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Abstract

In this paper, we present the system proposed
by our team OldJoe, for the 8th edition of the
AVeriTeC shared task, as part of the FEVER
workshop. The objective of this task is to ver-
ify the factuality of real-world claims. Our
approach integrates open source large language
models, SQL, and in-context learning. We be-
gin with embedding the knowledge store using
a pretrained embedding language model then
storing the outputs in a SQL database. Subse-
quently, we prompt an LLM to craft relevant
questions based on the input claim, which are
then used to guide the retrieval process. We fur-
ther prompt the LLM to generate answers to the
questions and predict the veracity of the origi-
nal claim. Our system scored 0.49 on the HU-
METEOR AVeriTeC score on the dev set and
0.15 on the Ev2R recall on the test set. Due to
the time constraint we were unable to conduct
additional experiments or further hyperparame-
ter tuning. As a result, we adopted this pipeline
configuration centered on the Qwen3-14B-AWQ
model as our final submission strategy. The full
pipeline is available on GitHub.1

1 Introduction

In an era where information spreads rapidly across
digital platforms, manual fact-checking struggles
to keep pace with the vast volume of content gen-
erated daily. This growing challenge has sparked
increasing interest in the development of automated
fact-checking systems with a focus on efficient, re-
producible and open-source methodologies. In this
context, the AVeriTeC Shared Task2 was introduced
to evaluate systems capable of assessing the factu-
ality of claims using a structured knowledge base.
We created a system that combines large language
models, SQL databases, and in-context learning.

*Main contributors
†Corresponding author: fxf482@student.bham.ac.uk
1https://github.com/farahft/OldJoe
2https://fever.ai/task.html

Our pipeline has the following components: (1)
a postgreSQL database, which stores the embed-
dings and chunks for evidence documents from the
knowledge store; (2) Question Generation, where
we generate questions and queries based on the
given claim; (3) Retrieval and Re-ranking, which
uses pgvector and postgres to retrieve evidence
for each query; (4) Answer Generation, where we
generate answers for each question using the re-
trieved evidence chunks; and (5) Veracity Check,
where we assign the final veracity label based on
the generated question-answer pairs. The entire
pipeline is illustrated in Figure 1.

2 Related Work

One of the earliest studies to frame fact-checking as
a computational task was introduced by (Vlachos
and Riedel, 2014), who aimed to replicate the tradi-
tionally manual process of claim verification using
NLP techniques. This foundational work paved the
way for other efforts, most notably the introduction
of the FEVER dataset(Thorne et al., 2018), a large-
scale benchmark designed to advance research in
claim verification against textual sources. Over the
years, the increasing spread of misinformation(Das
et al., 2023) has further elevated fact-checking as a
critical area of research and led to multiple studies.

More recently, (DeHaven and Scott, 2023)
proposed BEVERS, a simple yet highly effec-
tive pipeline that achieves state-of-the-art re-
sults on both the FEVER and SciFact (Wad-
den et al., 2020) datasets. This growing inter-
est has also motivated the organization to launch
the FEVER(Schlichtkrull et al., 2024) workshop,
which evaluate systems using the real-world claim
dataset AVeriTeC(Schlichtkrull et al., 2023). Par-
ticipants in these workshops have employed a wide
range of approaches — from systems relying on
APIs(Rothermel et al., 2024) to those based on fine-
tuned open-source models (Sevgili et al., 2024),
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reflecting the diversity and rapid evolution of meth-
ods in this domain.

3 Methodology

In this section we present our system pipeline as
shown in Figure 1. We start by preparing our evi-
dence database from the knowledge store given by
the organisers. Next, we build our question-query
generator to generate questions and queries that
guide retrieval for a given claim. Then, we build
the answer generator to answer the questions and
queries based on the retrieved evidence. Finally,
these answers are used to determine the veracity of
a given claim.

3.1 Evidence Embeddings
Before creating the embeddings, we first semanti-
cally split each evidence document into chunks
with a maximum length of 2048 characters us-
ing semantic-text-splitter 3 that offers meth-
ods for splitting text into smaller chunks, aim-
ing to reach a target chunk size while priori-
tizing splits at semantically meaningful bound-
aries. We then explored several approaches to
generating the embeddings and storing them in a
database. One approach we attempted involved us-
ing Alibaba-NLP/gte-large-en-v1.5 (Zhang
et al., 2024) and FAISS to store the texts, their em-
beddings, and the corresponding metadata as pick-
led files (Douze et al., 2024). We also looked into
using a ChromaDB vector database to store both
the embeddings and metadata in a singular vector.
Ultimately, our final system generates sentence em-
beddings with jina-ai/jina-embeddings-v34

with a maximum model length of 2048 and relies
on the postgres extension, pgvector5, for stor-
ing both the embeddings and the content of the
evidence chunks together. Evidence for each claim
is stored in a separate table, enabling efficient and
accurate retrieval of relevant evidence.

3.2 Question and Query generation
The next step in our inference pipeline is to gen-
erate questions along with search queries. For
this task, we use Qwen/Qwen1.5-14B-Chat-AWQ
6 (QwenLM Team, 2025), a recent reasoning model
that is quantized to fit within 24GB of VRAM set
up to 8192 as a max length. For each claim, we

3https://pypi.org/project/semantic-text-splitter/
4https://huggingface.co/jinaai/jina-embeddings-v3
5https://github.com/pgvector/pgvector
6https://huggingface.co/Qwen/Qwen1.5-14B-Chat-AWQ

prompt this model to first analyse and reason about
the claim before generating four questions that,
when answered, would provide easy insight into
the veracity of the claim.

To support veracity prediction and improve
both interpretability and retrieval quality, we first
prompt the model to generate questions from the
original claims. Using the generated questions we
prompt the model to generate refined search queries
designed to better capture the information need and
guide evidence retrieval. This two-step process en-
ables the system to retrieve more relevant evidence
chunks, which are then used to form Q-A pairs that
inform the final veracity prediction

The prompts for question and query generation
are provided in Appendix A and B respectively.

Question Generation Example

Claim: Trump Administration claimed
songwriter Billie Eilish Is Destroying Our
Country In Leaked Documents
Question: Are there any official documents
from the Trump Administration that explic-
itly state Billie Eilish is destroying the coun-
try?

3.3 Evidence Retrieval and Re-ranking

We use the questions and queries generated in Sec-
tion 3.2 to retrieve evidence. For each question,
corresponding search queries along with the ques-
tion itself are used to retrieve and simultaneously re-
rank candidate evidence chunks. Parallel to the var-
ious embedding and data warehousing approaches
we explored, we also compared the effectiveness
of four approaches in retrieving evidence from our
knowledge base:

1. the FAISS retrieval method, which uses cosine
similarity to quantify the distance between
query embeddings and evidence embeddings

2. the BM25 (Robertson et al., 2009) algorithm,
which retrieves the most relevant evidence us-
ing keyword search without relying on embed-
dings

3. a hybrid score combining BM25 scores with
FAISS-based cosine similarity scores between
query and evidence embeddings

4. reciprocal rank fusion (RRF) scoring (Cor-
mack et al., 2009), which collates the BM25-
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Figure 1: System Pipeline.

based and pgvector-based rankings of evi-
dences and embeddings stored in our post-
greSQL database

We used the Prometheus evaluation metric (Pom-
bal et al., 2025) a multilingual LLM-as-a-judge
framework that supports both reference-based and
reference-free evaluation enabling direct assess-
ment and pairwise comparison of long-form out-
puts, to assess the best retrieval approach. The
results in Table 1 show that retrieving evidence
from postgreSQL through RRF scoring provided
the best results.

Consequently, the entire retrieval-reranking pro-
cess is performed in a single SQL query for effi-
ciency and speed. Combining BM25-based key-
word search and pgvector-based semantic search,
the SQL query retrieves the eight most question-
relevant evidence chunks identified by each search
method. The BM25 and pgvector ranks and
scores for each retrieved chunk are then collated
using RRF with a penalty factor of 4 to ensure
balanced contributions between the BM25 and

pgvector search strategies. Based on this RRF
scoring mechanism, the system returns the 10
highest-ranked evidence chunks for each question.

Approach Prometheus Evaluation Metric
FAISS 1.20
BM25 2.90
FAISS & BM25 1.80
postgreSQL RRF 3.80

Table 1: Comparison of retrieval models using the
Prometheus evaluation metric.

The SQL query for retrieval and re-ranking is
provided in Appendix E.

3.4 Answer Generation
The penultimate step in our inference pipeline
is answer generation. The process is similar
to Section 3.2 and uses the same reasoning
model: Qwen/Qwen3-14B-AWQ (QwenLM Team,
2025). The model is prompted to generate the
answers based on the question and corresponding
retrieved evidence. The prompt used can be found
in Appendix C.
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Answer Generation Example

Question: Are there any official documents
from the Trump Administration that explic-
itly state Billie Eilish is destroying the coun-
try?
Answer: No. As reported by The Wash-
ington Post and corrected by the New York
Post, the leaked documents from the Trump
administration did not state that Billie Eilish
was destroying the country. Instead, they
recorded Eilish’s own statement criticizing
Trump, who she said was destroying our
country and everything we care about. The
Washington Post initially misattributed this
quote to Trump officials but later issued a
correction clarifying that the statement was
Eilish’s own, not an official assessment by
the administration.

3.5 Veracity Judgment

The final stage of the pipeline is veracity judgment,
where each claim is classified into 4 different labels:
Supported, Refuted, Conflicting/Cherry-Picking or
Not Enough Evidence. Similar to Sections 3.2 and
3.4, we prompt the model to predict the claim’s
veracity given the claim and the question-answer
pairs generated in Section 3.4. The prompt used
can be found in Appendix D.

4 Experiments

This section presents results of the experiments
we conducted to determine which reasoning model
provided the most optimal performance for our
fact-checking pipeline.

4.1 Hardware

All the experiments were conducted on a single ma-
chine equipped with two AMD EPYC9334 32-core
CPUs, 1 TB of RAM, and two 1TB NVMe SSD
and 4TB NVMe SSD. The system also included
8 NVIDIA L40s GPUs each with 48GB of mem-
ory. The complete pipeline including the database,
language models, and all other components were
packed into a Docker image totaling 230 GB in
size. This containerized setup can be run on sys-
tems with at least 24 GB of GPU memory.

4.2 Experimental Results

The processes to generate the embeddings and in-
sert them into our postgreSQL knowledge store

database collectively took approximately 4 hours.
Claim labeling on the dev set required an average
of 45 seconds per claim, totaling around 6.3 hours
for the entire dataset.

We employed three models in performing the
question generation, question-and-answer genera-
tion, and veracity prediction tasks. These models
were all compatible with the 24GB GPU RAM
hardware setup described in Section 4.1. Table 2
shows each model’s scores for the three tasks
mentioned above, as evaluated using the official
2024 Shared Task metrics. Among the models,
qwen3-14b-awq returned the highest scores when
paired with in-context learning and applied into
our inference pipeline. The model achieved an
accuracy of 0.494 and an AVeriTeC score of 0.42
on the dev set. Owing to limited time, we could
not explore alternative configurations or pipelines ,
we proceeded with the mentioned pipeline which
showed promising results during Q and Q+A
stages.

4.3 Final Submission Results

Our system was evaluated on the Ev2R frame-
work proposed by (Akhtar et al., 2024), which
introduces reference-based, proxy-reference and
reference-less scores for evidence evaluation in
automated fact-checking. Our system achieved a
mean runtime of 84.57 seconds per claim, a Q+A
Ev2R recall of 0.387 a Q-only Ev2R score of 0.182
and an overall AVeriTeC score of 0.151.

5 Conclusion

This paper describes Team OldJoe’s submission to
the AVeriTeC Shared Task the FEVER workshop.
We explored various strategies for embedding, stor-
ing, and retrieving evidence chunks for better ve-
racity prediction. We evaluated multiple language
models and investigated the effectiveness of ap-
plying them and in-context learning for automated
fact-checking. While our system demonstrates a
promising performance on the dev set when evalu-
ated by the HU-METEOR metric, further improve-
ments are necessary to enhance its generalisation
and achieve better results on the test set.

Limitations

This system has been designed for the FEVER
shared task and is structured to meet the require-
ments and limitations of the task. The performance
of the model outside of the parameters of the task
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Model Q score Q/A score Accuracy AVeriTeC Score
llama-3.1-8B 0.411 0.27 0.388 0.38
qwen3-8B-fp8 0.410 0.28 0.41 0.414
qwen3-14b-awq 0.411 0.27 0.494 0.492

Table 2: Comparison of models performance using HU-meteor Accuracy and AVeriTeC scores.

might differ significantly. Due to time and com-
putational constraints, we were not able to fully
finetune our system on the data. It is likely that the
system performance can improve substantially with
additional finetuning and access to more powerful
hardware.
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Appendix

A Question Generation Prompt Template

You are an advanced fact -checking AI, tasked with generating highly targeted ,
investigative questions to verify claims.
Each question should probe a unique and essential aspect of verification.
You are NOT fact -checking the claim. You 're job is to generate questions to
enable better fact checking.

### Instructions
Generate {{ n_questions }} ** distinct ** and **non -redundant ** questions.
Each question should target a ** different ** key dimension of verification
Each question must be ** necessary **: answering it should bring us ** measurably
closer to a veracity judgment **.
Each question must be atomic and include all the ** necessary ** and ** sufficient
** information while being ** concise **.

### Additional Notes
Before finalizing each question , consider:
1. What specific aspect of the claim does this question interrogate?
2. Would answering this question significantly impact veracity assessment?
3. Is this question fundamentally different from the others?
Make sure that the question *is a question*
{{ response_format }}

### Task:
Claim: "{{ claim }}"

Generated Questions:

B Query Generation Prompt Template

You are a retrieval -optimization AI that transforms fact -checking questions
into ** search
queries ** for evidence gathering.

Your job is to generate **{{ n_queries }} diverse , high -recall queries ** that
can retrieve
** useful evidence ** to help answer the following investigative question.

### Goals
- Cover ** different phrasings**, ** semantic angles**, and ** terminological
variations **.
- Balance between ** specificity ** and ** generalization ** to maximize evidence
retrieval.
- Optimize for both ** keyword ** and ** semantic search systems **.

### Techniques
Use the following techniques to generate diverse queries:
- Strip to core facts , entities , and concepts
- Use synonyms , rephrasing and related concepts.
- Break down the question into subcomponents.
- Vary terminology (formal/informal , technical/common).
- Include relevant entities or contexts.
- Reformulate to target potential evidence phrases (e.g., "according to", "
experts say",
etc.)
{{ response_format }}

### Task
Question: "{{ question }}"

Generated Search Queries:
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C Answer Generation Prompt Template

You are an advanced fact -checking AI, tasked with answering questions based on
provided evidence.
You have been given a question and a set of evidence chunks retrieved from a
database to answer that question.
Your goal is to synthesize a well -reasoned answer supported by the evidence.
You must ground your answer only in the evidence provided and avoid speculation
or unsupported claims.

Name your sources and be journalistic in your approach and response.
### Instructions
- Read and analyze all the provided evidence chunks.
- Identify relevant information that directly supports or refutes the question.
- Think step -by-step and reason about the evidence logically and cautiously.
- Acknowledge uncertainty or lack of coverage if the evidence is incomplete or
contradictory.
- Align your final answer with the type of question. If it is a **yes/no
question**, your answer must begin with either Yes or No and remain strictly
within that framing.
- Avoid speculation , assumptions , or invented content.
- Distill a short name for the source of each from the provided URL.
- When citing evidence , refer to the ** source name** (e.g., "as reported by The
Guardian" or "as reported in the New York Times ") instead of just the chunk

number or URL.
{{ response_format }}
### Evidence Chunks:
{% for chunk in chunks %}
[CHUNK [{{ loop.index }}] START]
URL :{{ chunk.source_url }}
CONTENT: {{ chunk.content }}
[CHUNK [{{ loop.index }}] END]
{% endfor %}

### Task
QUESTION: "{{ question }}"

ANSWER:

D Veracity label Generation Prompt Template

You are an advanced fact -checking AI tasked with determining the veracity of
claims based on evidence.
### Inputs
CLAIM: "{{ claim }}"
EVIDENCE:
{% for qa in qa_pairs %}
QUESTION: {{ qa.question }}
ANSWER: {{ qa.answer }}
{% endfor %}

### Task
Based on the evidence above , provide step by step reasoning followed by a final
verdict label for the claim.

### Labels
- "Supported ": The evidence fully supports the claim
- "Refuted ": The evidence contradicts the claim
- "Conflicting ": Different pieces of evidence support and contradict the claim
- "Not Enough Evidence ": Insufficient evidence to make a determination
{{ response_format }}
### Instructions
Ensure your verdict is:
- Strictly based on the provided evidence
- Considers all available information
- Acknowledges any uncertainties or gaps

ANSWER :)

245



E SQL Query

SQL ("""
WITH
input_queries AS (

SELECT
qid ,
qtext ,
qembedding

FROM
UNNEST (%( qtexts)s::text[], %( qembeds)s:: vector []) WITH
ORDINALITY
AS t(qtext , qembedding , qid)

),
semantic_search AS (

SELECT
t.id,
iq.qid ,
1.0 / (%( srpenalty)s + RANK() OVER (PARTITION BY iq.qid ORDER
BY t.embedding <=> iq.qembedding)) AS score

FROM {tname} t, input_queries iq
ORDER BY t.embedding <=> iq.qembedding
LIMIT %( slimit)s

),
keyword_search AS (

SELECT
t.id,
iq.qid ,
1.0 / (%( krpenalty)s + RANK() OVER (PARTITION BY iq.qid ORDER
BY ts_rank_cd(to_tsvector('english ', content), plainto_tsquery
('english ', iq.qtext)) DESC)) AS score

FROM {tname} t, input_queries iq
WHERE to_tsvector('english ', content) @@ plainto_tsquery('english ',
iq.qtext)

ORDER BY ts_rank_cd(to_tsvector('english ', content),
plainto_tsquery('english ', iq.qtext)) DESC
LIMIT %( klimit)s

),
combined AS (

SELECT id, SUM(score) AS total_score
FROM (

SELECT * FROM semantic_search
UNION ALL
SELECT * FROM keyword_search

) s
GROUP BY id

)
SELECT

t.doc_id , t.source_url , t.chunk_index , t.content , c.total_score
FROM combined c
JOIN {tname} t ON t.id = c.id
ORDER BY c.total_score DESC
LIMIT %(topk)s
""")
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