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Abstract

Fact-checking complex statements is integral
to combating misinformation, but manual ap-
proaches are time-consuming, while automated
approaches often oversimplify truthfulness into
binary classifications and rely on resource-
intensive models. This paper introduces: (i)
FACT5, a curated dataset of 150 real-world
statements with five ordinal classes of truth-
fulness, designed to capture the nuanced na-
ture of factual accuracy and (ii) an open-
source end-to-end pipeline using large lan-
guage models (LLMs) that decomposes state-
ments into atomic claims, generates targeted
questions, retrieves evidence from the web,
and produces justified verdicts. We evalu-
ate our pipeline on FACT5 using MISTRAL-
7B-V0.3 and Google’s GEMINI-1.5-FLASH.
Our findings demonstrate significant improve-
ments over baseline LLM performance, with
MISTRAL-7B showing a 71.9% reduction in
MSE for pass@3 evaluation. The FACT5
dataset, pipeline implementation, and evalua-
tion framework are anonymized and provided at
https://github.com/shayantist/FACT5/,
and a demo of the pipeline can be interacted
with at https://fact5check.streamlit.a
pp/.

1 Introduction

Traditionally, fact-checking relied on time-
consuming and resource-intensive work by hu-
man experts (e.g., crowd-sourcing). With the
widespread dissemination of mis/disinformation,
coupled with growing capabilities of large language
models (LLMs), recent work has been exploring
how to leverage LLMs for automated fact-checking.
Wang et al. (2024) proposed Factcheck-GPT, an
approach that uses retrieval-augmented methods
to detect and correct factual errors in natural lan-
guage, including text generated by LLMs, which
can be prone to hallucinations. Gou et al. (2023)
introduced the CRITIC framework for LLM self-

correction, which extends the output through itera-
tions of verification and correction.

When handling claims that require reasoning,
existing methods fail to capture the nuances of fac-
tuality by relying on binary true/false labels (Vla-
chos and Riedel, 2014). Factcheck-GPT by Wang
et al. (2024) addresses this issue by breaking down
complex claims into a series of atomic facts to ver-
ify separately, whereas Min et al. (2023) proposed
more fine-grained metrics such as FACTSCORE,
computing the percentage of atomic facts supported
by reliable knowledge sources.

Despite progress, challenges remain, particularly
for fact-checking long-form statements that are de-
composable and require multi-hop reasoning. Our
work addresses these challenges with the follow-
ing contributions: (i) curated test dataset—named
FACT5: Factual Analysis of Complex Truths (5-
label)—of 150 statements with a five-class ordinal
scale for truthfulness classification, (ii) a compre-
hensive end-to-end pipeline that supports ranked
web-based search, multi-hop reasoning, question-
answering, and five-way classification, and (iii)
enhanced transparency and explainability through
source citations and reasoning at each intermediary
step. In addition, we perform an error analysis that
provides insights into the types of fallacies present
in misleading claims (e.g., hasty generalization,
causal oversimplification).

2 Related Work

In recent years, automated fact-checking has gained
traction in the journalistic process, from pioneers
such as ClaimBuster (Hassan et al., 2017), to novel
approaches such as one that leverages a frame-
semantic parser (FSP) (Devasier et al., 2025). Guo
et al. (2022) comprehensively reviewed the state
of fact-checking research as of 2022. A common
theme recognizes that simple true/false labels for
factuality fall short in capturing factual correctness
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Figure 1: Overview of our proposed pipeline. Each gray box indicates a step detailed in §3.2

in abstractive or complex (e.g., political) settings.
Thus, research has developed multi-level typolo-
gies or turned to sources such as PolitiFact as poten-
tial datasets (Wang, 2017; Ma et al., 2023; Devasier
et al., 2025), which informed the design of our eval-
uation dataset detailed in §3.1. Other benchmarks
such as AVERITEC extend slightly the binary la-
bels by adding conflicting evidence/cherry picking
(Schlichtkrull et al., 2024). However, challenges
remain, as Pagnoni et al. (2021) notes how con-
ventional metrics in natural language processing
(NLP), such as METEOR score, fall short in mea-
suring factual correctness of generated reasoning.
Factuality classification aside, quality evaluation of
textual justifications is an emerging direction for
fact-checking (Russo et al., 2023).

Our fact-checking pipeline, detailed in §3.2, is
outlined in the following steps: (1) atomic claim
generation, (2) question/query generation, (3) re-
trieval of relevant documents, (4) answer synthe-
sis, (5) claim-wise classification, and (6) overall
statement classification and justification. Similar
approaches have been seen in past research (Wang
et al., 2024; Rothermel et al., 2024; Wei et al.,
2024). Other work has focused on investigating in-
termediary steps, such as atomic claim generation
(Gunjal and Durrett, 2024; Wanner et al., 2024a)
and found that conducting decomposition and de-
contextualization in one step yields optimal results
(Wanner et al., 2024b), which we incorporated into
our pipeline. Steps 2 through 4 are inspired by past
work that demonstrates the importance of related
information, oftentimes in the form of question-

answer pairs, in improving the accuracy of fact-
checking (Fan et al., 2020). Furthermore, we focus
on using smaller models that can be run on con-
sumer hardware.

3 Methods

3.1 Test Dataset

The need for a new dataset (FACT5) stems from
several critical limitations in existing fact-checking
datasets. Current datasets predominantly use binary
true/false labels, which fail to capture the nuanced
nature of factual correctness in complex statements.
While AVERITEC represents an important bench-
mark in fact-checking research, our decision to
evaluate primarily on FACT5 was motivated by
several key factors, including label granularity and
temporal relevance.

Additionally, concerns about data contamination
and model memorization necessitate fresh data
collection (Balloccu et al., 2024; Carlini et al.,
2022). As LLMs may have been trained on ex-
isting fact-checking datasets, evaluating their true
fact-checking capabilities requires testing on previ-
ously unseen claims. Our dataset’s temporal range
(January 2024 to January 2025) ensures the eval-
uation of model performance on genuinely novel
information rather than memorized training data.

We developed our FACT5 dataset as an initial
benchmark for evaluating nuanced fact-checking
capabilities. We began by collecting candidate
statements from recognized fact-checking insti-
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Sources Verdicts
F MF HT MT T

PolitiFact 21 24 22 24 20
Snopes 4 0 1 1 4
WaPo 9 3 2 0 0
CNN 8 0 2 2 3
Total 42 27 27 27 27

Table 1: Summary of Dataset
F = FALSE, MF = MOSTLYFALSE, HT = HALFTRUE,
MT = MOSTLYTRUE, T = TRUE

tutions, including PolitiFact1, Snopes.com2, The
Washington Post’s Fact Checker Section3, and
CNN’s Facts First4, covering the period from Jan-
uary 10th, 2024, to January 31st, 2025. Following
a meticulous manual curation process, we priori-
tized statements necessitating multi-hop reasoning
and ensured consistent mapping of original verdict
labels to our five-class ordinal scale, resulting in
our final FACTS dataset comprising 150 statements.
Future work on expanding the size and scope of this
benchmark dataset is in §6. This carefully selected
set is intended as a focused resource for testing
models on this complex, fine-grained classification
task. The distribution of sources is summarized in
Table 1.

A key methodological decision was to priori-
tize sources that provide gold label evaluations
alongside fact-check analyses, whose labels can
be mapped to PolitiFact’s Truth-O-Meter labels.
This was essential for our classification objective,
though it necessarily narrowed the pool of eligible
source materials. Truth-O-Meter labels are pro-
vided in Table 6 in Appendix A.1. Mappings for
the labels among data sources are in Appendix A.2,
Table 7. A snippet of the dataset can be found in
Appendix A.3.

Based on the Truth-O-Meter, the five classes
used to classify a given statement are TRUE,
MOSTLYTRUE, HALFTRUE, MOSTLYFALSE, and
FALSE, representing an ordinal scale of factuality.
The verdict UNVERIFIABLE is provided as an op-
tion for models to explicitly state when there is
insufficient evidence to make a verdict. The dataset
contains n = 42 statements labeled FALSE and
n = 27 for each of the other four factuality labels,
reflecting the real-world importance of identifying

1www.politifact.com
2www.snopes.com
3www.washingtonpost.com/politics/fact-checker
4www.cnn.com/specials/politics/fact-check-politics

falsehoods.

3.2 Fact-Checking Pipeline

This section details each step of our fact-checking
pipeline, visualized in Figure1.5 For prompting,
we leverage the DSPy library (Khattab et al., 2022,
2023), a framework that optimizes language model
outputs via a declarative programming approach,
replacing manual prompt engineering. Each step
also leverages chain-of-thought (CoT) prompting
to elicit improved reasoning capabilities (Wei et al.,
2022).

Step 1: Atomic Claim Generation. Given a
statement from §3.1, the model is prompted to
decompose and decontextualize the statements into
atomic_claims, a list of strings. Each claim
should not rely on additional context to be under-
stood and should focus on a single idea or concept
(Barsalou, 1982; Wang et al., 2024).

Step 2: Question & Query Generation. For each
claim in atomic_claims, the model is prompted
to generate two key components: (1) questions
that break down the claim into verifiable sub-
components and (2) search queries optimized for
retrieving relevant evidence.

Step 3: Multi-Stage Retrieval of Relevant
Documents. We implement a custom retrieval-
augmented generation (RAG) system (Lewis et al.,
2020) that involves fetching information from ex-
ternal sources (i.e., the internet) and a hybrid re-
trieval approach combining dense and sparse re-
trieval. For each claim, we iterated through the
list of questions and conducted two sub-steps for
each question:

Step 3a: Querying. Using the queries generated
for each question from Step 2, we conduct web
searches via API calls. We have implemented
functionality to use both DuckDuckGo as well as
Google Search via Serper’s Search Engine Results
Page (SERP) API6, which returns a list of search_-
results, each containing the title, a search engine-
provided excerpt, and website metadata.

Step 3b: Dense-Sparse Hybrid Retrieval. We
first split the search_results retrieved from the

5For each, see Appendix B for criteria & DSPy signature
6https://serper.dev/
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web into chunks and processed them for retrieval
using a dual-index system as demonstrated in Wang
et al. (2021). For dense retrieval, we utilize the
all-MiniLM-L6-v2 pre-trained sentence embed-
ding model (Wang et al., 2020) using the Sentence-
Transformers library to calculate vector represen-
tations of each text chunk, then store them in a
vector database—in this case, Facebook AI Simi-
larity Search (FAISS) (Douze et al., 2024) due to
its efficiency and ease of implementation, but any
other vector database such as ChromaDB could
also be used. Simultaneously, for sparse retrieval,
we implement BM25, the keyword text-retrieval
algorithm using the BM25Okapi library for tradi-
tional lexical matching. To combine these two
retrieval methods, we use a weighted combination
(α ∗BM25 + (1− α) ∗ FAISS) to determine fi-
nal document relevance, ensuring that the retrieved
documents are both semantically and lexically sim-
ilar to the query, similar to how web search engines
work. We then retrieve 10 documents with the high-
est combined relevance scores to help answer each
question in the following step.

Step 4: Evidence-Based Answer Synthesis. For
each question, the pipeline synthesizes answers us-
ing the relevant evidence. Since each chunk of
evidence retrieved retains metadata regarding the
source, we can maintain provenance through ex-
plicit source attribution and inline citations. Fur-
thermore, the pipeline also tracks the relevance
score of each document to the question to help with
the synthesis process to weigh the importance of
each document in the final answer. This process is
then repeated for every single question-answer pair
for each claim.

Step 5: Claim-Wise Classification. With a list of
question-answer pairs and evidence for each atomic
claim, each claim is then evaluated for truthful-
ness, assigned one of the five ordinal classes or
’UNVERIFIABLE’, and accompanied by a justifica-
tion.

Step 6: Overall Statement Classification. Similar
to the claim-wise classification step, the overall
statement containing all the claims is then evaluated
for truthfulness. The final verdict for the statement
is determined by considering the atomic claims—
and each of their question-answer pairs, verdicts,
and confidence scores from step 5—inter-claim
relationships, and the original statement.

Since the truthfulness reasoning of each claim
contains information pertinent to determining the
overall statement’s truthfulness, we harness the rea-
soning capabilities of the model (Zhang and Gao,
2023). Adopting the same class labels from the
claim-wise classification in the previous step, we
finally classify the overall statement into one of the
six classes (five ordinal plus UNVERIFIABLE).

3.3 Language Models Used & Technical
Specifications

Models used for our research include GEMINI-1.5-
FLASH and MISTRAL-7B-V0.3. MISTRAL-7B is
an open-weight model that utilizes Grouped Query
Attention (GQA) and Sliding Window Attention
(SWA) to improve performance and lower cost
(Jiang et al., 2023). MISTRAL-7B-V0.3, an it-
eration upon previous versions, features a vocabu-
lary of 32,768 tokens, enhancing the model’s lan-
guage understanding and generation capabilities
(Jiang et al., 2024). Google’s GEMINI-1.5-FLASH

is designed for high-volume, cost-effective appli-
cations. It is online-distilled from GEMINI-1.5-
PRO, a sparse mixture of experts (MoE) model; its
number of parameters is not disclosed but can be
reasonably estimated to be somewhere between 8B
and 200B (Team et al., 2024).

We chose these two models specifically due to
their cost-effectiveness and performance to max-
imize accessibility and ease of use: MISTRAL-
7B is open-source and can be run locally on
many consumer-grade hardware, while GEMINI-
1.5-FLASH has a "free tier" with limited rate limits
but is still a very powerful, versatile, and fast model.
We ran our experiments on a MacBook Pro with an
M1 Pro processor and 16GB of RAM using Ollama
(Ollama, 2024) to leverage MISTRAL-7B for local
inference, requiring roughly 3 GPU hours per pass
over the FACT5 dataset. In total, we ran 3 passes
through the dataset for each model, taking roughly
9 GPU hours for MISTRAL-7B and 2.5 GPU hours
for GEMINI-1.5-FLASH. All models were run with
a temperature of 0.3 and a maximum context length
of 8192 tokens.

4 Evaluation

4.1 Ablation Studies

Beyond the full pipeline (§3.2), we evaluated base-
line LLM performance where only the statement
itself was provided for factuality prediction. The
two main methods tested are as follows:
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• Baseline: Only the statement is given to the
model to generate a factuality label.

• Pipeline: After iterating through the proposed
pipeline (§3.2), the statement, atomic claims,
question-answer pairs, and claim assessment
are given to the model to generate a factuality
label.

If providing relevant information queried from
the internet enhances the model’s fact-checking
capability, it would demonstrate the model’s ability
to effectively synthesize and reason over external
knowledge sources, a desirable trait for reliable
automated claim verification systems. The baseline
condition provides a basis for comparison to see if
the model can answer accurately without external
information. Since not all language models have
an explicit cutoff date, a fair baseline performance
makes it challenging to know if the correct answer
stems from memorization.

4.2 Evaluation Metrics

As mentioned in §3.1, our work treats fact-
checking as an ordinal multi-class classification
task. Our evaluation framework first mapped or-
dinal verdict classes to numerical values (TRUE =
5, MOSTLYTRUE = 4, HALFTRUE = 3, MOSTLY-
FALSE = 2, FALSE = 1). Crucially, although not
in the gold dataset, the label UNVERIFIABLE is a
possible output for the LLMs at the classification
step, erring on the side of caution when there is
insufficient evidence. For ordinality-based metrics,
we excluded UNVERIFIABLE verdicts from calcu-
lations. This decision was motivated by two key
factors: the inherent difficulty of quantifying the
’distance’ between an UNVERIFIABLE verdict and
ordinal categories, and the fundamentally different
nature of UNVERIFIABLE claims, which indicate
insufficient evidence rather than a position on the
ordinal truth spectrum.

Drawing lessons from Kulal et al. (2019), we
employ the pass@k metric when evaluating model
outputs. Under this paradigm, we prompted the
model k times for each statement. For the abla-
tion study detailed in §4.1, we extracted labels for
pass@1 and pass@3. Specifically, for pass@1 eval-
uation, we considered only the first prediction and
excluded UNVERIFIABLE responses, whereas for
pass@3 evaluation, we sorted predictions by their
Mean Squared Error (MSE) and selected the best
non-UNVERIFIABLE prediction if available.

The ordinal nature of classes calls for an evalu-
ation metric that penalizes misclassifications that
are "further" away from the gold label. For ex-
ample, misclassifying FALSE as MOSTLYFALSE

should be less penalized than misclassifying it as
MOSTLYTRUE. Several studies have investigated
the most appropriate way of handling ordinal clas-
sification (Cardoso and Sousa, 2011; Sakai, 2021;
Amigó et al., 2020). Literature suggests that MSE
remains a better metric when the severity of er-
rors weighs more (Gaudette and Japkowicz, 2009).
MSE, thus, serves as our primary metric, with
lower values indicating better performance.

Another evaluation metric measures the inter-
rater agreement between expert fact-checkers (i.e.,
gold verdict from our dataset) and LLMs. Co-
hen’s quadratic weighted κ is well-suited for or-
dinal multi-class classification (Cohen, 1968; Yil-
maz and Demirhan, 2023). Similar to MSE, dis-
agreements farther apart are weighed more with
quadratic weights. The metric ranges from -1 to
1, with values closer to 1 indicating better agree-
ment. We conducted listwise deletion (i.e., drop-
ping statements if prediction is UNVERIFIABLE) as
suggested in the findings of De Raadt et al. (2019).

Macro-average metrics remain crucial in eval-
uating multi-class classification performance, al-
though ordinality is not considered. Macro metrics
and balanced accuracy consider the overall per-
formance without taking into account class sizes,
which is well-suited for our purposes since correct-
ness regardless of class is crucial for fact-checking
(Grandini et al., 2020). §5 discusses results in de-
tail.

5 Results

We evaluated model architectures mentioned in
§3.3 and §4.1 with metrics detailed in §4.2.

5.1 Comparative Analysis

We observe that both model implementations
demonstrate the effectiveness of our pipeline, with
MISTRAL-7B demonstrating larger relative MSE
reductions over its baseline (55.8% at pass@1
and 71.9% at pass@3) compared to GEMINI-1.5-
FLASH (43.7% and 67.1% respectively). The
pipeline consistently showed better coverage across
both models, particularly with MISTRAL, making
verifiable predictions in nearly all cases (147/150 at
pass@3). For pass@3, our methodology of select-
ing the best non-UNVERIFIABLE prediction among
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the top three responses allowed both systems to
improve their performance compared to pass@1,
with the pipeline showing particularly strong gains.

The stark difference in improvement percentages
between pass@1 and pass@3 reveals an interest-
ing characteristic of our pipeline. While both sys-
tems benefit from multiple prediction opportunities,
our pipeline shows a more pronounced improve-
ment with additional chances, suggesting that the
pipeline maintains a more reliable ranking of alter-
native verdicts. Even when the first prediction isn’t
perfect, the correct verdict is more likely to appear
in subsequent predictions, suggesting the pipeline’s
uncertainty estimation is better calibrated, allow-
ing it to generate meaningful alternative verdicts
rather than just variations of the same prediction. In
turn, the pipeline also enhances the model’s ability
to reduce UNVERIFIABLE predictions while main-
taining or improving accuracy. This suggests that
our structured approach helps models make more
definitive verdicts without sacrificing reliability.

pass@k Ablation GEMINI-
1.5-
FLASH

MISTRAL-
7B-V0.3

1 baseline 0.434 0.232
pipeline 0.681 0.516

3 baseline 0.444 0.284
pipeline 0.810 0.702

Table 2: Cohen’s κ by ablation

GEMINI-1.5-FLASH. As shown in Figure 2,
for our implementation with GEMINI-1.5-FLASH,
our pipeline demonstrated substantial improve-
ments over the baseline. In pass@1 evaluation,
where we considered only the first prediction and
excluded UNVERIFIABLE responses, the pipeline
achieved an MSE of 1.3 compared to the base-
line’s 2.3, representing a 43.7% reduction in MSE.
As for Cohen’s quadratic weighted κ, the pipeline
achieved 0.68 compared to the baseline’s 0.43 on
a [-1,1] scale, showing a 56.9% improvement in
κ. The pipeline also maintained better coverage,
handling 101 of 150 cases (49 UNVERIFIABLE pre-
dictions excluded) compared to the baseline’s 89
cases (61 UNVERIFIABLE excluded).

The improvement was even more pronounced
in pass@3 evaluation, where we sorted predic-
tions by their MSE and selected the best non-
UNVERIFIABLE prediction. Here, the pipeline
achieved an MSE of 0.8 compared to the baseline’s

Figure 2: Comparison of Mean Squared Error (MSE),
showcasing improvement of pipeline on our multi-class
ordinal truthfulness classification task, with sample size
(out of 150) as follows (UNVERIFIABLES excluded):
GEMINI: pass@1: base: n=89, pipeline: n=101;
pass@3: base: n=96, pipeline: n=121
MISTRAL: pass@1: base: n=72, pipeline: n=135;
pass@3: base: n=89, pipeline: n=147

2.4, marking a 67.1% reduction in error. Simi-
larly, the pipeline outperformed in terms of Co-
hen’s quadratic weighted κ, showcasing an 82.5%
improvement with 0.81 compared to the baseline’s
0.44. The pipeline successfully processed 121
cases (excluding 29 cases where all predictions
were UNVERIFIABLE) while the baseline handled
96 cases (54 UNVERIFIABLE excluded).

MISTRAL-7B-V0.3. Figure 2 also demon-
strates our implementation using Mistral-7B show-
ing even stronger improvements. In pass@1 evalua-
tion, the pipeline achieved an MSE of 1.6 compared
to the baseline’s 3.7, representing a 55.8% improve-
ment. The pipeline achieved Cohen’s quadratic
weighted κ of 0.12 compared to the baseline’s
0.06, demonstrating a 122.5% improvement. The
pipeline also demonstrated significantly better cov-
erage, processing 135 out of 150 cases (15 UNVER-
IFIABLE excluded) compared to the baseline’s 72
cases (78 UNVERIFIABLE excluded).

For pass@3 evaluation, the pipeline achieved
an MSE of 1.0 compared to the baseline’s 3.7,
showing a 71.9% reduction in error. Likewise, the
pipeline achieved Cohen’s quadratic weighted κ of
0.31 compared to the baseline’s 0.09, demonstrat-
ing a 147.1% improvement. Moreover, pipeline
maintained exceptional coverage with 147 cases
(only 3 fully UNVERIFIABLE cases excluded) com-
pared to the baseline’s 89 cases (61 UNVERIFI-
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Model Ablation Acc Prec Recall F1
GEMINI 1 B 0.21 0.24 0.15 0.17

P 0.25 0.34 0.19 0.21
3 B 0.23 0.29 0.17 0.19

P 0.41 0.40 0.33 0.33
MISTRAL 1 B 0.14 0.18 0.10 0.12

P 0.27 0.34 0.22 0.23
3 B 0.18 0.22 0.13 0.15

P 0.43 0.48 0.35 0.35

Table 3: Balanced Accuracy and Macro Metrics (Pre-
cision, Recall, and F1-score) by LLMs and ablation:
pass@k and B = baseline, P = pipeline (our method).
Best performance in each group are in bold.

ABLE excluded).

5.2 Performance Analysis

Additional classification metrics—balanced accu-
racy, macro recall, precision, and F1-scores—are
presented in Table 3. While we excluded UN-
VERIFIABLE predictions from the MSE calcula-
tions to avoid distorting distance-based penalties—
given that this class does not adhere to the ordinal
structure—we included them in the macro calcu-
lations as it evaluates classification performance
across all classes independently, allowing us to
evaluate the models’ performance across all possi-
ble outcomes.

The results demonstrate that our pipeline consis-
tently outperforms the baseline across all metrics.
Notably, the pass@1 pipeline configuration even
surpasses the pass@3 baseline for both models.

Notably, MISTRAL-7B-V0.3 achieves the best
overall performance among the tested models. This
superior performance aligns with our earlier ob-
servation in the MSE analysis (Figure 2), where
MISTRAL-7B-V0.3 showed a tendency to make
fewer UNVERIFIABLE predictions. In the con-
text of these classification metrics, this charac-
teristic suggests that MISTRAL-7B-V0.3 may be
more decisive in assigning specific truthfulness cat-
egories, potentially contributing to its improved
performance across all classes.

To better understand the performance of our
pipeline on different classes, we analyzed the dis-
tribution of predictions for each right verdict class
in our pass@3 evaluation, revealing interesting
patterns as shown in Table 4. For FALSE claims,
the pipeline shows strong discrimination between
FALSE (45%) and MOSTLYFALSE (48%) verdicts,
with minimal confusion with more positive ver-

Gold Verdict Top 3 Predictions

FALSE (F)
MF F HT
0.48 0.45 0.04

MOSTLYFALSE (MF)
MF HT MT
0.52 0.22 0.15

HALFTRUE (HT)
MT MF HT
0.40 0.33 0.22

MOSTLYTRUE (MT)
MT HT MF
0.63 0.26 0.11

TRUE (T)
MT T HT
0.44 0.22 0.22

Table 4: Top 3 predictions and respective proportions for
pass@3 results from MISTRAL-7B-V0.3. Highlighted
cells indicate exact match between gold and predicted.

dicts. MOSTLYTRUE claims see the highest con-
fidence predictions, with 63% of cases correctly
identified. The pipeline shows some conservative
tendency for TRUE claims, more frequently pre-
dicting MOSTLYTRUE (44%) than TRUE (22%).
However, for HALFTRUE claims, the pipeline is
more likely to predict MOSTLYTRUE (40%) than
HALFTRUE (22%), and often gets confused with
MOSTLYFALSE as well—possibly due to the ambi-
guity of the verdict itself.

Model Top misclass. Top fallacy and
count

MISTRAL F →MF (20) causal oversim-
plification (6)
hasty general-
ization(3)

GEMINI HT →MT (14) hasty general-
ization (3)
causal oversim-
plification (3)

Table 5: Top misclassifications and top 2 fallacy counts
for pipeline pass @3, excluding unverifiables

While the results of our approach are promising,
they are still relatively low even for this harder task
of 5-way classification. To further understand the
possible sources of misclassifications in our fact-
checking pipeline, we conducted an analysis on
a subset of misclassified claims to assess whether
they contain some types of fallacies. Our approach
involved a two-step process: first, we prompted
MISTRAL-7B-V0.3 to generate an open-ended fal-
lacy label for each misclassified claim, based on
the general definition of fallacy. Subsequently,
these open-ended descriptions were categorized
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into a predefined set of fallacy types using a sepa-
rate classification model, also using MISTRAL-7B-
V0.3, drawing categories sourced from Alhindi
et al. (2023). The prompts are detailed in Appendix
C. This approach allowed us to identify and quan-
tify fallacies present in claims, potentially explain-
ing the pipeline’s difficulties in correct factuality
labeling.

Table 5 presents the top two types of misclas-
sifications observed for two different models for
the results for pipeline pass@3, using MISTRAL-
7B-V0.3 and GEMINI-1.5-FLASH, along with the
fallacy most frequently associated with each. We
excluded "unverifiable" labels from this analysis
for clarity. Pipeline pass@3 is chosen for this anal-
ysis, since it is our best performing ablation by
MSE and Cohen’s κ.

When a claim was fundamentally FALSE, the
MISTRAL pipeline frequently identified some fal-
sity but cautioned against a full refutation, label-
ing it as MOSTLYFALSE, which suggests a chal-
lenge in fully debunking complex or subtly flawed
false claims. The most prominent fallacies associ-
ated with this error are causal oversimplification (6
instances) and hasty generalization (3 instances).
This pattern indicates that MISTRAL struggles to
refute claims where a simplified or incorrect cause-
and-effect relationship is presented, or where broad,
unsupported conclusions are drawn from insuffi-
cient evidence, which may give rise to some false
sense of plausibility to an otherwise false claim,
making it difficult for the pipeline to reach a defini-
tive FALSE label.

Interestingly, for GEMINI, the most com-
mon error pipeline pass@3 makes is classifying
HALFTRUE claims as MOSTLYTRUE, indicating
a tendency for GEMINI to be "overly" permissive
in its truth assessment. The top associated fallacies
in these cases are hasty generalization (3 instances)
and causal oversimplification (3 instances). This
suggests that when a claim is partially true but then
extends that truth to an unwarranted broad conclu-
sion (hasty generalization) or draws an incorrect
causal link (causal oversimplification), GEMINI

pipeline may tend to prioritize the verifiable true
components and fail to penalize the flawed logical
step, causing an inflated truth assessment.

6 Conclusion and Future Work

We introduced a challenging benchmark, FACT5,
for fine-grained, nuanced fact-checking. By in-

troducing this benchmark, we hope to contribute
to the development of more nuanced evaluation
frameworks that move beyond binary classifica-
tion. Our five-class ordinal scale and emphasis on
complex, multi-hop reasoning requirements could
serve as a foundation for future benchmarks that
better capture the complexity of real-world fact-
checking scenarios. The dataset’s temporal recency
and careful source attribution also address impor-
tant considerations around data contamination and
evaluation validity that should be standard features
of fact-checking benchmarks moving forward.

The improved performance of our pipeline over
the baseline models, particularly with smaller open-
source models such as MISTRAL-7B-V0.3 model,
is encouraging. Furthermore, the pass@3 perfor-
mance of our pipeline indicates that it can be used
in a semi-automated setting, where the system pro-
vides multiple ranked verdicts for human review.
The verdict-wise analysis suggests that our sys-
tem is particularly adept at identifying clearly false
information. The additional analysis of the pres-
ence of fallacies in claims helps identify the harder
cases for current models. While a broader system-
atic review—ideally with human annotators—is
needed, it is important to understand how fallacies
can cause models to either understate (e.g., MIS-
TRAL) or inflate (e.g., GEMINI) the factuality of
a statement. Further work could potentially add
fallacy classification as part of the factuality as-
sessment to understand if it leads to more accurate
classifications.

Limitations

While our research advances the automated fact-
checking of complex statements using LLMs, some
limitations need to be carefully considered.

Dataset Size Limitations Our current evalua-
tion relies on our own curated FACT5 dataset of
150 statements, which represents a relatively small
sample size compared to other NLP benchmarks.
Though our pipeline shows promising results on
the FACT5 dataset, its performance on a broader
range of statement types and domains remains to
be fully validated. The current evaluation, while
thorough, may not capture all edge cases or state-
ment complexities that could arise in real-world
fact-checking scenarios. To mitigate these limita-
tions, we focused on high-quality, professionally
fact-checked statements, ensured balanced repre-
sentation across truthfulness categories, selected
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temporally relevant statements to test model per-
formance on current claims, and incorporated mul-
tiple evaluation metrics for a comprehensive per-
formance analysis. Future work could focus on
expanding this benchmark dataset while maintain-
ing these quality standards through collaboration
with professional fact-checking organizations to
access larger pools of verified claims or by po-
tentially exploring semi-automated data collection
using web-browsing agents (Costabile et al., 2025)
or advanced synthetic data generation methods
(Chung et al., 2025; Tang et al., 2024; Li et al.,
2023). The FACT5 dataset’s recency (2024-2025)
presents both advantages and limitations. While
it allows testing of models’ capabilities on current
events, it also means that the dataset might become
less relevant over time as the context of these state-
ments changes, or if the training cutoff date for
language models gets extended to incorporate more
recent web data. This temporal dependency could
affect the long-term utility of both the dataset and
the evaluation metrics derived from it.

Pipeline Robustness The sequential nature of
our pipeline means that errors in early stages (e.g.,
atomic claim decomposition or question genera-
tion) can propagate through the system and affect
final verdicts. While our results show strong over-
all performance, the interdependence of pipeline
components could make the system vulnerable to
cascading failures, particularly when dealing with
especially complex or nuanced statements. For ex-
ample, the retrieval of top-k results from search
engines serves as a fundamental component of our
fact-checking pipeline. However, the inherent chal-
lenge lies in the lack of a definitive method to en-
sure the accuracy of the retrieved information. De-
spite prioritizing reliable sources and performing
rigorous post-processing, the inherent accuracy of
the information obtained cannot be guaranteed.

Need for Expert Human Evaluation While
we conducted a preliminary evaluation with par-
ticipants lacking specialized knowledge in fact-
checking, the results demonstrated limited value.
The overwhelming agreement between untrained
participants and model outputs suggests that this
method may not provide sufficiently discrimina-
tive or insightful feedback for our purposes. Con-
sequently, we have chosen to focus our analy-
sis on more informative metrics detailed in §4.2,
which are better suited to assess the performance
of our five-way classification task for truthfulness.

Nonetheless, as noted in Russo et al. (2023), evalu-
ating the quality of model reasoning is also crucial
beyond examining the correctness of the model out-
puts. Therefore, for future work, expert evaluators
in journalistic fields or who work as fact-checkers
would be necessary for conducting a robust human
evaluation.

Challenges in Data Leakage The absence of
publicly accessible training data restricts our ability
to explore the phenomenon of information memo-
rization by LLMs for fact-checking purposes. De-
spite efforts to mitigate bias by blacklisting certain
sources like PolitiFact, the ubiquity of its work
across online content poses a challenge. Even
if PolitiFact itself is excluded from the training
data, its findings may still indirectly influence other
sources used during the retrieval process, poten-
tially impacting the reliability of the fact-checking
outcomes.

Political Biases and Logical Fallacies Previous
work has exhibited that political leanings can be
embedded into LLMs (Feng et al., 2023). Due to
the nature of our research, it is possible that LLMs
exhibited political biases when determining the fac-
tuality of a statement, which could diverge from the
nonpartisan nature of fact-checking tasks. A closer
look at the results is needed to verify the presence
of potential political biases in judging the factual-
ity of statements. It is also important to note that
although our model is primarily designed to fact-
check complex statements, it is not yet equipped to
identify common fallacies that are often deployed
in political speeches (e.g., red herring and straw
man fallacies).

Ethics Statement

Our work aims to contribute positively to the chal-
lenge of combating misinformation by introduc-
ing a more nuanced approach to automated fact-
checking and by developing tools that can be more
accessible. However, we acknowledge several eth-
ical considerations and potential risks associated
with the development and deployment of such a
system. While our pipeline demonstrates promis-
ing capabilities for assisted fact-checking, the de-
ployment of our system could inadvertently con-
tribute to reduced trust in legitimate news when
the model makes incorrect classifications. Our
pipeline’s reliance on web-retrieved data also raises
concerns regarding the handling of copyrighted
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material and user privacy. Furthermore, inherent
biases in LLMs, including potential political lean-
ings, might influence factuality assessments, and
the current system is not designed to identify all
types of logical fallacies, which can be prevalent in
misleading statements.

To mitigate these risks, we strongly advocate
for human oversight in any practical deployment,
especially for sensitive claims. We have designed
the pipeline with transparency in mind, including
source citation, to aid such oversight. Future de-
velopment should prioritize robust data minimiza-
tion practices, clear protocols for copyrighted con-
tent, and the integration of privacy-preserving tech-
niques. Continued research into debiasing LLMs
and enhancing fallacy detection will also be crucial.

Ultimately, by highlighting these challenges
and proposing a more granular approach to fact-
checking, we hope to contribute to the development
of more responsible and effective AI systems for
combating misinformation and supporting critical
information consumption.
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A FACT5 Pilot Dataset

A.1 Explanation of Ratings

Label Description
True The statement is accurate, and there’s nothing significant missing.
Mostly True The statement is accurate but needs clarification or additional information.
Half True The statement is partially accurate but leaves out important details or takes things out

of context.
Mostly False The statement contains an element of truth but ignores critical facts that would give a

different impression.
False The statement is not accurate.
Pants on Fire The statement is not accurate and makes a ridiculous claim.

Table 6: Truth-O-Meter rating used by PolitiFact

A.2 Mapping of Fact-checking Metrics

Numeric Label Our Mapping Credible Sources

PolitiFact The Fact Checker
(WaPo)

Snopes

0 Unverifiable N/A No Verdict Unproven /
Unfounded

1 False Pants on Fire / Four Pinocchios False
False

2 Mostly False Mostly False Three Pinocchios Mostly False
3 Half True Half True Two Pinocchios Mixture
4 Mostly True Mostly True One Pinocchio Mostly True
5 True True The Geppetto

Checkmark
True

Table 7: Mappings of Fact-checking Metrics
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A.3 Snippet of the Pilot Dataset

verdict statement_originator statement statement_date factchecker

FALSE Joe Biden "Remember in
2020, 55 of the
biggest compa-
nies in America
made 40 billion
and paid zero in
federal income
taxes. [...]"

3/7/2024 CNN

MOSTLY
FALSE

Elissa Slotkin "[...] Mike
Rogers ’be-
lieves he should
make that de-
cision’ about
whether to end
pregnancies."

9/30/2024 PolitiFact

HALF TRUE Dana Loesch "Buncombe
County ’is still
demanding prop-
erty taxes on
homes destroyed
by Hurricane
Helene [...]’"

1/6/2025 PolitiFact

MOSTLY TRUE Ron DeSantis "[Nikki Haley]
spent 100%
of her money
attacking me..."

1/26/2024 CNN

TRUE David Crowley "Under [Biden]
[...] fastest
growth of Black-
owned small
businesses in
more than 30
years."

5/16/2024 PolitiFact

Table 8: Selected Rows and Columns from Pilot Dataset
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B Pipeline Details

B.1 Atomic Claim Generation
DSPy signature for claim extraction, which consists of the criteria for each claim.

"""Extract specific claims from the given statement.
1. Split the statement into multiple claims, but if the statement is atomic (has
one main claim), keep it as is.
2. If context is included (e.g., time, location, source/speaker who made the
statement, etc.), include the context in each claim to help verify it. Do not
make up a context if it is not present in the text.
3. Consider the source (e.g. name of the speaker, organization, etc.) and date
of the statement if given in the context, and include them in each claim.
4. Each claim should be independent of each other and not refer to other claims.
5. Always extract claims regardless of the content """

Output field

"""JSON object containing:
{
"claims": [
{
"text": string, }
]
}"""

B.2 Question Generation
DSPy signature for question generation

"""Break down the given claim derived from the original statement to generate
independent questions and search queries to answer it. Be as specific and concise
as possible, try to minimize the number of questions and search queries while
still being comprehensive to verify the claim."""

Output field

"""JSON object containing: {
"questions": [
{
"question": string, # question text (e.g. "What was the GDP growth rate during
the Trump administration?")
"search_queries": [string], # independent search queries used to answer the
question, try to be as specific as possible and avoid redundancy, 1-2 queries
is ideal
}
]}"""
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B.3 Answer Synthesis
DSPy signature for answer synthesis

"""Synthesize an answer based on retrieved documents with inline citations."""

Output field

"""JSON object containing:
{
"text": string, # answer with inline citations where the number in the brackets
is the index of the citation in the citations list (e.g., "The wage gap was
shrinking [1]")
"citations": [{ # list of citations
"snippet": string, # exact quote from source
"source_url": string,
"source_title": string,
"relevance_score": float
}]
}"""
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C Fallacy Classification Prompt

C.1 Open-ended fallacy detection
DSPy signature for open-ended fallacy detection

"""Classify logical fallacies given the statement"""
Input field statement = "Statement to analyze"

Output field

1. fallacy (str) = "A fallacy or a fallacious argument is one that seems valid
but is not. Identify the fallacy in the statement. If no fallacy is present,
return ’none’."

2. confidence (float) = "0-1 confidence score"

3. rationale (str) = "Step-by-step reasoning"

C.2 Fallacy Categorization
Predefined categories, from Alhindi et al. (2023)

’ad hominem’, ’appeal to emotion’, ’hasty generalization’, ’irrelevant authority’,
’red herring’, ’black and white fallacy’, ’causal oversimplification’, ’doubt’,
’exaggeration or minimization’, ’appeal to fear/prejudice’, ’flag-waving’,
’loaded language’, ’name calling or labeling’, ’reductio ad hitlerum’,
’slogans’, ’strawman’, ’thought-terminating cliches’, ’whataboutism’, ’ad
populum’, ’circular reasoning’, ’deductive fallacy’, ’equivocation’, ’fallacy
of extension’, ’intentional fallacy’, ’evading burden of proof’, ’cherrypicking’,
’post hoc (causal oversimplification)’, ’vagueness’, ’none’

DSPy signature for fallacy categorization

"""Categorize an open-ended fallacy description into a predefined list of fallacy
types.If the detected fallacy does not clearly fit into any of the predefined
categories,classify it as ’Other’."""

1. open_ended_fallacy (str) = "The name or description of the fallacy detected by
an open-ended system (e.g., ’This is an ad hominem because...’, or ’Attacking
the person instead of the argument’, or ’none’)."

2. target_categories List[str] = A list of predefined fallacy categories to map
the detected fallacy into.

Output field

1. categorized_fallacy: (str) The category from the target_categories list that
best matches the detected fallacy. If the open_ended_fallacy is ’none’ or
doesn’t fit any category, return ’Other’ or ’None Detected’ as appropriate."

2. confidence: (float) "0-1 confidence score for this categorization."

3. rationale: (str) = "Step-by-step reasoning for choosing the category, or for
choosing ’Other’/’None Detected’."
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