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Abstract

Document-level relation extraction (DocRE)
aims to extract structured relational triples
from unstructured text based on given enti-
ties. Existing methods are mainly categorized
into transformer-based models and graph-based
models. While transformer-based models cap-
ture global contextual information, they typi-
cally focus on individual entity pairs, making
it challenging to capture complex interactions
between multiple entity pairs. Graph-based
models build document graphs using entities
or sentences as nodes for reasoning but often
lack explicit mechanisms to model fine-grained
interactions between entity pairs, limiting their
ability to handle complex relational reasoning
tasks. Additionally, previous research has not
considered predicting all possible relations in
advance to assist with DocRE tasks. To ad-
dress these issues, we propose a new framework
namely GREP (global relations and entity pair
reasoning) for DocRE tasks. GREP leverages
the global interdependencies between entity
pairs to capture fine-grained interactions and
perform multi reasoning at the entity pair level.
In addtion, GREP for the first time proposes an
auxiliary task that predicts all possible relations
in advance that exist in a document, which en-
ables the model to filter out the most unlikely
relations. Experimental results on widely-used
datasets demonstrate that our model achieves
state-of-the-art performance1.

1 Introduction

Document-level relation extraction (DocRE) aims
to extract structured relation triples from unstruc-
tured text based on given entities. Early studies
primarily focused on sentence-level relation extrac-
tion (Zhang et al., 2018; Zhu et al., 2019; Sun et al.,
2020) , which predicts relations between entities
within a single sentence. However, DocRE is more

1Our code: https://github.com/yanyi74/GREP.
†Equal contribution. ∗Corresponding author.

[1]Elizabeth II was Queen of Mauritius from 1968 to 1992 . [3]The Queen 
was also the monarch of the United Kingdom and the other 
Commonwealth realms . [8]The Queen and her husband Prince Philip , 
Duke of Edinburgh , visited Mauritius for three days  ... 

Global relations
spouse ()
member of ()
head of state ()
mother ()

Reasoning triples in simple scene
(United Kingdom, member of, Commonwealth)
(Commonwealth, chairperson,  Elizabeth II)

 

(Philip, country of citizenship, United Kingdom)
 
 

Reasoning results in complex scene
(United Kingdom, ?, Elizabeth II )
 relation:head of state
(Philip, ?, Elizabeth II)
 relation:spouse

...

...

Entity pair graph

...
...

Figure 1: An example of DocRE. The reasoning in
complex multi-hop scenes can be achieved based on our
proposed entity pair graph and global relations.

challenging, as many relations span multiple sen-
tences and require multi-step reasoning.

Currently, two main approaches are employed
to tackle DocRE: transformer-based models and
graph-based models (Delaunay et al., 2023).
Transformer-based models leverage self-attention
mechanisms to capture global contextual informa-
tion and are adept at handling long-distance depen-
dencies (Zhou et al., 2021; Xie et al., 2022). Graph-
based models construct document graphs by treat-
ing entities, mentions, or sentences as nodes (Zeng
et al., 2020; Lu et al., 2023) and employ graph con-
volutional network (GCN) (Scarselli et al., 2008)
for reasoning on the graphs. However, while these
methods implicitly model interactions between en-
tities, they often ignore direct interactions between
entity pairs and lack an explicit mechanism to
model such interactions, which introduces limita-
tions in complex relational reasoning tasks.

As a multi-label classification task, identifying
the relations between entities in DocRE usually
requires one-hop or multi-hop reasoning on entity
pairs, as shown in Figure 1. For instance, inferring
the relation between Philip and the Elizabeth II is
complex since the document does not explicitly ex-
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press their relationship. The model needs to reason
over the multi-hop relation paths between (United
Kingdom, member of, Commonwealth) and (Com-
monwealth, chairperson, Elizabeth II) to identify
the relation (United Kingdom, head of state, Eliza-
beth II). Further, by combining the other triples in
Figure 1, the model can finally deduce that the re-
lation between Philip and Elizabeth II is “spouse”.
By constructing a graph based on entity pairs in Fig-
ure 1, the reasoning paths between entities can be
explicitly captured, thereby enhancing the model’s
ability to perform multi-step reasoning.

In addition, in a document, an entity pair may
involve multiple different relations, which are often
interrelated rather than independent. Therefore, we
argue that if all relations can be predicted in ad-
vance for this document (e.g., the global relations
as shown in Figure 1), it could provide a more com-
prehensive reasoning context for the model. This
enables the model to more fully cover all possible
relations when predicting the relations of an entity
pair, which is crucial for DocRE multi-label clas-
sification tasks. Nevertheless, previous work has
never considered predicting all relations in advance
to assist with document-level extraction tasks.

Based on these observations, we propose a new
framework namely GREP (global relations and
entity pair reasoning) for document-level relation
extraction. First, to address the first issue of better
modeling the interactions between entity pairs, we
utilize the global interdependencies between entity
pairs to perform multi-step reasoning at the entity
pair level, where entity pairs in a document are
constructed into a graph that contains all reasoning
paths between entity pairs. This approach captures
deeper semantic associations and fine-grained inter-
action information. Second, to address the second
issue, we for the first time propose a new auxiliary
task: predicting all possible relations that exist in
a document. By analyzing the relation types that
may occur, this task enables the model to focus on
the relations present in a document. Through the
above two strategies, our model not only accurately
identifies relations for entity pairs with multi-hop
reasoning paths but also effectively reduces inter-
ference from non-existent relations, optimizing the
final relation prediction performance. Moreover,
building on previous works (Xiao et al., 2022; Xie
et al., 2022; Ma et al., 2023), which commonly
incorporate evidence retrieval in DocRE, we also
introduce evidence retrieval as an auxiliary task to
focus on key sentences in documents. In summary,

the main contributions of this paper are as follows:

• We propose a novel framework that leverages
the global interdependencies between entity
pairs to capture fine-grained interactions and
perform multi-step reasoning at entity pair
level.

• We introduce, for the first time, a simple yet
effective auxiliary task that predicts all pos-
sible relations within a document. This task
enables the model to filter out the most un-
likely relations, thereby improving the overall
performance of relation extraction.

• Experimental results on two DocRE datasets
demonstrate that our approach achieves state-
of-the-art (SOTA) performance while main-
tains high efficiency with low computational
overhead. Furthermore, the proposed global
relation prediction task serves as a versatile
plugin, consistently improving the prediction
performance of other DocRE models.

2 Related Work

DocRE methods can be mainly divided into two
categories: graph-based methods and transformer-
based methods.

2.1 Transformer-based Models
With the advances of the transformer (Vaswani
et al., 2017), ATLOP (Zhou et al., 2021) ad-
dresses the multi-label classification task in DocRE
through adaptive thresholds and localized context
pooling. Furthermore, models like Eider (Xie et al.,
2022) and DREEAM (Ma et al., 2023) extend
ATLOP by integrating evidence extraction tasks.
SRF (Zhang et al., 2024) leverages mention fusion,
evidence extraction, and secondary reasoning to
enhance prediction in DocRE. TTM-RE (Gao et al.,
2024) introduces a memory-augmented model by
incorporating pseudo entities and fine-tuning on a
large distantly-labeled training dataset.

2.2 Graph-based Models
Graph-based approaches construct document
graphs, treating entities and their mentions as
nodes, and learn associations between entities
through information propagation (Christopoulou
et al., 2019; Nan et al., 2020; Wang et al., 2020;
Xu et al., 2021). DocuNet (Zhang et al., 2021) cap-
tures local and global information by predicting
an entity-level relation matrix, similar to semantic
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segmentation in computer vision. AA (Lu et al.,
2023) integrates graph-based and transformer-
based methods, effectively capturing fine-grained
interactions between entities. Descriptions of other
graph/transformer-based methods can be found in
the review work (Delaunay et al., 2023).

However, these methods mainly focus on
mention-level and entity-level modeling, often ne-
glecting the direct interactions between entity pairs
and the effective integration of global relational
features. In contrast, our work combines entity pair
reasoning with an auxiliary task of predicting rela-
tions in documents. This integration enhances the
global reasoning ability of entity pairs and captures
relational features more accurately, significantly
improving the overall performance of the model.

3 Problem Definition

In the DocRE task, given a document D, it con-
tains tokens WD = {wi}|WD|

i=1 , sentences XD =

{xi}|XD|
i=1 , and entities ED = {ei}|ED|

i=1 . Each
entity e ∈ ED is represented by its mentions
Me = {mi}|Me|

i=1 and each mention m ∈ Me is
a phrase in the document. The goal is to predict
the relations between all entity pairs (es, eo) from a
predefined set of relations R∪ {NA}, where NA
signifies the absence of relation for an entity pair.
For each entity pair (es, eo) with a non-NA rela-
tion, we define its evidence Vs,o = {xvk}Kk=1 as the
subset of sentences that is sufficient for human an-
notators to infer the relation. Evidence annotations
may be provided during training, depending on the
dataset, but are not available during inference.

4 Methodology

Our GREP model consists of three main modules
as shown in Figure 2: Entity Pair Reasoning Mod-
ule, which leverages global dependencies between
entity pairs to construct an entity pair graph for
effective reasoning; Evidence Extraction Module,
which guides the model’s focus to key sentences
in the document; and Global Relation Prediction
Module, which predicts all potential relations in
the document to filter out irrelevant ones and en-
hance overall relation extraction performance.

4.1 Document Encoding
For a document D containing τ tokens, WD =
{wi}τi=1, and multiple entities, each with multiple
mentions, we first insert “*” before and after each
mention (Zhang et al., 2017), then use an encoder

to obtain the token embedding matrix H ∈ Rτ×d,
where d is the dimension for a pre-trained language
model (PLM), and the inter-token attention matrix
A ∈ Rτ×τ :

H,A = PLM([w1, w2, . . . , wτ ]) (1)

For each entity e, let its mention set be {mi}|Me|
i=1 ,

hmi be the embedding of mention mi at the entity’s
“*” position. We apply LogSumExp pooling (Jia
et al., 2019) to the embeddings of all mentions to
obtain the embedding representation of the entity:

he = log

|Me|∑

i=1

exp(hmi) (2)

For each entity pair (es, eo), we obtain its atten-
tion weight q(s,o) and context representation c(s,o):

q(s,o) =
as ◦ ao
a⊤s ao

(3)

c(s,o) = H⊤q(s,o) (4)

where ◦ denotes the Hadamard product, and as and
ao denote the attention to all tokens for entities es
and eo, respectively.

4.2 Entity Pair Reasoning Module
To better capture interactions between entity pairs
in a document, we first generate an initial embed-
ding for an entity pair. Then, we propose a method
for constructing an entity pair graph for the docu-
ment, which is used to update and obtain the final
embedding of the entity pair, and subsequently per-
form inference based on this updated embedding.

First, for each entity pair (es, eo), we take their
embeddings hes , heo and context feature c(s,o), and
combine the head and tail entity embeddings with
the context embedding. We then map them into
hidden representations z(s,o)s and z

(s,o)
o . The initial

entity pair embedding f (s,o) is computed using a
group bilinear function as follows:

z(s,o)s = tanh(Ws[hes ||c(s,o)] + bs) (5)

z(s,o)o = tanh(Wo[heo ||c(s,o)] + bo) (6)

f (s,o) = z⊤(s,o)
s Wpz

(s,o)
o (7)

where Ws,Wo ∈ R2d×d,Wp ∈ Rd×d are learnable
parameters.

In our model, we propose an approach for con-
structing an entity pair graph for a document based
on associations between entity pairs. Each entity
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[1]Elias Brown (May 9, 1793 – July 7, 1857) was a U.S. Representative from Maryland. 
[2]Born near Baltimore, Maryland, Brown attended the common schools.
[7]He died near Baltimore, Maryland, and is interred in a private cemetery near Eldersburg,Maryland.
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Figure 2: The overview of our GREP framework.

pair is treated as a node in the graph, and edges
between nodes are added based on whether the tail
entity of one entity pair matches the head entity
of another. For a document D with n entities, we
construct a graph G = (V,N) where n× (n− 1)
entity pairs form the graph’s nodes. Further, we
propose to use an attention mechanism to assign dif-
ferent weights to neighboring nodes, modeling the
interactions between entity pairs more effectively.
Specifically, the attention weight α(j,k) between
nodes j and k is computed as follows:

α(j,k) =
exp[Qf l

k(Kf l
j)

⊤]
∑

k′∈N (j) exp[Qf l
k′(Kf l

j)
⊤]

(8)

f l
j = σ

(
n∑

k=1

α(j,k)W
lf l−1

j + bl

)
+ f l−1

j (9)

where Q and K are learnable parameter matrices
used to map node features to queries and keys, f l

k

and f l
j represent the features of nodes j and k at

layer l, and W l ∈ Rd×d is a learnable parame-
ter. Here, after obtaining the multi-head attention
scores, we use a GCN (Kipf and Welling, 2017)
to pass messages between entity pair nodes. By
normalizing the attention weights over all nodes
in the neighborhood N (j), we obtain the attention
coefficient from node j to node k.

Through multiple convolutions over the entity
pair graph, we iteratively update the representa-
tion of node j, which corresponds to the entity

pair (es, eo), resulting in the updated representation
f
(s,o)
update for the entity pair. Subsequently, we fuse this

updated representation with the features of the in-
dividual entities to derive the final enhanced entity
pair representation:

f̃ (s,o)
s =

[
hes ; f

(s,o)
update ; c

(s,o)
]

(10)

f̃ (s,o)
o =

[
heo ; f

(s,o)
update ; c

(s,o)
]

(11)

Finally, we employ a group bilinear function to
predict the probabilities of relations for the entity
pair (es, eo) to achieve relation classification.

z̃(s,o)s = tanh(W̃s · f̃ (s,o)
s + b̃s) (12)

z̃(s,o)o = tanh(W̃o · f̃ (s,o)
o + b̃o) (13)

p(s,o) = z̃⊤(s,o)
s W̃pz̃

(s,o)
o (14)

where W̃p ∈ Rd×d, W̃s, W̃o ∈ R3d×d are learnable
parameters.

4.3 Evidence Extraction Module

We introduce evidence retrieval as an auxiliary task
to focus the model on key information in the doc-
ument through evidence prediction. For an entity
pair (es, eo) in the document, we compute the con-
text attention weight q(s,o) as described in Eq. (3).
Then, for a sentence xi starting at token tSTART(xi)

and ending at token tEND(xi), the attention score
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u
(s,o)
i of the entity pair for the sentence xi is com-

puted by summing the attention scores of all tokens
in the sentence:

u
(s,o)
i =

END(xi)∑

t=START(xi)

q
(s,o)
t (15)

Let u(s,o) ∈ D|XD| be the weight distribution
of all sentences in the document, following the
approach of (Ma et al., 2023), we minimize the
Kullback-Leibler (KL) divergence between the ex-
tracted importance distribution u(s,o) and the evi-
dence distribution obtained from the true evidence
labels v(s,o) ∈ D|XD|:

Levi =
∑

s ̸=o

v(s,o)
(
log u(s,o) − log v(s,o)

)
(16)

4.4 Global Relation Prediction Module
In this module, we for the first time propose to intro-
duce a new auxiliary task, global relation prediction
task, which aims at predicting all possible relations
that exist in a document. This enables the model to
more fully cover all possible relations when predict-
ing the relations of an entity pair, which is crucial
for DocRE multi-label classification tasks.

Specifically, we pass the [CLS] token represen-
tation of the document, encoded by BERT (Devlin
et al., 2019), through a linear layer for relation clas-
sification. Let hcls be the [CLS] token representa-
tion of the document, Wr be the weight matrix of
the linear layer, the predicted relation distribution
pdoc is calculated as follows:

pdoc = σ(Wrhcls + br) (17)

To train the global relation prediction task, we
minimize the binary cross-entropy loss function
between the predicted relation distribution pdoc and
the true relation labels yrel:

Ldoc = −
n∑

i=1

[
yreli log pdoci

+(1− yreli ) log(1− pdoci )
] (18)

Finally, we enhance the model’s prediction ca-
pability by fusing the entity pair logits with the
global relation prediction logits. This fusion uses
document-level information to complement entity
pair-level information, improving the model’s pre-
diction accuracy in complex scenarios. Specifically,
we combine the entity pair logits p(s,o) obtained

from Eq. (14) with the global relation prediction
logits pdoc obtained from Eq. (17) to generate the
final relation prediction logits p̃(s,o) as follows:

p̃(s,o) = p(s,o) + pdoc (19)

4.5 Loss Function
To more effectively address the multi-label classifi-
cation tasks, we also adopt the adaptive threshold
loss method (Zhou et al., 2021) as the classification
loss to train our model. Specifically, it introduces
an additional threshold relation class TH , and op-
timizes the loss by increasing the logits of positive
relations PT above the threshold and decreasing the
logits of negative relations NT below the threshold.
The loss function for relation classification can be
formalized as:

Lre = −
∑

r∈PT

log

(
exp(p̃r)∑

r′∈PT∪TH exp(p̃r′)

)

− log

(
exp(p̃TH)∑

r′∈NT∪TH exp(p̃r′)

)
(20)

During training, we integrate the relation classi-
fication loss, evidence extraction loss, and global
relation prediction loss, using coefficients α and β
to balance these components. The overall training
loss function for the model can be formalized as:

L = Lre + α× Ldoc + β × Levi (21)

4.6 Inference Fusion Phase
During the prediction phase, to prevent the model
from focusing solely on the evidence sentences
due to the introduction of the evidence module
and neglecting the global information of the docu-
ment, we also introduce an inference fusion strat-
egy. Based on AA (Lu et al., 2023), the model
trained with evidence loss in Eq. (21) infers the rela-
tions r of the entity pair (es, eo) within a document
D, abbreviated as I(r|es, eo;D). The supporting
evidence sentences for this inference are then used
to generate a pseudo-document D′. Subsequently,
this pseudo-document is fed into the model trained
without evidence loss to infer I(r|es, eo;D′). The
two results are fused, and the final fused prediction
I(r|es, eo) is expressed as:

I(r|es, eo) = I(r|es, eo;D)

+ I(r|es, eo;D′)− γ
(22)

where γ is a hyperparameter tuned on the dev set.
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Model PLM
Dev Test

Ign-F1 F1 Intra-F1 Inter-F1 Ign-F1 F1
ATLOP (Zhou et al., 2021) BERT_base 59.22 61.09 67.26 53.20 59.31 61.30
GAIN (Zeng et al., 2020) BERT_base 59.14 61.22 67.10 53.90 59.00 61.24
DocuNet (Zhang et al., 2021) BERT_base 59.86 61.83 - - 59.93 61.86
KD-DocRE (Tan et al., 2022a) BERT_base 60.08 62.03 - - 60.04 62.08
SAIS (Xiao et al., 2022) BERT_base 59.98 62.96 - - 60.96 62.77
Eider (Xie et al., 2022) BERT_base 60.51 62.48 68.47 55.21 60.42 62.47
SRF (Zhang et al., 2024) BERT_base 60.46 62.50 - - 59.84 62.11
DREEAM (Ma et al., 2023) BERT_base 60.51 62.55 - - 60.03 62.49
AA (Lu et al., 2023) BERT_base 61.31 63.38 69.41 55.92 60.84 63.10
Ours BERT_base 62.10±0.06 64.10±0.12 69.71±0.11 57.12±0.18 61.36 63.55

ATLOP (Zhou et al., 2021) RoBERTa_large 61.32 63.18 69.60 55.01 61.39 63.40
SSAN (Xu et al., 2021) RoBERTa_large 60.25 62.08 - - 59.47 61.42
DocuNet (Zhang et al., 2021) RoBERTa_large 62.23 64.12 - - 62.39 64.55
KD-DocRE (Tan et al., 2022a) RoBERTa_large 62.16 64.19 - - 62.57 64.28
DREEAM (Ma et al., 2023) RoBERTa_large 62.29 64.20 - - 62.12 64.27
Eider (Xie et al., 2022) RoBERTa_large 62.34 64.27 70.36 56.53 62.85 64.79
SAIS (Xiao et al., 2022) RoBERTa_large 62.23 65.17 - - 63.44 65.11
AA (Lu et al., 2023) RoBERTa_large 63.15 65.19 71.09 57.83 62.88 64.98
Ours RoBERTa_large 63.74±0.07 65.64±0.06 71.15±0.12 58.94±0.14 62.96 64.86

Table 1: Performance comparison on the DocRED dataset. Results of other models are from the original papers. We
mark the best results in bold and the second-best underlined.

Model Dev Test

Ign-F1 F1 Ign-F1 F1 Intra-F1 Inter-F1
ATLOP (Zhou et al., 2021)† 76.88 77.63 76.94 77.73 80.18 75.13
DocuNet (Zhang et al., 2021)† 77.53 78.16 77.27 77.92 79.91 76.64
KD-DocRE (Tan et al., 2022a)† 77.92 78.65 77.63 78.35 79.57 77.26
DREEAM (Ma et al., 2023) - - 79.66 80.73 - -
PEMSCL (Guo et al., 2023) 79.02 79.89 79.01 79.86 - -
AA (Lu et al., 2023) 80.04 81.15 80.12 81.20 83.41 79.24
TTM-RE (Gao et al., 2024) 78.22 78.25 78.54 80.08 - -
Ours 80.60±0.08 81.26±0.11 81.00±0.13 81.61±0.04 83.60±0.05 79.88±0.08

Table 2: Experimental results on the Re-DocRED dataset based on RoBERTa_large. Results with † are sourced
from (Tan et al., 2022b), while others are from the original papers.

5 Experimental Settings

5.1 Datasets

We evaluate our model on two public datasets: Do-
cRED and Re-DocRED. The dataset statistics are
shown in Table 3. DocRED, proposed by (Yao
et al., 2019), is a large-scale dataset for document-
level relation extraction. It includes 97 relation
types, with approximately 40.7% of relational facts
requiring extraction from multiple sentences.

Due to issues with under-labeling and mislabel-
ing in DocRED, Tan et al. (2022b) propose Re-
DocRED, which provides a re-annotated version of
DocRED. Re-DocRED contains more than twice
the number of triples as DocRED and provides
cleaner dev and test sets, enabling a more realistic
performance evaluation for DocRE.

Datasets
DocRED Re-DocRED

Train Dev Test Train Dev Test
#Docs 3,053 1,000 1,000 3,053 500 500

Avg. #Entities 19.5 19.6 19.5 19.4 19.4 19.6
Avg. #Entity Pairs 392.6 392.2 398.2 390.8 386.5 397.3

Avg. #Triples 12.5 12.3 - 28.1 34.6 34.9
Avg. #Sentences 7.9 8.1 7.9 7.9 8.2 7.9
Avg. #Relations 5.4 5.3 - 8.6 10.0 9.5

Table 3: Statistics of DocRED and Re-DocRED. Avg.#
represents the average number of items per document.

5.2 Implementation Details

Our model is implemented based on Py-
Torch (Paszke et al., 2019) and Hugging-
face’s Transformers (Wolf et al., 2019). We
use BERTbase (Devlin et al., 2019) and
RoBERTalarge (Liu et al., 2019) as encoders,
and optimize the model using the AdamW
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optimizer (Kingma and Ba, 2015). A linear
warm-up is applied during the first 6% of the
training steps. The model embedding dimension
and hidden dimension are set to 768. The learning
rate for the BERT encoder is set to 3e-5, while
the learning rate for other encoders is 5e-5. The
number of layers and iterations for the GCN is
2. All hyperparameters are tuned based on the
development set. All experiments are conducted
on a single NVIDIA RTX 3090 GPU. Some
hyperparameters are listed in Table 4.

Dataset DocRED Re-DocRED

BERT RoBERTa RoBERTa

epoch 30 30 30
lr_encoder 5e-5 3e-5 3e-5
lr_classifier 1e-4 1e-4 1e-4
batch size 4 4 4
warmup_ratio 6e-2 6e-2 6e-2
α 1e-1 1e-1 1e-1
β 1e-1 3e-2 5e-2

Table 4: Best hyper-parameters of our model observed
on the dev set.

5.3 Evaluation Metrics
We use F1 and Ign_F1 as the primary evaluation
metrics for relation extraction. Ign_F1 excludes
relation triples that appear in both the training and
dev/test sets. We also report Intra_F1 for relations
within a single sentence and Inter_F1 for relations
that span multiple sentences. To reduce potential
bias, we report the average results and standard
deviations over 5 independent runs.

5.4 Baselines
We conduct comparisons with two main categories
of baseline models (as detailed in Section 2): (i)
Graph-based models, including GAIN, AA, etc. (ii)
Transformer-based models, including ATLOP, KD-
DocRE, Eider, DREEAM, SRF, SAIS, etc. More-
over, in Table 2, we report the results of TTM-RE
without utilizing distantly supervised training data,
aligning with the experimental setup adopted in the
other baselines and our work.

6 Main Results and Analysis

6.1 Main Results
Table 1 reports the results on the DocRED dataset.
Our model GREP outperforms most of baseline
methods. On the test set, our BERT_base model

outperforms the ATLOP_base model, achieving
F1 and Ign-F1 improvements of 3.01 and 2.88.
Against the state-of-the-art AA model, our model
shows gains of 0.72 and 0.79 in F1 and Ign-F1
on the dev set. Additionally, Inter-F1 and Intra-
F1 scores improve by 1.2 and 0.3, respectively,
demonstrating the enhanced intra-sentence and
cross-sentence reasoning capabilities of our model.

Table 2 shows our results on the Re-DocRED
dataset, where the performance gap between our
model and baselines is more pronounced. Our
RoBERTa_large-based model outperforms ATLOP,
achieving F1 and Ign-F1 scores that exceed it on the
test set by 3.88 and 4.06, respectively. Additionally,
our model surpasses the previous state-of-the-art
model in Ign-F1 by 0.56 on the dev set and 0.88
on the test set. These improvements collectively
demonstrate the effectiveness of our model in han-
dling multi-step reasoning and complex relation
judgment between entity pairs.

Model Ign-F1 F1 Intra-F1 Inter-F1

Ours-BERT_base 62.10 64.10 69.71 57.12
w/o Graph 61.34 62.98 68.75 55.77
w/o GRPM 61.58 63.45 69.14 56.43
w/o EEM 61.42 63.35 68.94 56.39

Table 5: Ablation study on DocRED dev set.

6.2 Ablation Study
To investigate the effectiveness of different compo-
nents in our model, we conducted a series of ab-
lation studies on DocRED. The results are shown
in Table 5, and a detailed analysis is outlined as
follows:
w/o Graph: Removing the entity pair graph leads
to a performance drop, with the F1 score decreasing
by 1.12 and the Ign-F1 score by 0.76, indicating
that the entity pair graph can explicitly capture
reasoning paths between entities, enhancing the
model’s multi-step reasoning ability.
w/o GRPM: Removing the global relation predic-
tion module leads to a performance decline, with F1
dropping by 0.65 and Ign-F1 by 0.52. This demon-
strates that the module is crucial for accurately
identifying relations within the document, and its
absence weakens the model’s overall performance.
w/o EEM: We exclude evidence extraction mod-
ule during training. The F1 score drops by 0.75,
which indicates that the model’s performance de-
creases due to the lack of focus on evidence sen-
tences within the document.
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Figure 3: Comparison of training costs between GREP
and SOTA models.

EE GRP RE Ign-F1 F1

✓ 61.16 63.11

✓ ✓ 61.58 63.45
✓ ✓ 61.42 63.35

✓ ✓ ✓ 62.10 64.10

Table 6: Exploring the effectiveness of two comple-
mentary tasks, i.e., evidence extraction (EE) and global
relation prediction (GRP), for relation extraction (RE)
on the DocRED dev set.

7 Further Analysis

7.1 Model Cost Comparison

In Figure 3, we compare the training costs of the
GREP model with previous SOTA models. GREP
trains in 126 minutes with 21.47 GB of mem-
ory. Compared to the non-graph-based method
DREEAM (Ma et al., 2023), GREP requires
slightly more time and memory, but it outperforms
DREEAM in terms of performance. In contrast
to the multitask-based SAIS (Xiao et al., 2022),
our model incurs lower computational costs. Com-
pared to the previous SOTA method AA (Lu et al.,
2023), which uses both transformers and graphs,
our model is more efficient in training time and
memory consumption. These results indicate that
GREP strikes a good balance between the training
cost and the relation extraction performance.

7.2 Impact of Multi-Task Learning on DocRE

We explore the impact of multi-task learning on
relation extraction (RE). In Table 6, by incorporat-
ing evidence extraction (EE) task, the model better
focuses on key evidence, leading to improved per-
formance. Our proposed global relation prediction
(GRP) task further enhances accuracy by guiding
attention towards document-level relations. Com-
bining these tasks significantly boosts the model’s
overall performance.

7.3 Generalization Analysis of Global
Relation Prediction

In addition to its effectiveness in our model, the
global relation prediction (GRP) module also im-
proves performance in other state-of-the-art mod-
els, as demonstrated in Table 7. We select ATLOP,
DREEAM, and AA, re-running these models under
their original configurations while incorporating
the GRP module. Experimental results show that
adding the GRP module consistently enhances the
performance of these models. The results once
again demonstrate that the GRP sub-task we pro-
pose is simple yet effective for the DocRE task.

Model Dev Test

F1 Ign F1 F1 Ign F1

ATLOP 61.01 59.11 61.30 59.31
+Global Relation Prediction 61.21 59.26 61.38 59.49

DREEAM 62.55 60.51 62.49 60.03
+Global Relation Prediction 62.69 60.64 62.65 60.17

AA 63.38 61.31 63.10 60.84
+Global Relation Prediction 63.55 61.48 63.25 60.98

Table 7: Evaluating the generalizability of global rela-
tion prediction across different models on DocRED.

7.4 Exploring the Impact of the Number of
Entity Pairs in a Document on DocRE

In DocRE tasks, documents with a higher number
of related entity pairs may tend to require more
entity pairs for reasoning. To assess the model’s
ability to learn potential association between entity
pairs, we conduct an evaluation on the DocRED
dev set, categorizing documents by the number of
related entity pairs they contain. We then mea-
sure the performance of our model and the pre-
viously competitive ATLOP (Zhou et al., 2021),
DREEAM (Ma et al., 2023) models across these
categories. The experimental results in Figure 4
demonstrate that our model consistently achieves
better performance across all document categories.

7.5 Scalability Across Entity Quantities
We evaluate the scalability of our model with re-
spect to entity count on the DocRED development
set, grouping documents into five bins based on the
number of entities: 0–10 (44 documents), 10–20
(527 documents), 20–30 (399 documents), 30–40
(29 documents), and 40–50 (1 document). As illus-
trated in Figure 5, GREP consistently outperforms
strong baselines across all entity ranges, with par-
ticularly notable gains on documents containing a
larger number of entities.
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Figure 4: F1 scores of documents with different num-
bers of entity pairs on the DocRED dev set.

Figure 5: F1 scores across different entity count ranges
on the DocRED dev set.

In addition to achieving higher overall F1 scores,
GREP demonstrates improved robustness, exhibit-
ing only a 13.55% relative performance drop from
the 0–10 to the 30–40 group. This decline is sub-
stantially smaller than those observed for ATLOP
(16.90%) and AA (15.91%), suggesting that GREP
maintains better scalability as relational complex-
ity increases. These results highlight the model’s
ability to effectively handle documents with high
entity density.

7.6 Impact of Coefficients α and β

We evaluate the impact of α on model performance,
where α serves as the balancing coefficient for the
Global Relation Prediction module in the overall
loss. As shown in Figure 6, we select five values
for α: 0, 0.05, 0.1, 0.15, and 0.2. We can observe
that the F1 score on the DocRED dev set increases
as α grows, reaching its peak when α is set to
0.1. However, as α continues to increase, the F1,
Inter-F1, and Intra-F1 scores gradually decrease.
Therefore, we choose α = 0.1 as the balancing
coefficient for model training. For β, following all
previous evidence extraction work (Xie et al., 2022;
Ma et al., 2023), β is set to 0.1.

Figure 6: Impact of Coefficient α.

7.7 Case Study
We conduct case studies, and the results show
that by employing multi-step reasoning with en-
tity pairs and global relations, our model better
understands entity interactions, leading to more
accurate document-level relation prediction. For
detailed results, please refer to Appendix A.1.

8 Conclusions

In this paper, we propose a novel DocRE frame-
work based on global relations and entity pair rea-
soning. We first introduce a new task specifically
for DocRE that predicts all possible relations that
exist in a document, helping to filter out the most
unlikely relations. The task is simple but effectively
enhances relation extraction performance and can
be incorporated into other DocRE models. Further,
we propose to construct an entity pair graph for a
document to capture fine-grained interactions and
perform multi-step reasoning at the entity pair level.
Empirical studies demonstrate the effectiveness of
our method, outperforming previous SOTA models.

Limitations

Despite our framework GREP demonstrating ad-
vantages in the document-level relation extraction
task, there are still some limitations. First, when
processing long documents containing a large num-
ber of entity pairs, it may lead to increased compu-
tational overhead, thus affecting the efficiency of
the model. Second, while predicting all possible
relations can improve document-level relation ex-
traction, it may also introduce noise and potentially
affect the effectiveness of the model. In our near
future work, we plan to conduct more in-depth and
extensive exploration to address these limitations
and further improve the framework’s performance.
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A Appendix

A.1 Case Study
Figure 7 presents one of case studies, where we ex-
amine four sentences from a document containing
mentions of Philip, United Kingdom, Elizabeth II,
and Commonwealth. Both ATLOP and AA face
challenges in predicting the country of citizenship
relation between Philip and United Kingdom, as
well as the head of state relation between Eliza-
beth II and United Kingdom, which may need to
perform multi-step reasoning based on the connec-
tions between entity pairs. In contrast, our model
effectively applies multi-step reasoning based on
the relations between entity pairs, which helps pro-
vide a more comprehensive understanding of the
interactions between Philip and United Kingdom,
as well as Elizabeth II and United Kingdom, ulti-
mately leading to the successful identification of
their relations.
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[1]Elizabeth II was Queen of Mauritius from 1968 to 1992. 
[3]The Queen was also the monarch of the United Kingdom and the other Commonwealth realms.
[8]The Queen and her husband Prince Philip , Duke of Edinburgh , visited Mauritius for three days ( 24–26 March ) in 1972 , as part of a tour of Asia and 
Africa . 
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Figure 7: Case study comparison between our method and the existing models.
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