit transitive
properties.

Following (Setzer et al., 2005), the first work to
apply transitive closure to evaluate temporal rela-
tions, we use closed graphs rather than unclosed
graphs to evaluate temporal and coreference rela-
tions. This helps reduce the impact of redundant
annotations by ensuring that two graphs contain-
ing the same information are evaluated the same
way even if the annotated relations in them before
closure are not.

We adopt a link-based approach to evaluate
the temporal and coreference subgraphs of UMR,
extending the Link-based Entity-Aware (LEA)
(Moosavi and Strube, 2016) metric—originally de-
signed for coreference evaluation—to assess tem-
poral relations as well.

The following sections detail the conversion of
temporal and coreference relations in UMR anno-

tations into computable clusters incorporating tran-
sitive closure. This process involves three steps:
(1) transforming the temporal and coreference sub-
graphs in original UMR annotations into a unified
graph structure; (ii) computing the transitive clo-
sure over the unified graph to capture all inferred
relations; (iii) Applying a link-based metric to eval-
uate the resulting graph, and quantifying the accu-
racy of the represented relations.

2.4.1 Unified Graph Representation for
Temporal and Coreference Relations

Temporal Dependencies UMR includes five
types of temporal relations, as shown in the top
half of Table 2. “before”, “after”, and “contained”
demonstrate transitive properties while “depends-
on” (which means that the temporal interpretation
of a time expression depends on that of another)
and “overlap” (which means that two events or time
expressions overlap each other in their duration) do
not.

When converting the UMR temporal dependen-
cies into unified graph representations, we observe
that temporal composition can only be performed
in the same direction for the “before” and “after”
relations, and for “contained” relations. That is, we
can infer a new relation with two “before” relations
(If “a’ is before ‘b’, ‘b’ is before ‘c’, then ‘a’ is
before ‘c’) or two “after relations” (If ‘a’ is after
‘b’, and ‘b’ is after ‘c’, then ‘a’ is after ‘c’), but not
with one “before” relation and one “after” relation.
Similarly, for ‘contained’ relations, we observe that
if ‘a’ contains ‘b’ and ‘b’ contains ‘c’, then we can
infer ‘a’ contains ‘c’. In the opposite direction,
we observe that if ‘a’ is contained by ‘b’ and ‘b’
is contained by ‘c’, then we infer ‘a’ is contained
by ‘c’. However, the “before” (or “after”) relation
interacts with “contains” and “contained-by” rela-
tions in different ways: if ‘a’ is before ‘b’ and ‘b’
contains ‘c’, we can infer that ‘a’ is before ‘c’, but
if ‘b’ is contained by ‘c’, then we cannot make such
an inference. The full set of temporal composition
rules are presented in Table 3.

Given that, in the unified graph representation,
we merge “before” and “after” into a single rela-
tion a — b, r, where r is a shorthand for that rule.
However, we split ‘contained’ into two relations,
up for upward containment and dn for downward
containment. The full set of temporal relations can
be found in the top half of Table 2.
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Figure 3: Extracted graphs from both annotations on the top half, and the graphs after transitive closure. Note that
after the computation of transitive closure, two links exist between s/m and s/a which indicates there is an error in

the original graph.
Relationship | Representation
a :depends-on b (a—Db,d)
a :after b (b—a,r)
a :before b (a—b,r)
a :overlaps b (a<+>b,0)

a :contained b

(a—b,dn)/ (b — a,up)

a :same-entity b
a :same-event b
a :subset-of b

(a—b,sn)/(b— a,sn)
(a—b,sv)/(b— a,sv)
(a—b,up)/(b—a,dn)

Table 2: Conversion table for temporal and coreference
relations, where a <> b represents a symmetric relation.

o |ref|o|d|r |up | dn | sn sV
ref | - o|ld|r|up|dn| sn sV
0 - - - - - - - -
d N R I R N N N
r - -l -] - r - -
up - -l - |up| - up | up
dn - - - - - dn | dn | dn
sn - - | -|-]up|dn| sn | sn*
SV - - | -] -1]up | dn | sv¥ | sv

Table 3: Composition Table for Relations

Coreference Relations UMR distinguishes be-
tween entities and events when representing coref-
erence relations. Coreferent entities are linked by a
“same-entity” relation, while coreferent events are
connected by a “same-event” relation. By defini-
tion, these two types of coreference never belong
to the same cluster, as they represent different con-
ceptual categories. In addition, UMR entities and
events can also have a subset (‘subset-of”) relation.
Because all coreference relations are transitive and
commutable, both directions are added to the con-

version table (Bottom half of Table 2). In particu-
lar, the ‘subset-of” relation has the same transitive
properties as the temporal containment relation and
is translated into the same two rules as temporal
containment: ‘up’ and ‘dn’, as shown in Table 3.

2.4.2 Transitive Closure through Graph
Traversal

Transitive closure is performed by conducting a
depth-first® traversal of each node to see which
other node this current node can connect to. The
traversal is performed in an iterative process until
no viable composition can be performed based on
the rules in Table 3 and there is no more unvisited
node.

Figure 3 illustrates the computation process of
the converted temporal graph extracted from Figure
1. In the left (gold graph), s1m does not have a
transitive connection to s1a, so we cannot infer its
connection to DCT and s2n directly. However, since
it is contained by yesterday which is before s1a,
s2n and DCT, we can infer that s1a is before both
s2n and DCT.

Similarly, in the test subgraph, we can infer the
temporal relations between s4n and s3m, s3a and
DCT through its containment relation with s4g.
These temporal relations do not have a matching
relation in the gold graph as s4g does not have a
matching node in the gold graph. Nevertheless it

The particular order of the traversal is of no significance,
and depth-first traversal is chosen for its efficiency.
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illustrates the pivotal role of s4g as a “bridge” in
the temporal graph.

The coreference annotations extracted from Fig-
ure 1 are sparse as one might expect for such a
short document. For both the gold graph and the
test graph, they are already transitively closed since
no additional co-reference relations can be inferred.

To better illustrate the commonality and differ-
ence in transitive closure for temporal and corefer-
ence in the unified graph representation, we design
a more elaborate example in Figure 5, which can
be found in the appendix.

During traversal, nodes encountered on the same
search path are also recorded as in the same cluster.
We then adopted the union find algorithm to merge
these clusters after the search process is concluded.

At the conclusion of the transitive closure, we
will get a list of node clusters K = {k;} (in the
reference graph) and R = {r;} (in the response
graph), each with an augmented set of relations
that include the original annotated links and in-
ferred links {rel(k;)} and {rel(r;)} from the tran-
sitive closure. Note that all links in {rel(k;)} and
{rel(r;)} are deduplicated: all relations with “up”,

”, “sv” are recorded only once in the final

“dn”, “Sn ,

set of links.
Figure 4: The extracted coreference annotations. The

gold graph has two clusters, while the test graph has 3
clusters.

2.4.3 Scoring the closed graph

The recall and precision are subsequently computed
as in Equations 5 and 6. The formula are actually
very simple: for each cluster in the gold graph,
count the number of the links in its augmented set
that overlap with those in the test graph, divide it
by the total number of links in this cluster, and cal-
culate the weighted average of the resulting ratios
where the weights are the number of nodes in each
cluster. Note that multiple relations between the
same pair of nodes are not prohibited.

rel(r;Nk;)
S rer(nil X Y en “wtr”)

5
ZT‘ZGR ‘TZ‘ ( )

p:

rel(k;Nr;)
. Yorer kil X 320 cr —ertmy)
ke Kz
According to the equations above, we can com-

pute precisions and recalls for Figure 3 and 4 as
follows:

(6)

p(t) = 6*2/12 058 )
r(t) = 5*;/11 — 0.64 ®)
p(C):1*0+1*f+2*1/1:0.5 ©)
r(c) = “OT*M — 05 (10)

2.5 Weight Allocation

The sentence-level graphs are tree-like, closely re-
sembling tree structures but allow for a few re-
entrancies. Along with the modality graphs, both
are similarly sparse and intuitively weighted by
the number of annotated relations. In contrast, the
temporal and coreference graphs become signifi-
cantly denser after transitive closure. To bring these
components onto a comparable scale, we assign the
weights of the sparse and dense graphs accordingly.

We use the number of nodes in the temporal
and coreference annotations, denoted V, /;(t) and
V,¢(c) respectively, as normalization factors. The
sets of relations in the sentence-level and modality
graphs are denoted by R /4(s) and R/, (m), where
the subscript g/t indicates whether the values are
from the gold annotation or the test output.

The final comprehensive precision p(A) and re-
call r(A) are weighted average of precisions and
recalls from all four components of a UMR graph,
and a comprehensive F1 score is the harmonic av-
erage of p(A) and r(A).

Wt = {[Rg/i(s)], [ Rge(m)];

(1)
Vst @15 [Vy e ()]}
p(A) = > wip(i)
w; EWy

_ 1 x 174+ .6 x5+ .58 x6+.5x4

- 17+5+6+4

=0.64
(12)
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r(A) = Z w;r(7)
w; EWy
B X164+ .6x5+.64x5+.5x4
N 16+5+5+4
= 0.67
(13)
2p(A)r(A) 2 % 0.64 x 0.67
F1= =
p(A) +1r(A) 0.64 4+ 0.67
= 0.65

(14)

2.6 Properties of the AnCast++ metric

We analyze the properties of the proposed An-
Cast++ metrics based on the desiderata outlined
in (Opitz et al., 2020) for evaluating graph-based
meaning representations. (Opitz et al., 2020)
proposed seven principles, some mathematically
driven, and some based on linguistic or engineering
principles. AnCast++ fulfills all of them except the
last one, which is fulfilled partially.

* Continuity, Non-negativity, and Upper Bound:
This requires that the metric provides a score
in the [0,1] range and the Ancast++ metric
does.

¢ Identity of Indiscernibles: This principle re-
quires that a score of 1 if the two graphs match,
and a score less than 1 if they do not. This is
fulfilled by AnCast++.

* Symmetry: AnCast++ simply swaps precision
and recall when changing the order of graph
A and graph B, and the F1 will thus stay the
same.

* Determinacy: Ancast++ utilizes a determin-
istic algorithm for node alignment based on
AnCast, and this means that repeated calcu-
lation over the same inputs should yield the
same score.

* No bias/Transparency: Ancast++ allows con-
figurable weighting for different types of
triples, and scores can be traced down to indi-
vidual triples. Any biases towards a particular
component of the graph will be explicitly and
transparently indicated in the evaluation pro-
cess.

* Symbolic semantic match: As an overlap-
counting metric, Ancast++ is naturally com-
patible with the graph-based Jaccard index,

which means that Graph A and Graph B are
considered more similar to each other than A
and Graph C iff A and B exhibit a greater rel-
ative agreement in their (symbolic) conditions
* Graded semantic match: Ancast++ partially
satisfies this criterion by calculating surface
string similarity between concepts. While us-
ing dense representations for concepts may
offer better granularity, they introduce com-
putational overhead and are unavailable for
many sense-tagged predicates or abstract con-
cepts, making full compliance infeasible.

3 Parsing Experiments

Although UMR v1.0 corpus contains annotations
in 6 languages’, current UMR parsing results are
limited to English only (Chun and Xue, 2024). This
is due to the modular and pipelined setup of the
parser which consists of smaller sub-models trained
independently on external annotations that do not
exist in low-resource languages. In this work, we
adapt this framework to present the first experimen-
tal results on Chinese UMR parsing, despite the
absence of temporal dependency dataset for the
language. In addition, although (Chun and Xue,
2024) reports a comprehensive macro F1 score of
60.0, this does not account for the disparity in the
number of sentences across documents. Conse-
quently, strong performance on a short document
makes a disproportionately high contribution to the
overall F1 score. We therefore report the aggre-
gate macro F1 score weighted by the number of
sentences per document, with the comprehensive
score now at 51.9 for English. Table 4 shows the
parsing results on the English UMR annotations
and Table 5 show the parsing results on the Chi-
nese UMR annotations. These results are primarily
meant to demonstrate the reliability of our UMR
evaluation metric, although they can also serve as
baselines for UMR parsing research. Experimental
details can be found in Appendix B.

4 Related Work

Research on document-level semantic graph rep-
resentations remains limited, as do metrics for
evaluating their quality. The metrics for eval-
uating document-level meaning representation
graphs include Multi-sentence AMRs (MS-AMR)
(O’Gorman et al., 2018) and DocAMR (Naseem

3 Arapaho, Chinese, Cocama-Cocamilla, English, Navajo,
and Sanapana.
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English Ancast++ F1
Doc. ID Sent. | Moda% | Temp. | Coref. ]| Aggr.
0001 662 | 402 | 162 82 555
0002 90.0 | 60.0 100.0 | 0.0* 86.2
0003 71.8 539 18.2 40.0 63.4
0004 60.7 65.3 22.8 26.7 51.9
0005 55.0 12.3 7.3 20.4 429
MacroF1 || 613 | 540 | 203 | 236 | 519

Table 4: UMR Parsing results on English UMR v1.0
dataset. *english_umr-0002 contains no coreference.

Chinese Ancast++ F1

Doc. ID Sent. | Modal | Temp. | Coref. [| Aggr.
0001 36.6 37.3 0.0 2.7 33.9
0002 459 45.9 0.0 17.3 41.9
0003 37.8 52.9 0.0 9.7 36.1
0004 43.1 45.2 0.0 16.7 39.6
0005 514 55.8 0.0 16.8 48.0
0006 37.9 31.1 0.0 14.7 34.1
0007 44.7 50.0 0.0 20.0 41.5

Macro F1 || 430 | 458 | 00 | 148 [ 397

Table 5: UMR Parsing results on Chinese UMR v1.0
dataset. Temporal dependency score remains zero due
to the lack of temporal dependency annotations for Chi-
nese.

et al., 2022) and both extend Smatch (Cai and
Knight, 2013) to the document-level graph.

(O’Gorman et al., 2018) introduces a multi-
sentence AMR corpus linking sentence-level
AMRs into document-level graphs through coref-
erence relations between entities and events. It
proposes measuring agreement and parser accu-
racy by concatenating sentences under a new root
and merging coreferent nodes, creating a single
connected graph evaluated by Smatch. However,
this approach can alter semantics when coreferent
nodes are events or contain conflicting informa-
tion. DocAMR (Naseem et al., 2022) addresses
this by introducing a new coref-entity node for each
identity chain, linking participating nodes via a
:coref relation, except for named entities, which
are merged, and pronouns, which are removed.

Both MS-AMR and DocAMR assume coreferent
entities have identical referents and can be merged
into clusters. However, UMR includes temporal
relations, modal dependencies, and subset coref-
erence relations that cannot be clustered similarly.
To address this, AnCast++ takes a fundamentally
different, link-based approach for measuring simi-
larity in UMR graphs and handling temporal and
coreference relations.

Multiple evaluation metrics for coreference as
a standalone task exist, among which B3(Bagga

and Baldwin, 1998) and CEAF (Luo, 2005) con-
sider the overlap between nodes (mentions), while
MUC (Vilain et al., 1995) and BLANC (Recasens
and Hovy, 2011) focus on the links between them.
However, most still suffer from being uninter-
pretable or exploitable in extreme cases, leading
to skewed evaluation results in certain scenarios as
explained in (Moosavi and Strube, 2016). One of
the best mitigation methods has been to get an av-
erage of multiple metrics outputs as is done in the
commonly adopted CoNLL metric(Pradhan et al.,
2014). Not all coreference metrics extend well
to temporal relations. Although both coreference
and temporal relations are transitive, temporal rela-
tions cannot form clusters as coreference relations
typically do. Indeed, even some coreference re-
lations resist plausible clustering. Therefore, we
adopt the link-based LEA approach (Moosavi and
Strube, 2016), as it readily generalizes to temporal
relations.

Early temporal evaluation methods used tran-
sitive closures (Setzer et al., 2005), but differing
opinions about the relevance of certain relations
led later work to emphasize core relations or min-
imal graphs instead (Tannier et al., 2008). (Uz-
Zaman and Allen, 2011; UzZaman et al., 2012)
applied temporal closure solely to verify explicit an-
notations rather than comparing two closed graphs.
Other approaches simply counted annotated triples
(Verhagen et al., 2010). In contrast, AnCast++ eval-
uates fully closed graphs, providing a uniform eval-
uation framework for both temporal and corefer-
ence relations.

5 Conclusion

We present AnCast++, an aggregated evaluation
tool that implements intuitive metrics encompass-
ing sentence-level annotation, modal dependencies,
temporal and coreference relations in the UMR
graph. AnCast++ also includes a novel 7'C*? algo-
rithm that unifies the evaluation of temporal and
coreference relations using their transitive closures.
This represents a significant improvement over the
previous scattered metrics in terms of the multi-
facet annotations on document level semantic con-
tent.
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Limitations

AnCast++ relies on AnCast’s anchor-broadcast al-
gorithm to establish node alignment, which re-
quires that some anchor nodes be identified with
high confidence as a starting point. Any node-
alignment error could potentially cascade into the
document-level evaluation of AnCast++.

Since the size of the UMR dataset remains small,
the experimental results are not yet stable as it is
possible that a short document may not have any
document-level annotation such as coreference for
evaluation.

AnCast++ is highly customized for UMR; it is
unlikely to be compatible with other meaning rep-
resentations.
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A Corpus Details

Table 6 provides a summary of UMR v1.0 dataset
in English used for evaluation. The English corpus
is sourced from newsire as well as weblog domain,
whereas the Chinese dataset consists of newswire
only.

B Experimental Details

Chun and Xue (2024) advocates for a divide-and-
conquer approach for UMR parsing by building
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sub-structures of UMR individually, before merg-
ing them into the final structure. We adopt this
setup and replicate the results on English to com-
pute the weighted version of the Ancast++ metric.
In applying this framework to Chinese, the
absence of Chinese temporal dependency parser
makes it more challenging than for English. Our ef-
forts of using the LLMs to (1) translate the English
annotations to Chinese and then train the temporal
dependency parser, and (2) predict the temporal
relations directly does not yield fruitful results to
be included in the pipeline. However, we observe
some efficacy with coreference, where prompting
the ChatGPT (gpt-40-2024-08-06) leads to im-
proved performance over traditional libraries. For
AMR parsing, we train the SUDA’s entry in the
CCL23-Eval Task 2 (Xu et al., 2023). We use the
modal dependency parser from Yao et al. (2022).

C Illustrative examples for a complex
temporal and coreference evaluation

(b) Second diagram

Figure 5: Combined diagrams. Dotted lines are inferred
from co-reference only, and dashed lines are inferred
from both scenarios.

Figure 5 serves a dual purpose for illustrating
how transitive closure is performed on either tem-
poral dependencies or coreference relations and
how the similarity scores are computed. Horizontal
lines between nodes represent either “after” rela-
tions (temporal) or “same-entity/event” relations
(coreference). Vertical lines indicate “‘contained” or
“subset-of” relationships. Only dashed lines denote
inferred temporal relations, but both dashed and
dotted lines indicate inferred coreference relations.

Both graphs contain two clusters.

Suppose this is a temporal dependency graph
used to compute transitive closure, and we start
from 1. It can be inferred that 1 is connected to 2,
3, 4, and 6, but not 5 or 7, because 5 and 7 cover
a wider time span than 3 and 4 so it is unclear
whether 1 overlaps with 5 or precedes 5. Same for
7, as based on Table 3, r 4+ up is not computable.

However, if Figure 5 is a unifed graph for coref-
erence, then 1 can travel to all nodes in the search
process, because 1 is the same entity or event as 3
and 4, and 3 and 4 are a subset of 5 and 7 respec-
tively, so 1 is also a subset of 5 and 7. Formally it
is an application of the rule sn + up = up.

The temporal scores between Figure 5a and Fig-
ure 5b are computed in Equations 15 and 16. Only
1 —2,1— 3and 7 — 4 in Figure 5a are also
found in Figure 5b. So:

Tx 2 4+1x0
_ X0 0 (15)
8
4x244x?
:%:0.46 (16)

More coreference relations can be inferred than
temporal relations. For example, In Figure 5b, 2 —
3 can be inferred from the coreference relations
between 1 — 3 and 1 — 2 as sn+sn=sn based on
Table 3. The coreference scores are computed in
Equation 17 and 18.

Tx S +1x%x0
IS Ak Sal S} (17)
8
4x84+4x2
= 6 6 —0.67 (18)

19654



